

UNIVERSIDAD NACIONAL DE CHIMBORAZO FACULTAD DE INGENIERÍA CARRERA DE INGENIERÍA CIVIL

"Trabajo de grado previo a la obtención del Título de Ingeniero Civil"

TRABAJO DE GRADUACIÓN

Título del proyecto:

"ESTUDIO DE LA ADHERENCIA DE UN SISTEMA COMPUESTO FRCM SOSTENIBLE PARA EL REFORZAMIENTO DE ELEMENTOS DE HORMIGÓN ARMADO"

Autores: JAZMÍN CAROLINA ALMACHE HERNÁNDEZ DARÍO ALEXANDER TAPIA PAZMIÑO

Director: OSCAR CEVALLOS V, PhD

Riobamba – Ecuador

AÑO 2016

Los miembros del Tribunal de Graduación del proyecto de investigación de título: "ESTUDIO DE LA ADHERENCIA DE UN SISTEMA COMPUESTO FRCM SOSTENIBLE PARA EL REFORZAMIENTO DE ELEMENTOS DE HORMIGÓN ARMADO", presentado por: Jazmín Carolina Almache Hernández y Darío Alexander Tapia Pazmiño y dirigida por: Oscar Cevallos V, PhD.

Una vez escuchada la defensa oral y revisado el informe final del proyecto de investigación con fines de graduación escrito en la cual se ha constatado el cumplimiento de las observaciones realizadas, remite la presente para uso y custodia en la biblioteca de la Facultad de Ingeniería de la UNACH.

Para constancia de lo expuesto firman:

Ing. Víctor Velásquez
PRESIDENTE DEL TRIBUNAL

Oscar Cevallos V, PhD DIRECTOR DEL PROYECTO

Ing. Franklin Pucha MIEMBRO DEL TRIBUNAL

1 Decourt
FIRMAS
FIRMA
(Franklin Rode

AUTORIA DE LA INVESTIGACIÓN

"La responsabilidad del contenido de este Proyecto de Graduación, nos corresponde exclusivamente a: Jazmín Carolina Almache, Darío Alexander Tapia y a Oscar Cevallos V, PhD; y el patrimonio intelectual de la misma a la Universidad Nacional de Chimborazo."

Jazmín Carolina Almache Hernández C.I. 060409029-0

Darío Alexander Tapia Pazmiño C.I. 020228799-1

FIRMA

FIRMA

AGRADECIMIENTO

Tengo muchos motivos para agradecer a Dios, primero por la vida, mi familia y por esta oportunidad de seguir adelante día a día. He visto como en cada paso estuvo junto a mí y ha hecho todo perfecto, sin él no seriamos nada.

A la Universidad Nacional de Chimborazo por todas las enseñanzas impartidas, a mi tutor Oscar Cevallos V, PhD por toda su paciencia y ayuda en la realización de este trabajo de investigación.

Al Arq. Ramiro Orna y al Ing. Fausto Hidalgo por su confianza, confianza que nos ayudó a cubrir gran parte del costo de este trabajo de investigación

Carolina Almache

AGRADECIMIENTO

Agradezco a Dios por permitirme llegar a este punto de mi vida, por toda la fuerza y valentía que me otorga en momentos difíciles y todas las oportunidades y desafíos que él pone en mi camino con la finalidad de hacerme más fuerte.

A la Universidad Nacional de Chimborazo por darme la oportunidad de descubrir nuevos conocimientos y a los docentes de la carrera de Ingeniería Civil por transmitirme su experiencia y formarme como buen profesional.

De manera especial agradezco a mi tutor Oscar Cevallos V, PhD, por su paciencia y guía durante el desarrollo del trabajo de investigación.

Darío Tapia

DEDICATORIA

A mis amados padres: Marquito y Teresita por toda su lucha constante, por los años de trabajo y sacrificio, por su ejemplo y amor, por sus desvelos y su confianza, les amo. A mis hermanas Feny y Rosita por ser mis amigas, mi ejemplo y ayudarme a salir adelante a pesar de las adversidades de la vida. A mis sobrinos Samy, Sebas y Carlita por su compañía.

A mi primo Faby por la ayuda de toda la vida, gracias por seguir luchando.

Y por último y no menos importante a Darío por ser la persona que es, por apoyarme siempre, por estar conmigo en cada paso, y porque hoy después de tanta lucha estamos aquí.

Carolina Almache

DEDICATORIA

A Dios quien hiso posible este momento, a mi madre quien es la inspiración para cada día llegar más lejos, a mi padre por su esfuerzo y preocupación, a mi hermana por ser parte de este logro.

A mis tíos y primos quienes siempre me apoyaron y estuvieron pendientes de mí.

A mi abuelita quien hoy me mira desde el cielo, por ser el ejemplo de trabajo y por todo el amor que me concedió.

A una persona especial, Carolina, por todo el recorrido que enfrentamos para alcanzar juntos este momento.

Darío Tapia

GLOSARIO	XXVI
RESUMEN	XXVII
INTRODUCCIÓN	XXVIII
CAPITULO I	1
1. FUNDAMENTACIÓN TEÓRICA	1
1.1. GENERALIDADES	1
1.2. CARACTERÍSTICAS DE LOS MATERIALES	1
1.2.1. HORMIGÓN	1
1.2.2. COMPONENTES DEL HORMIGÓN	2
1.2.3. PROPIEDADES DEL HORMIGON FRESCO	3
1.2.4. PROPIEDADES DEL HORMIGON ENDURECIDO	4
1.2.4.1. DENSIDAD	4
1.2.4.2. RESISTENCIA A LA COMPRESIÓN	5
1.2.4.3. RESISTENCIA A LA TRACCIÓN	5
1.2.4.4. MÓDULO ELÁSTICO	5
1.2.4.5. DUCTILIDAD	6
1.2.5. PROPIEDADES DE LOS AGREGADOS	9
1.2.6. MATERIALES COMPUESTOS	10
1.2.6.1. REFUERZO DEL MATERIAL COMPUESTO	11
1.2.6.1.1. FIBRAS ORGÁNICAS	11
1.2.6.1.2. FIBRAS INORGÁNICAS	
1.2.6.1.3. FIBRAS NATURALES	14
1.2.6.1.3.1. FIBRA DE CABUYA	15
1.2.6.2. FASE MATRIZ	17
1.2.6.2.2.INFLUENCIA DE LA ORIENTACIÓN Y DE LA CONCENTRAFIBRA.20	CIÓN DE LA
1.2.6.3. PROPIEDADES Y COMPORTAMIENTO DE MATERIALES COM CON FIBRAS NATURALES	MPUESTOS
1.2.7. TECNICAS DE REFUERZO ESTRUCTURAL	
1.2.7.1. SISTEMA FRP	
1.2.7.1.1.MODOS DE FALLA DE FRP REFORZADO EN VIGAS . (MON 2009).24	JTELEONE,
1.2.7.2. SISTEMA FRCM	
1.2.7.2.1.CARACTERIZACIÓN DE LOS SISTEMAS DE REFUERZO ESFRCM28	TRUCTURAL
1.2.8. CONCRETO REFORZADO CON FIBRAS NATURALES	
1.2.9. APLICACIÓN DEL SISTEMA FRCM	
1.2.9.1. REFUERZO DE UN ARCO DE PUENTE DE FERROCARRIL (BE 30	RARDI, 2011).
1.2.9.2. REFUERZO DE LOS PILARES DE UN MUELLE COSTERO DE F ARMADO (NANNI, 2012)	HORMIGÓN 31
1.2.9.3. REPARACIÓN DE LOS APOYOS DE UN PUENTE DE LÍNEA DI (NANNI, 2012).	E METRO32

CONTENIDO

1.2.9	9.4. REFUERZO DE UNA CHIMENEA DE ALBAÑILERÍA (NANNI, 2012)	33
1.2.1	10. ESTUDIOS EXPERIMENTALES EN HORMIGON ARMADO	34
1.2.1	10.1. ENSAYOS DE VIGAS SOMETIDAS A ESFUERZO DE FLEXIÓN	34
CAPITUI	LO II	
2. METOI	DOLOGÍA	
2.1.	TIPO DE ESTUDIO	
2.2.	POBLACIÓN MUESTRA	
2.1.	1. POBLACIÒN	
2.1.2	2. MUESTRA	
2.2.	OPERACIONALIZACIÓN DE VARIABLES	41
2.2.1	1. VARIABLE INDEPENDIENTES	41
2.2.2	2. VARIABLE DEPENDIENTES	41
2.3. PROC	CEDIMIENTOS	42
2.3.	1. CARACTERIZACIÓN TEJIDO Y FIBRA DE CABUYÁ	43
2.3.	1.1. DENSIDAD ESPECÍFICA DE LA FIBRA DE CABUYA	44
2.3.1	1.2. MASA POR UNIDAD DE ÁREA (ASTM D 3776)	46
2.3.1	1.3. DENSIDAD LINEAL –TEX (ASTM D 1577)	47
2.3.1	1.4. PORCENTAJE DE ABSORCIÓN	
2.3.	1.5. ENSAYO DE TRACCIÓN EN TEJIDOS (ASTM D5034-ADAPTACIÓN)	49
2.3.1	1.5.1. JUSTIFICACIÓN DEL USO DE RESINA POLIESTER	51
2.3.2 CEN	2. CARACTERIZACION DE MATERIALES PARA MORTERO (MATRIZ MENTICIA)	53
2.3.2	2.1. GRANULOMETRIA DE AGREGADO FINO -ARENA TAMIZADA (INEN 6	96).55
2.3.2 858)	2.2. MASA UNITARIA SUELTA Y COMPACTADA – ARENA TAMIZADA (IN 57	EN
2.3.2 (INE	2.3. DETERMINACIÓN DE LA DENSIDAD Y ABSORCIÓN DEL ÁRIDO FINO EN 856) 59	
2.3.2	2.4. DETERMINACIÓN DEL FLUJO EN MORTEROS (INEN 2 502)	61
		61
2.3.2	2.5. TIEMPO DE FRAGUADO (INEN 158)	62
2.3.2	2.6. DETERMINACIÓN DE LA DENSIDAD EN ESTADO FRESCO (ASTM C 13	8)64
2.3.2	2.7. CONTENIDO DE AIRE (ASTM C231)	66
2.3.2	2.8. RESISTENCIA A FLEXIÓN DE VIGUETAS DE MORTERO (INEN 198)	67
2.3.2 ARI	2.9. RESISTENCIA A COMPRESIÓN DE MORTEROS EN CUBOS CON 50 MM STA (INEN 488)	1 DE 70
2.3.2	2.10. ABSORCIÓN POR CAPILARIDAD MORTERO (ASTM C1403)	72
2.3.2 (PR)	2.11. DENSIDAD Y PORCENTAJE DE ABSORCION MORTERO ENDURECII INCIPIO DE ARQUIMIDES)	DO 74
2.3.3.	CARACTERIZACIÓN DEL MATERIAL COMPUESTO	75
2.3.3	3.1. RESISTENCIA A LA TRACCIÓN DEL MATERIAL COMPUESTO	77
2.3.3	3.2. RESISTENCIA A LA FLEXIÓN DEL MATERIAL COMPUESTO	80
2.3.3 (PR)	3.3. DENSIDAD Y PORCENTAJE DE ABSORCION DEL MATERIAL COMPUE INCIPIO DE ARQUIMIDES)	STO83
2.3.4.	CARACTERIZACIÓN DE MATERIALES PARA CONCRETO ARMADO	85

2.3.4.1.	ANÁLISIS GRANULOMÉTRICO (INEN 696)	86
2.3.4.2. Áridos. (1	DETERMINACIÓN DE LA MASA UNITARIA SUELTA Y COMPACTADA INEN 858)	EN 88
2.3.4.3. (INEN 857)	DETERMINACIÓN DE LA DENSIDAD Y ABSORCIÓN DEL ÁRIDO GRUE 90	SO
2.3.4.4.	DENSIDAD EN ESTADO FRESCO DEL HORMIGÓN (ASTM C 138)	92
2.3.4.5.	CONTENIDO DE AIRE (ASTM C231)	94
2.3.4.6.	ABSORCIÓN POR CAPILARIDAD DEL HORMIGÓN (ASTM C 1585)	95
2.4.4.7. ENDUREC	DENSIDAD Y PORCENTAJE DE ABSORCION DEL HORMIGÓN EN ESTA IDO (PRINCIPIO DE ARQUIMIDES)	DO 97
2.4.4.8.	ENSAYO DE TRACCIÓN DE VARILLAS CORRUGADAS (INEN 109)	100
2.4.4.9. CEMENTO	ENSAYO DE LA RESISTENCIA A COMPRESIÓN DEL HORMIGÓN DE HIDRAULICO- CILINDROS (INEN 1572-1576)	101
2.4.4.10. DE CEMEN	ENSAYO DE DATERMINACION DEL ASENTAMIENTO EN HORMIGO NTO HIDRAULICO (INEN 1578)	NES 103
2.4.5. ENS	SAYOS DE ADHERENCIA	104
2.4.5.1.	ENSAYO DE CORTE	105
2.4.5.2.	ENSAYO PULL-OFF, ADHERENCIA (ASTM D454 ADAPTACIÓN)	110
2.5. PROC	ESAMIENTO Y ANÁLISIS	115
2.4.1. DES	SCRIPCIÓN DE CADA METODO DE ADHERENCIA	115
2.4.2. ANA	ÁLISIS DE MODELOS DE CONCRETO ARMADO	117
2.4.2.1.	DETERMINACIÓN DEL ESFUERZO A FLEXIÓN EN VIGAS (NILSON, 200)1)117
2.4.2.2.	DISEÑO A FLEXIÓN DE VIGAS FUENTE	118
2.4.2.2.1.	BLOQUE DE COMPRESIÓN DE WHITNEY	119
2.4.2.3.	DISEÑO DE COLUMNA CON CARGA EXCENTRICA	122
2.4.2.2.1. (MCCORM	DETERMINACIÓN DE LOS MOMENTOS ACTUANTES EN LA COLUM (ACK,2011)	NA 124
2.4.2.3.	INDICES DE DUCTILIDAD Y ENERGIA	126
2.4.3. D	DISEÑO DE VIGA (SEGÚN NORMAS NEC Y ACI)	128
2.4.3.1.	REFUERZO USADO EN LA EXPERIMENTACIÓN	131
2.4.4. C	COLUMNA EXCENTRICA	132
2.4.5. E REFORZAI	ELABORACIÓN DE LAS VIGAS Y COLUMNAS DE CONCRETO ARMADO DAS CON EL SISTEMA FRCM	138
2.5.6. ENS COLUMNAS.	SAYOS PARA EVALUAR LA ADHERENCIA DEL SISTEMA FRCM EN VIGA	AS Y 141
2.4.6.1.	ENSAYO DE FLEXIÓN PURO EN VIGAS (4 PUNTOS)	142
2.4.6.2.	PRUEBAS EN COLUMNAS	144
CAPITULO III.		148
3. RESULTADOS	S	148
3.1. CARA	CTERIZACIÓN DE LA FIBRA Y TEJIDO DE CABUYA	148
3.2. CARA	CTERIZACIÓN DEL MORTERO (MATRIZ CEMENTICIA)	148
3.3. CARA	CTERIZACIÓN DEL MATERIAL COMPUESTO	149
3.4. CARA	CTERIZACIÓN DE MATERIALES PARA HORMIGÓN	149
3.4.1. V	VARRILLAS CORRUGADAS	149

3.5. El	NSAYO DE PULL OFF	150
3.5.1.	TABLA DE ANALISIS DE FUERZA Y FALLA	150
3.5.2.	GRÁFICAS DE RESULTADOS	151
3.5.3.	INDICE DE RENTABILIDAD	151
3.6. El	NSAYO DE CORTE	152
3.7. El	NSAYO DE FLEXIÓN -VIGAS SIN REFUERZO	156
3.7.1.	VIGA SR1	156
3.7.2.	VIGA SR2	158
3.7.3.	VIGA SR3	161
3.7.4.	RESUMEN DE VIGAS SIN REFUERZO	163
3.8. El	NSAYO DE FLEXIÓN -VIGA RUGOSO + FRCM	165
3.8.1.	VIGA R+FRCM 1	165
3.8.2.	VIGA R + FRCM 2	167
3.8.3.	VIGA R + FRCM 3	170
3.8.4.	RESUMEN DE VIGA R+FRCM	172
3.9. El	NSAYO DE FLEXIÓN -VIGA LISO + PRIMER + FRCM	174
3.9.1.	VIGA L + P +FRCM 1	174
3.9.2.	VIGA L + P +FRCM 2	176
3.9.3.	VIGA L + P + FRCM 3	179
3.9.4.	RESUME DE VIGAS L+P+FRCM	181
3.10.	ENSAYO DE FLEXIÓN -VIGAS RUGOSO + PRIMER + FRCM	183
3.10.1.	VIGA R + P + FRCM 1	183
3.10.2.	VIGA R + P + FRCM 2	185
3.10.3.	VIGA R + P +FRCM 3	188
3.10.4.	RESUMEN DE VIGAS R+P+FRCM	190
3.11.	RESUMEN GENERAL DE VIGAS	192
3.12.	RESUMEN DE RESULTADOS EN VIGAS	194
3.13.	INDICES DE DUCTILIDAD Y ENERGÍA EN VIGAS	195
3.14.	ENSAYO DE COMPRESIÓN EXCENTRICAS EN COLUMNAS SIN REFUERZO	196
3.14.1.	COLUMNA – SR1	196
3.14.2.	COLUMNA – SR2	198
3.14.3.	COLUMNA – SR3	200
3.14.4.	RESUMEN DE COLUMNAS SR	202
3.15.	COLUMNAS RUGOSO + FRCM	203
3.15.1.	COLUMNA – R+FRCM 1	203
3.15.2.	COLUMNA RUGOSO + FRCM 2	205
3.15.3.	COLUMNA R+FRCM 3	207
3.15.4.	RESUMEN DE COLUMNAS R+FRCM	209
3.16.	COLUMNAS – LISO+PRIMER+FRCM	211
3.16.1.	COLUMNA – L+P+FRCM 1	211
3.16.2.	COLUMNA – L + P + FRCM 2	213
3.16.3.	COLUMNA – L+P+FRCM 3	215

3.16.4.	RESUMEN DE COLUMNAS L+P+FRCM	217
3.17.	COLUMNAS RUGOSO + PRIMER + FRCM	218
3.17.1.	COLUMNAS R + P+ FRCM	218
3.17.2.	COLUMNA R + P + FRCM 2	220
3.17.3.	COLUMNA R + P + FRCM 3	222
3.17.4.	RESUMEN DE COLUMNAS R+P+FRCM	224
3.18.	RESUMEN DE COLUMNAS GENERAL	226
3.19.	RESUMEN GENERAL DE RESULTADOS EN COLUMNAS	227
3.20.	ÍNDICES DE DUCTILIDAD Y ENERGÍA EN COLUMNAS	228
CAPITULO	IV	229
4. DISCUSIÓ		229
CAPITULO	V	239
5.CONCLUS	IONES Y RECOMENDACIONES	239
5.1.CONCLU	JSIONES	239
5.2. RI	ECOMENDACIONES	241
CAPITULO	VI	242
6.PROPUES	ГА	242
6.1. TI	TULO DE LA PROPUESTA	242
6.2. IN	TRODUCCION	242
6.3. Ol	BEJTIVOS	243
6.3.1.	GENERAL	243
6.3.2.	ESPECIFICOS	243
6.4. FU	JNDAMENTACIÓN CIENTIFICA-TECNICA:	243
6.4.2.	CONCEPTOS BÁSICOS SOBRE ANCLAJES	243
6.4.3. PLACA	REFUERZO TOTALMENTE REVERSIBLE DE MADERA BLANDA, VIGAS AS DE MATERIAL COMPUESTO NO UNIDAS (MARCO CORRADI, 2016)	5 CON 247
6.5. DI	ESCRIPCIÓN DE LA PROPUESTA	251
6.5.1. REFOF + PRIM	FABRICACIÓN DE LAS VIGAS Y COLUMNAS DE CONCRETO ARMADO ZADAS CON EL SISTEMA FRCM ADHERIDAS MEDIANTE EL METODO RI IER + ANCLAJES.) UGOSO 253
6.5.2.	COLOCACIÓN DEL SISTEMA DE ANCLAJE	254
6.5.3.	MONITEREO Y EVALUACIÓN DE LA PROPUESTA	255
6.5.3.1.	VIGAS – RUGOSO + PRIMER + FRCM + ANCLAJES	256
6.5.3.1.	1. VIGA - A1	256
6.5.3.2.	VIGA – A2	258
6.5.3.3.	VIGA – A3	
6.5.3.4.	VIGA A4	
6.5.4.	RESUMEN – ANCLAJES	
6.5.2.	RESUMEN GENERAL VIGAS	
6.5.3.	COLUMNAS - RUGOSO + PRIMER + FRCM + ANCLAJES	
6.5.3.1.	COLUMNA - R+P+FRCM+A1	
6.5.3.2.	COLUMNA – R+P+FRCM+A2	271
6.5.3.3.	COLUMNA – R+P+FRCM+A3	273

6.5.3	.4.	COLUMNA - R+P+FRCM+A4	275
6.5.4.	RES	UMEN DE ANCLAJES EN COLUMNAS	277
6.5.7.	RES	UMEN GENERAL COLUMNAS	280
7.BIBLIO	GRAF	ÍA	
10.APÉND	ICES	O ANEXOS	
10.1.	CAF	RACTERIZACIÓN TEJIDO Y FIBRA DE CABUYÁ	
10.1.	1.	DENSIDAD ESPECÍFICA	
10.1.2	2.	MASA POR UNIDAD DE ÁREA (ASTM D 3776)	287
10.1.	3.	DENSIDAD LINEAL-TEX (ASTM D 1577)	289
10.1.4	4.	PORCENTAJE DE ABSORCIÓN (INEN 862-ADAPTACIÓN)	291
10.1.	5.	ENSAYO DE TRACCIÓN EN TEJIDOS (ASTM D5034-ADAPTACIÓN)	292
10.1.	5.1.	TEJIDO DE CABUYA	292
10.1.	5.2.	SACO DE CABUYA	294
10.2.	CAF 296	RACTERIZACION DE MATERIALES PARA MORTERO (MATRIZ CEMEN	TICIA)
10.2.	1.	GRANULOMETRÍA AGREGADO FINO-ARENA TAMIZADA (INEN 696)296
10.2.2	2.	MASA UNITARIA SUELTA Y COMPACTADA-ARENA TAMIZADA (IN 297	EN 858)
10.2. (INE	3. N 856)	DETERMINACIÓN DE LA DENSIDAD Y ABSORCIÓN DEL ÁRIDO FIN 298	0
10.2.4	4.	TIEMPO DE FRAGUADO (INEN 158)	299
10.2.	5.	DETERMINACIÓN DEL FLUJO EN MORTEROS (INEN 2502)	299
10.2.	6.	CONTENIDO DE AIRE (ASTM C231)	
10.2.	7.	DENSIDAD EN ESTADO FRESCO (ASTM C 138)	300
10.2.	8.	RESISTENCIA A FLEXIÓN EN VIGUETAS DE MORTERO (INEN 198)	301
10.2.9 488)	9.	RESISTENCIA A COMPRESIÓN DE CUBOS DE 50 CM DE ARISTAS (I 305	NEN
10.2.	10.	CURVA DE RESISTENCIA A LA COMPRESIÓN	305
10.2.	11.	GRÁFICA ESFUERZO VS. DEFORMACIÓN MORTERO 1:1.10 (28 DÍAS)	306
10.2.	12.	PROPIEDADES DEL MORTERO POR DÍA	307
10.2.	13.	ABSORCIÓN POR CAPILARIDAD DE MORTEROS (ASTM C1403)	310
10.2. END	14. UREC	DENSIDAD Y PORCENTAJE DE ABSORCIÓN DE MORTERO EN ESTA IDO (PRINCIPIO DE ARQUÍMEDES)	DO 312
10.3.	CAF	RACTERIZACIÓN DEL MATERIAL COMPUESTO	313
10.3.	1.	ENSAYO DE TRACCIÓN	313
10.3.	1.1.	MATERIAL COMPUESTO CON TEJIDO DE CABUYA	313
10.3.	1.2.	MATERIAL COMPUESTO CON TEJIDO DE SACO DE CABUYA	315
10.3.	2.	ENSAYO DE FLEXIÓN	316
10.3.	2.1.	MATERIAL COMPUESTO CON TEJIDO DE CABUYA	316
10.3.	2.2.	MATERIAL COMPUESTO CON TEJIDO DE SACO DE CABUYA	318
10.3. (PRI	3. NCIPIO	DENSIDAD Y PORCENTAJE DE ABSORCIÓN DEL MATERIAL COMPU D DE ARQUÍMEDES)	JESTO 319
10.3.	3.1.	TEJIDO	319
10.3.	3.2.	SACO	319

	10.4.	CARACTERIZACIÓN DE MATERIALES PARA CONCRETO ARMADO	
	10.4.1.	GRANULOMETRÍA AGREGADO FINO Y AGREGADO GRUESO (INEN	696)320
	10.4.1.2.	AGREGADO GRUESO	
	10.4.2. GRUESO	MASA UNITARIA SUELTA Y COMPACTADA- AGREGADO FINO Y AG (INEN 858)	r. 323
	10.4.2.1.	AGREGADO FINO	
	10.4.2.2.	AGREGADO GRUESO	
	10.4.3.	CONTENIDO DE AIRE DEL HORMIGÓN (ASTM C231)	
	10.4.4.	DENSIDAD EN ESTADO FRESCO DEL HORMIGÓN (ASTM C 138)	
	10.4.5. (INEN 85	DETERMINACIÓN DE LA DENSIDAD Y ABSORCIÓN DEL ÁRIDO GRU 7) 326	JESO
	10.4.6. AE	3SORCIÓN POR CAPILARIDAD DEL HORMIGÓN (ASTM C 1585)	
	10.4.6. ENDURE	DENSIDAD Y PORCENTAJE DE ABSORCIÓN DEL HORMIGÓN EN EST CIDO (PRINCIPIO DE ARQUÍMEDES)	ADO
	10.4.7.	ENSAYO DE TRACCIÓN DE VARILLAS CORRUGADAS (INEN 109)	
	10.5. CEMENT	ENSAYO DE LA RESISTENCIA A COMPRESIÓN DEL HORMIGÓN DE O HIDRÁULICO- CILINDROS (INEN 1572-1576)	332
	10.5.1.1.	PRIMER DÍA DE FUNDICIÓN	
	10.5.1.2.	SEGUNDO DÍA DE FUNDICIÓN	333
10).6. EN	NSAYOS DE ADHERENCIA	334
	10.6.1.	ENSAYO DE CORTE	334
	10.6.1.1.	ADHERENCIA LISO+NORMAL	
	10.6.1.2.	ADHERENCIA LISO+PRIMER	
	10.6.1.3.	ADHERENCIA RUGOSO+NORMAL	
	10.6.1.4.	ADHERENCIA RUGOSO+PRIMER	
10).7. Al	NEXO FOTOGRÁFICO	

FIGURAS

FIGURA 1: CURVA ESFUERZO VS DEFORMACIÓN UNITARIA DEL HORMIGÓN. FUENTE:	:
MARCELO ROMO M.SC, 2008	5
FIGURA 2: CURVA ESFUERZO VS. DEFORMACIÓN UNITARIA DE HORMIGONES CON	
DIFERENTES RESISTENCIAS A LA COMPRESIÓN. FUENTE: MARCELO ROMO M.S.C.	,
2008	6
FIGURA 3: ÍNDICE DE DUCTILIDAD DEL HORMIGÓN. FUENTE: MARCELO ROMO M.S.C. 2008	, 7
FIGURA 4: ÍNDICE DE DUCTILIDAD POR ENERGÍA DE DEFORMACIÓN DEL HORMIGÓN.	
FUENTE: MARCELO ROMO M.S.C.	8
FIGURA 5: ESTRUCTURA BÁSICA DEL MATERIAL COMPLIESTO FUENTE: L TREIOS 201	2
	 10
FIGURA 6: FORMAS DE REFUERZO PARA LA MATRIZ- FUENTE: EL COMPORTAMIENTO)
DE LOS MATERIALES COMPLESTOS CON FIBRA DE CARBONO-MONOGRAFÍAS COL	M
	11
FIGURA 7: FIBRA ORGÁNICA DE ARAMIDA	12
FIGURA 8. FIBRA DE VIDRIO	12
FIGURA 9: FIBRA DE CARBONO	13
FIGURA 10: PLANTA V FIRRA DE CARLIVA FUENTE A TAMAVO 2008	
FIGURA 10. I LANTA I FIDRA DE CADOTA, FOENTE-A. TAMATO, 2008	17
FIGURA 11. ESTRUCTURA DASICA DEL TEJIDO FLANO. FUENTE, A. TAMATO, 2008 FICUDA 12 · TIDOS DE TEJIDOS DE CARUVA (A CRUESO R NORMAL CEINO) FUENTE	 П
CADDILLO 2014	ש- 17
CARRILLO, 2014	,.1/
FIGURA 15. PATRON DE DEFORMACIÓN EN UNA MATRIZ QUE RODEA A UNA FIDRA	20
SUMETIDA A UN ESFUERZO DE TRACCION	20
FIGURA 14. REPRESENTACIONES ESQUEMATICAS DE COMPUESTOS REFORZADOS CON	1
FIBRAS (A) CONTINUAS Y ALINEADAS, (B) DISCONTINUAS Y ALINEADAS (C)	•
DISCONTINUAS Y ORIENTADAS AL AZAR	20
FIGURA 15. ROTURA FRP. FUENTE – A. MONTELEONE, 2009	25
FIGURA 16: APLASTAMIENTO DEL HORMIGON. FUENTE- A. MONTELEONE, 2009	25
FIGURA 17: FALLA A CORTE DEL HORMIGON. FUENTE-UNIVERSITY OF WATERLOO-	
AGOSTINO MONTELEONE	25
FIGURA 18. DESPRENDIMIENTO DEL HORMIGON.FUENTE- A. MONTELEONE, 2009	26
FIGURA: 19. INTERFACIAL DEBONDING. FUENTE- A. MONTELEONE, 2009	26
FIGURA 20. GRIETA INDUCIDA POR PERDIDA DE ADHERENCIA. FUENTE- A.	
MONTELEONE, 2009	26
FIGURA 21. REFUERZO DEL PUENTE FERROVIAL. FUENTE: UNIVERSIDAD DE CHILE-	
PABLO SANDOVAL	31
FIGURA 22. PILAR CON FALLAS ESTRUCTURALES. FUENTE: UNIVERSIDAD DE CHILE-	
PABLO SANDOVAL	32
FIGURA 23. A) REPARACIÓN DE GRIETAS PREVIA APLICACIÓN DEL SISTEMA FRCM, B).	
APLICACIÓN DE LA CAPA DE TERMINACIÓN CON MORTERO IMPERMEABILIZANT	E.
FUENTE: UNIVERSIDAD DE CHILE-PABLO SANDOVAL	32
FIGURA 24.A) PUENTE A REPARAR, B) AGRIETAMIENTO DEL PEDESTAL, C) REPARACIÓ	ĴΝ
DE FISURAS, D) APLICACIÓN DEL SISTEMA FRCM. FUENTE: UNIVERSIDAD DE	
CHILE-PABLO SANDOVAL	33
FIGURA 25. A) CHIMENEA A REPARAR, B) APLICACIÓN DEL SISTEMA FRCM FUENTE:	
UNIVERSIDAD DE CHILE-PABLO SANDOVAL	33
FIGURA 26. DISPOSICIÓN DE FIBRAS, FUENTE-D' AMBRISI & FOCACCI (2011)	35
FIGURA 27. MODOS DE FALLA A FLEXIÓN. FUENTE- D'AMBRISI & FOCACCI (2011)	35
FIGURA 28. CARGA VS DEFORMACIÓN ESQUEMÁTICA DE MODOS DE FALLA. FUENTE-	
D'AMBRISI & FOCACCI.	36

FIGURA 29. CURVA CARGA-DEFORMACIÓN HORMIGON BAJA RESISTENCIA, A. SIN	
REFUERZO, B. UNA CAPA DE REFUERZO. C. CUATRO CAPAS DE REFUERZO. FUEN	ТЕ
BABAEIDARABAD ET AL. (2014).	37
FIGURA 30: ESQUEMA DEL PROCEDIMIENTO SEGUIDO EN LA INVESTIGACIÓN	42
FIGURA 31: TIPOS DE PRESENTACIÓN DE FIBRAS DE CABUYA UTILIZADOS EN LA	
INVESTIGACIÓN	44
FIGURA 32: ENSAYO DE DENSIDAD DE FIBRAS DE CABUYA	44
FIGURA 33: ENSAYO DE MASA POR UNIDAD DE ÁREA DE LA FIBRA DE CABUYA	46
FIGURA 34: DENSIDAD LINEAL-TEX (A) REGISTRO DE LA MASA DE MUESTRA, (B Y C))
CORTE Y ENROLLADO DE LA MUESTRA	47
FIGURA 35: PORCENTAJE DE ABSORCIÓN DE LA FIBRA DE CABUYA	48
FIGURA 36: ENSAYO DE TRACCIÓN EN TEJIDOS	49
FIGURA 37: ENSAYO DE TRACCIÓN DE TEJIDO CON RESINA	49
FIGURA 38: DOSIFICACIÓN DE RESINA: (A) MUESTRAS DE RESINA, (B) PESO DE MUEST	'RA
DE RESINA , (C) MUESTRAS DE RESINA CON CATALIZADORES, (D) MUESTRA 1, (E))
CATALIZADOR, (F) MUESTRAS DE RESINA ENDURECIDAS.	52
FIGURA 39: TEJIDO DE CABUYA MOJADO CON RESINA Y ARENA TAMIZADA	53
FIGURA 40: ENSAYO DE GRANULOMETRÍA DE AG. FINO TAMIZADO	55
FIGURA 41: ENSAYO DE MASA UNITARIA SUELTA Y COMPACTADA-ARENA TAMIZADA	4 57
FIGURA 42: DENSIDAD Y PORCENTAJE DE ABSORCIÓN AG. FINO	59
FIGURA 43:PORCENTAJE DE FLUJO EN MORTEROS	61
FIGURA 44: TIEMPO DE FRAGUADO O	62
FIGURA 45: DENSIDAD DEL HORMIGÓN EN ESTADO FRESCO	64
FIGURA 46: CONTENIDO DE AIRE- PRESIÓNS	66
FIGURA 47: RESISTENCIA A LA FLEXIÓN DE VIGUETAS DE MORTERO	67
FIGURA 48: RESISTENCIA A LA COMPRESIÓN DE CUBOS DE MORTERO	70
FIGURA 49: MUESTRAS ENSAYADAS DE CUBOS Y VIGUETAS.	72
FIGURA 50: ABSORCIÓN POR CAPILARIDAD DEL MORTERO: (A) MASA DE LA MUESTRA	A
SECA, (B) MUESTRA EN EL ENSAYO APOYADAS SOBRE RODELAS, (C) MUESTRAS	EN
EL ENSAYO, (D) MASA DE LA MUESTRA EN EL ENSAYO	72
FIGURA 51: DENSIDAD Y PORCENTAJE DE ABSORCION DE MORTERO ENDURECIDO	74
FIGURA 52: MATERIAL COMPUESTO CONFIGURACION	76
FIGURA 53: ELABORACION DE PROBETAS DE MATERIAL COMPUESTO	76
FIGURA 54: RESISTENCIA A TRACCION DEL MATERIAL COMPUESTO	77
FIGURA 55: ESQUEMA DE PROBETA PARA ENSAYO DE TRACCION ELABORADO POR: .	J.
ALMACHE Y D. TAPIA	78
FIGURA 56: PROBETAS DE MATERIAL COMPUESTO ENSAYADAS A TRACCION	79
FIGURA 57: RESISTENCIA A FLEXION DEL MATERIAL COMPUESTO	80
FIGURA 58: ESQUEMA DEL ENSAYO A FLEXION DEL MATERIAL COMPUESTO	80
FIGURA 59: PROBETAS DE MATERIAL COMPUESTO ENSAYADAS A FLEXION	83
FIGURA 60: DENSIDAD Y PORCENTAJE DE ABSORCION DEL MATERIAL COMPUESTO	0.2
(PRINCIPIO DE ARQUMIDES)	83
FIGURA 61: ENSAYO DE ANALISIS GRANULOMETRICO AG. FINO Y AG. GRUESO	80
FIGURA 62: MASA UNITARIA AG. FINO- ARENA	88
FIGURA 03: MASA UNITARIA AG. GRUESO- RIPIO TAMIZADO (A) ENRASADO, (B)	00
VARILLADU, (U) MUESI KA ENKASADA, (D) EQUIPUS PAKA ENASA YU	88
FIGURA 04: DENSIDAD I PUKUENIAJE DE ABSUKUIUN AG. GRUESU	90
FIGURA 03; DENSIDAD DEL HORMIGUN EN ESTADO FRESCO	92
ΓΙΟUΝΑ 00, CONTENIDO DE AIRE	94
FIGURA 67 - ADSOLCION FOR CAFILARIDAD DEL HORINIOUN.	90
DEL HORMIGÓN	06

FIGURA 69: DENSIDAD Y PORCENTAJE DE ABSORCIÓN DEL HORMIGÓN EN ESTADO ENDURECIDO	С 98
FIGURA 70: ENSAYO DE TRACCIÓN DE VARILLAS CORRUGADAS	100
FIGURA 71: ABSORCIÓN POR CAPILARIDAD DEL HORMIGÓN	101
FIGURA 72: ABSORCIÓN POR CAPILARIDAD DEL HORMIGÓN	103
FIGURA 73: ENSAYO DE CORTE- MÉTODOS DE UNIÓN DEL SISTEMA FRCM AL SUSTR	ATO
FIGURA 74: ENSAYO DE CORTE- ENCOFRADO DE MADERA.	105
FIGURA 75: ENSAYO DE CORTE- HORMIGÓN FRAGUADO.	106
FIGURA 76: ENSAYO DE CORTE: TEJIDO CON RESINA	106
FIGURA 77: ENSAYO DE CORTE -PREPARACIÓN DE SUPERFICIE RUGOSO+PRIMER	107
FIGURA 78: ENSAYO DE CORTE-COLOCACIÓN DE LA PRIMERA CAPA DE MORTERO	107
FIGURA 79: ENSAYO DE CORTE- COLOCACIÓN DEL LAYERS- TEJIDO DE CAB	UYA.
	107
FIGURA 80: ENSAYO DE CORTE-MUESTRAS ENRASADAS.	108
FIGURA 81: MEDIDAS DEL ESPÉCIMEN DEL ENSAYO DE CORTE	108
FIGURA 82: FORMA DE APLICACIÓN DE LA CARGA EN EL ENSAYO DE CORTE	109
FIGURA 83: ESQUEMA ENSAYO PULL OFF-	110
FIGURA 84: DISENO REAL LOSA PULL-OFF	111
FIGURA 85: ENSAYO PULL OF- FUNDICION DE LA LOSA DE ENSAYO.	111
FIGURA 86: ENSAYO PULL OF- PREPARACION DE ZONAS PARA ADHERENCIA DEL	
MATERIAL COMPUESTO FRCM	112
FIGURA 87: ENSAYO PULL OF- COLOCACION DEL MATERIAL COMPUESTO FRCM SO	BRE
LA LOSA DE HORMIGON.	112
FIGURA 88: ENSAYO PULL OF- SISTEMA FROM ENRASADO, LADO IZQUIERDO	112
FIGURA 89: ENSAYO PULL OF- MODO DE PRUEBA.	113
FIGURA 90: PREPARACION DE LA SUPERFICIE MEDIANTE CORTES TRANSVERSALES	110
FIGURA 91. METODO DE ADHERENCIA L+P+FRCM	110
FIGURA 92; METODO DE ADHERENCIA K+P+FRCM	110
FIGURA 93: MODELO DE BLOQUE DE COMPRESION DE WHITNEI	122
FIGURA 94. LIMITES DE ESPACIAMIENTO ENTRE ESTRIBOS. FOENTE, NEC-SE-HA FICURA 05. COLUMNIA SOMETIDA A CARGA EXCÉNTRICA	123
FIGURA 95. COLOMINA SOMETIDA A CARGA EXCENTRICA	124
FICENTRICAMENTE	125
FIGURA 97: LOAD-DISPLACEMENT CURVE OF CONCRETE SPECIMENS	125
FIGURA 98: RESERVA DE LA ENERGÍA DE DEFORMACIÓN	127
FIGURA 99: MODELO DE DISEÑO DE VIGA A ESCALA 1.2	131
FIGURA 100: MODELO DE VIGA- FOTOGRAFÍA	
FIGURA 101: MODELO DE DISEÑO DE COLUMNA A ESCALA 1:3	136
FIGURA 102: MODELO REAL DE COLUMNA A ESCALA 1:3	137
FIGURA 103: FUNDICIÓN DE MODELOS DE CONCRETO ARMADO: A) VIBRACIÓN DE V	VIGA.
B) MODELOS FUNDIDOS Y DESENCOFRADOS, C) MODELOS VIGAS Y COLUMNAS	S
ARMADAS, D) CILINDROS HORMIGÓN FRESCO, E) CILINDROS DESENCOFRADO)S DE
LOS DOS DÍAS DE FUNDICIÓN, F) MEZCLADORA.	138
FIGURA 104: LAYERS DE TEJIDO DE CABUYA	139
FIGURA 105: FUNDICIÓN DE MODELOS DE CONCRETO ARMADO: A) VIBRACIÓN DE V	VIGA,
B) MODELOS FUNDIDOS Y DESENCOFRADOS, C) MODELOS VIGAS Y COLUMNAS	S
ARMADAS, D) CILINDROS HORMIGÓN FRESCO	139
FIGURA 106: COLOCACIÓN DE LA PRIMERA CAPA DE MORTERO EN VIGAS Y COLUM	NAS. 140
FIGURA 107: CORTADO DEL TEJIDO DE CABUYA CON RESINA Y COLOCACIÓN DE LA MATRIZ.	A 140

FIGURA 108: COMPACTACIÓN CON LA MANOS DE LA MALLA EN LA CAPA DE MORTERO.
DESPUÉS DE DEJARLO FRAGUAR ALGUNAS HORAS, SE PROCEDE A COLOCAR PAPEL
ABSORBENTE PARA EVITAR LA EVAPORACIÓN DEL AGUA141
FIGURA 109: FUNDICIÓN DE MODELOS DE CONCRETO ARMADO: A) VIBRACIÓN DE VIGA,
B) MODELOS FUNDIDOS Y DESENCOFRADOS, C) MODELOS VIGAS Y COLUMNAS
ARMADAS, D) CILINDROS HORMIGÓN FRESCO
FIGURA 110: DIAGRAMAS DE CORTE Y MOMENTO DE VIGA
FIGURA 111: ESQUEMA DE APARATOS DE PRUEBA-FLEXIÓN EN VIGAS Y CARGA
EXCENTRICA EN COLUMNAS147
FIGURA 112: ENSAYO PULL OFF: GRAFICA DE COMPARACION FUERZA VS. TIPO DE ADHERENCIA
FIGURA 113: ENSAYO PULL OFF: GRÁFICA DE COMPARACIÓN RESISTENCIA VS. TIPO DE
ADHERENCIA151
FIGURA 114: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA – VIGA :
SR1
FIGURA 115: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA- VIGA: SR1156
FIGURA 116: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - VIGA: SR1
FIGURA 117: DIAGRAMA CARGA VS. DEFORMACION PARA CALCULO DE AREAS - VIGA:
SR1
FIGURA 118: DIAGRAMA DE CARGA VS. LONGITUD DE FISURA- VIGA: SR1
FIGURA 119: DIAGRAMA DE CARGA VS. DEFLEXION AL CENTRO DE LA VIGA – VIGA :
SR2
FIGURA 120: DIAGRAMA ESFUERZO VS. DEFORMACION UNITARIA - VIGA: SR2
FIGURA 121: DEFORMACION EN LAS ZONAS DE COMPRESION 1 TRACCION - VIGA: SR2
1 19
FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA:
FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2
FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2
 FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2
 FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2
 FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2
 FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2
 FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2
 FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2
 FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2
 FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2
 FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2 SR2 FIGURA 123: DIAGRAMA DE CARGA VS. LONGITUD DE FISURA- VIGA: SR2 SR3 SR3 SR3 SR3 SR3 SR4 SR3 SR4 SR4 SR5 SR5 SR5 SR5 SR6 SR6 SR6 SR7 SR7
 FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2
 FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2
 FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2
 FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2 SR2 I60 FIGURA 123: DIAGRAMA DE CARGA VS. LONGITUD DE FISURA- VIGA: SR2 I60 FIGURA 124: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA – VIGA : SR3 I61 FIGURA 125: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - VIGA: SR3 I61 FIGURA 126: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - VIGA: SR3 I62 FIGURA 127: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR3 I62 FIGURA 128: DIAGRAMA DE CARGA VS. LONGITUD DE FISURA- VIGA: SR3 I63 FIGURA 129: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA – RESUMEN: VIGAS SIN REFUERZO I63 FIGURA 130: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - RESUMEN: VIGAS SIN REFUERZO I64 FIGURA 131: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - RESUMEN: VIGAS SIN REFUERZO
 FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2 SR2 I60 FIGURA 123: DIAGRAMA DE CARGA VS. LONGITUD DE FISURA- VIGA: SR2 I60 FIGURA 124: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA - VIGA : SR3 SR3 I61 FIGURA 125: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - VIGA: SR3 I61 FIGURA 126: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - VIGA: SR3 I62 FIGURA 127: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR3 I62 FIGURA 128: DIAGRAMA DE CARGA VS. LONGITUD DE FISURA- VIGA: SR3 I63 FIGURA 129: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA - RESUMEN: VIGAS SIN REFUERZO I63 FIGURA 130: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - RESUMEN: VIGAS SIN REFUERZO I64 FIGURA 131: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - RESUMEN: VIGAS SIN REFUERZO I64 FIGURA 132: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA - I64 FIGURA 132: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA -
 FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2
 FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2
 FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2
FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2
FIGURA 122: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2
Image: Signame Carga VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: SR2 160 FIGURA 123: DIAGRAMA DE CARGA VS. LONGITUD DE FISURA- VIGA: SR2 160 FIGURA 124: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA - VIGA : 161 SR3 161 FIGURA 125: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - VIGA: SR3 161 FIGURA 126: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - VIGA: SR3 162 FIGURA 127: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: 162 SR3 162 FIGURA 128: DIAGRAMA DE CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: 162 SR3 163 FIGURA 128: DIAGRAMA DE CARGA VS. LONGITUD DE FISURA- VIGA: SR3 163 FIGURA 128: DIAGRAMA DE CARGA VS. DEFORMACIÓN UNITARIA - VIGA: SR3 163 FIGURA 130: DIAGRAMA DE CARGA VS. DEFORMACIÓN UNITARIA - RESUMEN: VIGAS 164 FIGURA 131: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - RESUMEN: 164 FIGURA 132: DIAGRAMA DE CARGA VS. DEFORMACIÓN AL CENTRO DE LA VIGA - VIGA : 164 FIGURA 132: DIAGRAMA DE CARGA VS. DEFORMACIÓN UNITARIA - VIGA: R+FRCM 1 165 FIGURA 132: DIAGRAMA DE CARGA VS. DEFORMACIÓN AL CENTRO DE LA VIGA - VIGA : 164 FIGURA 132: DIAGRAMA DE CARGA VS. DEFORMACIÓN UNITARIA - VIGA: R+FRCM

FIGURA 137: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA – VIGA :	
R+FRCM 2	67
FIGURA 138: DIAGRAMA ESFUERZO VS. DEFORMACION UNITARIA - VIGA: SR2 R+FRCM	2 68
FIGURA 139: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - VIGA:	50
R+FRCM 2	68
FIGURA 140: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: R+FRCM 2	69
FIGURA 141: DIAGRAMA DE CARGA VS. LONGITUD DE FISURA- VIGA: SR3 R+FRCM 210	69
FIGURA 142: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA – VIGA : R+FRCM 3	70
FIGURA 143: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - VIGA: SR2 R+FRCM 1'	70 3 70
FIGURA 144: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - VIGA: R+FRCM 3	71
FIGURA 145: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: R+FRCM 3	71
FIGURA 146: DIAGRAMA DE CARGA VS. LONGITUD DE FISURA- VIGA: SR3 R+FRCM 31	72
FIGURA 147: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA –	
RESUMEN: VIGAS RUGOSO+FRCM1'	72
FIGURA 148: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - RESUMEN: VIGAS	
RUGOSO+FRCM1'	73
FIGURA 149: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - RESUMEN: VIGAS RUGOSO+FRCM	; 73
FIGURA 150: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA – VIGA :	
L+P+FRCM 1	74
FIGURA 151: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - VIGA: L+P+FRCM 1	74
FIGURA 152: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - VIGA:	
L+P+FRCM I	15
L+P+FRCM 1	75
FIGURA 154: DIAGRAMA DE CARGA VS. LONGITUD DE FISURA- VIGA: L+P+FRCM 11	76
FIGURA 155: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA – VIGA :	
L+P+FRCM 2	76
FIGURA 156: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - VIGA: L+P+FRCM 2	77
FIGURA 157: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - VIGA:	
L+P+FRCM 2	77
FIGURA 158: DIAGRAMA CARGA VS. DEFORMACION PARA CALCULO DE AREAS - VIGA: L+P+FRCM 2	78
FIGURA 159: DIAGRAMA DE CARGA VS. LONGITUD DE FISURA- VIGA: L+P+FRCM 21	78
FIGURA 160: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA – VIGA :	-
L+P+FRCM 3 FIGURA 161: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - VIGA: L+P+FRCM 3	79 79
FIGURA 162: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - VIGA: L+P+FRCM 3	, <i>,</i> 80
FIGURA 163: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA:	00
FIGURA 164: DIAGRAMA DE CARGA VS LONGITUD DE FISURA- VIGA • I +P+FRCM 3 12	5U 81
The second secon	~ -

FIGURA 165: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA –	
RESUMEN: VIGAS LISO+PRIMER+FRCM	1
FIGURA 166: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - RESUMEN: VIGAS	
LISO+PRIMER+FRCM	2
FIGURA 167: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - RESUMEN:	
VIGAS LISO+PRIMER+FRCM	2
FIGURA 168: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA – VIGA :	
R+P+FRCM 1	3
FIGURA 169: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - VIGA: R+P+FRCM 1	_
FIGURA 170: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - VIGA:	3
R+P+FRCM 1	4
FIGURA 171: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA: R+P+FRCM 1	4
FIGURA 172: DIAGRAMA DE CARGA VS. LONGITUD DE FISURA- VIGA: R+P+FRCM 1 18	5
FIGURA 173: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA – VIGA :	
R+P+FRCM 2	5
FIGURA 174: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - VIGA: R+P+FRCM 2	6
FICURA 175. DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - VICA.	0
R+P+FRCM 2 18	6
FIGURA 176: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA:	Ő
R+P+FRCM 2	7
FIGURA 177: DIAGRAMA DE CARGA VS. LONGITUD DE FISURA- VIGA: R+P+FRCM 2 18	7
FIGURA 178: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA – VIGA :	
R+P+FRCM 3	8
FIGURA 179: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - VIGA: R+P+FRCM 3	8
FIGURA 180: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - VIGA:	Ő
R+P+FRCM 3	9
FIGURA 181: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA:	
R+P+FRCM 3	9
FIGURA 182: DIAGRAMA DE CARGA VS. LONGITUD DE FISURA- VIGA: R+P+FRCM 319	0
FIGURA 183: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA –	
RESUMEN: VIGAS RUGOSO+PRIMER+FRCM19	0
FIGURA 184: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - RESUMEN: VIGAS	
LISO+PRIMER+FRCM	1
FIGURA 185: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - RESUMEN:	
VIGAS LISO+PRIMER+FRCM	1
FIGURA 186: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA –	
RESUMEN: VIGAS GENERAL	2
FIGURA 187: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - RESUMEN: VIGAS	
GENERAL	2
FIGURA 188: DEFORMACION EN LAS ZONAS DE COMPRESION Y TRACCION - RESUMEN:	~
VIGAS GENERAL	3
FIGURA 189: ELEMENTOS DE CONCRETO ARMADO (VIGAS Y COLUMNAS) DESPUES DEL	~
ENSAYU	3
FIGURA 190: DIAGRAMA CARGA VS. DEFORMACION LONGITUDINAL - COLUMNA: SR1	6
$\mathbf{FICURA} 191 \cdot \mathbf{DIAGRAMA} \mathbf{CARGA} \mathbf{VS} \mathbf{PANDEO} \mathbf{COI} \mathbf{UMNA} \mathbf{SO1} 10$	6
FIGURA 192: MOMENTO VS. CURVATURA COLUMNA: SR1	7
	'

FIGURA 193: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS -	
COLUMNA: SR1	197
FIGURA 194: DIAGRAMA CARGA VS. DEFORMACION LONGITUDINAL - COLUMNA: S	R1
FIGURA 195: DIAGRAMA CARGA VS. PANDEO- COLUMNA: SR2	198
FIGURA 196: MOMENTO VS. CURVATURA COLUMNA: SR2	
FIGURA 197: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS -	
COLUMNA: SR2	199
FIGURA 198: DIAGRAMA CARGA VS. DEFORMACIÓN LONGITUDINAL - COLUMNA: S	R3
	200
FIGURA 199: DIAGRAMA CARGA VS. PANDEO- COLUMNA: SR3	200
FIGURA 200: MOMENTO VS. CURVATURA COLUMNA: SR3	201
FIGURA 201: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS -	
COLUMNA: SR3	201
FIGURA 202: DIAGRAMA CARGA VS. DEFORMACIÓN LONGITUDINAL - RESUMEN:	
COLUMNAS SR	202
FIGURA 203: DIAGRAMA CARGA VS. PANDEO- RESUMEN: COLUMNAS SR	202
FIGURA 204: MOMENTO VS. CURVATURA RESUMEN: COLUMNAS SR	203
FIGURA 205: DIAGRAMA CARGA VS. DEFORMACIÓN LONGITUDINAL - COLUMNA:	202
\mathbf{F}	203
FIGURA 200; DIAGRAMA CARGA VS. FANDEO- COLUMINA; R+FRCM 1	204
FIGURA 207: MOMENTO VS. CORVETORA COLOMINA, RETREM I	204
COLUMNA · P+FPCM 1	205
FICURA 200: DIAGRAMA CARGA VS DEFORMACIÓN LONGITUDINAL - COLUMNA:	205
R+FRCM 2	205
FIGURA 210: DIAGRAMA CARGA VS PANDEO- COLUMNA: R+FRCM 2	206
FIGURA 211: MOMENTO VS. CURVATURA COLUMNA: R+FRCM 2	200
FIGURA 212: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS -	
COLUMNA: R+FRCM 2	207
FIGURA 213: DIAGRAMA CARGA VS. DEFORMACIÓN LONGITUDINAL - COLUMNA:	
R+FRCM 3	207
FIGURA 214: DIAGRAMA CARGA VS. PANDEO- COLUMNA: R+FRCM 3	208
FIGURA 215: MOMENTO VS. CURVATURA COLUMNA: R+FRCM 3	208
FIGURA 216: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS -	
COLUMNA: R+FRCM 3	209
FIGURA 217: DIAGRAMA CARGA VS. DEFORMACIÓN LONGITUDINAL - RESUMEN:	
COLUMNAS R+FRCM	209
FIGURA 218: DIAGRAMA CARGA VS. PANDEO- RESUMEN: COLUMNAS R+FRCM	210
FIGURA 219: MOMENTO VS. CURVATURA RESUMEN: COLUMNAS R+FRCM	210
FIGURA 220: DIAGRAMA CARGA VS. DEFORMACIÓN LONGITUDINAL - COLUMNA:	
P+L+FRCM I	211
FIGURA 221: DIAGRAMA CARGA VS. PANDEO- COLUMNA: P+L+FRCM 1	211
FIGURA 222: MOMENTO VS. CURVATURA COLUMNA: P+L+FRCM 1	212
FIGURA 223: DIAGRAMA CARGA VS. DEFORMACION PARA CALCULO DE AREAS -	212
FIGURA 224. DIAGRAMA CARGA VS DEFORMACIÓN I ONGITUDINAL - COLUMNA.	212
P+L+FRCM 2	213
FIGURA 225: DIAGRAMA CARGA VS PANDEO- COLUMNA· P+I +FRCM 2	213
FIGURA 226: MOMENTO VS. CURVATURA COLUMNA: P+L+FRCM 2	213
FIGURA 227: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS -	
COLUMNA: P+L+FRCM 2	214

FIGURA 228: DIAGRAMA CARGA VS. DEFORMACIÓN LONGITUDINAL - COLUMNA:	
P+L+FRCM 3	215
FIGURA 229: DIAGRAMA CARGA VS. PANDEO- COLUMNA: P+L+FRCM 2	215
FIGURA 230: MOMENTO VS. CURVATURA COLUMNA: P+L+FRCM 3	216
FIGURA 231: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS -	
COLUMNA: P+L+FRCM 3	216
FIGURA 232: DIAGRAMA CARGA VS. DEFORMACIÓN LONGITUDINAL - RESUMEN:	
COLUMNAS P+L+FRCM	217
FIGURA 233: DIAGRAMA CARGA VS. PANDEO- RESUMEN: COLUMNAS P+L+FRCM	217
FIGURA 234: MOMENTO VS. CURVATURA RESUMEN: COLUMNAS P+L+FRCM	218
FIGURA 235: DIAGRAMA CARGA VS. DEFORMACIÓN LONGITUDINAL - COLUMNA:	
R+P+FRCM 1	218
FIGURA 236: DIAGRAMA CARGA VS. PANDEO- COLUMNA: R+P+FRCM 1	219
FIGURA 237: MOMENTO VS. CURVATURA COLUMNA: R+P+FRCM 1	219
FIGURA 238: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS -	
COLUMNA: R+P+FRCM 1	220
FIGURA 239: DIAGRAMA CARGA VS. DEFORMACIÓN LONGITUDINAL - COLUMNA:	
R+P+FRCM 2	220
FIGURA 240: DIAGRAMA CARGA VS. PANDEO- COLUMNA: R+P+FRCM 2	221
FIGURA 241: MOMENTO VS. CURVATURA COLUMNA: R+P+FRCM 2	221
FIGURA 242: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS -	
COLUMNA: R+P+FRCM 2	222
FIGURA 243: DIAGRAMA CARGA VS. DEFORMACIÓN LONGITUDINAL - COLUMNA:	
R+P+FRCM 3	222
FIGURA 244: DIAGRAMA CARGA VS. PANDEO- COLUMNA: R+P+FRCM 3	223
FIGURA 245: MOMENTO VS. CURVATURA COLUMNA: R+P+FRCM 3	223
FIGURA 246: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS -	
COLUMNA: R+P+FRCM 3	224
FIGURA 247: DIAGRAMA CARGA VS. DEFORMACIÓN LONGITUDINAL - RESUMEN:	
COLUMNAS R+P+FRCM	224
FIGURA 248: DIAGRAMA CARGA VS. PANDEO- RESUMEN: COLUMNAS R+P+FRCM	225
FIGURA 249: MOMENTO VS. CURVATURA RESUMEN: COLUMNAS R+P+FRCM	225
FIGURA 250: DIAGRAMA CARGA VS. PANDEO- RESUMEN: GENERAL COLUMNAS	226
FIGURA 251: MOMENTO VS. CURVATURA RESUMEN: GENERAL COLUMNAS	226
FIGURA 252: DUCTILIDAD DE DEFORMACIÓN EN CADA SISTEMA DE ADHERENCIA	
(VIGAS)	231
FIGURA 253: DUCTILIDAD DE ENERGÍA EN CADA SISTEMA DE ADHERENCIA (VIGAS)	231
FIGURA 254: RESERVA DE LA ENERGÍA DE DEFORMACIÓN EN VIGAS	232
FIGURA 255: ENERGIA ABSORBIDA EN VIGAS	232
FIGURA 256: ENERGIA DE FRACTURA EN VIGAS	232
FIGURA 257: CARGAS MAXIMAS EN VIGAS	233
FIGURA 258: ESFUERZO MAXIMO A FLEXION EN VIGAS	233
FIGURA 259: DUCTILIDAD DE DEFORMACION DE COLUMNAS	234
FIGURA 260: DUCTILIDAD DE ENERGIA DE DEFORMACION EN COLUMNAS	235
FIGURA 261: ENERGIA DE DEFORMACION EN COLUMNAS	235
FIGURA 262: ENERGIA ABSORBIDA EN COLUMNAS	235
FIGURA 263: CARGAS MAXIMAS EN COLUMNAS	236
FIGURA 264: DEFORMACION LONGITUDINAL EN COLUMNAS	236
FIGURA 265: DEFORMACION POR PANDEO AL CENTRO DE LA COLUMNA	237
FIGURA 266: CURVATURA EN COLUMNAS	237
FIGURA 267: MOMENTOS DE IER ORDEN EN VIGAS	238
FIGURA 268: MOMENTOS DE 2DO ORDEN EN VIGAS.	238

FIGURA 269: INFLUENCIA DE LAS FISURAS EN LA RESISTENCIA DE LOS ANCLAJES.
FUENTE: HILTI, 2004
FIGURA 270: FORMAS DE TRABAJO DE LOS SISTEMAS DE ANCLAJE EN EL CONCRETO.
FUENTE: HILTI, 2004
FIGURA 271: MODOS DE FALLA CARACTERÍSTICOS EN ANCLAJE. FUENTE: HILTI, 2004 246
FIGURA 272: LOS SOPORTES DE ACERO PARA ARMADURAS DE PEQUEÑO A) Y GRANDES
VIGAS DE MADERA BLANDA B) FUENTE: MARCO CORRADI, 2016
FIGURA 273: LOS CUATRO VIGAS PEQUEÑAS DESPUÉS DE LA APLICACIÓN DE LA
ARMADURA DE ACERO. FUENTE: MARCO CORRADI, 2016
FIGURA 274: LA GEOMETRÍA Y EL FORTALECIMIENTO DE LAS CONFIGURACIONES DE
LAS MUESTRAS DE ENSAYO EN MM. FUENTE: OGUZ GUNES, ORAL BUYUKOZTURK,
ERDEM KARACA, 2009
FIGURA 275: RESULTADOS EXPERIMENTALES. FUENTE: OGUZ GUNES, ORAL
BUYUKOZTURK, ERDEM KARACA, 2009250
FIGURA 276: SISTEMA DE ANCLAJES: A) FALLA POR DELAMINACIÓN EN COLUMNAS, B)
FALLA POR DELAMINACIÓN EN VIGA, C) DESPRENDIMIENTOS MATRIZ-TEJIDO Y D)
FALLAS REFLEJADAS EN LA MATRIZ252
FIGURA 277: SISTEMA DE ANCLAJES: A) TEJIDO CON RESINA B) PREPARACIÓN DE LA
SUPERFICIE RUGOSA, C) MODELOS PINTADOS PARA ENSAYO Y D) COLOCACIÓN DE
LA PRIMERA CAPA DE MATRIZ CEMENTICIA253
FIGURA 278: SISTEMA DE ANCLAJES- CONFIGURACIÓN COLUMNAS
FIGURA 279: SISTEMA DE ANCLAJES- CONFIGURACIÓN VIGAS
FIGURA 280: SISTEMA DE ANCLAJES- A) ANCLAJES EN COLUMNAS Y B) ANCLAJES EN
VIGAS
FIGURA 281: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA – VIGA: A1
FIGURA 282: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - VIGA: A1256
FIGURA 283: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - VIGA: A1 257
FIGURA 284: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA:
A1
FIGURA 285: DIAGRAMA DE CARGA VS. LONGITUD DE FISURA- VIGA: A1
FIGURA 286: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA – VIGA: A2
FIGURA 287: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - VIGA: A2259
FIGURA 288: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - VIGA: A2 259
FIGURA 289: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA:
A2
FIGURA 290: DIAGRAMA DE CARGA VS. LONGITUD DE FISURA- VIGA: A2
FIGURA 291: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA – VIGA: A3
FIGURA 292: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - VIGA: A3261
FIGURA 293: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - VIGA: A3 262
FIGURA 294: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA:
A3
FIGURA 295: DIAGRAMA DE CARGA VS. LONGITUD DE FISURA- VIGA: A3
FIGURA 296: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA – VIGA: A4
FIGURA 297: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - VIGA: A4264
FIGURA 298: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - VIGA: A4 264
FIGURA 299: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS - VIGA:
A4
FIGURA 300: DIAGRAMA DE CARGA VS. LONGITUD DE FISURA- VIGA: A4

FIGURA 301: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA – VIGA:	
RESUMEN ANCLAJES	.266
FIGURA 302: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - VIGA: RESUMEN	
ANCLAJES	.266
FIGURA 303: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - VIGA:	
RESUMEN ANCLAJES	.267
FIGURA 304: DIAGRAMA DE CARGA VS. DEFLEXIÓN AL CENTRO DE LA VIGA – VIGA:	
RESUMEN GENERAL	.268
FIGURA 305: DIAGRAMA ESFUERZO VS. DEFORMACIÓN UNITARIA - VIGA: RESUMEN	
GENERAL	.268
FIGURA 306: DEFORMACIÓN EN LAS ZONAS DE COMPRESIÓN Y TRACCIÓN - VIGA:	
RESUMEN GENERAL	.269
FIGURA 307: DIAGRAMA CARGA VS. DEFORMACIÓN LONGITUDINAL - COLUMNA: A1.	.269
FIGURA 308: DIAGRAMA CARGA VS. PANDEO- COLUMNA: A1	.270
FIGURA 309: MOMENTO VS. CURVATURA COLUMNA: A1	.270
FIGURA 310: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS -	
COLUMNA: A1	.271
FIGURA 311: DIAGRAMA CARGA VS. DEFORMACIÓN LONGITUDINAL - COLUMNA: A2.	.272
FIGURA 312: DIAGRAMA CARGA VS. PANDEO- COLUMNA: A2	.272
FIGURA 313: MOMENTO VS. CURVATURA COLUMNA: A2	.272
FIGURA 314: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS -	
COLUMNA: A2	.273
FIGURA 315: DIAGRAMA CARGA VS. DEFORMACIÓN LONGITUDINAL - COLUMNA: A3.	.273
FIGURA 316: DIAGRAMA CARGA VS. PANDEO- COLUMNA: A3	.274
FIGURA 317: MOMENTO VS. CURVATURA COLUMNA: A3	.274
FIGURA 318: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS -	
COLUMNA: A3	.275
FIGURA 319: DIAGRAMA CARGA VS. DEFORMACIÓN LONGITUDINAL - COLUMNA: A4.	.275
FIGURA 320: DIAGRAMA CARGA VS. PANDEO- COLUMNA: A4	.276
FIGURA 321: MOMENTO VS. CURVATURA COLUMNA: A4	.276
FIGURA 322: DIAGRAMA CARGA VS. DEFORMACIÓN PARA CÁLCULO DE ÁREAS -	
COLUMNA: A4	.277
FIGURA 323: DIAGRAMA CARGA VS. DEFORMACIÓN LONGITUDINAL - COLUMNA:	
RESUMEN ANCLAJES	.277
FIGURA 324: DIAGRAMA CARGA VS. PANDEO- COLUMNA: RESUMEN ANCLAJES	.278
FIGURA 325: MOMENTO VS. CURVATURA COLUMNA: RESUMEN ANCLAJES	.278
FIGURA 326: DIAGRAMA CARGA VS. DEFORMACIÓN LONGITUDINAL - COLUMNA:	
RESUMEN GENERAL	.280
FIGURA 327: DIAGRAMA CARGA VS. PANDEO- COLUMNA: RESUMEN GENERAL	.280
FIGURA 328: MOMENTO VS. CURVATURA COLUMNA: RESUMEN GENERAL	.281

TABLAS

TABLA 1: ÍNDICE DE DUCTILIDAD DEL HORMIGÓN EN BASE A LA RESISTENCIA A	
COMPRESIÓN. FUENTE: MARCELO ROMO M.S.C, 2008	7
TABLA 2: ÍNDICES DE DUCTILIDAD POR ENERGÍA DE DEFORMACIÓN EN BASE A LA	
RESISTENCIA A COMPRESIÓN DEL HORMIGÓN	8
TABLA 3: COMPARACIÓN ENTRE FIBRAS DE VIDRIO Y FIBRAS NATURALES. FUENTI	<u>-</u>
(WAMBUA, IVENS & VERPOEST, 2003)	15
TABLA 4: PROPIEDADES DE FIBRAS NATURALES EN COMPARACIÓN CON FIBRA DE	
VIDRIO TIPO E-(WAMBUA, IVENS & VERPOEST, 2003)	15
TABLA 5: PROPIEDADES DE FIBRA DE CABUYA. FUENTE: A. TAMAYO	16
TABLA 6. CARGA MÁXIMA SOPORTADA. FUENTE-BABAEIDARABAD ET AL. (2014)	
TABLA 7: CARGA MÁXIMA SOPORTADA. FUENTE-LORETO (2014)	
TABLA 8: NÚMERO, TIPO Y MUESTRA DE LOS ENSAYOS REALIZADOS.	
TABLA 9: OPERACIÓN DE VARIABLE INDEPENDIENTE	41
TABLA 10: OPERACIÓN DE VARIABLE DEPENDIENTE	41
TABLA 11: DOSIFICACIÓN DE RESINA POLIESTER	53
TABLA 12: DOSIFICACIÓN DE MATRIZ CEMENTICIA	54
TABLA 13: DOSIFICACIÓN DEL HORMIGÓN PARA MODELOS	
TABLA 14: ENSAYO PULL OFF. CALCULO DEL ÍNDICE DE RENTABILIDAD- CANTIDA	DES
DE MATERIALES.	
TABLA 15: ENSAYO PULL OFF CÁLCULO DEL ÍNDICE DE RENTABILIDAD- PRECIO	
ESTIMADO DE MATERIALES	115
TABLA 16: MÉTODOS DE ADHERENCIA PROPUESTOS	
TABLA 17: VALORES DE B1 PARA DIFERENTES RESISTENCIAS A COMPRESIÓN DEL	
HORMIGÓN	
TABLA 18: TABLA DE RESUMEN DE LA CARACTERIZACIÓN DE LA FIBRA Y TEJIDO D)E
CABUYA	
TABLA 19: TABLA DE RESUMEN DE LA CARACTERIZACIÓN DEL MORTERO	
TABLA 21: TABLA DE RESUMEN DE LA CARACTERIZACIÓN DEL CONCRETO	
TABLA 22: TABLA DE RESUMEN DE LA CARACTERIZACIÓN DE VERILLAS CORRUGA	DAS
	149
TABLA 23: TABLA DE RESULTADOS DEL ENSAYO PULL OFF	
TABLA 24: TABLA DE ÍNDICES DE RENTABILIDAD	
TABLA 25: RESUMEN DE CARGAS OBTENIDAS EN VIGAS DESPUÉS DEL ENSAYO A	
FLEXIÓN PURA	
TABLA 26: RESUMEN DE ÍNDICES DE DUCTILIDAD Y ENERGÍA EN VIGAS.	
TABLA 27: RESUMEN GENERAL DE RESULTADOS DE COLUMNAS	
TABLA 28: RESUMEN DE ÍNDICES DE DUCTILIDAD Y ENERGÍA EN COLUMNAS	228
TABLA 29: PROPIEDADES DE LOS MATERIALES UTILIZADOS EN LA INVESTIGACIÓN	
FUENTE: OGUZ GUNES ORAL BUYUKOZTURK ERDEM KARACA 2009	249
TABLA 30. CARGAS Y DEFORMACIONES PROMEDIO ANTES DEL FENÓMENO DE	
DEBONDING	253
ΤΔΒΙ Δ 31· ESPECIFICACIONES DE PERNOS DE EXPANSIÓN EN EL SISTEMA DE UNIÓI	
ANCLAIF	25/
TARIA 32. RESUMEN DE CARGAS DE VIGAS CON ANCI AIES	234 767
TABLA 32. RESUMEN DE CAROAS DE VIOAS CON ANCLASES	201 267
TABLA 33, RESOLVEN DE INDICES DE DUCTILIDAD I ENEROIA EN VIOAS TABLA 34, DESUMEN CENEDAL DEL SISTEMA DE ANCLAIE EN COLUMNAS	
TABLA 37, RESUMEN GENERAL DEL SISTEMA DE ANCLAJE EN COLUMINAS	219
TADDA 55, NEWUMBER UBER ALZDEZ MATEWIA DE AINULAIE EIN VIUAS	

GLOSARIO

% Pasa = Porcentaje que pasa	W _T =El peso de la muestra en el tiempo t en g.
% RA = Porcentaje retenido acumulado, %	W _o = El peso de la muestra seca en g.
ϵ_i = Deformación en el punto i en mm	b_v = Ancho de la sección transversal en m
Á rea_c= Area bajo la curva en J.	d_i = Revestimiento de unión dosificado, en
$\mathbf{M_f} = Masa \ final, \ g$	$\kappa g/mm^2$ $\epsilon_i = Deformación Unitaria en el punto i, en$
A_M = Área de la muestra en mm ² .	mm/mm
A_T= Absorción del agua en g/cm ² .	σ_{max} = Esfuerzo último en MPa
A_{po} = Área de la sección de arranque, en mm ²	c =Masa del picnómetro lleno con muestra +agua hasta la marca de calibración en g.
C _i = Costo de la capa de unión, en \$/kg	$G = Masa \ {arido} + molde, en g$
D_{v} = Deflexión en mm.	$M=Masa unitaria, g/cm^3$
E_t = Energía de fractura, J/m^2	P = Masa del molde +placa +agua, en g.
F mar= Carea Máxima antes de la ruptura en N	T = Masa del molde, en g
$F_{max} = Fuerza máxima en N$	V= Volumen del molde, en cm ³ A= Área de aplicación del ensayo en mm ²
L_M = Longitud de la muestra en mm	D = masa de las fibras de cabuya seca en g.
L_o = Distancia de calibracion en mm	E = Módulo de elasticidad en MPa
L_1 = Longitud media de la probeta, en mm.	$I=Inercia, mm^4$
L_2 = El ancho medio de la probeta, en mm.	L= Longitud entre apoyos, mm
M_A = Masa por unidad de área g/m^2 .	R= Masa del recipiente +agua en la segunda
M_0 = Masa inicial, g	lectura, en g.
$M_{RA} = Masa$ retenida acumulada, g	S = Masa de la muestra seca, en g.
M_m = Masa de la muestra en g.	T = Masa del recipiente +agua en la primera lectura, en g.
M _{tm} = Masa de la muestra en mg	Tex = Densidad Lineal en g/1000 m
P_A = Masa del molde +placa, en g.	W= masa de las fibras de cabuya en estado
P_e = Masa de la estructura en g	sss en g.
D — Maag da la activitationa i musatra	a = Masa muestra en estado sss en g.
\mathbf{P}_{e+m} = Masa ae la estructura + muestra sumergida en g	b = Masa del picnómetro lleno de agua hasta la
	marca de calibración en g.
P_s = Masa de las 20 fibras en estado seco en g	d =Alto de la sección transversal en mm
P _{sum} = Masa de la muestra sumergida en g	δ = Densidad en g/cm ³
R_{SCi} = Índice de rentabilidad, en N/mm ² /\$	σ = Esfuerzo en MPa
S_{POi}= Resistencia al desprendimiento, en N/mm ²	

RESUMEN

Una estructura de concreto armado se analiza y diseña para que complete su vida útil dentro de condiciones aceptables de servicio y resistencia. Sin embargo, en una obra civil pueden surgir circunstancias que generen cambios durante la concepción, ejecución o durante su vida útil, y afecten negativamente la capacidad resistente que se espera de la misma y eventualmente la llevan al colapso. De acuerdo con esto, muchas veces es necesario realizar una reparación en una estructura de concreto armado mediante la aplicación de sistemas de reforzamiento en algunos elementos o en todo la estructura para aumentar la capacidad portante en un determinado momento de su existencia y así recuperar su funcionalidad. Uno de estos sistemas de reforzamiento se denomina comúnmente como materiales compuestos. Los compuestos FRCM (Fabric Reinforced Cementitious Matrix) son un nuevo desarrollo en materiales compuestos de cemento diseñados específicamente para la reparación y rehabilitación estructural. Existen pocos estudios y limitada información en relación a los sistemas FRCM, más aún si se quiere averiguar su aplicación con fibras naturales. Al haber poca información, no existen estudios que engloben el total de las propiedades mecánicas. Una de las principales propiedades mecánicas es la adherencia del sistema compuesto con el material del sustrato. Si no se garantiza una adherencia adecuada, por más que el sistema compuesto tenga excelentes propiedades mecánicas, la eficiencia del sistema de reforzamiento se ve afectada. La presente tesis trata del desarrollo de un sistema compuesto FRCM con tejido elaborado con fibras naturales de cabuya y una matriz cementicia, enfocándose en los problemas de adherencia y proponiendo un sistema óptimo que garantice una unión eficaz entre el material compuesto y el material de sustrato. Se realizó una extensa investigación de las propiedades tanto físicas y mecánicas de los materiales utilizados tanto en la elaboración del sistema FRCM (matriz cementicia y tejido de cabuya) como en la elaboración de elementos de concreto reforzado (vigas y columnas cargadas excéntricas), la misma que fue conducida en los laboratorios de Ingeniería Civil de la Universidad Nacional de Chimborazo.

UNIVERSIDAD NACIONAL DE CHIMBORAZO CENTRO DE IDIOMAS INSTITUCIONAL

Lic. Byron Soria

ABSTRACT

A reinforced concrete structure is analyzed and designed to complete its service life with suitable operating conditions and resistance. In a civil work, however there may be circumstances that generate changes during design, implementation or during its lifetime, and adversely affect its bearing capacity, which could eventually lead to collapse. In this regard, it is often necessary to repair a reinforced concrete structure by using strengthening systems applied on specific structural elements or in the entire structure in order to increase their loading capacity and recover their functionality. One of these systems is commonly called composites materials. The FRCM (Fabric reinforced cementitious matrix) composites are a new development in cement composites specifically designed for structural repair and rehabilitation. There are few studies and limited information regarding the FRCM systems, especially if applications using natural fibers are treated. Given the limited information, studies involving the total of the mechanical properties of these novel strengthening systems have not been conducted. One of the main mechanical properties of composites is adhesion between the matrix and the substrate material. Although a composite system has excellent mechanical properties, if adequate adhesion is not ensured, the strengthening system efficiency is affected. This thesis deals with the development of a FRCM composite system produced with fabrics made from natural fibers of cabuya and a cementitious matrix, focusing on adherence problems and proposing an optimal system to ensure an effective bond between the composite and the substrate material. An extensive research on both the physical and mechanical properties of the materials used in the preparation of the FRCM system (cementitious matrix and fabrics of cabuya) and the preparation of reinforced concrete elements (beams and columns eccentrically loaded) was conducted in the laboratories of Civil Engineering of the National University of Chimborazo.

XXVIII

INTRODUCCIÓN

El refuerzo de estructuras como técnica de reparación es uno de los fundamentos básicos dentro del mantenimiento de una obra civil, siendo una actividad de conservación destinada a recuperar la capacidad portante de la estructura, esto principalmente debido a daños producidos como, degradación de la estructura, procesos constructivos erróneos, daños ocasionados por factores naturales, etc.

Un área del refuerzo de estructuras se ha enfocado a investigar los materiales compuestos, las investigaciones enfatizan que el uso de los materiales compuestos son una buena técnica de refuerzo; sin embargo, advierten que se requieren adecuados conocimientos de diseño y de construcción para estandarizar metodologías que garanticen el apropiado uso de este tipo de materiales, la técnica más empleada actualmente es la basada en el refuerzo mediante el uso de materiales compuestos de polímeros reforzados con fibras (FRP), los mismos que pueden ser empleados en elementos estructurales. A pesar de su eficacia como un sistema de refuerzo, la presencia de un aglutinante epoxi en FRP tiene algunos inconvenientes como, el mal comportamiento a altas temperaturas, la incompatibilidad con el sustrato cuando está mojado y el costo elevado del material. Con el fin de superar estas limitaciones, una nueva clase de compuesto ha surgido con el nombre de reforzamiento con fibra a partir de una matriz cementicia (FRCM), constituido por una secuencia de dos o más capas de matriz a base de cemento, reforzado con telas abiertas hechas de hilos de fibra secas.

Uno de los problemas principales en los elementos de concreto armado reforzado con materiales compuestos a base de una matriz cementícea es la falta de adherencia entre FRCM y el sustrato dando lugar a que la estructura no se comporte monolíticamente con el material. Por este motivo, es necesario profundizar el estudio de metodologías o técnicas para mejorar la adherencia, y de esta manera, aprovechar al máximo la capacidad de reforzamiento del sistema compuesto. El presente proyecto de titulación se centra en la elaboración y caracterización de compuestos de matriz cementícea, reforzado con tejidos de fibras naturales de cabuya (sistema FRCM) otorgando así un material sostenible con el ambiente, estudiando los problemas de adherencia y proponiendo un sistema optimo que garantice una unión eficaz entre el material compuesto y el espécimen de concreto armado.

CAPITULO I

1. FUNDAMENTACIÓN TEÓRICA 1.1.GENERALIDADES

El concreto reforzado con fibras es un material nuevo en nuestro país, pero históricamente ya se utilizaban fibras para reforzar elementos de mampostería y elementos estructurales en viviendas construidas de adobe, ladrillo de arcilla y yeso, estas fibras generalmente utilizadas son la paja seca o pelo de caballo; contribuían generosamente en la resistencia a la tensión y la tenacidad del elemento, lo cual evitaba los agrietamientos y los desgastes por abrasión. Las investigaciones realizadas en otros países alientan a que nuestro país también vea la posibilidad de encontrar un material de construcción con mejores propiedades y costos menores a los existentes.

En algunos artículos publicados entre 1995 y 1997 en el CI Concrete International se entrega información sobre una nueva tecnología conocida como refuerzos mediante compuestos en base a resinas poliméricas y distintos tipos de fibras minerales o metálicas, materiales denominados FRP (Fiber Reinforced Polymer) para reparación, restauración y refuerzo estructural. En la actualidad, la industria está aplicando una nueva clase de sistema de refuerzo que utiliza el mismo tipo de fibras pero embebidas en matrices cementíceas denominados FRCM (Fiber Reinforced Cementitious Matrix). Los sistemas de refuerzo estructural FRCM están constituidos por el acoplamiento de una red de fibra de un alto rendimiento y una matriz inorgánica estabilizada empleada con la función de adhesivo.

En comparación con los FRP, los FRCM ofrecen una mayor compatibilidad con los elementos estructurales de concreto y albañilería, y un comportamiento superior a altas temperaturas, condiciones de incendio y radiación ultravioleta.

A pesar de las excelentes características mecánicas que pueden presentar los materiales compuestos, estas cualidades se pueden ver afectadas debido a que la adherencia entre el material del sustrato con el material compuesto no conforma una estructura monolítica afectando la transmisión de cargas y dejando ineficiente al sistema.

1.2.CARACTERÍSTICAS DE LOS MATERIALES

1.2.1.1.Hormigón

El hormigón es un material semejante a la piedra que se obtiene mediante una mezcla cuidadosamente proporcionada de cemento, agregado fino, agregado grueso; después,

esta mezcla se endurece en formaletas con la forma y dimensiones deseadas. En ocasiones, uno o más aditivos se adicionan para cambiar ciertas características del concreto, tales como trabajabilidad, resistencia, tiempo de fraguado, etc.

El hormigón es un material sumamente resistente a la compresión, pero extremadamente frágil y débil a solicitaciones de tracción. Para aprovechar sus fortalezas y superar sus limitaciones, en estructuras se utiliza el hormigón combinado con barras de acero resistentes a la tracción, lo que se denomina como hormigón armado.(Nilson, 2001).

1.2.2. COMPONENTES DEL HORMIGÓN

1.2.2.1.Cemento

Es un aglutinante o aglomerante hidráulico, que mezclado con agregados pétreos y agua, crea una mezcla uniforme, manejable y plástica, capaz de fraguar y endurecer al reaccionar con el agua y adquiriendo por ello, consistencia pétrea.

Para elaborar hormigón estructural se utilizan únicamente los cementos hidráulicos. Entre los diferentes cementos hidráulicos el más común, es el cemento Portland. (Nilson, 2001)

1.2.2.2. Agregados

Se conoce como agregados a aquellos materiales inertes en forma granular de procedencia natural los cuales en presencia del cemento y agua pueden aglomerarse y conformar mortero o concreto. Los agregados en el concreto ocupan aproximadamente tres cuartas partes del volumen del hormigón, el volumen restante está constituido por pasta de cemento endurecida, agua sin combinar y burbujas de aire. Se emplea tanto agregado fino (arena) como grueso (grava). Cualquier agregado que pasa la malla No. 4 se considera agregado fino. El material de mayor tamaño es agregado grueso.

Los agregados debes ser fuertes, durables y limpios. Si se encuentra en ellos polvo u otras partículas, pueden interferir en la adherencia entre la pasta de cemento y los agregados. La resistencia de los agregados tiene un efecto importante en la resistencia del concreto, y las propiedades de los agregados afectan considerablemente la durabilidad del hormigón. (J. Nilson, 2001)

1.2.2.3. Acero estructural

El acero es una aleación compuesta de hierro, que contiene carbono y pequeñas cantidades de otros elementos metálicos, por lo general, el carbono representa entre el 0.5% y el 1.5% de la aleación. El refuerzo usado en las estructuras de concreto puede ser en forma de barras lisas o corrugadas o de malla soldada de alambre, el acero es un

material apto para resistir los esfuerzos de tracción, lo que lo convierte en el componente ideal para combinarse técnicamente con el hormigón el cual es denominado, hormigón armado(M. Romo, 2008)

1.2.2.4.Aditivos

Los materiales que se agregan al concreto durante o antes del mezclado se denominan aditivos. Se usan para modificar ciertas propiedades del hormigón. Entre los usos más frecuentes están los acelerantes, retardantes y plastificantes. Los aditivos plastificantes son los más utilizados en nuestro medio, y permiten que la trabajabilidad del hormigón fresco mejore considerablemente, estos aditivos pueden conseguir mayor trabajabilidad de un hormigón normal, reduciendo la cantidad de agua de, mejorando con ello la resistencia del hormigón. (M. Romo, 2008)

1.2.3. PROPIEDADES DEL HORMIGON FRESCO

El hormigón fresco se considera, desde el amasado del hormigón hasta que fragua el cemento, manteniendo su condición plástica y moldeable. Durante la etapa en que el hormigón se mantiene en estado fresco, es de gran importancia poder otorgar una docilidad adecuada conforme al uso que se desea dar. El hormigón recién mezclado debe ser plástico o semifluido y capaz de ser moldeado. (Arequipa, Cobo, Garzón, Vargas, 2012)

1.2.3.1.Densidad

Es la relación que existe entre la masa del hormigón y su volumen. Es un índice que permite determinar si el hormigón está dosificado según las proporciones previstas, si se ha producido falta de homogeneidad en la masa separándose o acumulándose los agregados, o si la masa acumula excesivo aire ocluido en el proceso de amasado y colocación en obra. La densidad del hormigón simple fresco se encuentra en un rango de 2.25 T/m³ a 2.35 T/m³. (Arequipa, Cobo, Garzón, Vargas, 2012)

1.2.3.2.Trabajabilidad

Un hormigón fresco se considera trabajable cuando puede adaptarse fácilmente a cualquier forma de encofrado, cuantitativamente la trabajabilidad se mide mediante el asentamiento del cono de Abrams, mientras mayor sea el asentamiento el hormigón presenta mejor trabajabilidad.

Asentamientos menores a 5cm corresponden a hormigones poco trabajables; asentamientos entre 7.5cm y 12.5cm corresponden a hormigones medianamente

trabajables; asentamientos superiores a 15cm son característicos de hormigones muy trabajables. (Arequipa, Cobo, Garzón, Vargas, 2012)

1.2.3.3.Homogeneidad

Es la cualidad que tiene un hormigón para que sus componentes se distribuyan regularmente en la masa (en una sola amasada), la vibración pone en movimiento a las partículas en el hormigón recién mezclado, reduciendo la fricción entre ellas y dándole a la mezcla las cualidades móviles de un fluido denso. La pérdida de la homogeneidad puede darse por la irregularidad en el amasado, exceso de relación agua / cemento y en la cantidad y tamaño máximo de los agregados gruesos. (Arequipa, Cobo, Garzón, Vargas, 2012)

1.2.3.4.Fraguado

Se puede definir como el tiempo durante el cual puede darse forma al conglomerante. Los compuestos que se originan forman una fase en la que los geles y cristales conforman una "pasta" de comportamiento inicial viscoso, que posteriormente se transforma en rígido. En el caso del hormigón, es el cemento portland el responsable de reaccionar con el agua de amasado y provocar la reacción de hidratación. (Arequipa, Cobo, Garzón, Vargas, 2012)

1.2.3.5.Exudación

La exudación es una forma de segregación de los componentes de una mezcla de hormigón fresco en la que, el agua tiende a elevarse hacia la superficie del hormigón como consecuencia de la incapacidad de los agregados de mantenerla con ellos al irse compactando. Conforme el agua sube por el hormigón, se forman canales de flujo en la masa de éste y se acumula agua debajo de las partículas de agregado grueso y debajo de las varillas horizontales de refuerzo. Esta acción conduce a una estructura más débil, debido a la falta de adherencia entre la pasta y el agregado grueso, y entre el hormigón y el acero de refuerzo. (Arequipa, Cobo, Garzón, Vargas, 2012).

1.2.4. PROPIEDADES DEL HORMIGON ENDURECIDO

1.2.4.1.Densidad

El peso unitario (densidad) del hormigón, es la relación de su peso respecto al volumen absoluto, se usa en ciertos cálculos para proporcionamiento de mezclas y control, así como en el diseño de estructuras de hormigón reforzado.

La densidad del hormigón simple endurecido se ubica entre los 2.2 T/m³ y 2.40 T/m³. En ambientes que contienen componentes radioactivos, pueden requerirse hormigones de mayor densidad que son mejores escudos ante el escape de radiaciones, estos hormigones pueden llegar a 2.80 T/m³. (M. Romo. 2008).

1.2.4.2. Resistencia a la compresión

La resistencia a la compresión se puede definir, como la máxima resistencia medida de un espécimen de hormigón o de mortero a carga axial. Generalmente se expresa en MPa y también en kilogramos por centímetro cuadrado (kg/cm2) a una edad de 28 días, se le designa con el símbolo f´c. Para determinar la resistencia a la compresión, se realizan pruebas en muestras de mortero o de hormigón; los ensayos a compresión de mortero se realizan sobre cubos de 5 cm. de arista en tanto que los ensayos a compresión del hormigón se efectúan sobre cilindros que miden 15 cm de diámetro y 30 cm de altura. La resistencia del hormigón a la compresión es una propiedad fundamental, y es

frecuentemente empleada en los cálculos para diseños de puentes, de edificios y otras estructuras. El hormigón de uso general, tiene una resistencia a la compresión entre 210 y 350 kg/cm². Se consideran hormigones de alta resistencia, aquellos que tienen una resistencia a la compresión mayor de 450kg/cm². (M. Romo. 2008).

1.2.4.3. Resistencia a la tracción

El valor de la resistencia a la tracción del hormigón, es aproximadamente de 8% a 12% de su resistencia a compresión y a menudo se estima como 1.33 a 1.99 veces la raíz cuadrada de la resistencia a compresión. Esta resistencia es más difícil de medir y los resultados de probeta a probeta varían más que los de los cilindros de las pruebas de comprensión. (M. Romo. 2008).

1.2.4.4.Módulo elástico

El módulo de elasticidad, está definido por la pendiente de la curva en el rango de comportamiento elástico y es una medida de la rigidez del material, o sea la resistencia del hormigón a la deformación. (M. Romo. 2008).

Figura 1: Curva Esfuerzo vs Deformación Unitaria del Hormigón. FUENTE: Marcelo Romo M.Sc, 2008

El módulo de elasticidad, está definido por la ecuación E = esfuerzo /deformación. Cuando se dibujan las curvas Esfuerzo-Deformación se obtienen diferentes tipos de gráficos que dependen fundamentalmente de la resistencia a la rotura del material, como se muestra en la Figura 2. (M. Romo. 2008).

Figura 2: Curva Esfuerzo vs. Deformación Unitaria de Hormigones con Diferentes Resistencias a la Compresión. FUENTE: Marcelo Romo M.S.c, 2008

Los hormigones de menor resistencia suele mostrar una mayor capacidad de deformación que los hormigones más resistentes. Todos los hormigones presentan un primer rango de comportamiento relativamente lineal y elástico ante la presencia incremental de solicitaciones de compresión, cuando las cargas son comparativamente bajas, y un segundo rango no lineal e inelástico cuando las cargas son altas. (M. Romo. 2008).

1.2.4.5.DUCTILIDAD

Se define como ductilidad de un material a la capacidad que tiene para continuar deformándose no linealmente a pesar de los incrementos de carga sean mínimos, nulos e inclusive si existe una disminución de la carga, una medida cuantitativa de esa ductilidad seria el cociente entre la deformación de rotura y la deformación máxima en el rango lineal elástico. (M. Romo. 2008).

Evidentemente los índices de ductilidad por deformación del hormigón simple decrecen considerablemente cuando aumenta su resistencia a la rotura, como se observa en la Figura 3. A continuación se presenta la Tabla 1 con valores aproximados de ductilidad por deformación del concreto en función a su resistencia a la compresión. (M. Romo. 2008).

Figura 3: Índice de Ductilidad del Hormigón. FUENTE: Marcelo Romo M.S.c, 2008

$$Dd = \frac{\varepsilon_u}{\varepsilon_e}$$

Dónde:

Dd: Índice de Ductilidad por Deformación.

ε_u: Deformación de Rotura.

ε_e: Deformación Elástica Máxima.

Tabla 1: Índice de Ductilidad del Hormigón en Base a la Resistencia a Compresión. FUENTE: Marcelo RomoM.S.c, 2008

Resistencia a la Compresión [Kg/cm ²]	Índice de Ductilidad por Deformación
210	4.5 - 6.0
280	3.5 - 4.5
350	3.0 - 3.5
420	2.5 - 3.0
630	2.0 - 2.5
840	1.5 - 2.0

El índice de ductilidad por deformación es un excelente referente de la capacidad del hormigón para deformarse por encima de su límite de fluencia. Otra manera de medir la ductilidad del concreto consiste en encontrar el cociente entre la energía que se requiere para romper al material y la energía necesaria para llevarle hasta la carga máxima de comportamiento elástico, para cuyo cálculo, en lugar de dividir directamente las deformaciones, se dividen las áreas bajo la curva Esfuerzo-Deformación. (M. Romo. 2008).

Figura 4: Índice de Ductilidad por Energía de Deformación del Hormigón. FUENTE: Marcelo Romo M.S.c.

$$Ded = \frac{A_u}{A_e}$$

Dónde:

Ded: Índice de Ductilidad por Energía de Deformación

 $A_{\rm u}$: Energía de Deformación de Rotura.

A_e: Energía de Deformación Elástica Máxima.

Los índices de ductilidad por energía de deformación son mayores a los índices de ductilidad por deformación, y en muchos casos pueden superar valores de ocho.

Resistencia a la Compresión [Kg/cm ²]	Índice de Ductilidad por Deformación
210	8.0 - 10.0
280	6.0 - 8.0
350	5.0 - 6.0
420	4.0 - 5.0
630	3.0 - 4.0
840	2.0 - 3.0

Tabla 2: Índices de Ductilidad por Energía de Deformación en base a la Resistencia a Compresión del Hormigón

El índice de ductilidad por energía de deformación se emplea como referente de la capacidad del concreto para disipar la energía cuando incursiona dentro del rango de comportamiento inelástico. Uno de los requisitos más importantes que debe reunir un hormigón en zonas sísmicas es su ductilidad, lo que en nuestro medio limita la utilización de hormigones de resistencia media superior a 500 kg/cm², por ser sumamente frágiles (tienen una rotura muy rápida y explosiva). (M. Romo. 2008).

1.2.5. PROPIEDADES DE LOS AGREGADOS

1.2.5.1. Granulometría

Es la propiedad física de los agregados por la cual se considera el tamaño del mismo y está definido exclusivamente por los tamaños presentes en una masa de agregado. Un análisis granulométrico divide a una masa de una muestra en fracciones del material del mismo tamaño para determinar la cuantía (porcentaje respecto al total) de cada agrupamiento respecto a la masa inicial de la muestra. (Bowles, 2006)

Para la determinación de las cuantías del agregado respecto a su tamaño se realiza la operación por cribado del material, que consiste en tamizar una masa de agregado en estado seco por una serie de cribas preestablecidas para determinar la masa retenida en cada tamiz. (Bowles, 2006)

Tenemos diferentes tipos de granulometría:

- **Bien Graduada.** Se obtiene cuando el agregado presenta una distribución uniforme de mayor a menor. Su gráfico es una línea continua.
- Mal Graduada.- No hay una continuidad entre el porcentaje de cada tamiz, es decir, la curva graficada presentará desviaciones.
- Uniforme.- Se presenta cuando el agregado tiene partículas del mismo tamaño.
- Abierta o Discontinua.- Se produce cuando en ciertos tamices no se ha retenido material, la curva es discontinua, presenta interrupciones.

1.2.5.2. Módulo de finura

El módulo de finura es un índice de la finura del agregado fino, entre mayor sea el módulo de finura, más grueso será el agregado.

Las mallas que se emplean para determinar el módulo de finura son la de 0.15mm (No.100), 0.30mm (No.50), 0.60mm (No.30), 1.18mm (No.16), 2.36mm (No.8), 4.75mm (No.4), 9.52mm (3/8"), 19.05mm (3/4"), 38.10mm (1¹/₂"), 76.20mm (3"), y 152.40mm (6").

"Se considera que el módulo de finura de una arena adecuada para producir hormigón, debe estar entre 2,3 y 3,1 donde un valor menor que 2,0 indica una arena fina; 2,5 una arena de finura media y más de 3,0 una arena gruesa". (Bowles, 2006)

1.2.5.3. Tamaño máximo nominal

Es el tamaño del tamiz anterior al primer tamiz en el que hubo una retención del 15% o más de la muestra. El tamaño nominal máximo del agregado grueso influye en la economía del concreto. Normalmente, se requiere más agua y cemento en concretos con

agregados gruesos de tamaño máximo menor, si comparado con agregados de tamaño máximo mayor, debido al aumento del área superficial total del agregado. (Bowles, 2006)

Por lo común el tamaño máximo de las partículas de agregado no debe sobrepasar:

- Un quinto de la dimensión más pequeña del miembro de concreto.
- Tres cuartos del espaciamiento libre entre barras de refuerzo.
- Un tercio del peralte de las losas.

1.2.5.4. Densidad relativa

Es la característica generalmente utilizada para el cálculo del volumen ocupado por el árido en las mezclas, incluyendo hormigón de cemento portland, hormigón bituminoso y otras mezclas que son dosificadas o analizadas en base al volumen absoluto. Este ensayo se realiza bajo la norma NTE INEN 856.

1.2.5.5.Peso volumétrico

Se lo realiza en base a la norma NTE INEN 858, para determinar la masa unitaria (peso volumétrico) del árido en condición compactada o suelta y así calcular los vacíos entre las partículas.

1.2.6. MATERIALES COMPUESTOS

Los materiales compuestos o "composites" deben su nombre a que están formados por dos o más materiales, fases o constituyentes, que actúan de manera conjunta y solidaria. Se consiguen, de esta manera, unas prestaciones óptimas en cuanto al comportamiento mecánico, principalmente, por que no pueden ser obtenidas en los materiales originales. Un material compuesto está estructurado de dos elementos bien diferenciados que son la fase matriz y el refuerzo. (J. Trejos 2012.)

Figura 5: Estructura Básica del Material Compuesto. FUENTE: J. Trejos 2012.

1.2.6.1. Refuerzo del Material Compuesto

El refuerzo en el material compuesto aporta la resistencia mecánica, rigidez, dureza y va a ser determinante para obtener las principales propiedades mecánicas. Las características más sobresalientes corresponden a su resistencia a la tracción específica y su elevado módulo de elasticidad, resistencia al medio ambiente, la ductilidad, bajo costo, buena manejabilidad y facilidad de fabricación. La fase de refuerzo puede ser de muchas formas, tales como corta o continuo, fibras o filamentos, fibras o telas tejidas, partículas o cintas. El criterio para la selección del tipo y forma del refuerzo variará según el requisito de diseño para el material compuesto. (O. Cevallos, 2014)

Figura 6: Formas de Refuerzo para la Matriz- FUENTE: El comportamiento de los materiales compuestos con fibra de carbono-Monografías.com

1.2.6.1.1. Fibras orgánicas

Fibras de Aramida

Son aquellas fibras de origen orgánico y sintético, posee una estructura anisotrópica. Las características singulares de esta fibra orgánica son su alta resistencia y módulo elástico en la dirección longitudinal de la fibra, presentan una alta tenacidad, tolerancia al daño y buenas características de fatiga, su buena resistencia al impacto y su alta capacidad de absorción de energía, que la hacen singularmente interesante para blindajes, como los chalecos de protección balística y para elementos constructivos que deban ser muy ligeros y soportar impactos, ya que la reducción de masa atenúa las fuerzas de desaceleración y su dureza le permite soportar las aceleraciones extremas causadas por el impacto.(Rodríguez, 2016).

Figura 7: Fibra Orgánica de Aramida

1.2.6.1.2. Fibras inorgánicas

Fibras de Vidrio.

Las fibras de vidrio han sido sin duda los elementos de refuerzo más comunes en materiales compuestos. Son fibras que se obtienen al hacer fluir vidrio fundido a través de una pieza de agujeros muy finos los cuales al solidificarse son flexibles. Este tipo de fibra presenta varias características como: buena resistencia, buen comportamiento ante la abrasión y corrosión, buen aislante térmico, acústico y eléctrico, alta resistencia a la tensión, incombustible, biológicamente inerte, excelente resistencia a la intemperie y a gran resistencia a agentes químicos, baja conductividad térmica, etc.

Se elaboran a partir de sílice (del 50% al 70% de su composición) y se le añaden otros componentes en función de las propiedades deseadas. Existen dos tipos de fibras más utilizadas para fabricar materiales compuestos los cuales se mencionan a continuación:

Figura 8: Fibra de Vidrio

- Las fibras E-glass (eléctricos), son más económicas que las fibras de carbono y son los más utilizados en la fabricación de fibras continuas, tienen altas cantidades de ácido bórico y alúmina, y presentan baja resistencia a los álcalis.
- Las fibras S-glass (alta resistencia), tienen una alta relación de resistencia/peso y son rígidas, son más caras que las fibras E y al igual que estas presentan baja resistencia a los álcalis.

A diferencia de las fibras de carbono y aramida, las fibras de vidrio presentan propiedades isótropas, de forma que, por ejemplo, el módulo de Young a lo largo del eje de la fibra es el mismo que transversalmente a este eje. Esto es consecuencia directa de la estructura tridimensional de la red del vidrio. (Rodríguez, 2016)

Fibras de Carbono

Es una fibra sintética constituida por finos filamentos de $5-10 \mu m$ de diámetro y compuesto principalmente por carbono. Cada fibra de carbono es la unión de miles de filamentos de carbono. Se trata de una fibra sintética porque se fabrica a partir del poliacrilonitrilo (PAN). Tiene propiedades mecánicas similares al acero y es tan ligera como la madera o el plástico. Por su dureza tiene mayor resistencia al impacto que el acero.

Las propiedades mecánicas de las fibras de carbono no presentan alteraciones ante diversos factores como: humedad, disolventes, ácidos o agentes ambientales, permitiendo de esta manera que exista un contacto directo con el hormigón durante largos periodos de tiempo entre sus principales propiedades se encuentran la elevada resistencia mecánica, con un módulo de elasticidad alto, baja densidad, en comparación con otros materiales como por ejemplo el acero, elevado precio de producción, y gran capacidad de aislamiento térmico. (Rodríguez, 2016).

Figura 9: Fibra de Carbono.

1.2.6.1.3. Fibras naturales

Las fibras naturales, son estructuras filamentosas de origen vegetal, animal y mineral, que por sus características físicas y químicas, tienen aplicaciones muy diversas. Las plantas productoras de fibras revisten gran importancia, por la influencia social y económica que representan para el ser humano.

Las fibras, que han sido usadas en beneficio de la humanidad, actualmente están recuperando el espacio perdido debido a la aparición del plástico y fibras sintéticas. Esto ocurre debido a que son insumos ventajosos en sostenibilidad y protección del ambiente, sobre todo por sus características biodegradables. Precisamente los intereses o preferencias de la sociedad moderna están creando un nuevo concepto de mercado global, con énfasis en la mitigación del deterioro del planeta, condición que será una exigencia en los próximos años.

El uso de fibras naturales se ha convertido en una opción importante en el área de la fabricación de materiales compuestos, en donde la expectativa es que las fibras naturales actúen como refuerzo y le den resistencia y rigidez a la estructura del material.

Las fibras naturales tienen varias ventajas sobre las fibras sintéticas, como disponibilidad, diversidad, renovabilidad, bajo costo, baja densidad, propiedades aceptables de resistencia, facilidad de separación, y biodegradabilidad. La Tabla 3 muestra una comparación entre fibras naturales y fibras de vidrio. (Brenes, 2016)

Las fibras naturales se están convirtiendo en una alternativa de bajo costo, ligero y al parecer ambientalmente mejor a la fibra de vidrio en los materiales compuestos. Es probable que los materiales compuestos de fibra natural sean ambientalmente superiores a los materiales compuestos de fibra de vidrio en la mayoría de los casos por las siguientes razones: (1) la producción de fibras naturales tiene menores impactos ambientales en comparación con la producción de fibra de vidrio, (2) los materiales compuestos de fibras naturales tiene menores impactos ambientales en comparación con la producción de fibra de vidrio, (2) los materiales compuestos de fibras naturales tienen un mayor contenido de fibra para un rendimiento equivalente , reduciendo más los contaminantes basados en el contenido de polímero, (3) el peso ligero de los materiales compuestos de fibras naturales mejora la eficiencia de combustible y reduce las emisiones en la fase de utilización del componente, especialmente en aplicaciones de automóviles, y (4) el final de la vida de incineración de las fibras naturales da como resultado energía recuperada y créditos de carbono.

La comparación de propiedades como resistencia a la tensión, módulo de elasticidad y porcentaje de deformación entre las fibras naturales y las fibras sintéticas, hace que las fibras naturales sean un sustituyente potencial de las fibras de vidrio E (que son las fibras sintéticas más utilizadas). En la Tabla 4 se presenta una comparación entre las propiedades de varias fibras naturales y la fibra de vidrio tipo E.

Característica	Fibras naturales	Fibras de vidrio
Densidad	Baja	Aprox. el doble que las fibras naturales
Costo	Bajo	Bajo, pero mayor que las fibras naturales
Renovable	Sí	No
Reciclable	Sí	No
Consumo de energía	Bajo	Alto
CO ₂ neutral	Sí	No
Abrasión a máquinas	No	Sí
Disposición	Biodegradable	No biodegradable

Tabla 3: Comparación entre fibras de vidrio y fibras naturales. FUENTE-(Wambua, Ivens & Verpoest, 2003)

Tabla 4: Propiedades de fibras naturales en comparación con fibra de vidrio tipo E. **FUENTE**-(Wambua, Ivens & Verpoest, 2003)

	Fibras					
Propiedad	Vidrio E	Hemp (cáñamo)	Yute	Coco	Sisal	Lino
Densidad (g/cm ³)	2,55	1,48	1,46	1,25	1,33	1,4
Resistencia a la tensión (MPa)	2400	550-900	400-800	220	600-700	800-1500
Módulo de elasticidad (GPa)	73	70	10-30	б	38	60-80
% Deformación	3	1,6	1,8	15-25	2-3	1,2-1,6
Absorción de humedad (%)	-	8	12	10	11	7

1.2.6.1.3.1.Fibra de Cabuya

La cabuya es una planta originaria de América Tropical y además una de las fibras naturales comerciales más utilizadas. Es una planta monocotiledónea que pertenece a la familia Agavacea. En nuestro país la cabuya se utiliza mucho en la fabricación de sacos, sogas, hamacas y alfombras. La fibra de cabuya se caracteriza por ser dura, resistente, durable en ciertas condiciones y áspera. (A. Tamayo, 2012).

Figura 10: Planta y Fibra de Cabuya. FUENTE-A. Tamayo, 2008

Propiedades y aplicaciones de la fibra de cabuya

Las fibras naturales tienen una buena resistencia mecánica, en especial la cabuya, que además es liviana y tiene una densidad de 1.3 g/cm³. Esto las hace atractivas para diferentes industrias, ya que se puede obtener un interesante ahorro de energía debido a su contextura liviana combinada con la resistencia a la tracción. La gran resistencia de la fibra de la cabuya obedece especialmente a sus propiedades mecánica, que se observan en la Tabla 5. (A. Tamayo, 2008)

Tabla 5: Propiedades de Fibra de Cabuya. FUENTE: A. Tamayo.

Fibra	Densidad [g/cm ³]	Resistencia a la Tracción [MPa]	Módulo de Elasticidad [GPa]	Elongación a la Fractura [%]	Absorción de la Humedad [%]
Cabuya	1.3	305.15	7.5	4.96	-

La fibra de cabuya seria entonces una buena opción para la fabricación de materiales compuestos, debido a sus buenas propiedades mecánicas. La cabuya está clasificada como fibra dura. Dentro de nuevas tendencias la cabuya se usa cada vez más para reforzar materiales compuestos de plástico en particular para partes de automóviles.

Tejido de cabuya

La artesanía en telar manual es el oficio en el cual, mediante el manejo de hilos flexibles de diferentes calibres se obtiene una gran variedad de tejidos. Los hilos usados para tejer deben ser procesados, para a través del entrecruzamiento ordenado, sencillo o combinado, con trama y urdimbre, desarrollar toda gama de tejidos existentes en el mercado.

Existe una amplia gama de tejidos, siendo el más sencillo el tejido plano. Está formado por filamentos intercalados en donde las fibras de la trama pasan de manera regular y uniforme por encima y debajo de la urdimbre. (D. Carrillo, 2014)

Figura 11: Estructura Básica del Tejido Plano. FUENTE: A. Tamayo, 2008

En nuestro país se encuentran disponibles diferentes tipos de fibras y tejidos elaborados con fibra de cabuya, los cuales son utilizados principalmente en aplicaciones artesanales y podrían usarse en la elaboración de materiales compuestos.

Existen dos tipos de hilos de cabuya, el hilo fino y el hilo grueso. Cuyos diámetros aproximados de estos hilos son 0,9 mm y 1,5 mm. También, existen diferentes tipos de tejidos de fibra de cabuya, los más utilizados son conocidos con los nombres de tejido grueso, normal y fino. (D. Carrillo, 2014)

Figura 12 : Tipos de Tejidos de Cabuya (a. Grueso, b. Normal, c.Fino). FUENTE-D. Carrillo, 2014

1.2.6.2.Fase matriz

La fase matriz de un material compuesto con fibras ejerce varias funciones. En primer lugar, une las fibras y actúa como un medio que distribuye y transmite a las fibras los esfuerzos extremos aplicados; solo una pequeña fracción del esfuerzo aplicado es resistida por la matriz. Además, la matriz debe ser dúctil y, por otra parte, el modulo elástico de la fibra debe ser mucho mayor que el de la matriz. En segundo lugar, la matriz protege a las fibras del deterioro superficial que puede resultar de la abrasión mecánica o de reacciones químicas con el medio ambiente. Estas interacciones introducen defectos superficiales capaces de originar grietas, que podrían producir fallas con esfuerzos de tracción relativamente bajos.

Las características finales de un material compuesto dependen de las propiedades de las fases, de la proporción en que se encuentran cada una de ellas, de la geometría (forma, tamaño, orientación) y grado de dispersión de la fase dispersa en la matriz. Es esencial que la adherencia de la unión entre fibra y matriz sea elevada para minimizar el arrancado de fibras. En efecto, la resistencia de la unión tiene gran importancia en el momento de seleccionar la combinación fibra-matriz. La resistencia a la tracción final del compuesto depende, en gran parte, de la magnitud de esta unión; una unión adecuada es esencial para optimizar la transmisión de esfuerzos desde la matriz a las fibras. (P. Sandoval, 2014).

Los materiales compuestos se clasifican en diferentes categorías dependiendo de la naturaleza de la matriz, algunas de estas son: matriz polimérica, matriz metálica, matriz cerámica y matriz de carbón (o un compuesto de éstas).

- Materiales compuestos de matriz polimérica: Durante varias décadas, las resinas termoestables han sido las matrices más comúnmente utilizados para la producción de materiales compuestos reforzados con fibras. Estas matrices son generalmente en forma fluida o estado parcialmente polimerizado con una consistencia pastosa, y cuando se mezclan con un reactivo adecuado estas adquieren un estado sólido. Constituyen el tipo más común debido a su bajo costo, alta resistencia y facilidad de fabricación. Su matriz puede estar constituida de polímeros tanto termofijos como termoplásticos.
- Materiales compuestos de matriz metálica: Ejemplos de matrices son aluminio, magnesio y titanio. Las fibras más comunes en este tipo de material compuesto son fibras de carbono y de carburo de silicio.
- Materiales compuestos carbono-carbono: Utilizan fibras de carbono incorporadas en una matriz de carbono. Este tipo de materiales compuestos se utilizan en condiciones de temperaturas extremas.

Matrices cementíceas: Las matrices de cemento son utilizadas para materiales compuestos FRCM, deben cumplir requisitos especiales en cuanto al proceso de producción, las propiedades mecánicas del material compuesto y la durabilidad del material de refuerzo. En la mayoría de los casos, los tamaños del grano (arena) utilizada para fabricar la matriz deben ser menores que 2 mm y por lo tanto, estos sistemas de matriz pueden ser considerados como mortero. Además, estas matrices ofrecen propiedades de alto rendimiento en muchos aspectos y se usan como un material compuesto de construcción, de manera que estos sistemas de matriz también se llaman hormigón de grano fino (o de hormigón fino).(O. Cevallos 2014).

Las ventajas de la utilización de la matriz cementicia incluyen:

- La estabilidad dimensional a altas temperaturas.
- Alta estabilidad química.
- Alta estabilidad térmica.
- Excelentes propiedades mecánicas (resistencia y rigidez).
- Resistente a la absorción de humedad.
- Aplicable a temperaturas extremas (2000 ° a 4000 °).

Las desventajas de la utilización de la matriz cerámica incluyen:

- Material muy frágil.
- Se requieren presiones muy altas de consolidación.
- Caro de producir y mantener.

1.2.6.2.1. Influencia de la adherencia entre matriz y fibra

Las características mecánicas de los compuestos reforzados con fibras no solo dependen de las propiedades de la fibra, también dependen de la forma en que una carga se transmite a la fibra por medio de la fase matriz. En este proceso de transmisión de carga es muy importante que las fuerzas de adhesión entre la interfaz fase matriz y fibra sean suficientes para soportar los esfuerzos de tracción. Al aplicar un esfuerzo de tracción, la unión fibra-matriz, en los extremos de la fibra y en la matriz se forma un patrón de deformación, en otras palabras, en los extremos de la fibra no hay transmisión de carga. (P. Sandoval, 2014).

Figura 13. Patrón de deformación en una matriz que rodea a una fibra sometida a un esfuerzo de tracción.

1.2.6.2.2. Influencia de la orientación y de la concentración de la fibra.

La disposición u orientación relativa de las fibras, su concentración y distribución influyen radicalmente en la resistencia y en otras propiedades de los materiales compuestos reforzados con fibras. Con respecto a la orientación existen dos situaciones extremas: (1) alineación paralela de los ejes longitudinales de las fibras y (2) alineación al azar. Las fibras continuas normalmente se alinean mientras que las fibras discontinuas se pueden alinear, orientar al azar o alinearse parcialmente. (P. Sandoval, 2014).

Figura 14. Representaciones esquemáticas de compuestos reforzados con fibras (a) Continuas y alineadas, (b) Discontinuas y alineadas (c) Discontinuas y orientadas al azar.

1.2.6.3.PROPIEDADES Y COMPORTAMIENTO DE MATERIALES COMPUESTOS CON FIBRAS NATURALES

Las propiedades y el comportamiento de los materiales compuestos dependen directamente de las propiedades de las partes que lo conforman. Es decir, dependen de la matriz, el refuerzo y la interfaz formada entre estos dos elementos. Cada una de estas partes determina un detalle crucial al momento de formar las propiedades globales del compuesto. (P. Sandoval, 2014).

Funciones del Refuerzo

- Aumentar la resistencia a la tracción, compresión y corte.
- Aumentar el módulo de elasticidad y rigidez.
- Aumentar la temperatura de deformación por calor.
- Disminuir la contracción.
- Mejorar la resistencia al impacto.

Como se puede observar, el refuerzo se emplea para mejorar una o varias propiedades de la matriz según sea requerido en cada caso del diseño. La estructura y propiedades de la interfaz fibra-matriz es determinante en las propiedades físicas y mecánicas de los materiales compuestos, debido a la gran diferencia entre las propiedades de la matriz y de las fibras de refuerzo.

Algunas de las ventajas de las fibras al formar parte de materiales compuestos son:

- Ambientalmente amigables tanto en el proceso, producción y desecho al final del ciclo.
- Renovables, y necesitan menor cantidad de energía de entrada por unidad de producción.
- Propiedades similares a aquellos materiales con refuerzo de fibra de vidrio.
- Mejor elasticidad que las fibras minerales.
- Menos abrasivos durante el proceso de fabricación.
- Absorben bien las vibraciones y por lo tanto el sonido.
- 2 a 3 veces más barato que trabajar con fibra de vidrio.
- Si se requiere un compuesto 100% biodegradable se pueden mezclar con biopolímeros como almidón, lignina, hemicelulosa, caucho, etc.

1.2.7. TÉCNICAS DE REFUERZO ESTRUCTURAL

Existen varias técnicas entre las cuales se puede hablar acerca del suplemento con armaduras o perfiles metálicos, así como del encamisado o recrecido del elemento que consiste en el reforzamiento con hormigón o morteros de alta resistencia con o sin aportación de armadura pasiva. Sin embargo, estas generan ciertos problemas como son el aumento del peso propio de la estructura, así como de su inercia, la disminución de la superficie y/o altura libre, empleo de mano de obra intensiva y especializada que requieren un tiempo de interrupción elevado y pueden ser susceptibles al deterioro de forma similar a la estructura original. (Rodríguez, 2016).

Por lo mencionado anteriormente, hoy en día se está empleando una nueva técnica la cual se basa en el refuerzo y reparación de estructuras mediante el uso de materiales compuestos de polímeros reforzados con fibras (FRP), los mismos que pueden ser empleados en elementos estructurales como son vigas, losas y pilares. Dicha técnica a generado una mejora estructural sin afectar prácticamente a la rigidez ni al peso propio del elemento, en donde para su ejecución en obra, se colocan sin la ayuda de instrumentos y maquinarias específicos, por un número limitado de operarios, en tiempos extremamente breves y, a menudo, sin que resulte necesario interrumpir el servicio de la estructura. (Rodríguez, 2016).

1.2.7.1.Sistema FRP

El termino FRP significa "Fiber Reinforced Polymer", lo cual quiere decir, "material polimérico fibroreforzado", es un compuesto estructural constituido por un conjunto de fibras plásticas presentes en forma continua y direccionadas, caracterizadas por sus elevadas prestaciones mecánicas, estas se encuentran envueltas por el elemento continuo el cual se identifica como matriz de resina, la misma que protege y transfiere la tensión entre fibras de manera uniforme. La matriz tiene la misión de transmitir los esfuerzos al refuerzo, hace la función de aglomerante y protección del mismo, y a su vez, proporciona la forma. (Rodríguez, 2016).

Este sistema de refuerzo consiste en la adhesión externa del material de refuerzo sobre la superficie del hormigón, actuando como una armadura externa para el elemento, presenta varias ventajas principalmente en resistencia a la tracción.

Figura 15: Aplicación del sitema FRCM.

Ventajas del sistema FRP

- Calidad constante y estabilidad dimensional, fácil de reparar, bajas tolerancias.
- A diferencia del acero poseen densidades bajas (1.5y 2.5 g/cm3), convirtiéndoles en materiales livianos, los cuales en el momento de su aplicación no representan un incremento en el peso de la estructura.
- Incrementa la resistencia de la estructura sin aumentar mucho su rigidez.
- Excelente comportamiento a la fatiga al ser sometido a cargas cíclicas.
- Resistencia ante factores ambientales agresivos, ataques químicos y corrosión, permitiendo de esta manera mantener un factor de seguridad sin afectar su comportamiento.
- No son eléctricamente conductores y tienen una conductividad térmica 250 veces más baja que el aluminio y 60 veces más baja que el acero.
- Su colocación se lo realiza a través de procesos rápidos que no requieren el uso de equipos especiales y grandes grupos de mano de obra especializada.
- Gracias a su bajo espesor no se visualizan en los elementos reforzados, por lo que a estos refuerzos se los puede perder con un acabado final como un recubrimiento de pintura o mortero.
- Son de fácil manejo, transporte e instalación debido a su bajo peso y flexibilidad.
- Debido a sus excelentes propiedades estos materiales requieren un nulo o muy pequeño mantenimiento.
- No tienen restringida su longitud, es decir permite cortar donde se considere más conveniente directamente en la obra, eliminando de esta manera los empalmes los cuales eran necesarios al emplear láminas de acero.

Desventajas del sistema FRP

A pesar de las ventajas antes mencionadas, el sistema FRP también posee desventajas importantes, las cuales están asociadas a las resinas orgánicas utilizadas como matriz para unir e impregnar las fibras y adherir el refuerzo a la estructura. Las desventajas principales asociadas son las siguientes: (Rodríguez, 2016).

 Costo elevado del material, esto debido a que su proceso de fabricación es largo y complicado (estabilización, carbonización, grafitización y tratamiento de superficie)

- Baja resistencia transversal, ya que está hecha por fibras unidireccionales que se rompen al aplicar esfuerzos transversales.
- Mayor cuidado en la preparación de la superficie de contacto, puesto que la incorrecta colocación puede conllevar a fallas estructurales por concentración de esfuerzos o por delaminación de las platinas.
- Debido a que el refuerzo FRP se adhiere a la superficie del concreto, existe una transferencia de esfuerzos del concreto hacia el refuerzo CFRP. La superficie debe tener suficiente resistencia a tensión directa y a corte para que la transferencia de esfuerzos sea de forma adecuada (mínimo 1.4 MPa).
- No es recomendable su aplicación en elementos que requieran mayor ductilidad, ya que la fibra tiene una deformación a rotura muy baja.
- Mal comportamiento de las resinas epóxicas ante temperaturas por encima del punto de transición del vidrio.
- Riesgo para el trabajador, debido al contenido de sustancias nocivas presente en las resinas.
- Imposibilidad de aplicar el sistema FRP en superficies húmedas o a bajas temperaturas.
- Baja permeabilidad al vapor de agua (riesgo de deslaminación).
- Incompatibilidad de la resina con las propiedades del hormigón.
- Dificultad para identificar hormigón dañado bajo el FRP, debido a que la resina no refleja el daño en el hormigón.

1.2.7.1.1. MODOS DE FALLA DE FRP REFORZADO EN VIGAS. (Monteleone, 2009).

Durante las dos últimas décadas, una gran cantidad de estudios experimentales se han centrado en vigas reforzadas con FRP. La razón principal para la introducción de estos materiales compuestos se debe a la necesidad de la ingeniería estructural de sustituir las placas de acero pesado y corrosivo utilizado tradicionalmente para el fortalecimiento de flexión de vigas.

Por lo tanto, una cantidad significativa de investigación se ha llevado a cabo en un esfuerzo por obtener una mejor comprensión del comportamiento a la flexión de vigas externamente reforzadas. Diferentes modos de falla en vigas reforzadas con FRP se han reportado y que se resumen de la siguiente manera:

Rotura del FRP.- Ruptura del FRP tal como se muestra en la figura 16.

Figura 16. Rotura FRP. FUENTE -A. Monteleone, 2009

Aplastamiento del Hormigón.- Aplastamiento del hormigón a compresión antes o después de sin ningún dañado al laminado FRP.

Figura 17: Aplastamiento del Hormigon. FUENTE- A. Monteleone, 2009

Falla a Corte del Hormigón.- La placa unida al soporte de hormigón no se extiende al apoyo de la viga. Esto puede conducir a la formación de una grieta casi vertical que pueda iniciar en la placa de extremo y propagar una grieta de cizallamiento inclinado.

Figura 18: Falla a Corte del Hormigon. FUENTE-University of Waterloo-Agostino Monteleone

Desprendimiento del Hormigón.- Un modo de fallo común que generalmente resulta de la formación de una grieta en o cerca del extremo de la placa, debido al alto esfuerzo cortante y las concentraciones de esfuerzos normales causados por la terminación abrupta de la placa de FRP. Una vez que se produce una grieta en el hormigón cerca de la terminación de la placa, la grieta se propagará al nivel del refuerzo a la tracción y se extienden horizontalmente a lo largo de la parte inferior del acero de refuerzo a tensión. Con el aumento de la carga externa, la grieta horizontal puede propagarse hasta hacer que el recubrimiento de hormigón a 'despegue' con la placa de FRP.

Figura 19. Desprendimiento del Hormigón. FUENTE- A. Monteleone, 2009

Interfacial Debonding.- Es el resultado de alto esfuerzo cortante y esfuerzos normales cerca de la placa de extremo. Este modo de falla implica el fracaso en la interfase fibraadhesivo y por lo general tiene una capa muy delgada de hormigón unido a la fibra después de su falla.

Figura: 20. Interfacial Debonding. FUENTE- A. Monteleone, 2009

Grieta inducida por pérdida de adherencia.- Se debe a la propagación de grietas en el paralelo a la placa, adyacente a la interfaz entre el adhesivo. Se cree que es el resultado de la alta cizalladura interfacial y tensiones normales que se concentran en una grieta a lo largo de la viga.

Figura 21. Grieta inducida por perdida de adherencia. FUENTE- A. Monteleone, 2009

En general, los diferentes modos de falla pueden ser considerados como una disminución importante de las características mecánicas que se logra entre el hormigón y el FRP, esto evita que el refuerzo pueda alcanzar su capacidad máxima a la flexión debido a la pérdida de adherencia. Por lo tanto, estos fallos locales deben ser considerados en el diseño para asegurar la integridad estructural.

1.2.7.2.SISTEMA FRCM

Para el refuerzo y rehabilitación de estructuras se han estudiado distintas tecnologías y tipos de refuerzo, entre ellos el uso de sistemas de refuerzo mediante materiales poliméricos reforzados con fibra (Fiber Reinforced Polymer, FRP). Estas fibras corresponden típicamente a fibra de vidrio, fibra de carbono o fibra de basalto. Los

polímeros, por su parte, son usualmente resinas epóxicas, viniléster, resinas de poliéster, etc. La solución de refuerzo mediante FRP, para aumentar la resistencia y disminuir las deformaciones de elementos de hormigón armado es actualmente, una práctica bastante aceptada, fácil y rápida aplicación y mínima invasión e intervención en las estructuras existentes. (M. Martínez, 2016).

Sin embargo, los FRP, presentan unos importantes inconvenientes tales como: temperaturas de aplicación mayores a 10°C y no mayores a 30°C, en el caso de los que utilizan resina epóxica, debido a que el endurecimiento de estas resinas está altamente influenciado por la temperatura ambiental. Por otro lado, el uso de resinas orgánicas en general, como matrices, posee una gran desventaja en eventos de incendio. En efecto, estos materiales presentan un mal comportamiento al fuego al ser combustibles, y generar humos tóxicos dañando la salud de las personas y los sistemas biológicos, y disminuyen considerablemente su capacidad bajo altas temperaturas. (M. Martínez, 2016).

Así, para resolver estos inconvenientes, recientemente se han incorporado materiales compuestos en que la resina epóxica es reemplazada por materiales inorgánicos estables (típicamente mortero de cemento) como matriz aglomerante adhiriendo las fibras al hormigón o a la albañilería. Ésta solución se conoce como refuerzo con fibras con matriz cementícea (Fiber Reinforced Cementitious Matriz, FRCM). Los materiales aglomerantes, en la forma de hormigones o morteros, son atractivos para su uso como materiales de construcción, dado su bajo costo y resistencia a la compresión para su uso estructural. La adición de fibras como refuerzo de hormigones, morteros y pasta de cemento pueden incrementar muchas de las propiedades de estos, destacando entre ellas, la resistencia a la tensión, resistencia a la flexión, tenacidad, fatiga, impacto, permeabilidad y resistencia a la abrasión. (M. Martínez, 2016).

En la actualidad, la industria está aplicando una nueva clase de sistema de refuerzo que utiliza distinto tipo fibras pero embebidas en matrices cementíceas denominados FRCM .En comparación con FRP, FRCM ofrece una mayor compatibilidad con los elementos estructurales de hormigón y albañilería, y un comportamiento superior a altas temperaturas, condiciones de incendio y radiación ultravioleta. (M. Martínez, 2016).

Los compuestos de FRCM han sido denominados de distinta forma. El término general para las aplicaciones como revestimiento usando textiles tejidos y hormigón o mortero es Hormigón Reforzado con Textiles. Otros términos en la literatura incluyen Mortero Reforzado con Textiles (TRM), Compuestos de Base Mineral (MBC), Cemento Reforzado con Fibra (FRC). El material FRCM no estaba presente en los códigos de diseño hasta la última edición del ACI, sin embargo el International Code Council Evaluation Service (ICC-ES) publicó "Aceptance Criteria for Mansonry and Concrete Strengthening Using Fiber Reinforced Cementitious Matrix (FRCM) Composite Systems (AC434)" (ICC-Evaluation Service, 2011). Este documento entrega una guía de caracterización, recomendaciones y diseño de los sistemas FRCM y establece los requerimientos para el reconocimiento de éstos. Al igual que otros documentos del ICC-ES, éste código fue desarrollado por un equipo técnico integrado por profesionales de la industria, académicos, además de las instituciones reguladoras de las construcciones, tanto en Europa como en los Estados Unidos. (M. Martínez, 2016).

1.2.7.2.1. Caracterización de los sistemas de refuerzo estructural FRCM

Los sistemas de refuerzo FRCM poseen dos componentes primarios: la matriz cementícea y una o más mallas de refuerzo conformadas por haces de fibras. La matriz corresponde típicamente a un mortero fino compuesto por cemento portland puzolánico con una baja dosis de polímeros orgánicos secos (menos del 5% en relación al peso de cemento) una arena fina de granulometría continua y con una adición de microfibras para asegurar un desempeño tixotrópico en estado fresco y controlar la microfisuración asociada a la retracción del mortero. La incorporación de polímeros orgánicos resulta necesaria para obtener propiedades reológicas, tiempo de fraguado y propiedades mecánicas compatibles. Por otro lado, la efectividad mecánica del sistema FRCM está altamente influenciada por la capacidad de la matriz cementícea para saturar y embeber los haces de fibra de las mallas, la adherencia entre la matriz y la fibra, y la adherencia entre la matriz y el hormigón. (P. Sandoval, 2014). Así, los requerimientos para la matriz son:

- Propiedades mecánicas suficientes para la transferencia de carga.
- Consistencia adecuada, buena penetración en las fibras y buenas características para embeber las fibras.
- Compatibilidad química y térmica tanto con la malla como con el sustrato y poseer resistencia térmica y al fuego.
- Trabajabilidad de obra (aplicabilidad en grandes superficies, un período de aplicación y tixotropía compatibles con el tipo de aplicación, manual o mecánica).

- Amigable con el medio ambiente (consumo energético, emisión de CO2, entre otros).
- El refuerzo corresponde a haces de fibra conformando una malla reticulada, la cual queda embebida en la matriz cementícea. Tiene como características ser un material liviano (aproximadamente 160 [g/m²]), poseer una alta resistencia específica, una baja densidad (1.78 [g/cm³]) y alto módulo de elasticidad (>240 [GPa])

Ventajas del sistema FRCM

- Compatibilidad con las propiedades químicas, físicas y mecánicas del hormigón armado.
- Fácil instalación.
- Matriz cementícea que permita el transporte del aire y de la humedad a través del refuerzo.
- Buen comportamiento ante elevadas temperaturas y una resistencia aceptable al fuego.
- Mantener las condiciones arquitectónicas originales en caso de requerir el retiro del refuerzo.

No obstante el uso de malla de fibras, la unión entre la malla y la matriz es el punto débil del sistema de refuerzo, por lo que la efectividad mecánica del FRCM está altamente influenciada por la capacidad de la matriz de impregnar los haces de fibras que conforman la malla, la efectividad de la unión entre la matriz y las fibras, y entre la matriz y la superficie de hormigón, que está influenciado por la fisuración de la matriz en base a cemento. (P. Sandobal, 2014).

1.2.8. CONCRETO REFORZADO CON FIBRAS NATURALES

Existe un grupo de fibras naturales o vegetales que han sido motivo de diversos estudios para su posible aplicación en este propósito. Materiales reforzadas con fibras naturales se pueden obtener a un bajo costo usando la mano de obra disponible en la localidad y las técnicas adecuadas para su obtención.

A finales de los años 60', se llevó a cabo en varios países una evaluación sistemática de las propiedades ingenieriles de las fibras naturales y de los compuestos formados por estas fibras en combinación con el cemento. Los resultados de las investigaciones indicaron que algunas fibras naturales pueden ser usadas con éxito para fabricar materiales de construcción. .(Quintero y Gonzales,2006)

La capacidad de refuerzo de una fibra depende del grado en que los esfuerzos pueden transferirse desde la matriz, grado que a su vez está regido por las características intrínsecas de la fibra como; resistencia a la tensión mayor que la resistencia de la matriz; capacidad de resistir deformaciones muy superiores a la deformación en que la matriz se agrieta; módulo de elasticidad alto para aumentar el esfuerzo que soporten en un elemento bajo carga, siempre y cuando las fibras y la matriz se conserven totalmente adheridas; adherencia adecuada con la pasta de cemento; relación longitud/diámetro adecuada para que conserve su capacidad de absorción de esfuerzos. .(Quintero y Gonzales,2006).

Los refuerzos de fibra mejoran de varias maneras la tenacidad de la matriz, ya que una grieta que se mueve a través de la matriz encuentra una fibra; si la unión entre la matriz y la fibra no es buena, la grieta se ve obligada a propagarse alrededor de la fibra, a fin de continuar con el proceso de fractura. Además, una mala unión ocasiona que la fibra empiece a separarse de la matriz. Finalmente al iniciarse la grieta en la matriz, fibras aun no rotas pueden formar un puente sobre la grieta, lo cual proporciona un esfuerzo que evita que la grieta se abra.(Quintero y Gonzales,2006).

De acuerdo con Delvasto, los materiales cementicios reforzados con fibras vegetales pueden presentar los siguientes problemas: alta alcalinidad de la pasta (pH 12-13), que deteriora con el tiempo las fibras naturales, celulósicas por lixiviación de los componentes ligantes de las celdas de su microestructura, mineralización en el interior de las fibras por precipitación de los productos de hidratación del cemento; deterioro de la fibra por aumento de la densificación de la interfase, y degradación de las propias cadenas de celulosa con el tiempo por ataque alcalino.

1.2.9. APLICACIÓN DEL SISTEMA FRCM

A continuación, se presentan distintos ejemplos de casos reales donde se ha optado por la aplicación del sistema de refuerzo FRCM en distintas partes del mundo. Se incluyen reparaciones en distintos tipos de obras, como arcos de puentes, pilares, pedestales, entre otros.

1.2.9.1.Refuerzo de un arco de puente de ferrocarril (Berardi, 2011).

El refuerzo estructural fue precedido de una investigación previa para caracterizar la geometría del puente y las propiedades mecánicas de los materiales. Estudios previos habían concluido que el puente sufría riesgo de colapso, por lo que el diseño estuvo

dirigido a restituir la capacidad y asegurar la estabilidad de la estructura para cargas de servicio.

Así, el diseño consiste en el refuerzo de cada una de las seis bóvedas de soporte, mediante la aplicación de dos mallas de fibra (PBO) con el sistema FRCM por la cara inferior de los arcos (Figura 22). Este refuerzo evita la formación de grietas y modifica la respuesta última de la estructura sin modificar el comportamiento de servicio. Se opta por este tipo de refuerzo debido a la necesidad de no interrumpir el uso del puente y de intervenirlo en forma no invasiva.

Figura 22. Refuerzo del Puente Ferrovial. FUENTE: Universidad de Chile-Pablo Sandoval

1.2.9.2.Refuerzo de los pilares de un muelle costero de hormigón armado (Nanni, 2012)

Esta aplicación del sistema FRCM corresponde al refuerzo de los pilares de un muelle de hormigón armado en la ciudad de Novosibirsk, Rusia.

En el año 1958, se llevó a cabo la reconstrucción del muelle, y desde entonces, han aparecido una gran cantidad e importantes grietas en los pilares que podrían ser atribuidos a fenómenos expansivos por reacciones químicas al interior del elemento, que estarían estabilizadas (Figura 23).

Figura 23. Pilar con Fallas Estructurales. FUENTE: Universidad de Chile-Pablo Sandoval

Posteriormente, en el año 1991, estas grietas fueron inyectadas con epóxicos, pero una serie de inspecciones y estudios realizados en 1997, indicaron que habían reaparecido, y con espesores entre los 2 [mm] y 5 [mm]. Así, se optó por llevar a cabo la reparación con el sistema FRCM.

El proceso demostró ser rápido y fácil de aplicar y la intervención de la estructura resultó mínima. Con la última capa de mortero impermeabilizante se busca impedir el paso de agentes agresivos (cloruros presentes en ambientes salinos) a las armaduras de acero.

Figura 24. a) Reparación de grietas previa aplicación del sistema FRCM, b). Aplicación de la capa de terminación con mortero impermeabilizante. *FUENTE:* Universidad de Chile-Pablo Sandoval.

1.2.9.3.Reparación de los apoyos de un puente de línea de metro (Nanni, 2012).

Esta reparación corresponde al refuerzo de los apoyos de hormigón de un puente de metro en el norte de la ciudad de Nueva York, Estados Unidos. Los pedestales tienen una forma de pirámide truncada y su tamaño varía dependiendo de la estratigrafía y tipo de suelo existe.

Figura 25.a) Puente a reparar, b) Agrietamiento del pedestal, c) Reparación de fisuras, d) Aplicación del sistema FRCM. FUENTE: Universidad de Chile-Pablo Sandoval

Con el objetivo de restaurar la integridad y para asegurar la durabilidad de la estructura, se ha propuesto el confinamiento de los pedestales de hormigón con la solución FRCM. Se buscó esta solución por la rapidez, la fácil aplicación de la matriz cementícea.

1.2.9.4. Refuerzo de una chimenea de albañilería (Nanni, 2012).

Este proyecto corresponde al refuerzo de una chimenea de albañilería simple en un antiguo aserradero en la municipalidad de Gerardmer, Francia. Si bien la fábrica está fuera de funcionamiento, la chimenea es conservada como símbolo de la región industrial y es usada como soporte para antenas telefónicas y su cableado.

La chimenea tiene una altura de 38 [m], con un diámetro que varía entre los 3,6 [m] y los 1,7 [m] desde la base a su extremo superior (Figura 26).

Figura 26. a) Chimenea a reparar, b) Aplicación del sistema FRCM FUENTE: Universidad de Chile-Pablo Sandoval

Para efectos de diseño, la chimenea es considerada como una viga cantiléver donde el viento corresponde a la principal carga de diseño. Este análisis indica que es necesaria una capa del sistema FRCM.

1.2.10. ESTUDIOS EXPERIMENTALES EN HORMIGON ARMADO

Durante los últimos años se han realizado numerosos ensayos experimentales para estudiar el comportamiento del sistema de refuerzo FRCM en elementos estructurales de hormigón armado y albañilería, debido a las favorables propiedades mencionadas anteriormente. A continuación se presentan ensayos realizados sobre vigas y columnas de hormigón armado, y sus conclusiones.

1.2.10.1. Ensayos de Vigas Sometidas a Esfuerzo de Flexión

(D'Ambrisi & Focacci, 2011) realizaron tres tipos de ensayos a flexión en vigas de hormigón armado reforzadas mediante FRCM, para estudiar el comportamiento de las mallas de fibras de carbono C-FRCM y PBO-FRCM, con diferentes disposiciones, número de capas de refuerzo y calidades de matrices. Además, utilizaron el sistema de refuerzo FRP, con fibra de carbono unidireccional en forma de platinas (C-FRP), a modo de comparación. En los casos de las mallas (sistema FRCM), las fibras estaban embebidas en matriz cementícea, mientras en el caso de la lámina de fibras continuas de carbono se utiliza resina epóxica como adhesivo para fijar el refuerzo al elemento estructural (sistema FRP).

Las vigas reforzadas presentaron los siguientes cuatro modos de falla (ver Figura 28):

a) Desprendimiento frágil del sistema de refuerzo con fractura en el hormigón.

b) Deslizamiento de las fibras dentro de la matriz con deformación del refuerzo.

c) Desprendimiento frágil del material de refuerzo en la interfaz matriz/hormigón, en el plano de la unión.

d) Deslaminación de la capa de la malla, con fractura en la interfaz con la matriz, precedida por un deslizamiento relevante entre la fibra y la matriz.

Los modos de falla y su correspondiente curva carga-deformación, se presentan en la Figura 28 y Figura 29.

Figura 27. Disposición de fibras, FUENTE-D' Ambrisi & Focacci (2011)

Figura 28. Modos de falla a flexión. FUENTE- D' Ambrisi & Focacci (2011)

Los modos de fallas a), c) y d) corresponden a fallas frágiles, no deseables, mientras que el b) es una falla más dúctil. La falla a) se presentó en los especímenes CFRP y la c) en los C-FRCM, sin refuerzo al corte en las caras laterales (U-wrap) en los extremos. Por otro lado el modo de falla b) fue característico de los especímenes C-FRCM y se manifiesta por una disminución de la carga en la curva carga-deformación, especialmente en los especímenes C y D (dos capas de fibras). Esto se puede explicar por la pérdida gradual de la unión entre las fibras y la matriz hasta alcanzar la falla por deslizamiento de la fibra con respecto a la matriz.

Figura 29. Carga vs Deformación esquemática de modos de falla. FUENTE-D'Ambrisi & Focacci.

La mayoría de las vigas ensayadas reforzadas (en los tres tipos de ensayos) con sistema FRCM presentaron pérdida de capacidad debido, inicialmente, al deslizamiento de las fibras con respecto a la matriz, causada por fisuras por flexión en el hormigón y, por lo tanto, en la matriz, debido a la concentración de esfuerzos en estas zonas. En el caso de una matriz con menor resistencia mecánica, a medida que el agrietamiento aumentó se pudo observar deslaminación de las fibras del refuerzo en la región de momento máximo. Se concluyó que la pérdida de capacidad del elemento reforzado mediante FRCM ocurre primordialmente debido al deslizamiento entre las fibras y la matriz.

Finalmente, se concluyó que la pérdida de capacidad del refuerzo está determinada, en la mayoría de los casos, por el deslizamiento entre las fibras y la matriz, por lo que el óptimo diseño de la matriz es vital en el mejoramiento de las propiedades de adherencia entre la malla y el mortero del refuerzo, y por lo tanto en el desempeño del refuerzo, favoreciendo un modo de falla dúctil y un aumento de la capacidad resistente del elemento.

(Babaeidarabad, 2014) realizó ensayos a flexión sobre doce vigas de hormigón armado, para estudiar el comportamiento del FRCM, utilizado como refuerzo adherido en la cara a tracción. Se utilizaron una o cuatro capas de mallas fibra de PBO, y compararon resultados con hormigón de baja y alta resistencia. Las propiedades a tracción del refuerzo fueron obtenidas a partir de las disposiciones de la norma AC 434.

A partir de los resultados obtenidos se observó una menor efectividad en el refuerzo de las vigas con hormigón de mayor resistencia, lo que indica que la resistencia a compresión del hormigón no determina un aumento de capacidad del elemento reforzado, no así la resistencia a tracción, la que en este caso era prácticamente igual para ambos hormigones. Por otro lado, las vigas reforzadas con una o cuatro capas presentaron modos de falla diferentes, las primeras fallaron debido al deslizamiento entre la matriz y las fibras en la zona del máximo momento, mientras que las segundas presentaron deslaminación de la matriz del sustrato, que dio inicio a una grieta amplia en la zona central, en un modo de falla más frágil. Adicionalmente se concluyó que el refuerzo aumenta considerablemente la capacidad a flexión y la rigidez, pero que disminuye la pseudo-ductilidad.

Figura 30. Curva Carga-Deformación Hormigon Baja Resistencia, a. Sin Refuerzo, b. Una capa de refuerzo. c. Cuatro capas de refuerzo. FUENTE Babaeidarabad et al. (2014).

La carga máxima soportada, con su respectivo modo de falla de presentan en la Tabla 6

Espécimen		N° Capas Fibras	Carga Máx. [KN]	Modo de Falla FRCM
Hormigón	CL	-	51.4	-
Baja	L1	1	67.7	Deslizamiento
Resistencia	L4	4	99.0	Deslaminación
Hormigón	СН	-	55.8	-
Alta	H1	1	63.0	Deslizamiento
Resistencia	H4	4	96.8	Deslaminación

Tabla 6. Carga máxima soportada. FUENTE-Babaeidarabad et al. (2014).

(Loreto, 2014) realizó ensayos a flexión sobre vigas de hormigón armado tipo losa, reforzadas mediante el sistema FRCM, con fibra de PBO. Las propiedades mecánicas del refuerzo fueron obtenidas a partir de ensayos a tracción, según lo indica la AC 434. Se estudió el efecto del refuerzo con una o cuatro capas, en vigas de hormigón de baja y alta resistencia.

En la Tabla 7 se muestran los resultados para la carga máxima. Se concluyó que el refuerzo es efectivo para ambos tipo de hormigón, se alcanzó un aumento de capacidad

de aproximadamente 138% y 208% con una y cuatro capas de refuerzo respectivamente, pero que se traduce en una pérdida de ductilidad importante.

Espécimen		N° Capas Fibras	Carga Máx. [KN]
Hormigón	CL	-	31.83
Baja	L1	1	45.01
Resistencia	L4	4	65.30
Hormigón	СН	-	31.01
Alta	H1	1	42.00
Resistencia	H4	4	65.76

Tabla 7: Carga máxima soportada. FUENTE-Loreto (2014)

CAPÍTULO II

METODOLOGÍA 2.1.TIPO DE ESTUDIO

Los niveles de investigación en este proyecto serán: exploratorio y descriptivo. Será exploratorio considerando que el tema de mejorar la adherencia entre el concreto armado y concreto con el sistema FRCM utilizando tejidos de fibras de cabuya manejando los agregados de nuestro medio ha sido poco analizado, pero que con el sustento técnico de los ensayos que se realizaran se logrará determinar la influencia que tendrá sobre las propiedades mecánicas del concreto además de proporcionarnos información del mejor método de adherencia en el sistema FRCM. Será descriptivo porque a más de tener conocimiento acerca de las propiedades mecánicas de los materiales utilizados, se contará con una amplia información acerca del comportamiento que tendrá el concreto al ser reforzado con el sistema FRCM utilizando el tejido de fibras de cabuya, concreto especial que podría utilizarse con mayor confiabilidad y seguridad en las futuras obras civiles.

2.2.POBLACIÓN MUESTRA

2.1.1. POBLACIÒN.-

Propiedades mecánicas de los materiales compuestos usados para reforzamiento estructural.

2.1.2. MUESTRA.-

Adherencia mecánica entre un material compuesto FRCM a base de fibras naturales y un sustrato de concreto armado. Para estudiar esta muestra se han llevado a cabo varios ensayos en diversos tipo de probetas tal como se muestra a continuación:

PROPIEDAD	MUESTRA	Nº ENSAYOS		
CARACTERIZACIÓN DEL TEJIDO Y FIBRA	A DE CABUYA			
Densidad Específica (Tejido en rollos y sacos)	Hilo	20		
Masa por unidad de Área (Tejido en rollos y sacos)	Hilo	20		
Densidad Lineal-Tex (Tejido en rollos y sacos)	Hilo	20		
Porcentaje de Absorción (Tejido en rollos y sacos)	Hilo	20		
Ensayo de tracción en Tejidos(Tejido en rollos y sacos)	Tejido	30		
CARACTERIZACION DEL MORTERO (MATRIZ CEMENTICIA)				
Granulometría del Ag. Fino	Arena Tamizada	2		

Tabla 8: Número, tipo y muestra de los ensayos realizados.

Densidad y Porcentaje de Absorción del Árido FinoArena Tamizada3Flujo en morterosMortero Fresco2Tiempo de FraguadoMortero Fresco2Contenido de aireMortero Fresco5Densidad en estado FrescoMortero Fresco3Densidad y Porcentaje de Absorción en estado endurecido (Principio de Arquímedes)Mortero Endurecido8Absorción por capilaridad (7, 14, 21, 28 días)Mortero Endurecido12Resistencia a Flexión (7 días)Viguetas3Resistencia a Flexión (14 días)Viguetas2Resistencia a Flexión (28 días)Viguetas3Resistencia a Compresión (14 días)cubos4Resistencia a Compresión (21 días)cubos4Resistencia a Compresión (28 días)cubos4						
Flujo en morterosMortero Fresco2Tiempo de FraguadoMortero Fresco2Contenido de aireMortero Fresco5Densidad en estado FrescoMortero Fresco3Densidad y Porcentaje de Absorción en estado endurecido (Principio de Arquímedes)Mortero Endurecido8Absorción por capilaridad (7, 14, 21, 28 días)Mortero Endurecido12Resistencia a Flexión (7 días)Viguetas3Resistencia a Flexión (14 días)Viguetas2Resistencia a Flexión (21 días)Viguetas2Resistencia a Flexión (7 días)Viguetas3Resistencia a Compresión (7 días)Cubos4Resistencia a Compresión (21 días)Cubos4Resistencia a Compresión (21 días)Cubos4Resistencia a Compresión (21 días)Cubos4Resistencia a Compresión (21 días)Cubos4						
Tiempo de FraguadoMortero Fresco2Contenido de aireMortero Fresco5Densidad en estado FrescoMortero Fresco3Densidad y Porcentaje de Absorción en estado endurecido (Principio de Arquímedes)Mortero Endurecido8Absorción por capilaridad (7, 14, 21, 28 días)Mortero Endurecido12Resistencia a Flexión (7 días)Viguetas3Resistencia a Flexión (14 días)Viguetas2Resistencia a Flexión (21 días)Viguetas2Resistencia a Compresión (7 días)cubos4Resistencia a Compresión (14 días)cubos4Resistencia a Compresión (21 días)cubos4Resistencia a Compresión (28 días)cubos4						
Contenido de aireMortero Fresco5Densidad en estado FrescoMortero Fresco3Densidad y Porcentaje de Absorción en estado endurecido (Principio de Arquímedes)Mortero Endurecido8Absorción por capilaridad (7, 14, 21, 28 días)Mortero Endurecido12Resistencia a Flexión (7 días)Viguetas3Resistencia a Flexión (14 días)Viguetas2Resistencia a Flexión (21 días)Viguetas2Resistencia a Compresión (7 días)Cubos4Resistencia a Compresión (14 días)cubos4Resistencia a Compresión (21 días)cubos4Resistencia a Compresión (28 días)cubos4						
Densidad en estado FrescoMortero Fresco3Densidad y Porcentaje de Absorción en estado endurecido (Principio de Arquímedes)Mortero Endurecido8Absorción por capilaridad (7, 14, 21, 28 días)Mortero Endurecido12Resistencia a Flexión (7 días)Viguetas3Resistencia a Flexión (14 días)Viguetas2Resistencia a Flexión (21 días)Viguetas2Resistencia a Flexión (28 días)Viguetas3Resistencia a Compresión (7 días)cubos4Resistencia a Compresión (14 días)cubos4Resistencia a Compresión (21 días)cubos4Resistencia a Compresión (28 días)cubos4						
Densidad y Porcentaje de Absorción en estado endurecido (Principio de Arquímedes)Mortero Endurecido8Absorción por capilaridad (7, 14, 21, 28 días)Mortero Endurecido12Resistencia a Flexión (7 días)Viguetas3Resistencia a Flexión (14 días)Viguetas2Resistencia a Flexión (21 días)Viguetas2Resistencia a Flexión (28 días)Viguetas3Resistencia a Compresión (7 días)Cubos4Resistencia a Compresión (14 días)cubos4Resistencia a Compresión (21 días)Cubos4Resistencia a Compresión (14 días)cubos4Resistencia a Compresión (28 días)cubos4Resistencia a Compresión (28 días)cubos4Resistencia a Compresión (28 días)cubos4						
Absorción por capilaridad (7, 14, 21, 28 días)Mortero Endurecido12Resistencia a Flexión (7 días)Viguetas3Resistencia a Flexión (14 días)Viguetas2Resistencia a Flexión (21 días)Viguetas2Resistencia a Flexión (28 días)Viguetas3Resistencia a Compresión (7 días)Cubos4Resistencia a Compresión (14 días)cubos4Resistencia a Compresión (21 días)cubos4Resistencia a Compresión (14 días)cubos4Resistencia a Compresión (28 días)cubos4Resistencia a Compresión (28 días)cubos4Resistencia a Compresión (28 días)cubos4						
Resistencia a Flexión (7 días)Viguetas3Resistencia a Flexión (14 días)Viguetas2Resistencia a Flexión (21 días)Viguetas2Resistencia a Flexión (28 días)Viguetas3Resistencia a Compresión (7 días)cubos4Resistencia a Compresión (14 días)cubos4Resistencia a Compresión (21 días)cubos4Resistencia a Compresión (21 días)cubos4Resistencia a Compresión (28 días)cubos4Resistencia a Compresión (28 días)cubos4						
Resistencia a Flexión (14 días)Viguetas2Resistencia a Flexión (21 días)Viguetas2Resistencia a Flexión (28 días)Viguetas3Resistencia a Compresión (7 días)cubos4Resistencia a Compresión (14 días)cubos4Resistencia a Compresión (21 días)cubos4Resistencia a Compresión (21 días)cubos4Resistencia a Compresión (28 días)cubos4Resistencia a Compresión (28 días)cubos4						
Resistencia a Flexión (21 días)Viguetas2Resistencia a Flexión (28 días)Viguetas3Resistencia a Compresión (7 días)cubos4Resistencia a Compresión (14 días)cubos4Resistencia a Compresión (21 días)cubos4Resistencia a Compresión (21 días)cubos4Resistencia a Compresión (28 días)cubos4						
Resistencia a Flexión (28 días)Viguetas3Resistencia a Compresión (7 días)cubos4Resistencia a Compresión (14 días)cubos4Resistencia a Compresión (21 días)cubos4Resistencia a Compresión (28 días)cubos4						
Resistencia a Compresión (7 días)cubosResistencia a Compresión (14 días)cubosResistencia a Compresión (21 días)cubosResistencia a Compresión (28 días)cubos						
Resistencia a Compresión (14 días)cubos4Resistencia a Compresión (21 días)cubos4Resistencia a Compresión (28 días)cubos4						
Resistencia a Compresión (21 días)cubos4Resistencia a Compresión (28 días)cubos4						
Resistencia a Compresión (28 días)Cubos4						
CARACTERIZACION DEL MATERIAL COMPLIESTO						
Densidad y Porcentaie de Absorción en estado (Principio de						
Arguímedes) Material Compuesto 4						
Ensavo de Tracción 17						
Ensavo de Flexión 17						
CARACTERIZACION DEL HORMIGÓN						
Granulometría del Ag Fino Arena 2						
Granulometría del Ag Grueso Rinio 2						
Granulometría del Ag Grueso Tamizado Rinio Tamizado 2						
Masa Unitaria suelta y compactada Ag Fino Arena 3						
Masa Unitaria suelta y compactada Ag. Frieso Rinio Tamizado 3						
Densidad y Porcentaje de Absorción del Ag. Grueso Ripio Tamizado 3						
Contenido de aire						
Densidad en estado Fresco						
Densidad en estado i resco						
(Principio de Arquímedes) Hormigón 4						
Ø 4 mm 4						
Ensayo de Tracción en varillas corrugadas Ø 6 mm 4						
Ø 8 mm 4						
Ensayo de Compresión del Hormigón (Primer día de Fundición) Cilindros 21						
Ensayo de Compresión del Hormigón (Segundo día de Fundición) 16						
Ensayo De Determinación Del Asentamiento En Hormigones Hormigón 16						
Absorción por capilaridad Hormigón 4						
Ensavos de Adherencia						
Ensavo de Corte (hormigón +FRCM) cubos 16						
Ensavo de Pull Off losa 32						
Ensavos Definitivos Aplicando diferentes métodos de Adherencia						
Ensavo de Compresión excéntrica						
Superficie Rugoso + FRCM Columnas 4						
Superficie Liso + Primer + FRCM Columnas 4						
Superficie Liso + Primer + FRCM Columnas 4						
Superficie Liso + Primer + Anclaie+ FRCM Columnas 4						
Ensavo de Flexión						
Superficie Rugoso + FRCM Vigas 4						
Superficie Liso + Primer + FRCM Vigas 4						
Superficie Liso + Primer + FRCM Vigas 4						
Superficie Liso + Primer + Anclaje+ FRCM Vigas 4						

2.2. OPERACIONALIZACIÓN DE VARIABLES

2.2.1. VARIABLE INDEPENDIENTES PROCEDIMIENTO O TÉCNICA USADA PARA APLICAR LOS MATERIALES COMPUESTOS FRCM

Tabla 9: Operación de Variable Independiente

CONCEPTUALIZACIÓN	DIMENSIONES	INDICADORES	ITEMS	TÉCNICAS E INSTRUMENTOS
La adherencia mecánica entre un sistema FRCM y el material de sustrato es difícil de		Método de aplicación del sistema FRCM a elementos de Concreto armado	¿Cómo ejecutar de la mejor manera el sistema FRCM?	Técnica: Investigación Bibliográfica Normas INEN, ASTM.
cuantificar, ya que depende del tipo de fibras, el tamaño de la fibra, diseño de malla, composición de la matriz, las propiedades del sustrato, y la calidad de la preparación de la superficie.	COMPORTAMIENTO MECANICO DE LOS ELEMENTOS REFORZADOS	Cuál es el sistema de adherencia que brinda los mejores resultados	¿Cuál es el sistema de adherencia más óptimo entre el FRCM y vigas o columnas de concreto?	Instrumentos: Diseño de elementos de concreto armado para someterles a diferentes tipos de aplicaciones del sistema FRCM

2.2.2. VARIABLE DEPENDIENTES ADHERENCIA ENTRE EL MATERIAL COMPUESTO FRCM Y EL CONCRETO ARMADO

Tabla 10: Operación de Variable Dependiente

CONCEPTUALIZACION	DIMENSIONES	INDICADORES	ITEMS	TECNICAS E INSTRUMENTOS
El reforzamiento de elementos estructurales se basa en la recuperación de estructuras sub- estimadas en el uso inicial para el cual fueron diseñadas; deterioradas por factores externos no considerados o simplemente por el cumplimiento de su vida útil ocasionando el deterioro de las mismas, y afectando la economía de los usuarios	MATERIAL COMPUESTO FRCM CON TEJIDO DE FIBRAS DE CABUYA	Características del tejido de fibras de Cabuya Propiedades mecánicas de un sistema FRCM (material compuesto)	¿Cuáles son las característica s del tejido de fibras de Cabuya? ¿Modo de aplicación del sistema FRCM?	Técnica: Investigación Bibliográfica Normas INEN, ASTM
	RESISTENCIA- CONCRETO ARMADO	Correcta Adherencia entre el material compuesto FRCM y el concreto armado Correcta evaluación del elemento estructural	¿Cuál es el mejor método de adherencia del material compuesto FRCM con el concreto armado? ¿Qué indicadores se deben evaluar?	Instrumentos: Diseño Concreto Elaboración de probetas. Ensayos no destructivos

2.3. PROCEDIMIENTOS

Se presenta el siguiente ordenador gráfico, para explicar de mejor manera el procedimiento que se ha seguido en la presente investigación.

Figura 31: Esquema del procedimiento seguido en la Investigación.

Los sistemas de refuerzo FRCM se constituyen por dos elementos primarios: la matriz cementicia y uno o más tejidos o mallas de refuerzo conformadas por fibras. La matriz corresponde a un mortero fino compuesto por cemento portland puzolánico (Cemento Chimborazo) y una arena fina graduada (Arena de rio de la mina de Penipe); las mallas usados en esta investigación fueron obtenidos de los sacos y tejidos de cabuya que se comercializan en los mercados.

El comportamiento de la unión depende de la adherencia entre los componentes, y la respuesta se ve afectada por diversos parámetros relacionados con las características de los materiales, por tal motivo, para esta investigación se requiere conocer las propiedades, tanto, físicas como mecánicas de los materiales utilizados, para la elaboración de los modelos de concreto armado (vigas y columnas), como los relacionados al material compuesto FRCM (matriz cementicia y tejido de cabuya).

Se indican a continuación las actividades sistemáticamente desarrolladas para la caracterización de los materiales mediante ensayos de laboratorio en la Universidad Nacional de Chimborazo, detallando todos los procesos tanto para su ejecución como para su cálculo:

2.3.1. CARACTERIZACIÓN TEJIDO Y FIBRA DE CABUYÁ

La malla de refuerzo para el sistema FRCM de esta investigación, es el tejido de cabuya, para ser adherida a los modelos de concreto armado por medio de una matriz cementícea. Las principales ventajas y características que debe tener la malla de refuerzo son: bajo peso por unidad de área, baja densidad, alta resistencia mecánica, gran compatibilidad con la matriz cementícea y sus bajos espesores requeridos, lo que hace que sea una solución mínimamente invasiva, liviana y especial para rehabilitación estructural. Determinando sus propiedades, conociendo así su comportamiento y certificando su correcta aplicación, se realizaron los siguientes ensayos:

- Densidad Específica
- Masa por unidad de Área (ASTM D 3776)
- Densidad Lineal-Tex (ASTM D 1577)
- Porcentaje de Absorción
- Ensayo de tracción en Tejidos (ASTM D5034-ADAPTACIÓN)
Debido a que en el mercado existe variedad en la presentación de los tejidos de cabuya, se decidió realizar nuestros experimentos comparando los tejidos comercializados en rollos y los sacos de cabuya, distribuidos en el sector de la Plaza Dávalos en la ciudad de Riobamba, realizando todos los ensayos de caracterización, para posteriormente utilizar el que mejores propiedades nos brinde.

Figura 32: Tipos de Presentación de fibras de cabuya utilizados en la investigación

2.3.1.1.DENSIDAD ESPECÍFICA DE LA FIBRA DE CABUYA

Figura 33: Ensayo de Densidad de Fibras de Cabuya: (a) Muestras Sumergidas en Agua Destilada, (b) Vista de Equipo sumergido con Muestra de Fibras de cabuya, (c) Vista Lateral de equipo, (d) Equipo Completo de Ensayo, (e) Peso de Fibras.

El método de ensayo consiste en pesar una muestra pequeña de fibra, sumergida en agua destilada, la cual posee una densidad más baja que la fibra. Por el principio de Arquímedes la diferencia en peso (la fuerza de empuje), es igual al peso del líquido desplazado; es decir el producto del volumen del espécimen de la fibra y la densidad del líquido. El equipo de ensayo mostrado en la (Figura 33.d) se compone de: vaso de precipitación de 250 ml, balanza analítica, plataforma de la estructura colocada sobre el plato de la balanza, varilla o alambre de agitación y canasta.

PROCEDIMIENTO

Preparación del espécimen

- a) Preparamos la muestra con 20 fibras de cabuya de 10 cm de largo, 10 longitudinales y 10 transversales, registramos la masa seca de la muestra (Figura 33.e).
- b) Colocamos por 24 horas la muestra en recipientes con agua destilada (Figura 33.a).

Procedimiento del ensayo

- a) Registramos la masa de la estructura: la canastilla sumergida y la plataforma.
- b) Con la ayuda de los dedos sacamos el aire retenido en las fibras.
- c) Procedemos a colar la muestra en la canastilla y sumergirla en el vaso de precipitación con agua destilada, comprobar que la canastilla este sumergida totalmente y no toque los lados del vaso de precipitación (Figura 33.c).
- d) Agitar vigorosamente la muestra con ayuda del alambre de agitación para eliminar burbujas de aire.
- e) Registramos el valor de la masa de la plataforma, la canastilla y la muestra sumergida (Figura 33.b).

Se realizaron 10 muestras de ensayo tanto para el tejido de cabuya como para los sacos, mediante la aplicación de la siguiente fórmula se obtuvieron los valores de las densidades de las fibras (*Ver Anexo 10.1.1.*):

$$\delta = \frac{P_s}{(P_s - P_{sum})}$$
$$P_{sum} = P_e - P_{e+m}$$

Dónde:

 δ = Densidad de la fibra en g/cm^3

 P_s = Masa de las 20 fibras en estado seco en g

 P_e = Masa de la estructura en g

 P_{e+m} = Masa de la estrutura + muestra sumergida en g

 P_{sum} = Masa de la muestra sumergida en g

2.3.1.2.MASA POR UNIDAD DE ÁREA (ASTM D 3776)

Figura 34: Ensayo de Masa por unidad de área de la fibra de cabuya: (a) Corte de muestras para ensayo, (b)Muestra de saco, (c) Muestras secadas al horno, (d) Registro de la masa de las muestras secas.

La densidad superficial, o densidad por unidad de superficie, se refiere a la cantidad de masa que posee un material por unidad de área. El método de ensayo cubre la medición de la masa de tejido por unidad de área (peso) y es aplicable a la mayoría de los tejidos utilizando la opción C mencionado en la norma ASTM D 3776.

Procedimiento:

- a) Preparar diez muestras, que tengan un área de 100 cm² cada una, es decir, 10 cm de largo por 10 cm de ancho; cabe recalcar que todas la muestras deben tener el mismo número de fibras tanto longitudinales como transversales (Figura 34.c).
- b) Dejar secar las muestras en un horno a una temperatura de 110 °C durante 24 horas.
- c) Pesar cada muestra en una balanza con una precisión de 0.001 g, registrar su valor (Figura 34.d).

Se realizaron 10 muestras de ensayo tanto para el tejido de cabuya como para los sacos, mediante la aplicación de la siguiente fórmula (*Ver Anexo 10.1.2.*):

$$M_A = \frac{M_m \cdot 10^6}{A_M}$$

Dónde:

 M_m = Masa de la muestra en g.

 M_A = Masa por unidad de área g/m^2 .

 A_M = Área de la muestra en mm^2 .

2.3.1.3.DENSIDAD LINEAL –TEX (ASTM D 1577)

Figura 35: Densidad Lineal-Tex (a) Registro de la masa de muestra, (b y c) Corte y enrollado de la muestra.

La densidad lineal describe la masa de una determinada longitud nombrado como "Tex" que se define como la masa en gramos por cada 1.000 metros de fibra. El método de ensayo cubre la medición de la masa por unidad de longitud (densidad lineal) de fibras textiles y filamentos aplicando la opción B citado en la norma ASTM D 1577. La longitud de una sola fibra, se mide y la fibra se pesa. La densidad lineal de la fibra se calcula en unidades de denier dtex o tex.

Procedimiento.

- a) De cada unidad de muestreo, tomar diez muestras al azar, cada muestra con una longitud de 150 cm.
- b) Enrollar cada muestra, pesar y registrar su masa.

Se tomaron 10 muestras de ensayo tanto para el tejido de cabuya como para los sacos, utilizando para el cálculo la siguiente formula (*Ver Anexo 10.1.3.*):

$$Tex = \frac{M_{tm} * 1000}{L_M * 1000\ 000}$$

Dónde:

Tex = Densidad Lineal en g/1000 m

 M_{tm} = Masa de la muestra en mg

L_M = Longitud de la muestra en mm

2.3.1.4.PORCENTAJE DE ABSORCIÓN

Figura 36: Porcentaje de Absorción de la fibra de cabuya (a) Muestra de fibras en el horno, (b) Muestras sumergidas en agua destilada, (c) Registro del peso de la fibra saturada, (d) Balanza de precisión 0.0001 g.

El porcentaje de absorción determina la cantidad de agua absorbida de una muestra previamente seca.

Procedimiento

- a) Tomar varios haces de fibra de cabuya y colocarnos en un recipiente resistente al calor
- b) Dejar secar los haces de la fibra en un horno a una temperatura de 50 °C durante 24 horas, de manera que no se quemen las fibras.
- c) Pesar los haces de las fibras con una precisión de 0.0001 g.
- d) Posteriormente, sumergir los haces de las fibras en agua destilada, durante 24 horas, para ser pesados nuevamente en una balanza con una precisión de 0.0001 g, registrando así su punto de saturación, retirando previamente el agua adherida a las fibras mediante papel absorbente.

Se realizaron 10 muestras y el porcentaje de absorción se calculó implementando la siguiente formula (*Ver Anexo 10.1.4.*):

% Absorción =
$$\frac{(W-D)}{D} * 100$$

Dónde:

W= masa de las fibras de cabuya en estado sss en g.

D= masa de las fibras de cabuya seca en g.

2.3.1.5.ENSAYO DE TRACCIÓN EN TEJIDOS (ASTM D5034-ADAPTACIÓN)

SIN RESINA

Figura 37: Ensayo de Tracción en tejidos: (a) Muestras antes del ensayo, (b) Muestra fallada, (c) Maquina Marshall al momento del ensayo, (d) Placa metálica, (e) SikaDur 32-Primer, (f) Muestras después del ensayo.

CON RESINA

Figura 38: Ensayo de Tracción de tejido con Resina: (a) Muestras con resina, (b y c) Falla del tejido de cabuya, d) Fibras después del ensayo, (e) Muestra antes del ensayo, (f) Muestras con resina después del ensayo.

La caracterización mecánica se realiza con la finalidad de conocer exactamente el comportamiento del tejido de cabuya bajo cargas de tracción. La caracterización se la realizó al tejido normal y el tejido con resina para evaluar los cambios en su resistencia por la incorporación de la resina. La norma utilizada fue la ASTM D5034-10, que permite determinar la resistencia a la tracción del tejido mediante un proceso definitivo. Este ensayo se realizó en la Maquina Marshall con una precarga de 44.48 N y una velocidad de 0.176 in/min, se prepararon 20 muestras de 30 x 5 cm de tejido de cabuya: 10 sin resina y 10 con resina, además de 5 muestras de saco de cabuya con resina. Para su adaptación en la maquina se les coloco 2 pares de placas metálicas en los extremos de cada muestra, de 5*10 cm (Figura 37.d), las cuales fueron adheridas con SIKADUR 32- Primer (Figura 37.e).

A partir de los datos de carga y deformación del ensayo de tracción de cada una de las probetas, se calcularon las siguientes propiedades (*Ver Anexo 10.1.5.*):

I. Resistencia Máxima a la Tracción

La resistencia última a la tracción fue calculada de acuerdo a la siguiente ecuación:

$$\sigma_{max} = \frac{F_{max}}{A}$$

Dónde:

 σ_{max} = Esfuerzo ultimo a la tracción en MPa

 F_{max} = Carga Máxima antes de la ruptura en N

A= El área de los hilos longitudinales de la probeta en mm^2 , el cual se calcula con la siguiente formula:

$$A = \frac{Tex * N \acute{u}mero \ de \ hilos}{\delta * 1000}$$

Dónde:

 δ = Densidad de la fibra en g/cm^3

II. Deformación Unitaria

La deformación unitaria de las probetas fue calculada de acuerdo a la siguiente fórmula:

$$\epsilon_i = \frac{\delta_i}{L_o}$$

Donde:

 ϵ_i = Deformación Unitaria en el punto *i*, en mm/mm

 ϵ_i = Deformación en el punto *i* en mm

 L_o = Distancia de calibracion en mm

III. Módulo de elasticidad

El módulo de elasticidad se calculó de acuerdo con la siguiente ecuación:

$$E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_i - 20\% \epsilon_i)}$$

Dónde:

E = Módulo de elasticidad en MPa

 σ = Esfuerzo en MPa

 ϵ_i = Deformación unitaria en mm/mm.

2.3.1.5.1. JUSTIFICACIÓN DEL USO DE RESINA POLIESTER

La denominación comercial de esta resina es ANDERPOL 859. Está clasificada como líquido inflamable por tener un punto de inflamación de 31°C y por tanto debe mantenerse alejada de llamas abiertas. Se recomienda almacenarlo a temperaturas inferiores a 20°C para obtener la máxima estabilidad. Se suministra en tambores metálicos de 230 Kg.

Esta resina es muy versátil, de fácil manipulación, tiene amplia disponibilidad en el mercado con un bajo costo y ofrece una excelente resistencia a la corrosión. Las resinas son sustancias liquidas que mediante una reacción química inducida por un agente externo pueden pasar al estado sólido. A este proceso se lo denomina curado. Para iniciar el curado se necesita la presencia de un catalizador (iniciador) y un acelerante. La reacción es exotérmica, comenzando la elevación de la temperatura en el instante en que se produce la mezcla de los diferentes elementos, siendo capaz de aumentar la temperatura de la resina hasta los 160°C.

El curado de una resina poliéster comienza tan pronto como se añade el iniciador, en este caso octoato de cobalto. La velocidad de la reacción depende de la temperatura y la reactividad de la resina y el catalizador. Es esencial disponer de cantidades suficientes de iniciador y acelerador para asegurar el adecuado proceso de curado.

El proceso de curado consta principalmente de tres fases:

- La gelificación: En la que se produce el paso de la resina de un estado inicial viscoso, pero con facilidad de fluir, a un gel blando.
- El endurecimiento: La resina pasa de un gel blando a sólido.
- La maduración: Durante la cual la resina adquiere todas sus características mecánicas y químicas.

Las dos primeras etapas son relativamente cortas, comparadas con el tiempo de maduración, y dependen de la cantidad de catalizador y acelerante utilizados. Por el contrario, la última etapa puede tardar varias horas. Se pueden controlar los tiempos de curado actuando sobre los parámetros de temperatura, cantidad de catalizador y acelerador.

Figura 39: Dosificación de resina: (a) Muestras de resina, (b) Peso de muestra de resina , (c) Muestras de resina con catalizadores, (d) Muestra 1, (e) Catalizador, (f) Muestras de resina endurecidas.

Tomando como referencia la investigación **"Structural behaviour of masonry panels strengthened with an innovative hemp fibre composite grid"** dónde se utiliza resina poliéster en la rejilla de cáñamo seco con el fin de combatir los problemas de durabilidad (relacionado con la exposición ambiental de productos de construcción), en la que se concluyó *"La impregnación adecuada de los hilos de cáñamo trenzado de forma flexible utilizando resina epoxi permite la explotación de las buenas propiedades de tracción de fibras de cáñamo. De hecho, los resultados experimentales en términos de comportamiento de compresión diagonal, mostraron una mayor propiedad mecánica*

en todos los paneles reforzados investigados". Mismo procedimiento que se llevó a cabo para los tejidos de cabuya de esta investigación, para combatir o retrasar el deterioro, ya que debido a su naturaleza, cuando se encuentra en contacto con la alcalinidad de la matriz cementicia tiende a acelerar el proceso, comprobando así la teoría anteriormente mencionada. Además para otorgar al tejido más rugosidad y que se impregne mejor en el mortero colocamos porciones de arena tamizada por el tamiz N°20 en la mezcla de resina antes de colocarla en el tejido. (Ver Figura 40)

Debido a que se desconocía la cantidad adecuada tanto del catalizador como del retardante se procedió a realizar ensayos para determinar el tiempo de endurecimiento de la resina como muestra la Figura 39; determinando así la combinación más adecuada tanto para su manipulación como para el secado. Al añadir estireno a la resina esta disminuye su viscosidad y mejora la mojabilidad de las fibras, lo cual es importante para alcanzar una adecuada interfaz tejido-resina, se debe añadir un sistema catalítico iniciador y un acelerador. Las propiedades de tracción del tejido con fibras impregnadas se presentan en este documento en términos de fuerzas de falla, comparadas así con las propiedades del tejido sin resina (natural).

Figura 40: Tejido de cabuya mojado con resina y arena tamizada.

Tabla 11: Dosificación de Resina Polie	ester
---	-------

Resina	Estireno	Catalizador	Retardante
[g]	[g]	[gotas]	[gotas]
50	25	50	27

2.3.2. CARACTERIZACION DE MATERIALES PARA MORTERO (MATRIZ CEMENTICIA)

Uno de los principales componentes del refuerzo FRCM es la matriz cementicia que impregna la malla de fibra adhiriéndola al elemento a reforzar o reparar; por tal motivo,

esta matriz debe cumplir ciertos requerimientos como son: capacidad de saturar las fibras, la adherencia entre la matriz y la fibra (adherencia interna), y la adherencia entre la matriz y el sustrato donde se aplica el sistema. Esta resistencia se alcanzará cuando la matriz tenga la capacidad de transferir los esfuerzos a la fibra, la matriz cementicia estudiada en esta investigación corresponde a un mortero fino de dosificación 1:1.10 de cemento portland de la empresa Cemento Chimborazo y arena fina de la mina de Penipe tamizada por el tamiz Nº 20, además para conseguir una mayor fluidez se le incorporo a la mezcla Plastificante Sika BV 40 en la proporción especificada por los fabricantes.

Tabla 12: Dosificación de Matriz Cementicia

Agua(a/c)	Cemento	Arena de río	Plastificante
0.47	1	1.10	50 g

Esta matriz es el resultado de múltiples iteraciones de dosificación, hasta lograr características de mortero fresco y endurecido, demostrado por la realización de los siguientes ensayos:

- Granulometría Agregado Fino-Arena Tamizada (INEN 696)
- Masa unitaria suelta y compactada-Arena Tamizada (INEN 858)
- Determinación de la Densidad Y Absorción del Árido Fino (INEN 856)
- Determinación del flujo en morteros (INEN 2 502)
- Tiempo de Fraguado (INEN 158)
- Contenido de aire (ASTM C231)
- Densidad en estado Fresco (ASTM C 138)
- Resistencia a Flexión en viguetas de mortero (INEN 198)
- Resistencia a Compresión de cubos de 50 cm de aristas (INEN 488)
- Absorción por capilaridad de Morteros (ASTM C1403)
- Densidad y porcentaje de Absorción de Mortero en estado Endurecido (Principio de Arquímedes)

2.3.2.1.GRANULOMETRIA DE AGREGADO FINO -ARENA TAMIZADA (INEN 696)

Figura 41: Ensayo de Granulometría de Ag. Fino Tamizado: (a) Tamices, (b) Proceso de la determinación de masa retenido en cada Tamiz, (c) Máquina de Ensayo de granulometría, (d) Muestra en el proceso de Tamizado.

Se entiende por granulometría a la distribución del tamaño de partículas, el análisis granulométrico de un árido consiste, en separar al árido en diferentes fracciones de partículas del mismo tamaño, o de tamaños comprendidos dentro de determinados límites, mediante tamizado, y hallar el porcentaje en que entra en el árido, cada uno de estos.

Para realizar este ensayo se necesita como materiales: Balanza, Tamices, Recipientes, Brocha, Tamizadora.

PROCEDIMIENTO

- a) Realizar el muestreo del árido de conformidad con NTE INEN 695.
- b) Mezclar completamente la muestra y reducirla a una cantidad adecuada para el ensayo, utilizando los procedimientos descritos en la norma ASTM C 702.
- c) Secar la muestra hasta conseguir una masa constante a una temperatura de 110°C± 5°C mínimo por 24 horas.
- d) Tomar el peso de la muestra secada al horno.
- e) Seleccionar los tamices en forma descendente N° 20, N° 30, N° 50, N° 100, N° 200, Bandeja.

- f) Pesar 2000 g de material y colocarlo sobre el Nº 20.
- g) Colocar sobre la tamizadora mecánica por un lapso de 2 min
- h) Determinar el peso de cada fracción de agregado contenido en cada tamiz.

Una vez terminado el ensayo y calculado el porcentaje que pasa por cada tamiz se procede a realizar los siguientes cálculos para determinar las propiedades del agregado (*Ver Anexo 10.2.1.*):

I. Porcentaje Retenido Acumulado

$$\% RA = \frac{M_{RA}}{M_O} \cdot 100$$

Dónde:

% *RA* = Porcentaje retenido acumulado, %

 M_{RA} = Masa retenida acumulada, g

 M_0 = Masa inicial, g

II. Porcentaje Que Pasa

$$\% Pasa = 100 \% - \% RA$$

Dónde: % *Pasa* = Porcentaje que pasa

III. Módulo De Finura

$$MF = \frac{\sum \% RA}{100}$$

Dónde:

MF = Módulo de finura.

IV. Porcentaje De Error

$$\% ERROR = \frac{M_O - M_f}{M_f} \cdot 100$$

Dónde:

 M_f = Masa final, g

 M_0 = Masa inicial, g

2.3.2.2.MASA UNITARIA SUELTA Y COMPACTADA – ARENA TAMIZADA (INEN 858)

Figura 42: Ensayo de Masa Unitaria suelta y Compactada-Arena Tamizada: (a) Equipos utilizados para el ensayo, b) Calibración del molde, (c) Masa ensayo muestra suelta, (d) Masa ensayo muestra compactada.

Esta norma establece el método de ensayo para determinar la masa unitaria (peso volumétrico) del árido, en condición compactada o suelta y calcular los vacíos entre las partículas en los áridos: fino, grueso o en una mezcla de ellos, basándose en la misma determinación. Los equipos utilizados en este ensayo mostrados en la (Figura 42.a) son: moldes cilíndricos de capacidad nominal, varilla de compactación, placa de vidrio de 6 mm de espesor, cucharon, balanza y bandejas.

PROCEDIMIENTO

CALIBRACION DEL MOLDE

- a) Determinar la masa de la placa de vidrio y del molde, con una aproximación de 0,05 kg.
- b) Llenar el molde con agua a temperatura ambiente y cubrirlo con la placa de vidrio de tal manera de eliminar las burbujas y el exceso de agua.
- c) Eliminar cualquier porción de agua que pueda haberse desbordado sobre el molde o la placa de vidrio.

- d) Determinar la masa del agua, la placa de vidrio y el molde, con una aproximación de 0,05 kg.
- e) Calcular el volumen del molde

PROCEDIMIENTO DE ENSAYO (MASA COMPACTADA)

- f) Llenar la tercera parte del molde y compactar la capa de áridos, con 25 golpes de la varilla de compactación distribuidos uniformemente sobre la superficie.
- g) Llenar los dos tercios del molde, nuevamente nivelar y compactar de la forma indicada anteriormente.
- h) Por último, llenar el molde a rebosar y compactar nuevamente en la misma forma mencionada.
- i) Nivelar la superficie del árido con la varilla de compactación.
- j) En la compactación de la primera capa, no se debe permitir que la varilla golpee fuertemente el fondo del molde. La compactación de la segunda y tercera capas debe ser vigorosa evitando que la varilla de compactación penetre la capa anterior del árido.
- k) Determinar la masa del molde con su contenido.

PROCEDIMIENTO DE ENSAYO (MASA SUELTA)

- Llenar el molde a rebosar por medio de una pala o cucharón, descargar el árido desde una altura no superior a 50 mm por encima de la parte superior del molde.
- m) Tener cuidado para prevenir, tanto como sea posible, la segregación de las partículas que componen la muestra.
- n) Enrasar y determinar la masa del molde y la masa del molde con su contenido.

La masa unitaria tanto suelta como compactada se calculó mediante la aplicación de la siguiente formula (*Ver Anexo 10.2.2.*):

$$M = \frac{G - T}{V} \quad y \quad V = P - P_A$$

Dónde:

M= Masa unitaria, g/ cm^3

G= Masa árido + molde, en g

T= Masa del molde, en g

V= Volumen del molde, en cm^3

P= Masa del molde +placa +agua, en g.

 P_A = Masa del molde +placa, en g.

2.3.2.3.DETERMINACIÓN DE LA DENSIDAD Y ABSORCIÓN DEL ÁRIDO FINO (INEN 856)

Figura 43: Densidad y Porcentaje de Absorción Ag. Fino: (a) Calibración del picnómetro, (b) Muestra antes del ensayo, (c) Muestra dentro del picnómetro sin agua, (d) Muestra después del ensayo, (e) Temperatura del agua en el momento del ensayo, (f) Cono utilizado para determinar si la muestra se encuentra en estado sss.

Este ensayo determina la densidad promedio de una muestra de árido fino (sin incluir el volumen de vacíos entre partículas) y la absorción, este ensayo es utilizado para determinar la densidad de la porción sólida de un número grande de partículas de árido y proporcionar un valor promedio, que represente la muestra. Los valores de absorción se utilizan para calcular los cambios de masa de un árido debido al agua absorbida por los poros de las partículas constitutivas, comparado con la condición seca, cuando se considera que el árido ha estado en contacto con agua el suficiente tiempo para satisfacer la mayoría del potencial de absorción. Los equipos a utilizar que se muestra en la (*Figura 43*) son: balanza, picnómetro, molde, cono, compactador para ensayo de humedad superficial y horno.

PROCEDIMIENTO

Preparación del espécimen

a) Se sumerge la muestra de árido fino 24 hora en agua.

- b) Descartar el exceso de agua, evitando la perdida de finos. Realizar un secado homogéneo hasta conseguir que la muestra se encuentre en estado sss.
- c) Ubicar el molde (cono) con el diámetro mayor hacia abajo en una superficie plana y no absorbente, colocar árido hasta llenar el cono y compactarlo con 25 golpes, cada golpe a partir de 5 mm del cono y dejarlo caer libremente. Si la humedad superficial todavía está presente, el árido fino mantendrá la forma del molde, cuando este se desmorona ligeramente indica que se ha alcanzado la condición superficialmente seca.

Procedimiento del ensayo

- d) Llenar parcialmente el picnómetro con agua e introducir en el 500 g de árido fino saturado superficialmente seco y llenar con agua adicional hasta la medida de calibración.
- e) Agitar el picnómetro manualmente (rodar e invertir) para eliminar las burbujas visibles de agua.
- f) Después de eliminar todas las burbujas de aire, ajustamos la temperatura del picnómetro y su contenido a 23 ° C.
- g) Determinamos la masa del picnómetro, muestra y agua.
- h) Retiramos el árido fino del picnómetro, secamos al horno a una temperatura de 110 ° C hasta conseguir una masa contante, dejarlo enfriar y registrar su masa.
- i) Determinar la masa del picnómetro con agua a 23 °C hasta la altura de calibración.

Una vez terminado el ensayo y recolectado los datos procedemos a calcular la densidad y el porcentaje de absorción del árido fino- arena con la siguiente fórmula (*Ver Anexo 10.2.3.*):

I. Densidad:

$$\delta = \frac{a}{(b+a-c)}$$

Donde:

 δ = Densidad en g/cm^3

- a= Masa muestra en estado sss en g.
- *b*= Masa del picnómetro lleno de agua hasta la marca de calibración en g.
- c=Masa del picnómetro lleno con muestra +agua hasta la marca de calibración en g.

II. Porcentaje de Absorción:

$$\% Absorción = \frac{(W-D)}{D} * 100$$

Dónde:

W= Masa del árido fino en estado sss en g.

D= Masa del árido fino seco en g.

2.3.2.4.DETERMINACIÓN DEL FLUJO EN MORTEROS (INEN 2 502)

Figura 44:Porcentaje de Flujo en Morteros: (a) Equipo utilizado para el ensayo, (b) Muestra de mortero antes del ensayo, (c) Muestras antes de los golpes, (d) Muestra después de los golpes.

Este ensayo determina el flujo de morteros de cemento hidráulico, es importante considerar este tipo de ensayo ya que el material compuesto requiere de un mortero de alta resistencia pero que proporcione un nivel de flujo alto para su mayor trabajabilidad. El ensayo consiste en la medición y cálculo en porcentaje del incremento del diámetro de la base de la masa de mortero de cemento hidráulico, medido en la mesa de flujo, producido por la acción de 25 caídas en 15 segundos. El equipo del ensayo mostrado en la (Figura 44.a) se compone de: mesa de flujo y molde de flujo, calibrador, compactador, espátula y el enrasador.

PROCEDIMIENTO

a) Limpiamos la mesa de flujo y ubicamos el molde en el centro.

- b) Colocamos una muestra de mortero de más o menos 25 mm de espesor la cual compactamos con 20 golpes con el compactador, el mismo procedimiento se realiza cuando colocamos la última capa de muestra de mortero hasta el borde del molde.
- c) Nivelar el borde del molde con la ayuda del enrasador con movimientos de vaivén.
- d) Limpiar y secar la superficie de la mesa, después de 1 minuto de haber enrasado levantar el molde y dejar caer la mesa con 25 golpes en 15 segundos.
- e) Una vez terminado lo golpes con la ayuda del calibrador se mide del diámetro del mortero medido a lo largo de las cuatro líneas trazadas en la superficie de la mesa.

El flujo es resultado del promedio del incremento del diámetro en la base de la mesa del mortero expresado como un porcentaje del diámetro original de la base. (*Ver Anexo 10.2.5.*)

2.3.2.5.TIEMPO DE FRAGUADO (INEN 158)

Figura 45: Tiempo de fraguado (a) Equipo Vicat, (b) Perforaciones con aguja del Vicat, (c) Ultimas perforaciones, (d) Muestra de mortero después del ensayo.

Este ensayo se realiza en base a la Norma INEN 158, esta norma establece el método de ensayo para determinar el tiempo de fraguado del cemento hidráulico por medio de la aguja de Vicat. La determinación de los tiempos de fraguado Vicat se realiza en pastas de cemento hidráulico de consistencia normal, preparadas de acuerdo a la NTE INEN 157. Se realizan penetraciones periódicas en la pasta utilizando la aguja de Vicat de 1 mm de diámetro. El tiempo de fraguado inicial Vicat, es el tiempo transcurrido entre el contacto inicial del cemento con el agua y el instante en el cual la penetración medida o calculada es de 25 mm. El tiempo de fraguado final Vicat, es el tiempo transcurrido entre el contacto inicial del cemento con el agua y el instante en el cual la aguja no deja una impresión circular completa en la superficie de la pasta.

PROCEDIMIENTO

- a) Preparar la pasta de cemento, y formar una bola, lanzarla seis veces de una mano a la otra manteniendo las manos separadas aproximadamente 150 mm.
- b) Presionar la bola con la palma de la mano llenándola completamente, dentro del extremo más ancho del anillo cónico G hasta llenar completamente el anillo con la pasta.
- c) Retirar el exceso del lado más ancho con un solo con un solo movimiento de la palma de la mano.
- d) Colocar el anillo con su extremo más ancho sobre la placa no absorbente.
- e) Colocar el espécimen de ensayo al sol de manera que se cure en condiciones ambientales, dejar que el espécimen descanse durante 30 minutos después del moldeo sin ser perturbado.
- f) Determinar la penetración de la aguja de 1 mm cuando se hayan cumplido los primeros 30 minutos después realizar la misma operación en un periodo de 15 minutos hasta obtener una penetración de 25 mm o menos.
- g) Para el ensayo de penetración debe hacerse descender la aguja del vástago hasta que su extremo haga contacto con la superficie de la pasta de cemento.
- h) Apretar el tornillo de sujeción y dejar que la aguja penetre la pasta momento en el cual debe tomarse la lectura de penetración.
- Separar las penetraciones al menos 6 mm entre si y 10 mm del borde interior del molde.

Anotar los registros de todas las penetraciones y por interpolación determinar el tiempo de fraguado inicial, tomar la penetración final cuando la aguja apenas deje una marca en el espécimen. (*Ver Anexo 10.2.4.*)

2.3.2.6.DETERMINACIÓN DE LA DENSIDAD EN ESTADO FRESCO (ASTM C 138)

Figura 46: Densidad del hormigón en estado Fresco (a) Equipo utilizado en el ensayo, (b) Muestra de hormigón, (c) Primara capa compactada con 25 golpes, (d) Masa de la muestra de hormigón:

Los lineamientos establecidos en este método aplican para las mezclas de concreto con revenimientos que proporcionen buena manejabilidad, no aplica a los concretos secos o de bajo revenimiento y contenido de aire del concreto fresco

Para el desarrollo del ensayo se requiere que el recipiente para determinar la masa unitaria del concreto fresco este calibrado.

PROCEDIMIENTO

Calibración del molde

- a) Determinar la masa de la placa de vidrio y del molde, con una aproximación de 0,05 kg.
- b) Llenar el molde con agua a temperatura ambiente y cubrirlo con la placa de vidrio de tal manera de eliminar las burbujas y el exceso de agua. Eliminar cualquier porción de agua que pueda haberse desbordado sobre el molde o la placa de vidrio.
- c) Determinar la masa del agua, la placa de vidrio y el molde, con una aproximación de 0,05 kg.
- d) Calcular el volumen V, del molde.

Procedimiento de ensayo

- e) Determinar la masa del recipiente.
- f) OPreparar la mezcla, el tamaño de la muestra debe ser aproximadamente 125% a 200% respecto de la cantidad necesaria para llenar el molde.
- g) Llenar la tercera parte del molde con la mezcla
- h) Compactar la capa de pasta, con 25 golpes de varilla de compactación distribuidos uniformemente sobre la superficie sin que la varilla golpee fuertemente el fondo del molde.
- i) Llenar los dos tercios del molde y compactar nuevamente sin que la varilla penetre más de 20 mm de la primera capa de mezcla.
- j) Llenar el molde a rebosar, nuevamente compactar sin que la varilla penetre mas de 20 mm la segunda capa del mortero fresco, nivelar la superficie de la mezcla con una regleta.
- k) Al terminar de compactar cada capa, golpear ligeramente de 10 a 15 veces los lados del recipiente con un martillo de goma para liberar las burbujas de aire atrapadas.
- 1) Determinar la masa del molde con la mezcla.

La densidad del mortero en estado fresco se calculó mediante la aplicación de la siguiente formula (*Ver Anexo 10.2.7.*):

$$\delta = \frac{G - T}{V}$$

$$V = P - P_A$$

Dónde:

 $\delta = \text{Densidad}, \text{ g/}cm^3$

- G= Masa de la muestra + molde, en g
- T= Masa del molde, en g
- V= Volumen del molde, en cm^3
- P= Masa del molde +placa +agua, en g.
- P_A = Masa del molde +placa, en g.

2.3.2.7.CONTENIDO DE AIRE (ASTM C231)

Figura 47: Contenido de Aire- Presión: (a) Equipos de ensayo, (b) Procedo de Varillado, (c) Muestra enrasada antes del ensayo, (d) Determinación de porcentaje de vacíos.

Este método determina la cantidad de aire que puede contener el mortero recién mezclado excluyendo cualquier cantidad de aire que puedan contener las partículas de los agregados.

PROCEDIMIENTO

- a) Humedecer el interior del tazón y colocarlo sobre una superficie plana, firme y nivelada.
- b) Llenar el recipiente con tres capas iguales, sobrellenando ligeramente la última capa.
- c) Compactar cada capa con 25 penetraciones de la punta hemisférica de la varilla, distribuyendo uniformemente las penetraciones.
- d) Compactar la capa inferior en todo su espesor, sin impactar el fondo del recipiente con la varilla.
- e) Compactar la segunda y tercera capas penetrando 25 mm en la capa anterior.
- f) Golpear firmemente los lados del tazón de 10 a 15 veces con el mazo, después de compactar cada capa.
- g) Enrasar el concreto utilizando la regla enrasadora apoyada sobre el borde superior del molde; al final del enrase limpiar el borde

- h) Limpiar y humedecer el interior de la cubierta antes de acoplarla con las mordazas a la base, abrir ambas llaves de purga.
- i) Cerrar la válvula principal de aire entre la cámara y el tazón e inyectar agua a través de una de las llaves de purga, mientras mueve y golpea el medidor para asegurar que todo el aire sea expulsado
- j) Cerrar la válvula de escape de aire y bombear aire hasta la línea de presión inicial
- k) Ajustar el manómetro en la línea de presión inicial, cerrar ambas llaves de purga
- Abrir la válvula principal entre la cámara y el tazón, golpear los lados del tazón con el martillo de goma.
- m) Leer el porcentaje de aire, golpeando ligeramente el manómetro para estabilizar la lectura
- n) Cerrar la válvula de aire principal y abrir las llaves de purga para descargar la presión, antes de remover la cubierta
- o) Registrar el resultado de la prueba adecuadamente. (Ver Anexo 10.2.6.)

2.3.2.8.RESISTENCIA A FLEXIÓN DE VIGUETAS DE MORTERO (INEN 198)

Figura 48: Resistencia a la Flexión de viguetas de Mortero: (a) Falla de vigueta vista de frente, (b) Falla de vigueta vista lateral, (c) Encofrado de Viguetas, (d) Viguetas después del ensayo, (e) Sistema de ensayo.

La norma INEN 198 establece los métodos para determinar la resistencia a la flexión de morteros de cemento hidráulico, usando prismas de 40x40x160 mm. El método descrito en esta norma, se basa en la aplicación de una carga progresiva de flexión a un prisma de mortero hasta determinar su resistencia máxima admisible. En nuestra investigación realizamos 10 viguetas de mortero 1:1.10, los cuales se ensayaron a los 7, 14,21 y 28 días.

PROCEDIMIENTO:

- a) Preparar los moldes de los especímenes cubriendo ligeramente las superficies de contacto (caras interiores del molde), con una capa de aceite.
- b) Preparar la mezcla de mortero1:1.10.
- c) Colocar una capa de mortero de aproximadamente 20 mm de espesor, en cada compartimiento prismático y apisonar el mortero, doce veces alrededor de 15 segundos, en tres etapas de 4 golpes cada uno.
- d) Una vez terminado el apisonado de la primera capa en todos los compartimentos prismáticos, se llenan los mismos con el mortero sobrante y se apisona igual que la primera capa.
- e) Enrasar los moldes retirando el exceso de mortero de los bordes.
- f) Desencofrar los prismas a las 24 horas de haber iniciado el amasado e iniciar el proceso de curado.
- g) Ensayar los prismas inmediatamente después de sacarlos de la cámara de curado tomando sus dimensiones tanto largo, ancho y profundidad; a los 7, 14, 21 y 28 días.

Para el ensayo, la vigueta es colocada sobre los cilindros de apoyo, los cuales se encuentran a una distancia de 10 cm, con su eje longitudinal perpendicular a estos apoyos. Aplicar la carga verticalmente, colocando el cilindro de carga sobre la cara lateral opuesta del prisma en el centro. El ensayo se realizó en la máquina de Marshall con una velocidad de 0.07 in/min, obteniéndose valores de carga y deformación que no permitió obtener las siguientes propiedades (*Ver Anexo 10.2.8.*):

I. Resistencia Máxima a la Flexión

La resistencia última a la flexión fue calculada de acuerdo a la siguiente ecuación:

$$\sigma_{max} = \frac{F_{max} * L}{b_v * d^2}$$

Dónde:

 σ_{max} = Esfuerzo ultimo a la flexión en MPa F_{max} = Carga Máxima antes de la ruptura en N L=Longitud entre apoyos, mm b_v = Ancho de la sección transversal en mm

d=Alto de la sección transversal en mm

II. Deformación Unitaria

La deformación unitaria de las probetas fue calculada de acuerdo a la siguiente fórmula:

$$\epsilon_i = \frac{\epsilon_i}{L_o}$$

Donde:

 ϵ_i = Deformación Unitaria en el punto *i*, en mm/mm

 \in_i = Deformación en el punto *i* en mm

 L_o = Distancia de calibracion en mm

III. Módulo de elasticidad

El módulo de elasticidad se calculó de acuerdo con la siguiente ecuación:

$$E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_i - 20\% \epsilon_i)}$$

Dónde:

E= Módulo de elasticidad en MPa

 σ = Esfuerzo en MPa

 ϵ_i = Deformación unitaria en mm/mm.

IV. Deflexión

$$D_{\nu} = \frac{F_{max} * L^3}{48 EI}$$

Dónde:

D_v = Deflexión en mm.

 F_{max} = Carga Máxima antes de la ruptura en N

- *L*=Longitud entre apoyos, mm
- E = Módulo de elasticidad, en MPa.
- $I = Inercia, mm^4$
 - 2.3.2.9.RESISTENCIA A COMPRESIÓN DE MORTEROS EN CUBOS CON 50 mm DE ARISTA (INEN 488)

Figura 49: Resistencia a la Compresión de Cubos de Mortero: (a) Compresión hasta la falla en maquina universal, (b) Compresión en la máquina de Marshall tomando datos Carga -deformación, (c) Especímenes antes del ensayo, (d) Medidas del cubos con el calibrador, (e) Especímenes después del ensayo.

Esta norma establece el método para determinar la resistencia a compresión de morteros con cemento hidráulico; los cubos son curados un día en sus moldes y luego desencofrados y sumergidos en agua para ser ensayados a los 7, 14, 21, 28 días mediante la aplicación de carga progresiva de compresión; se realizaron 16 cubos de mortero 1:1.10, para ensayarlos inicialmente en la máquina de Marshall con el fin de determinar el módulo de elasticidad por día, para posteriormente ensayarlos y llevarlos a la rotura en la maquina Universal (4 especímenes para cada día). Para la realización del ensayo se necesitan como equipos: mortero 1:10 (cemento Chimborazo y arena de la mina de Penipe tamizada en el N° 20), encofrado de cubos, varilla de compactación, aceite, espátula, balanza y calibrador.

PROCEDIMIENTO

Preparación de las muestras antes del ensayo

- a) Preparación de la composición de mortero 1:10 y la relación de agua/cemento 0.47.
- b) Compactar el mortero en los moldes por varillado manual, la compactación debe ser solo lo suficiente para asegurar un llenado uniforme en los moldes y se debe completar rondas con 32 golpes antes de pasar a la siguiente.
- c) Enrasar los moldes retirando el exceso de mortero de los bordes.
- d) Desencofrar 24 horas después de la fundición, inmediatamente después colocarlas en las piscina de curado para su posterior ensayo.
- e) En el momento del ensayo medir los lados y las alturas del cubo, registrar su peso y ensayar asegurándose de que la arista este apoyada totalmente sobre la mesa de ensayo.

El ensayo se realizó en la máquina de Marshall con una velocidad de 0.05 in/min, obteniéndose valores de carga y deformación que no permitió obtener las siguientes propiedades (*Ver Anexo 10.2.2.*):

I. Resistencia Máxima a la Compresión

La resistencia última a la compresión fue calculada de acuerdo a la siguiente ecuación:

$$\sigma_{max} = \frac{F_{max}}{A}$$

Dónde:

 σ_{max} = Esfuerzo ultimo a la compresión en MPa

 F_{max} = Carga Máxima antes de la ruptura en N

A= El área de aplicación de la carga, en mm^2 .

II. Deformación Unitaria

La deformación unitaria de las probetas fue calculada de acuerdo a la siguiente fórmula:

$$\epsilon_i = \frac{\epsilon_i}{L_o}$$

Donde:

 ϵ_i = Deformación Unitaria en el punto *i*, en mm/mm

 \in_i = Deformación en el punto *i* en mm

L_o= Distancia de calibración en mm

III. Módulo de elasticidad

El módulo de elasticidad se calculó de acuerdo con la siguiente ecuación:

$$E = \frac{(60\%\sigma - 20\%\sigma)}{(60\%\epsilon_i - 20\%\epsilon_i)}$$

Dónde:

E= Módulo de elasticidad en MPa

 σ = Esfuerzo en MPa

 ϵ_i = Deformación unitaria en mm/mm.

2.3.2.10. ABSORCIÓN POR CAPILARIDAD MORTERO (ASTM C1403)

Figura 51: Absorción por capilaridad del Mortero: (a) Masa de la muestra seca, (b) Muestra en el ensayo apoyadas sobre rodelas, (c) Muestras en el ensayo, (d) Masa de la muestra en el ensayo.

Este método de ensayo proporciona un procedimiento de laboratorio para la determinación de las propiedades de absorción de agua en relación con el tiempo de los morteros usados para la construcción. Como probetas para este ensayo se tomaron las viguetas del ensayo de flexión del mortero después de ser ensayadas; es decir que este ensayo se lo realizo a los 7, 14, 21 y 28 días. El equipo utilizado para este ensayo es: balanza de precisión, recipiente de plástico trasparente y rodelas.

PROCEDIMIENTO

- a) Colocamos las muestras a secar en el horno a una temperatura de 110 °C por 24 horas.
- b) Registramos el área que va a estar en contacto con el agua, debido a que las probetas solo estarán 3 mm en contacto con el agua, señalamos esta altura en el contorno de cada una de las muestras.
- c) Colocamos cada muestra en el recipiente de plástico transparente, apoyadas sobre 4 rodelas cada una, esto es para que exista mayor cantidad de agua que pueda ser absorbida.
- d) Colocamos agua hasta que llegue a la marca señalada en las probetas.
- e) Se registra el aumento de la masa para cada tiempo (1, 3, 5, 10, 15, 20, 60, 90, 120, 360 minutos y después de 24 horas)

Para cada tiempo de ensayo se calcula la absorción por cada por cada cm^2 , mediante la aplicación de la siguiente formula (*Ver Anexo 10.2.13.*):

$$A_T = (W_T - W_0) x \, 10 \, 000 / (L_1 x L_2)$$

Dónde:

 A_T = Absorción del agua en g/ cm^2 .

- W_T =El peso de la muestra en el tiempo t en g.
- W_o = El peso de la muestra seca en g.

 L_1 = Longitud media de la probeta de ensayo, en mm.

 L_2 = El ancho medio de la probeta de ensayo, en mm.

2.3.2.11.DENSIDAD Y PORCENTAJE DE ABSORCION MORTERO ENDURECIDO (PRINCIPIO DE ARQUIMIDES)

Figura 52: Densidad y Porcentaje de Absorción de Mortero endurecido: (a) Masa de la muestra seca, (b) Muestra sumergida en el recipiente graduado, (c) Muestras secas, (d) Masa del recipiente graduado+agua.

El principio de Arquímedes afirma que todo cuerpo sumergido en un fluido experimenta un empuje vertical y hacia arriba igual al peso de fluido desalojado, por tal motivo se decidió determinar la densidad y el porcentaje de absorción del mortero endurecido por día (7, 14, 21, 28 días), mediante este método. Para este ensayo se utilizaron como probetas las viguetas ensayadas para flexión del mortero por día.

PROCEDIMIENTO

- a) Sumergimos las probetas en agua por 24 horas.
- b) Retiramos las probetas del agua y con la secamos con la ayuda de una franela hasta dejarla en estado sss.
- c) Colocamos el recipiente graduado sobre la balanza y procedemos a colocar el agua hasta una medida que nos permita sumergir completamente la muestra, registramos la masa. (Lectura 1)
- d) Colocamos la muestra saturada en el recipiente y registramos la nueva lectura de graduación.
- e) Retiramos la muestra del recipiente, posteriormente colocamos agua hasta la lectura y registramos el valor. (Lectura 2)

 f) Repetimos los pasos para cada una de la probetas, posteriormente colocamos las muestras en el horno a 110 °C por 24 horas para determinar su masa seca.

Mediante la aplicación de las siguientes formulas, determinamos la densidad y el porcentaje de absorción del mortero endurecido (*Ver Anexo 10.2.14.*):

a) Densidad

$$\delta = \frac{S}{R - T}$$

Dónde:

 δ = Densidad del mortero, en g/cm³

S = Masa de la muestra seca, en g.

R = Masa del recipiente +agua en la segunda lectura, en g.

T = Masa del recipiente +agua en la primera lectura, en g.

b) Porcentaje de Absorción

$$\% Absorción = \frac{(W-D)}{D} * 100$$

Dónde:

W= masa de la muestra en estado sss, en g.

D = masa de la muestra seca, en g.

2.3.3. CARACTERIZACIÓN DEL MATERIAL COMPUESTO

La caracterización del material compuesto consiste en la fabricación, curado y ensayo de una lámina de material compuesto, las probetas para ensayo tanto para tracción como para flexión del material compuesto fueron elaboradas en el molde de la (Figura 54), el mismo que permite obtener probetas de las dimensiones mostradas en la (Figura 53.c). Se elaboraron 27 muestras; 10 con el tejido de cabuya con 3 layers, 10 con el tejido de cabuya con 3 layers, para cada ensayo. La matriz cementicia se elaboró con un mortero 1:1.10 antes estudiado, cabe recalcar que los tejidos fueron mojados con resina poliéster y la disposición de las fibras fueron las mismas que las utilizadas en la caracterización mecánica de los tejidos.

(a)

(b)

(c)

Figura 53: Material compuesto configuración: (a) Material Compuesto 3 layers, (b) D Material Compuesto 2 layers, (c) Medidas del material compuesto. Elaborado por: J: Almache y D. Tapia

A) PROCEDIMIENTO PARA ELABORACIÓN DE LAS PROBETAS

Figura 54: Elaboración de Probetas de material compuesto: (a) Encofrado del Material Compuesto, (b) Desencofrado del Material Compuesto, (c) Tejidos y Matriz Cementicia, (d) Colocación del tejido en el encofrado, (e) Probetas para ensayos de caracterización de Material Compuesto

- a) Elaborar 20 moldes de madera impermeables con las siguientes dimensiones 25x5x1.6 cm.
- b) Colocar una ligera capa de aceite en las caras interiores de cada molde.
- c) Preparar la mezcla de mortero con la dosificación prevista.
- d) Verter en una pequeña capa de mortero en los moldes. Se distribuye uniformemente en todo el molde y se compacta con ayuda de las manos para eliminar el aire interior y para esparcir completamente el mortero dentro del molde.
- e) Colocar el mortero en los tejidos de cabuya, aplicando presión en los tejidos contra el mortero de manera que la mezcla penetre en las aberturas de cada layer.
- f) Se repite el punto b) para la segunda y tercera capa.
- g) Se enrasan los moldes, se limpian los bordes y se cubre con lámina de papel absorbente para evitar la excesiva evaporación de agua.
- h) Desencofrar después de 48 horas.

2.3.3.1. RESISTENCIA A LA TRACCIÓN DEL MATERIAL COMPUESTO

Figura 55: Resistencia a tracción del material compuesto: (a) Colocación de placas y pernos en el material compuesto, (b) Maquina utilizada en el ensayo, (c, d y e) Fallas en el ensayo, (f) Muestra de material compuesto ensayada.

Para el diseño y análisis de materiales compuestos, una las principales propiedades que se debe estudiar es la resistencia a tracción, que permite determinar la capacidad de este como componente de reforzamiento, para establecer las características físicas y mecánicas de la fibra de cabuya y la matriz cementicia, ya que éstos están pensados y diseñados para trabajar bajo esfuerzos de tracción.

El material compuesto fue ensayado a los 28 días después que el mortero alcanzo su resistencia máxima, se registra la dimensión inicial de la probeta; la maquina utilizada para el ensayo es la maquina Marshall marca Humbold con una velocidad de 0.098 in/min con una precarga de 66.72 N, para su adaptación a la maquina se colocaron 2 placas (dimensiones iguales a la de la caracterización del tejido) en cada extremo del material sujetas con un primer (SIKADUR 32-Primer) y un perno (Figura 56), la carga y deformación se registraron de forma automática.

Figura 56: Esquema de probeta para ensayo de tracción Elaborado por: J. Almache y D. Tapia

A partir de los datos de carga y deformación del ensayo de tracción de cada una de las probetas, se calcularon las siguientes propiedades (*Ver Anexo 10.3.1.*):

I. Resistencia Máxima a la Tracción

La resistencia última a la tracción fue calculada de acuerdo a la siguiente ecuación:

$$\sigma_{max} = \frac{F_{max}}{A}$$

Dónde:

 σ_{max} = Esfuerzo ultimo a la tracción en MPa F_{max} = Carga Máxima antes de la ruptura en N A= El área de la sección tranversal en mm^2

II. Deformación Unitaria

La deformación unitaria de las probetas fue calculada de acuerdo a la siguiente fórmula:

$$\epsilon_i = \frac{\epsilon_i}{L_o}$$

Donde:

 ϵ_i = Deformación Unitaria en el punto *i*, en mm/mm

 \in_i = Deformación en el punto *i* en mm

 L_o = Distancia de calibracion en mm

III. Módulo de elasticidad

El módulo de elasticidad se calculó de acuerdo con la siguiente ecuación:

$$E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_i - 20\% \epsilon_i)}$$

Dónde:

E= Módulo de elasticidad en MPa

 σ = Esfuerzo en MPa

 ϵ_i = Deformación unitaria en mm/mm.

Figura 57: Probetas de material compuesto ensayadas a tracción.
2.3.3.2.RESISTENCIA A LA FLEXIÓN DEL MATERIAL COMPUESTO

Figura 58: Resistencia a flexión del material compuesto: (a) Forma de ensayo, (b) Flexión en 3 puntos, (c) Falla del material compuesto, (d) Muestra después del ensayo, (e) Falla del material.

La resistencia a flexión es una de las propiedades más importantes en el estudio del material compuesto, la disposición elegida para la realización de este ensayo a flexión es la denominada a "tres puntos". Este ensayo consiste en apoyar en dos puntos la probeta de material compuesto a ensayar y aplicar sobre su centro superior una carga mediante un tercer mandril, de manera que la probeta se flexione. Según la teoría general de la flexión, la mitad superior de la probeta trabaja a compresión, mientras que la mitad inferior lo hace a tracción. Los esfuerzos máximos de tracción se dan en la fibra más externa de la mitad inferior, longitudinalmente justo a medio camino entre los apoyos de la probeta (punto de la aplicación de la carga), y son los responsables de la rotura de la misma (ver Figura 58).

Figura 59: Esquema del ensayo a flexión del material compuesto Elaborado por: J. Almache y D. Tapia

De igual manera, el material compuesto fue ensayado a los 28 días después que el mortero alcanzo su resistencia máxima, la maquina utilizada para el ensayo es Marshall marca Humbold, la velocidad de ensayo fue 0.076 in/min con una precarga de 22.24 [N], los datos de Carga y deformación se registraron de forma automática.

A partir de los datos de carga y deformación del ensayo de tracción de cada una de las probetas, se calcularon las siguientes propiedades (*Ver Anexo 10.3.2.*):

I. Resistencia Máxima a la Flexión

La resistencia última a la flexión fue calculada de acuerdo a la siguiente ecuación:

$$\sigma_{max} = \frac{F_{max} * L}{b_n * d^2}$$

Dónde:

 σ_{max} = Esfuerzo ultimo a la flexión en MPa

 F_{max} = Carga Máxima antes de la ruptura en N

L=Longitud entre apoyos, mm

 b_v = Ancho de la sección transversal en mm

d=Alto de la sección transversal en mm

II. Deformación Unitaria

La deformación unitaria de las probetas fue calculada de acuerdo a la siguiente fórmula:

$$\epsilon_i = \frac{\epsilon_i}{L_o}$$

Donde:

 ϵ_i = Deformación Unitaria en el punto *i*, en mm/mm

 \in_i = Deformación en el punto *i* en mm

 L_o = Distancia de calibracion en mm

III. Módulo de elasticidad

El módulo de elasticidad se calculó de acuerdo con la siguiente ecuación:

$$E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_i - 20\% \epsilon_i)}$$

Dónde:

E= Módulo de elasticidad en MPa

 σ = Esfuerzo en MPa

 ϵ_i = Deformación unitaria en mm/mm.

IV. Deflexión

$$D_{v} = \frac{F_{max} * L^3}{48 EI}$$

Dónde:

 D_v = Deflexión en mm.

Fmax = Carga Máxima antes de la ruptura en N

L=Longitud entre apoyos, mm

E= Módulo de elasticidad, en MPa.

 $I = Inercia, mm^4$

V. Energía absorbida

Área bajo la curva carga [kN] vs. Deformación en [mm]

VI. Energía de Fractura

$$E_t = \frac{\text{Area}_c}{b_v * d}$$

Dónde:

 E_t = Energía de fractura, J/m²

 $Area_c$ = Area bajo la curva en J.

 b_v = Ancho de la sección transversal en m

d=Alto de la sección transversal en m

Figura 60: Probetas de material compuesto ensayadas a flexión.

2.3.3.JENSIDAD Y PORCENTAJE DE ABSORCION DEL MATERIAL COMPUESTO (PRINCIPIO DE ARQUIMIDES)

Figura 61: Densidad y Porcentaje de Absorción del material compuesto (Principio de Arqumides): (a) Recipiente graduado con agua (Lectura 1), (b) Material compuesto sumergido, (c) Masa, (d) Masa del material compuesto sumergido.

El principio de Arquímedes afirma que todo cuerpo sumergido en un fluido experimenta un empuje vertical y hacia arriba igual al peso de fluido desalojado, por tal motivo se decidió determinar la densidad y el porcentaje de absorción del material compuesto mediante este método. Se ensayaron 2 probetas para el material compuesto con tejido en 2 layers, 2 en 3 layers y 2 con el tejido de los sacos en 3 layers, se usaron las probetas del ensayo a flexión del material compuesto antes de ser ensayadas.

PROCEDIMIENTO

- g) Sumergimos las probetas en agua por 24 horas.
- h) Retiramos las probetas del agua y con la ayuda de una franela hasta dejarla en estado sss.
- i) Colocamos el recipiente graduado sobre la balanza y procedemos a colocar el agua hasta una medida que nos permita sumergir completamente la muestra, registramos la masa. (Lectura 1)
- j) Colocamos la muestra saturada en el recipiente y registramos la nueva lectura de graduación.
- k) Retiramos la muestra del recipiente, posteriormente colocamos agua hasta la lectura y registramos el valor. (Lectura 2)
- Repetimos los pasos para cada una de la probetas, posteriormente colocamos las muestras en el horno a 110 °C por 24 horas para determinar su masa seca.

Mediante la aplicación de las siguientes formulas, determinamos la densidad y el porcentaje de absorción del mortero endurecido (*Ver Anexo 10.3.3.*)::

c) Densidad

$$\delta = \frac{S}{R - T}$$

Dónde:

- δ = Densidad del mortero, en g/*cm*³
- S= Masa de la muestra seca, en g.

R= Masa del recipiente +agua en la segunda lectura, en g.

T= Masa del recipiente +agua en la primera lectura, en g.

d) Porcentaje de Absorción

% Absorción =
$$\frac{(W-D)}{D} * 100$$

Dónde:

W= masa de la muestra en estado sss, en g.

D = masa de la muestra seca, en g.

2.3.4. CARACTERIZACIÓN DE MATERIALES PARA CONCRETO ARMADO

Para la elaboración de los modelos a escala de concreto armado se realizaron múltiples interacciones de dosificaciones con el fin, de obtener un hormigón que llegara a una resistencia máxima de 21MPa a los 35 días, debido a que el material compuesto se tenía previsto colocar una semana después de la función de los modelos. Los materiales utilizados para el hormigón son: Cemento Chimborazo, como agregado fino Arena de la mina de Penipe, y como agregado grueso ripio triturado tamizado por el tamiz Nº 3/8 de la mina de la Politécnica, cabe recalcar que los árido fueron secados previamente en el horno a una temperatura de 110 °C para evitar el cambio de la relación a/c en el momento de la fundición.

Tabla 13: Dosificación del Hormigón para modelos

Cemento	Ag. Fino	Ag. Grueso	Relación (a/c)	Asentamiento
1	1.6	2.6	0.70	7 cm

Para conocer las propiedades y comportamiento no solo del hormigón sino también de las varillas corrugadas que integran los modelos para ensayo (vigas y columnas), se procedió a realizar los siguientes ensayos:

- Granulometría Agregado Fino y Agregado Grueso (INEN 696)
- Masa unitaria suelta y compactada- Agregado Fino y Ag. Grueso (INEN 858)
- Contenido de Aire (ASTM C231)
- Determinación de la Densidad Y Absorción del Árido Grueso (INEN 857)
- Densidad en estado Fresco del Hormigón (ASTM C 138)
- Absorción por Capilaridad Del Hormigón (ASTM C 1585)
- Densidad y porcentaje de Absorción del Hormigón en estado Endurecido (Principio de Arquímedes)
- Ensayo de Tracción De Varillas Corrugadas (INEN 109)
- Ensayo de Determinación Del Asentamiento En Hormigones De Cemento Hidráulico (INEN 1578)
- Ensayo de la Resistencia a Compresión del Hormigón De Cemento Hidráulico-Cilindros (INEN 1572-1576)

2.3.4.1.ANÁLISIS GRANULOMÉTRICO (INEN 696)

Figura 62: Ensayo de Análisis Granulométrico Ag. Fino y Ag. Grueso (a) Tamices utilizados para la Arena Tamizada y sin Tamizar (Ag. Fino), (b) Masa retenida en cada Tamiz (Ag. Fino), (c) Masa inicial Ripio Triturado (Ag. Grueso), (d) Máquina tamizadora y tamices utilizados para el Ag. Grueso.

Se entiende por granulometría a la distribución del tamaño de partículas, el análisis granulométrico de un árido consiste, en separar al árido en diferentes fracciones de partículas del mismo tamaño, o de tamaños comprendidos dentro de determinados límites, mediante tamizado, y hallar el porcentaje en que entra en el árido, cada uno de estos.Para realizar este ensayo se necesita como materiales: Balanza, Tamices, Recipientes, Brocha, Tamizadora.

PROCEDIMIENTO

- a) Realizar el muestreo del árido de conformidad con NTE INEN 695.
- b) Mezclar completamente la muestra y reducirla a una cantidad adecuada para el ensayo, utilizando los procedimientos descritos en la norma ASTM C 702.
- c) Secar la muestra hasta conseguir una masa constante a una temperatura de 110°C± 5°C mínimo por 24 horas.
- d) Tomar el peso de la muestra secada al horno.
- e) Seleccionar los tamices en forma descendente.
- f) Pesar la masa necesaria de material y colocarlo sobre el tamiz superior.
- g) Colocar sobre la tamizadora mecánica por un lapso de 2 min
- h) Determinar el peso de cada fracción de agregado contenido en cada tamiz.

Para caracterizar lo árido del hormigón se realizan los ensayos de granulometría de Ag. Fino- Arena de Penipe, Ag. Grueso sin tamizar y el agregado grueso tamizado por el tamiz 3/8", una vez que todos los datos son tomados procedemos a calcular las propiedades de los agregados mediante la aplicación de la siguiente fórmula. (*Ver Anexo 10.4.1.*)

I. Porcentaje Retenido Acumulado

$$\% RA = \frac{M_{RA}}{M_O} \cdot 100$$

Dónde:

% RA = Porcentaje retenido acumulado, % M_{RA} = Masa retenida acumulada, g M_O = Masa inicial, g

II. Porcentaje Que Pasa

$$\% Pasa = 100 \% - \% RA$$

Dónde: % *Pasa* = Porcentaje que pasa

III. Módulo De Finura (Solo Ag. Fino)

$$MF = \frac{\sum \% RA}{100}$$

Dónde:

MF = Módulo de finura.

IV. Porcentaje De Error

$$\% ERROR = \frac{M_O - M_f}{M_f} \cdot 100$$

Dónde:

 M_f = Masa final, g

 M_0 = Masa inicial, g

2.3.4.2.DETERMINACIÓN DE LA MASA UNITARIA SUELTA Y COMPACTADA EN ÁRIDOS. (INEN 858)

I. Agregado Fino- Arena

Figura 63: Masa Unitaria Ag. Fino- Arena (a) Calibración del molde, (b) Equipos para ensayo, (c) Muestra enrasada, (d) Masa del recipiente+ la muestra.

II. Agregado Grueso- Ripio Tamizado por el tamiz Nº 3/8

Figura 64: Masa Unitaria Ag. Grueso- Ripio Tamizado (a) Enrasado, (b) Varillado, (c) Muestra enrasada, (d) Equipos para enasayo.

Esta norma establece el método de ensayo para determinar la masa unitaria (peso volumétrico) del árido, en condición compactada o suelta y calcular los vacíos entre las

partículas en los áridos: fino, grueso o en una mezcla de ellos, basándose en la misma determinación. Los equipos utilizados en este ensayo mostrados en la (Figura 64.d) son: moldes cilíndricos de capacidad nominal, varilla de compactación, placa de vidrio de 6 mm de espesor, cucharon, balanza y bandejas.

PROCEDIMIENTO

CALIBRACION DEL MOLDE

- a) Determinar la masa de la placa de vidrio y del molde, con una aproximación de 0,05 kg.
- b) Llenar el molde con agua a temperatura ambiente y cubrirlo con la placa de vidrio de tal manera de eliminar las burbujas y el exceso de agua.
- c) Eliminar cualquier porción de agua que pueda haberse desbordado sobre el molde o la placa de vidrio.
- d) Determinar la masa del agua, la placa de vidrio y el molde, con una aproximación de 0,05 kg.
- e) Calcular el volumen del molde

PROCEDIMIENTO DE ENSAYO (MASA COMPACTADA)

- f) Llenar la tercera parte del molde y compactar la capa de áridos, con 25 golpes de la varilla de compactación distribuidos uniformemente sobre la superficie.
- g) Llenar los dos tercios del molde, nuevamente nivelar y compactar de la forma indicada anteriormente.
- h) Por último, llenar el molde a rebosar y compactar nuevamente en la misma forma mencionada anteriormente.
- i) Nivelar la superficie del árido con la varilla de compactación.
- j) En la compactación de la primera capa, no se debe permitir que la varilla golpee fuertemente el fondo del molde. La compactación de la segunda y tercera capas debe ser vigorosa evitando que la varilla de compactación penetre la capa anterior del árido.
- k) Determinar la masa del molde con su contenido.

PROCEDIMIENTO DE ENSAYO (MASA SUELTA)

- Llenar el molde a rebosar por medio de una pala o cucharón, descargar el árido desde una altura no superior a 50 mm por encima de la parte superior del molde.
- m) Tener cuidado para prevenir, tanto como sea posible, la segregación de las partículas que componen la muestra. N
- n) Enrasar y determinar la masa del molde y la masa del molde con su contenido.

La masa unitaria tanto suelta como compactada se calculó mediante la aplicación de la siguiente formula (*Ver Anexo 10.4.2.*):

$$M = \frac{G - T}{V} \quad y \quad V = P - P_A$$

Dónde:

M= Masa unitaria, g/ cm^3

G= Masa árido + molde, en g

T= Masa del molde, en g

V= Volumen del molde, en cm^3

P= Masa del molde +placa +agua, en g.

 P_A = Masa del molde +placa, en g.

2.3.4.3.DETERMINACIÓN DE LA DENSIDAD Y ABSORCIÓN DEL ÁRIDO GRUESO (INEN 857)

Figura 65: Densidad y Porcentaje de Absorción Ag. Grueso: (a) Ag. Grueso en estado sss, (b) Muestra antes del ensayo, (c) Masa de la canasta sumergida, (d) Agitación de la muestra sumergida, (e) Determinación de la masa de la canasta y la muestra sumergida, (f) Muestra después del ensayo

Este método de ensayo es utilizado para determinar la densidad de una porción solida de un número grande de partículas de árido y proporcionar un valor promedio que representa la muestra. Los valores de absorción se utilizan para calcular los cambios de masa.

PROCEDIMIENTO

PREPARACIÓN DE LA MUESTRA:

- a) Sumergir la muestra en agua durante un período de 24 horas.
- b) Retirar el agua del recipiente y con una franela dejar el material en estado sss, evitando la pérdida de material.

PROCEDIMIENTO DEL ENSAYO:

- a) Determinar el peso del recipiente que contendrá al agregado en estado SSS.
- b) Pesar la canastilla vacía sumergida en agua a temperatura $23^{\circ}C \pm 2^{\circ}C$.
- c) Colocar el agregado en estado SSS, dentro de la canastilla para registrar el peso sumergido en agua.
- d) Agitar la canastilla con el material para eliminar las burbujas de aire atrapados.
- e) Calcular la masa del árido grueso en SSS. masa del árido grueso en agua, volumen desalojado y finalmente el peso específico del árido. (Ver Anexo 10.4.5.)

I. Densidad:

$$\delta = \frac{a}{(b_g + a - c_g)}$$

Donde:

 δ = Densidad en g/cm^3

a= Masa muestra en estado sss en g.

 b_q = Masa del picnómetro lleno de agua hasta la marca de calibración en g.

 c_g =Masa del picnómetro lleno con muestra +agua hasta la marca de calibración en g.

II. Porcentaje de Absorción:

$$\% Absorción = \frac{(W-D)}{D} * 100$$

Dónde:

W= Masa del árido fino en estado sss en g.

D= Masa del árido fino seco en g.

2.3.4.4.DENSIDAD EN ESTADO FRESCO DEL HORMIGÓN (ASTM C 138)

Figura 66: Densidad del hormigón en estado Fresco (a) Equipo utilizado en el ensayo, (b) Muestra de hormigón, (c) Primara capa compactada con 25 golpes, (d) Masa de la muestra de hormigón:

Los lineamientos establecidos en este método aplican para las mezclas de concreto con agregados que proporcionen buena manejabilidad, no aplica a los concretos secos o de bajo revenimiento y contenido de aire del concreto fresco

Para el desarrollo del ensayo se requiere que el recipiente para determinar la masa unitaria del concreto fresco este calibrado y determinado previamente el factor de conversión de masa a masa unitaria.

PROCEDIMIENTO

Calibración del molde

- a) Determinar la masa de la placa de vidrio y del molde, con una aproximación de 0,05 kg.
- b) Colocar una fina capa de grasa en el borde del molde para prevenir la fuga de agua.

- c) Llenar el molde con agua a temperatura ambiente y cubrirlo con la placa de vidrio de tal manera de eliminar las burbujas y el exceso de agua. Eliminar cualquier porción de agua que pueda haberse desbordado sobre el molde o la placa de vidrio.
- d) Determinar la masa del agua, la placa de vidrio y el molde, con una aproximación de 0,05 kg
- e) Medir la temperatura del agua con una aproximación de 0,5 °C y determinar su densidad de acuerdo a la información de la tabla 3, interpolando si es necesario.
- f) Calcular el volumen V, del molde. Alternativamente, calcular del factor F, para el molde.

Procedimiento

- g) Determinar la masa del recipiente.
- h) Preparar la mezcla el tamaño de la muestra debe ser aproximadamente 125% a 200% respecto de la cantidad necesaria para llenar el molde.
- i) Llenar la tercera parte del molde con la mezcla
- j) Compactar la capa de pasta, con 25 golpes de varilla de compactación distribuidos uniformemente sobre la superficie sin que la varilla golpee fuertemente el fondo del molde.
- k) Llenar los dos tercios del molde y compactar nuevamente sin que la varilla penetre más de 20 mm de la primera capa de mezcla.
- Llenar el molde a rebosar, nuevamente compactar sin que la varilla penetre mas de 20 mm la segunda capa del hormigón fresco, nivelar la superficie de la mezcla con una regleta.
- m) Al terminar de compactar cada capa, golpear ligeramente de 10 a 15 veces los lados del recipiente con un mazo de goma para liberar las burbujas de aire atrapadas.
- n) Determinar la masa del molde con la mezcla, registrar los valores.

Para el cálculo de la densidad y el % de absorción se utilizan las siguientes fórmulas (*Ver Anexo 10.4.4.*):

$$\delta = \frac{G - T}{V}$$

$$V = P - P_A$$

Dónde:

 δ = Densidad, g/cm³ G= Masa de la muestra + molde, en g T= Masa del molde, en g V= Volumen del molde, en cm³ P= Masa del molde +placa +agua, en g. P_A = Masa del molde +placa, en g.

2.3.4.5.CONTENIDO DE AIRE (ASTM C231)

Figura 67: Contenido de Aire: (a) Equipo utilizado en el ensayo, (b) Muestra de hormigón, (c) Compactación por cada capa de hormigón, (d) Muestra enrasada, (e) Aplicación de presión, (d) Lectura del equipo de ensayo.

Este método determina la cantidad de aire que puede contener el concreto recién mezclado excluyendo cualquier cantidad de aire que puedan contener las partículas de los agregados.

PROCEDIMIENTO

- a) Humedecer el interior del tazón y colocarlo sobre una superficie plana, firme y nivelada.
- b) Llenar el recipiente con tres capas iguales, sobrellenando ligeramente la última capa

- c) Compactar cada capa con 25 penetraciones de la punta hemisférica de la varilla, distribuyendo uniformemente las penetraciones
- d) Compactar la capa inferior en todo su espesor, sin impactar el fondo del recipiente con la varilla
- e) Compactar la segunda y tercera capas penetrando 25mm en la capa anterior
- f) Golpear firmemente los lados del tazón de 10 a 15 veces con el mazo, después de compactar cada capa
- g) Enrasar el concreto utilizando la regla enrasadora apoyada sobre el borde superior del molde; al final del enrase limpiar el borde
- h) Limpiar y humedecer el interior de la cubierta antes de acoplarla con las mordazas a la base. Abrir ambas llaves de purga
- i) Cerrar la válvula principal de aire entre la cámara y el tazón
- j) Inyectar agua a través de una de las llaves de purga, mientras mueve y golpea el medidor para asegurar que todo el aire sea expulsado. Cerrar la válvula de escape de aire y bombear aire hasta la línea de presión inicial
- k) Esperar unos segundos para que se estabilice la lectura de presión, ajustar el manómetro en la línea de presión inicial. Cerrar ambas llaves de purga
- Abrir la válvula principal entre la cámara y el tazón, golpear los lados del tazón con el mazo
- m) Leer el porcentaje de aire, golpeando ligeramente el manómetro para estabilizar la lectura
- n) Cerrar la válvula de aire principal y abrir las llaves de purga para descargar la presión, antes de remover la cubierta. Registrar el resultado de la prueba adecuadamente. (Ver Anexo 10.4.3.)

2.3.3.1.ABSORCIÓN POR CAPILARIDAD DEL HORMIGÓN (ASTM C 1585)

Este método de ensayo se usa para determinar la tasa de absorción (capacidad de absorción) de agua por el hormigón de cemento hidráulico midiendo el aumento en la masa de una muestra resultante de la absorción de agua como una función del tiempo cuando sólo uno superficie de la muestra se expone al agua. Este método sirve para determinar la susceptibilidad de un hormigón insaturado a la penetración de agua. Este método de ensayo se usa para medir la absorción de agua tasa, tanto de la superficie de hormigón y hormigón interior.

Figura 68 : Absorción por capilaridad del Hormigón (a) Elaboración de probetas de ensayo, (b) Muestras en el recipiente de ensayo, (c) Muestras después del ensayo, (d) Masa de muestra en el ensayo.

La absorción de agua de una superficie de hormigón depende muchos factores, incluyendo: (a) las proporciones de mezcla de hormigón, (b) la presencia de aditivos químicos y materiales cementicios suplementarios; (c) la composición y características físicas del componente de cemento y de los agregados; (D) el contenido de aire atrapado; (E) el tipo y la duración de curado; (f) el grado de hidratación o la edad; (G) la presencia de microfisuras; (h) la presencia de tratamientos de superficie tales como selladores o el aceite de encofrado; y (i) método de colocación que incluye consolidación y acabado. (*Ver Anexo 10.4.6.*)

Figura 69: Modelo de aplicación de Ensayo de Absorción por Capilaridad del Hormigón Elaborado por: J. Almache y D. Tapia.

PROCEDIMIENTO

a) Elaboramos las muestras de prueba, colocamos la mezcla de mortero en los moldes mostrados en la figura 68.a en tres capas, cada capa debe estar

compactada y dada golpes con el martillo de goma eliminando así el aire retenido. Enrasamos y desencoframos.

- b) Después de 28 días, cuando el hormigón alcance su resistencia máxima ensayamos.
- c) Colocamos las muestras a secar en el horno a una temperatura de 110 °C por 24 horas.
- d) Registramos el área que va a estar en contacto con el agua, debido a que las probetas solo estarán 3 mm en contacto con el agua, señalamos esta altura en el contorno de cada una de las muestras.
- e) Colocamos cada muestra en el recipiente de plástico transparente, apoyadas sobre 4 rodelas cada una, esto es para que exista mayor cantidad de agua que pueda ser absorbida.
- f) Colocamos agua hasta que llegue a la marca señalada en las probetas.
- g) Se registra el aumento de la masa para cada tiempo (1, 3, 5, 10, 15, 20, 60, 90, 120, 360 minutos y después de 24 horas)

La absorción, I, es el cambio en la masa dividida por la producto del área de la sección transversal de la muestra de ensayo y la densidad del agua. Para el propósito de este ensayo, la temperatura es despreciable y se usa un valor de densidad 0,001 g / mm^3 .

$$I = \frac{m_i}{r/d}$$

Dónde:

I= Absorción del hormigón, en *mm*.

 m_i = El cambio de la masa de la muestra en el tiempo t, en g

r= El área expuesta de la muestra, mm^2 .

d= Densidad del agua, en g / mm^3 .

2.4.4.7.DENSIDAD Y PORCENTAJE DE ABSORCION DEL HORMIGÓN EN ESTADO ENDURECIDO (PRINCIPIO DE ARQUIMIDES)

El principio de Arquímedes afirma que todo cuerpo sumergido en un fluido experimenta un empuje vertical y hacia arriba igual al peso de fluido desalojado, por tal motivo se decidió determinar la densidad y el porcentaje de absorción del hormigón endurecido cuando alcanza su resistencia máxima (28 días), mediante este método. Para este ensayo se elaboraron viguetas de 40x40x160 mm.

Figura 70: Densidad y Porcentaje de Absorción del Hormigón en estado endurecido (a) Muestra en el recipiente graduado, (b) Muestras después del ensayo, (c) Muestras en el horno, (d) Lectura 2(muestra sumergida).

PROCEDIMIENTO

Elaboración de probetas

- a) Preparamos la dosificación de hormigón estudiado en una proporción que nos permita obtener 5 viguetas de 40x40x160 mm (igual a las probetas de ensayo a flexión del mortero)
- b) Colocamos la mezcla en los moldes en tres capas, los cuales deben estar previamente aceitados y procedemos con la ayuda de una varilla a compactar con el número de golpes necesarios para cubrir toda el área y con el martillo de goma eliminamos el aire retenido.
- c) Repetimos el numeral b) para las tres capas de mezcla.
- d) Enrasamos y después de 24 horas desencoframos.

Procedimiento de Ensayo

 e) Cuando las muestras cumplieron los 28 días las sumergimos en agua por 24 horas.

- f) Retiramos las probetas del agua y con la ayuda de una franela retiramos el agua exterior hasta dejarla en estado sss.
- g) Colocamos el recipiente graduado sobre la balanza y procedemos a colocar el agua hasta una medida que nos permita sumergir completamente la muestra, registramos la masa. (Lectura 1)
- h) Colocamos la muestra saturada en el recipiente y registramos la nueva lectura de graduación.
- Retiramos la muestra del recipiente, posteriormente colocamos agua hasta la lectura y registramos el valor. (Lectura 2)
- j) Repetimos los pasos para cada una de la probetas, posteriormente colocamos las muestras en el horno a 110 °C por 24 horas para determinar su masa seca.

Mediante la aplicación de las siguientes formulas, determinamos la densidad y el porcentaje de absorción del hormigón endurecido (*Ver Anexo 10.4.6.*):

e) Densidad

$$d = \frac{S}{R - T}$$

Dónde:

d= Densidad del mortero, en g/ cm^3

S= Masa de la muestra seca, en g.

R= Masa del recipiente +agua en la segunda lectura, en g.

T = Masa del recipiente +agua en la primera lectura, en g.

f) Porcentaje de Absorción

$$\% Absorción = \frac{(W-D)}{D} * 100$$

Dónde:

W= masa de la muestra en estado sss, en g.

D= masa de la muestra seca, en g.

2.4.4.8.ENSAYO DE TRACCIÓN DE VARILLAS CORRUGADAS (INEN 109)

Figura 71: Ensayo de Tracción de varillas corrugadas (a) Ensayo de varilla lisa de \emptyset 4.0 mm, (b) Muestras en la máquina de ensayo, (c) Ensayo de varilla corrugada de \emptyset 6.0 mm, (d) Ensayo de varilla corrugada de \emptyset 8.0 mm.

Esta norma específica el método para el ensayo de tracción de materiales metálicos y define las propiedades mecánicas que se pueden determinar. El ensayo comprende el estiramiento de una probeta por una fuerza axial de tracción proporcional a sus dimensiones, mediante una máquina para ensayo de tracción para determinar durante su deformación una o más características mecánicas.

Una vez obtenidos los datos de carga y deformación se procedió a calcular las siguientes propiedades (*Ver Anexo 10.4.7.*):

I. Resistencia Máxima a la Tracción

La resistencia última a la tracción fue calculada de acuerdo a la siguiente ecuación:

$$\sigma_{max} = \frac{F_{max}}{A}$$

Dónde:

 σ_{max} = Esfuerzo ultimo a la tracción en MPa

 F_{max} = Carga Máxima antes de la ruptura en N

A= El área de la sección trasversal en mm^2

II. Deformación Unitaria

La deformación unitaria de las probetas fue calculada de acuerdo a la siguiente fórmula:

$$\epsilon_i = \frac{\epsilon_i}{L_o}$$

Donde:

 ϵ_i = Deformación Unitaria en el punto *i*, en mm/mm

 ϵ_i = Deformación en el punto *i* en mm

 L_o = Distancia de calibracion en mm

III. Módulo de elasticidad

El módulo de elasticidad se calculó de acuerdo con la siguiente ecuación:

$$E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_i - 20\% \epsilon_i)}$$

Dónde:

E= Módulo de elasticidad en MPa

 σ = Esfuerzo en MPa

 ϵ_i = Deformación unitaria en mm/mm.

IV. Esfuerzo de Fluencia

Es la pendiente de la línea paralela de la gráfica Esfuerzo vs. Deformación unitaria = 0.2% ϵ_i

2.4.4.9.ENSAYO DE LA RESISTENCIA A COMPRESIÓN DEL HORMIGÓN DE CEMENTO HIDRAULICO- CILINDROS (INEN 1572-1576)

Figura 72: Absorción por capilaridad del Hormigón (a) Elaboración de probetas de ensayo, (b) Muestras en el recipiente de ensayo, (c) Muestras después del ensayo, (d) Masa de muestra en el ensayo.

Esta norma establece los procedimientos para elaborar, curar y ensayar cilindros de hormigón, tomados de muestras representativas de hormigón fresco. Al hormigón fresco, una vez realizados los ajustes necesarios, se lo muestrea y se determinan sus características físicas, seguidamente se toman muestras de hormigón en los moldes especificados para el proyecto. Para posteriormente una vez que se haya producido el proceso de fraguado por 24 horas, desencofrar y ponerlos a curar. Los ensayos se los realizo a los 7, 14, 21 y 28 días en la maquina Universal, para poder determinar el crecimiento de la resistencia de la dosificación de hormigón utilizado en los elementos de concreto armado.

PROCEDIMIENTO

- a) Preparar la mezcla de hormigón utilizada para la fundición.
- b) Moldear los especímenes lo más rápido posible, sobre una superficie rígida y nivelada, en un lugar tan cercano como sea posible al lugar donde van a ser almacenados.
- c) Se coloca el material en 3 capas, mientras se coloca el hormigón en el molde, mover el cucharón alrededor del perímetro de la abertura del molde para asegurar una distribución del hormigón con la mínima segregación.
- d) Cada capa de hormigón debe ser compactada con 25 golpes con la parte redonda de la varilla de compactación y golpear el encofrado con martillo de goma, estos golpes tienen como único propósito cerrar cualquier agujero dejado por la varilla y eliminar cualquier burbuja grande de aire que hubiere sido atrapada.
- e) Al colocar la última capa, adicionar una cantidad de hormigón para asegurar que, después de la compactación, el molde quede lleno.
- f) Enrasar el hormigón con la parte superior del cilindro.
- g) Dejarlo fraguar por 24 horas y desencofrar.

Seguidamente una vez cumplidos los días de ensayo se determina la resistencia (Maquina Universal) de cada una de las paladas, midiendo tanto el diámetro, la altura y el peso con el fin de determinar la resistencia real. (*Ver Anexo 10.5.*).

I. Resistencia Máxima a la Compresión

La resistencia última a la compresión fue calculada de acuerdo a la siguiente ecuación:

$$\sigma_{max} = \frac{F_{max}}{A}$$

Dónde:

 σ_{max} = Esfuerzo ultimo a la compresión en MPa

 F_{max} = Carga Máxima antes de la ruptura en N

A= El área de aplicación de la carga, en mm^2 .

2.4.4.10. ENSAYO DE DATERMINACION DEL ASENTAMIENTO EN HORMIGONES DE CEMENTO HIDRAULICO (INEN 1578)

Figura 73: Absorción por capilaridad del Hormigón (a) Elaboración de probetas de ensayo, (b) Muestras en el recipiente de ensayo, (c) Muestras después del ensayo, (d) Masa de muestra en el ensayo.

Esta norma establece el método de ensayo para determinar el asentamiento del hormigón de cemento hidráulico. Una muestra de hormigón recién mezclado se coloca dentro de un molde con forma de un cono truncado y se compacta con una varilla. Se levanta el molde permitiendo que el hormigón se asiente. Se mide la distancia vertical entre la altura original y la del centro desplazado de la superficie superior del hormigón, luego de su deformación. Este valor se reporta como el asentamiento del hormigón. En

la determinación de la dosificación del hormigón de las muestras de concreto armado se obtuvo un asentamiento de 7 cm, mediante la aplicación del siguiente procedimiento:

PROCEDIMIENTO

- a) Humedecer el molde y colocarlo sobre una superficie plana, rígida, húmeda y no absorbente.
- b) El operador debe sostener firmemente el molde en su lugar durante el llenado y la limpieza del perímetro, parándose sobre los dos estribos
- c) Inmediatamente después de obtener la muestra de hormigón, llenar el molde en tres capas, cada una de aproximadamente un tercio del volumen del molde, con la ayuda del cucharón.
- d) Mover el cucharón siguiendo el perímetro de la abertura del molde para asegurar una distribución uniforme del hormigón con una mínima segregación.
- e) Compactar cada capa con 25 golpes utilizando la varilla de compactación. Para la capa inferior, es necesario inclinar la varilla ligeramente y dar aproximadamente la mitad de los golpes cerca del perímetro y luego continuar con golpes verticales en espiral hacia el centro.
- f) Al llenar la capa superior, mantener un excedente de hormigón sobre la parte superior del molde antes de empezar la compactación. Después de haber compactado la capa superior, enrasar la superficie del hormigón rodando la varilla de compactación sobre el borde superior del molde. De inmediato retirar el molde del hormigón levantándolo cuidadosamente en dirección vertical
- g) Inmediatamente medir el asentamiento determinando la diferencia vertical entre la parte superior del molde y el centro original desplazado de la superficie superior del espécimen.

2.4.5. ENSAYOS DE ADHERENCIA

La adherencia es una de las propiedades más influyentes en el desempeño del sistema de refuerzo FRCM, por lo tanto es importante estudiarla entre la matriz y la superficie a reparar (hormigón); y del refuerzo ya que está determinada por la compatibilidad entre la matriz y la fibra, y la capacidad de formar un compuesto que trabaje como

tal. Por tal motivo en nuestra investigación, estudiaremos la adherencia mediante el Ensayo de Corte y el ensayo de Pull Of, con el fin de determinar la fuerza necesaria para desprender el material compuesto del sustrato (hormigón) y la fuerza para separar el mortero (matriz cementicia) de la malla en el material compuesto FRCM.

2.4.5.1. ENSAYO DE CORTE

En el ensayo de corte directo ocasionalmente llamado ensayo de corte transversal, usualmente se procede a sujetar o apoyar la probeta del material, de tal modo que los esfuerzos flexionantes se minimicen a través del plano a lo largo del cual la carga cortante se aplique. Para la determinación del mejor método de adherencia se prepararon probetas de ensayo de corte de hormigón, en las cuales fue adherido el material compuesto mediante la aplicación de los siguientes métodos de unión:

Liso + FRCM

Rugoso +FRCM

Liso+ Primer + FRCM

Rugoso +Primer +FRCM

Figura 74: Ensayo de Corte- Métodos de Unión del sistema FRCM al sustrato Elaborado por: J. Almache y D. Tapia

PROCEDIMIENTO

I) Procedimiento para elaboración de muestras:

- a) Preparar la dosificación de hormigón necesaria para la elaboración de los 16 especímenes de ensayo.
- b) Aceitar el encofrado de medidas 4.00x28.50x3.00 cm, el cual no tiene base para facilitar la colocación posterior del material compuesto. Se realiza un encofrado por cada método de unión.

Figura 75: Ensayo de Corte- Encofrado de Madera.

c) Colocar el hormigón en cada uno de los encofrados y compactarlo con ayuda de una varilla de compactación y un martillo de goma de tal manera que desaparezcan todos los vacíos contenidos.

Figura 76: Ensayo de Corte- Hormigón fraguado.

d) Preparar el tejido cabuya, mojarlo con resina poliéster, cuidando que no se taponen las aberturas del tejido para que pueda ingresar el mortero. Hacer esto por lo menos 24 horas antes de la elaboración de las probetas.

Figura 77: Ensayo de Corte: Tejido con resina

e) Después de 14 días y con el fin de que el hormigón tenga la mitad de su resistencia se procede a preparar la superficie de la probeta con cada uno de los métodos de unión ya establecidos, para las muestras rugosas se procedió a realizar surcos transversales con la ayuda de la amoladora y como primer se utilizó SIKADUR 32- Primer.

Figura 78: Ensayo de corte -Preparación de Superficie Rugoso+Primer.

 f) Levantar el encofrado con la ayuda de rodelas y colocar la primera capa de mortero de la matriz; siempre y cuando la superficie se encuentre libre de impurezas, por lo tanto se limpió con solvente desengrasante.

Figura 79: Ensayo de corte-Colocación de la Primera Capa de mortero.

g) Posteriormente sumergir los tejidos de cabuya con resina en el mortero, cuidando de que todos los orificios estén cubiertos con material y colócalos dentro del molde aplicando presión con las manos para asegurar el llenado total de los vacíos. Este mismo procedimiento se aplica para el layer 2.

Figura 80: Ensayo de corte- Colocación del layers- tejido de cabuya.

 h) Consecutivamente aplicar la última capa de mortero y compactarlo, se enrasa de tal manera que quede una superficie lisa, después de 24 horas de fraguado se desencofra y se coloca la muestra en la piscina de curado.

Figura 81: Ensayo de corte-Muestras enrasadas.

 i) Después que el mortero cumplió sus 28 días hasta alcanzar la resistencia máxima, se procede con ayuda de la amoladora a cortar cada 4.00 cm tratando de no dañar los especímenes; consiguiendo así 4 muestras para cada método de adherencia.

Figura 82: Medidas del espécimen del ensayo de corte Elaborado por: J. Almache y D. Tapia

II) Procedimiento de ensayo

El ensayo a corte se realizó en la máquina de Marshall con una precarga de 66.723 N y una velocidad 0.0762 mm/min, la colocación de la probeta en la máquina de ensayo se muestra en la Figura 82.

Figura 83: Forma de aplicación de la carga en el ensayo de Corte Elaborado por: J. Almache y D. Tapia

Una vez obtenidos la Carga en la que se desprendió el material compuesto del sustrato se procedió a calcular el esfuerzo máximo y se determinaron los tipos de falla de cada una de las probetas ensayadas. El esfuerzo máximo de corte se calculó con la aplicación de la siguiente formula (*Ver Anexo 10.6.*):

$$\sigma_{max} = \frac{F_{max}}{A}$$

Dónde:

 σ_{max} = Esfuerzo ultimo a corte en MPa

F_{max}= Carga Máxima antes de la ruptura en N

A= El área de la probeta en el plano donde la fuerza cortante se aplique en mm^2

2.4.5.2.ENSAYO PULL-OFF, ADHERENCIA (ASTM D454 ADAPTACIÓN)

Uno de los métodos más empleados para evaluar con éxito la adherencia de los materiales de reparación y la resistencia en la superficie de los elementos de concreto, es el ensayo de adherencia; también denominado como ensayo de desprendimiento, o "Pull Off". Este método de prueba cubre un procedimiento para la evaluación de la fuerza de adherencia de un recubrimiento sobre sustratos rígidos tales como metal, hormigón o madera. La prueba determina la mayor fuerza perpendicular (en tensión) que una superficie puede soportar antes de que un tapón de material se separe, se asocia con la resistencia a la compresión del material; razón por la que el ensayo se realiza con dos propósitos fundamentales:

- Para estimar la resistencia superficial del concreto.
- Para evaluar la resistencia de la unión entre el material compuesto y el concreto reparado.

Sin embargo, esta prueba puede ser afectada por algunos factores tales como la profundidad de extracción de muestras en el sustrato, el espesor y la clase de resistencia del hormigón sustrato. Para nuestra investigación se realizó una losa de configuración mostradas en la Figura 83, en donde estudiaremos la fuerza necesaria para desprender una sección de 5 x5 cm, tanto en el lado izquierdo como en el derecho, se mide el desprendimiento del sistema FRCM (Mortero +tejido de cabuya en 2 layers) con el sustrato, mediante diferentes sistemas de adherencia.

Figura 84: Esquema Ensayo Pull Off- Elaborado por: J. Almache y D. Tapia.

Figura 85: Diseño Real losa Pull-Off

PROCEDIMIENTO

I) Preparación de la losa de ensayo:

a) Se preparó la losa de ensayo, de hormigón de la misma dosificación para la elaboración de los modelos de vigas y columnas, armada con varillas corrugadas Ø 8 mm @ 15 cm tanto longitudinal como transversalmente; las dimensiones de la losa y su distribución se presentan en la Figura 85.

Figura 86: Ensayo Pull Of- Fundición de la losa de ensayo.

b) Después de 7 días de la fundición de la losa, se prepararon las superficies de adherencia siguiendo la configuración antes mostrada, para las zonas rugosas se realizaron surcos con la ayuda de la amoladora y como primer se utilizó SIKADUR 32 Primer.

Figura 87: Ensayo Pull Of- Preparación de zonas para adherencia del material compuesto FRCM.

c) Después 7 días de fundida la losa, se colocó el material compuesto FRCM de acuerdo a la configuración prevista, el cual consta de 2 layers, preparando cada zona según corresponda; para que esté libre de impurezas se las limpio con solvente desengrasante.

Figura 88: Ensayo Pull Of- Colocación del Material compuesto FRCM sobre la losa de hormigón.

Figura 89: Ensayo Pull Of- Sistema FRCM enrasado, lado izquierdo.

II) Preparación de la superficie para ensayo:

d) Una vez que la matriz cementicia del material compuesto FRCM, ha alcanzado su resistencia máxima (28 días), se procede a cortar con el disco de la amoladora, el contorno de la zona donde se adherirá la placa fijador para el ensayo.

- e) Marcado y preparación de la zona de ensayo, la que debe quedar perfectamente limpia de cualquier residuo que pueda entorpecer la posterior adherencia de la placa de prueba; para mejores resultados es preferible limpiar la zona con solvente desengrasante.
- f) Colocación de la placa con un primer en nuestro caso utilizamos SIKADUR -32, el cual es de fraguado rápido y resistencia elevada.

III) Procedimiento de ensayo:

Para el ensayo se adaptó la máquina de Campo Test, mediante un mecanismo de acero, el cual nos permite tener la maquina perpendicular e inmóvil con el fin de poder manipular de manera correcta en el proceso de extracción del material compuesto. Las placas metálicas son de 5x5 cm y un e= 4 mm, los cuales se pega a la superficie con SikaDur 32- primer después de ser limpiada la superficie con un solvente desengrasante, la cuales tienen 2 agujeros roscados donde se coloca el acoplamiento de la máquina.

Figura 90: Ensayo Pull Of- Modo de prueba.

Una vez realizado el ensayo se procedió a verificar las fallas, calcular la resistencia y el índice de rentabilidad:

I. Calculo de la Resistencia al Arranque

$$Pl_{max} = \frac{F_{max}}{A}$$

Dónde:

 Pl_{max} = Resistencia al arranque, en MPa

Fmax = Carga Máxima antes de la separación en N

A= El área de prueba en mm^2 .

II. Índice de Rentabilidad

$$R_{SCi} = \frac{S_{POi} / (A_{po}d_i)}{C_i}$$

Dónde:

 R_{SCi} = Índice de rentabilidad, en N/mm^2 /\$

 S_{POi} =Resistencia al desprendimiento, en N/mm^2

 A_{po} = Área de la sección de arranque, en mm^2

 d_i = Revestimiento de unión dosificado, en kg/mm^2 (unidades dependen del material)

 C_i = Costo de la capa de unión, en \$/kg (unidades dependen del material)

Para el análisis del índice de rentabilidad se analizaron los volúmenes de los materiales para cada uno de los métodos de unión sustrato- matriz, analizando cada volumen por mm^2 , como muestra la Tabla 14 y el precio de cada uno de esto volúmenes como muestra la tabla 15.

Tabla 14: Ensayo Pull Off, Calculo del índice de rentabilidad- Cantidades de materiales.

Material	Cantidad por [mm ²]	
TIÑER	0.0001	lt
PRIMER	0.0005	kg
DISCO	0.0001	U

MATERIAL	COSTO \$	UNIDADES
TIÑER	2.00	lt
PRIMER	23.99	kg
DISCO	2.50	u

Tabla 15: Ensayo Pull Off, Cálculo del índice de rentabilidad- Precio estimado de materiales.

2.5. PROCESAMIENTO Y ANÁLISIS

La finalidad de este trabajo de investigación es buscar y analizar experimentalmente un método de adherencia que permita un comportamiento mecánico ideal, entre, el material compuesto FRCM y elementos estructurales de Hormigón Armado.

Para lograr este objetivo, específicamente se analizan un total de 24 elementos de hormigón armado, 12 vigas a escala 1:2 y 12 columnas a escala 1:3, proponiendo diferentes sistemas de conexión entre FRCM y los especímenes que se detalla a continuación.

Tabla 16:	Métodos	de Adherencia	Propuestos
-----------	---------	---------------	------------

Vigas	Columnas	Método de Adherencia	Codificación
3 (de control)	3 (de control)	SIN REFUERZO FRCM	SR
3	3	RUGOSO + FRCM	R+FRCM
3	3	LISO + PRIMER + FRCM	L+P+FRCM
3	3	RUGOSO + PRIMER+ FRCM	R+P+FRCM

Se utilizan diferentes sistemas de adherencia con el fin de comprobar cuál es el más óptimo para retrasar o evitar el fallo por delaminación y aprovechar en mayor medida las excelentes propiedades del material de refuerzo. Para valorar las diferentes propuestas, se realizan ensayos a flexión pura en vigas y aplicación de carga excéntrica en columnas de concreto armado, reforzadas con el material compuesto estudiado A continuación se presenta todos los procesos tanto de descripción, cálculo, elaboración de los modelos y métodos de ensayo.

2.4.1. DESCRIPCIÓN DE CADA METODO DE ADHERENCIA 2.4.1.1.SIN REFUERZO FRCM (SR)

Uno de los propósitos de la investigación además de la correcta adherencia, es evaluar la capacidad del sistema FRCM frente a esfuerzos flexionantes, por ello, no se procede a reforzar 3 vigas y 3 columnas con este sistema, lo cual nos permite verificar el aumento de la resistencia de los modelos reforzados con FRCM frente a los no reforzados.
2.4.1.2.RUGOSO + FRCM (R+FRCM)

La preparación de la superficie mediante este método consiste básicamente en realizar ligeros surcos o cortes transversales a las vigas y columnas, con la ayuda de la amoladora en la cara de la probeta en la cual se va instalar en material compuesto.

Figura 91: Preparación de la Superficie mediante cortes transversales

2.4.1.3.LISO + PRIMER + FRCM (L+P+FRCM)

Este sistema radica en mantener la superficie de la cara a flexión lisa, pero añadiéndole a esta un adhesivo epóxico, más concretamente Sikadur 32, el cual se compone de dos elementos, Componente A y Componente B y se dosifica con relación 2 a 1 respectivamente, para su aplicación la superficie puede estar seca, húmeda o saturada, pero libre de empozamientos de agua y partículas extrañas, polvo, grasas, residuos las cuales pueden ser removidas con un disolvente.

Figura 92. Método de Adherencia L+P+FRCM 116

2.4.1.4.RUGOSO + PRIMER + FRCM (R+P+FRCM)

Esta técnica pone en consideración los dos primeros métodos de adherencia descritos anteriormente, la aplicación del PRIMER en conjunto con las rugosidades, este sistema puede satisfacer en gran manera la unión entre el FRCM y el sustrato, puesto que, el PRIMER colma las rugosidades, existiendo así un mejor agarre entre sustrato, adhesivo y FRCM.

Figura 93: Método de Adherencia R+P+FRCM

2.4.2. ANÁLISIS DE MODELOS DE CONCRETO ARMADO 2.4.2.1.DETERMINACIÓN DEL ESFUERZO A FLEXIÓN EN VIGAS (Nilson, 2001)

Las vigas de concreto reforzado no son homogéneas debido a que están hechas de dos materiales diferentes. Por consiguiente, los métodos usados en el análisis de concreto reforzadas son distintos a aquellos utilizados en el diseño o investigación de vigas elaboradas completamente de acero, madera o cualquier otro material estructural. Sin embargo, los principios fundamentales que los comprenden son esencialmente los mismos. Uno de los supuestos fundamentales relacionados con la flexión es la determinación del esfuerzo de la viga.

Cuando los esfuerzos en las fibras exteriores son menores que el límite de proporcionalidad fp, la viga se comporta elásticamente. En este caso puede afirmarse que:

(a) El eje neutro pasa a través del centro de gravedad de la sección transversal.

(b) La magnitud de los esfuerzos de flexión normales a la sección aumenta directamente con la distancia desde el eje neutro y es máxima en las fibras extremas. El esfuerzo en cualquier punto de la sección transversal está representado por la ecuación.

$$f = \frac{My}{I}$$

Dónde:

f = esfuerzo de flexión a una distancia y medida desde el eje neutro.

M = momento flector extremo en la sección.

I = momento de inercia de la sección transversal con respecto al del eje neutro

El esfuerzo de flexión máximo ocurre en las fibras exteriores y es igual a:

$$\sigma = \frac{Mc}{I} = \frac{M}{S}$$

Dónde:

c = distancia desde el eje neutro hasta la fibra exterior.

S = I/c = módulo elástico de la sección transversal.

2.4.2.2. DISEÑO A FLEXIÓN DE VIGAS FUENTE – TEMAS DE HORMIGON ARMADO, Marcelo Romo Proaño, M.Sc.

Si se tuviera una viga de hormigón armado de sección rectangular, sometida a flexión, y se quisiera analizar el comportamiento en una sección transversal específica (por ejemplo la sección más solicitada de la viga), una parte de esa sección transversal estará sometida a esfuerzos y deformaciones de compresión de magnitud variable, mientras que otra parte de la viga estará sometida a solicitaciones de tracción. La resistencia del hormigón a tracción puede considerarse nula pues luego de su figuración esas tensiones desaparecen y son reemplazadas por tracciones en el acero de refuerzo.

Los códigos de diseño ACI y NEC establecen que cuando un elemento trabaja a flexión, el hormigón en la zona de compresión no debe sobrepasar de una deformación máxima unitaria (ϵ) de 0.003, (ACI 318-08, capítulo 10, artículo 10.2.3) lo que representa una posición conservadora para hormigones de hasta 420 Kg/cm2 de resistencia característica (estos hormigones tienen deformaciones unitarias de rotura superiores a 0.003 según los ensayos de laboratorio), y una posición ajustada a los resultados experimentales para hormigones entre 420 Kg/cm2 y 560 Kg/cm2 de mayor resistencia (en estos hormigones la deformación máxima es del orden de 0.003).. Simultáneamente

los códigos fijan en sus especificaciones que debe cumplirse que todo el acero de tracción debe superar el esfuerzo de fluencia (ɛy), en proporciones que dependen de que la estructura se ubique en zonas sísmicas o zonas no sísmicas.

2.4.2.2.1. BLOQUE DE COMPRESIÓN DE WHITNEY

Los aspectos matemáticos del manejo de la curva esfuerzo-deformación del hormigón en la zona comprimida del hormigón sometido a flexión pueden ser complejos. El Dr. Whitney propuso la utilización de un bloque de compresión rectangular cuya área sea equivalente a la que queda bajo la curva real, y cuyo centro de gravedad coincida aproximadamente con el centro de gravedad de la curva real. La investigación del Dr. Whitney fue acogida por el ACI (ACI 318-08, capítulo 10, artículo 10.2.7).

d= Peralte efectivo, es la distancia que va desde la fibra más comprimida hasta el centro de gravedad de los aceros de tensión

E.N. = Eje neutro

 $\boldsymbol{\varepsilon}$ = Deformación máxima

- ϵs = Deformación específica del acero
- εy = Deformación de fluencia
- σ = Esfuerzo máximo
- c= Distancia desde el eje neutro hasta la distancia más comprimida
- **f***c* = Esfuerzo máximo de compresión del concreto

a = Profundidad o altura del bloque rectangular equivalente de Whitney

C= Fuerza resultante de los esfuerzos de compresión ubica en el centro del rectángulo a a/2

T = Resultante de los esfuerzos de tensión.

El diagrama de deformaciones unitarias se caracteriza por tener un valor de 0.003 en la fibra extrema de compresión del hormigón, conforme a los códigos. El esfuerzo uniforme equivalente de compresión en el hormigón es "0.85 f'c".

La fuerza de tracción "T" es:

$$T = As \cdot Fy$$

Dónde:

As= Área del acero

Fy= Límite de fluencia del acero

Por equilibrio de fuerzas horizontales la resultante de la compresión en el hormigón *"Cc"* es igual en magnitud a la fuerza de tracción del acero *"T"*.

$$Cc = T$$

La fuerza de compresión "Cc" también puede calcularse como el producto del esfuerzo uniforme por el área sobre la que se aplica ese esfuerzo.

$$Cc = 0.85 \cdot f'c \cdot b \cdot a$$

Despejando la profundidad del bloque de Whitney "a":

$$a = \frac{Cc}{0.85 \cdot f'c * b}$$

La relación entre la profundidad del bloque de Whitney "a" y la distancia desde el eje neutro hasta la distancia más comprimida "c" es:

$$a = \beta 1 \cdot c$$

Donde $\beta 1$ = factor que relaciona la profundidad del bloque de Whitney con la profundidad del eje neutro.

Despejando la distancia desde el eje neutro hasta la distancia más comprimida "c" se tiene:

$$c = \frac{a}{\beta 1}$$

El valor del factor que relaciona la profundidad del bloque de Whitney con la profundidad del eje neutro " β 1" se estima a partir de la siguiente tabla:

f'c (kg/cm ²)	β1
210	0.85
280	0.85
350	0.80
420	0.75
490	0.70
≥560	0.65

Tabla 17: Valores de β 1 para diferentes resistencias a compresión del hormigón

El peralte efectivo "d" es

$$\mathbf{d} = \mathbf{h} - \mathbf{r}$$

Dónde:

h= altura de la viga

r= recubrimiento de concreto

El momento flector nominal "Mn" es igual a la magnitud de la resultante de compresión o tracción "C" multiplicada por el brazo de palanca (d - a/2).

$$Mn = T \cdot \left(d - \frac{a}{2}\right)$$

El momento flector resistente último "Mu" se obtiene al multiplicar el momento nominal "Mn" por el factor de reducción de capacidad "Ø"

$$Mu = \emptyset \cdot Mn$$

De donde:

$$Mu = \emptyset \cdot T \cdot \left(d - \frac{a}{2}\right)$$

Pero si el acero se encuentra en fluencia, la fuerza de tracción T seria:

$$T = As \cdot Fy$$

Reemplazando la Ecuación previa:

$$Mu = \emptyset \cdot As \cdot Fy \cdot \left(d - \frac{a}{2}\right)$$

Despejando la sección de acero

$$As = \frac{Mu}{\emptyset \cdot Fy \cdot \left(d - \frac{a}{2}\right)}$$

Despejando a

$$\mathbf{a} = \frac{\mathbf{As} \cdot \mathbf{Fy}}{\mathbf{0.85} \cdot \mathbf{f'c} \cdot \mathbf{b}}$$

Se Reemplaza ambas Ecuaciones obteniendo.

As
$$\cdot$$
 Fy = 0.85 \cdot f'c \cdot b \cdot d $\left[1 - \sqrt{1 - \frac{2 \cdot M_u}{0.85 \cdot \emptyset \cdot f'c \cdot b \cdot d^2}}\right]$

El factor de reducción de resistencia "Ø" se basa de acuerdo al ACI 318-05, Capítulo 9, Artículo 9.3.2, que dice:

- Secciones controladas por tracción Ø = 0.90

CUANTÍAS DE ARMADO

En una viga la cuantía de armado es el cociente entre la sección transversal de acero y la sección efectiva de hormigón; se representa con el símbolo "p".

Para vigas rectangulares se tendría la siguiente expresión

$$\rho = \frac{\mathrm{As}}{\mathrm{b.\,d}}$$

As = Sección transversal de acero de tracción

B = Base de la sección rectangular

CUANTÍA BALANCEADA

Dada una determinada sección de viga, con resistencias de hormigón y acero ya establecidas, la cuantía balanceada se refiere a la cantidad de acero necesaria que producirá falla tanto del hormigón como del acero al mismo tiempo.

$$\rho_{\rm b} = \frac{0.85 \cdot \beta \cdot f'c}{F_{\rm y}} * \left[\frac{6\ 120}{F_{\rm y} + 6\ 120} \right]$$

2.4.2.2.2. CUANTÍAS MÁXIMAS DE ARMADO EN VIGAS

La NEC establece que en zonas no afectadas por sismos, o estructuras cuyo efecto sísmico es despreciable, la máxima cuantía de armado permitida es el 75% de la cuantía balanceada

$\rho = 0.75 \ \rho b$

Mientras que para zonas sísmicas se utiliza un 50% de la cuantía balanceada.

$\rho = 0.50 \ \rho b$

2.4.2.2.3. CUANTÍAS MINIMAS DE ARMADO EN VIGAS

En aquellas vigas en que las dimensiones geométricas superar a la capacidad resistente requerida sin rotura por tracción del hormigón, se deberá proveer un armado mínimo que sea capaz de absorber la carga de tracción.

La cuantía mínima corresponde a

$$\rho = \frac{14}{Fy}$$

2.4.2.3.DISEÑO DE COLUMNA CON CARGA EXCENTRICA

Refuerzo longitudinal: [ACI. 21.4.3.1]

El área de refuerzo longitudinal no debe ser menor que el 1% del área de la sección

Refuerzo transversal [ACI. 7.10.5.3]

Ninguna barra longitudinal debe estar separada a más de 15cm libres de una barra apoyada lateralmente

2.4.2.3.1. Límites de espaciamiento y confinamiento de estribos [NEC-SE-HM 4.3.4]

Figura 95: Límites de espaciamiento entre estribos. Fuente: NEC-SE-HA

2.4.2.3.2. Área de acero en estribos [NEC-SE-HM 4.3.4.2]

$$A_{sh1} = \frac{0.3 * s * b_c * f'c}{F_v} \left(\frac{A_g}{A_c} - 1\right)$$

 $A_{sh2} = \frac{0.09 * s * b_c * f'c}{F_y}$

Dónde:

 A_{sh} = área total de las varillas que forman los estribos y amarres suplementarios con separación s y perpendicular a la dimensión bo, mm².

s = separación, centro a centro entre estribos, mm.

 b_c = distancia máxima, medida centro a centro, entre esquinas del estribo, mm

2.4.2.2.1. DETERMINACIÓN DE LOS MOMENTOS ACTUANTES EN LA COLUMNA (McCormack,2011)

Consideremos una columna inicialmente recta, sometida a las fuerzas de compresión P y momento inicial M= P.e, tal cual muestra la Fig. 96

Figura 96: Columna sometida a carga excéntrica

En este caso particular la disposición de las cargas P produce una flexión en la pieza con curvatura simple (momento de un solo signo a lo largo de su altura). La deformación de flexión produce en la sección que corresponde a la sección crítica, una excentricidad adicional Δ , que se agrega a la excentricidad inicial e para incrementar el momento flector que en esa sección se hace máximo.

Un análisis estructural basado en la teoría de primer orden nos daría un diagrama de momento flector como el que corresponde a la Fig. 97(b). Se ve que si la carga axial no estuviera presente, el Momento Mo sería constante a lo largo del elemento e igual al de los extremos Me. Para este caso la flexión del elemento sería como se indica con línea punteada en Fig. 97(a). Por acción de P el momento en cualquier punto se incrementa en una cantidad igual a P por el brazo de palanca. Ahora la deformación se indica con línea continua. Para el cálculo de las solicitaciones por la teoría de segundo orden se debe tener en cuenta la posición final de la pieza; en otras palabras, para el cálculo de la excentricidad se debe considerar la deformación de la pieza sometida a las cargas actuantes. Así entonces, un análisis basado en la teoría de segundo orden daría un diagrama de momento flector como el indicado en Fig. 97(b).

Figura 97: Momentos de 1er y 2do Orden en Columna Cargada Excéntricamente

Se observa que el considerar el efecto de la deformación propia del pilar en las solicitaciones aumenta el momento máximo desde (P.e) a $[P(e+\Delta)]$. Este efecto es comúnmente conocido como el efecto P- Δ . En elementos flexos comprimidos y esbeltos el efecto P- Δ puede adquirir relevancia, lo cual depende del tipo de carga. El valor del momento es entonces:

$M = M_o + P\Delta \circ M_c = \delta * M_o$ (Ec. 10 – 11, ACI)

Puede demostrarse que el momento aumentado puede estimarse muy bien multiplicando el momento primario por 1/(1 - P/Pc), donde *P* es la carga axial y *Pc* es la carga de pandeo de Euler igual a $\pi^2 E I/(k l u)^2$.

Se usa un amplificador de momento δ para estimar el efecto de la curvatura del miembro entre los extremos de los miembros a compresión.

$$\delta = \frac{C_{\rm m}}{1 - \frac{P}{0.75P_{\rm c}}}$$
 (Ec. 10 – 12, ACI)

Cm, puede tomar como máximo el valor de 1.0

La determinación del amplificador de momento δ consiste en los siguientes cálculos:

 $Ec = 57\ 000\sqrt{f'c}$ Para concreto de peso normal

Ig = momento de inercia total de la sección transversal de la columna respecto al eje centroidal bajo consideración.

$$Es = 29 \ x \ 10^6 \ \text{lb/plg}^2$$

 I_{SE} = momento de inercia del refuerzo respecto al eje centroidal de la sección. (Este *valor* = la suma de cada área de varilla multiplicada por el cuadrado de su distancia al eje centroidal del miembro en compresión.)

A continuación es necesario calcular EI. La expresión dada para EI en el código se desarrolló tomando en cuenta el flujo plástico, las grietas, etc. Si el tamaño de la columna y de las varillas ya se ha seleccionado o estimado, EI se puede calcular con la siguiente expresión.

$$EI = \frac{0.2 EI_c I_{g+} E_S I_{SE}}{1 + \beta_{dns}} (Ec. 10 - 14 ACI)$$

El término β_{dns} considera la reducción de la rigidez causada por cargas axiales sostenidas y es aplicable solamente a marcos sin desplazamiento lateral. Se define como la relación de la carga axial sostenida factorizada máxima dividida por la carga axial factorizada total asociada con la misma combinación de carga. Siempre se supone que tiene signo positivo y nunca se permite que exceda de 1.0.

Se calcula la carga de pandeo de Euler:

$$P_c = \frac{\pi^2 \cdot EI}{(klu)^2} \left(Ec. 10 - 13 \, ACI \right)$$

2.4.2.3. INDICES DE DUCTILIDAD Y ENERGIA 2.4.2.3.1. ENERGÍA DE FRACTURA (A. Fernández-Canteli, L. Castañón, B. Nieto, M. Lozano, 2014)

Uno de los parámetros relevantes que caracterizan la fractura del hormigón es su energía de fractura. Con el ensayo de flexión a 4 puntos en vigas, se obtiene la curva carga (kN) vs deformación (mm), el área bajo la curva representa la energía absorbida (W_f) en Joules, de la que la energía de fractura (G_f) se mide en joules/m² y se define como:

$$G_f = \frac{W_f}{A}$$

Dónde:

A =área de la sección transversal, m².

Figura 98: Load-displacement curve of concrete specimens.

En los materiales metálicos, el análisis de muestras CT representan un procedimiento habitual para determinar los parámetros de fractura. Por lo tanto, la norma ASTM E-399 especifica la geometría y la configuración general de este tipo de pruebas en materiales metálicos. La idea de su aplicación a pruebas en concreto sobre la fractura no es nueva, investigadores como Wagoner llevo a cabo este tipo de pruebas e hormigón de acuerdo con la norma antes mencionada.

2.4.2.3.2. DUCTILIDAD DE ENERGÍA (M. Maalej *, K.S. Leong, 2004)

Para examinar la ductilidad de las vigas reforzadas, se utilizaron dos criterios de ductilidad, es decir, la ductilidad de deflexión y la ductilidad de energía: Energía de ductilidad, definida por

$$\mu_{\Delta} = \frac{1 + \frac{A_t}{A_{elastic}}}{2}$$

DONDE:

 $A_t =$ Área bajo la curva carga vs deflexión, Joules

 $A_{elastic} =$ Área de la curva carga vs deflexión hasta la zona elástica, Joules

2.4.2.3.3. RESERVA DE LA ENERGÍA DE DEFORMACIÓN (Pierre Rochette1 and Pierre Labossie`re, 2000).

La ductilidad puede caracterizarse por el área bajo la curva carga vs deformación. Esta superficie proporciona información acerca de la energía de deformación acumulada en la estructura. Dos formulaciones, basadas en diferentes proporciones de áreas específicas bajo la curva de carga-deformación, se presentan.

El primero compara el área bajo la curva antes del pico de esfuerzo inicial a la zona después de este punto; la otra relación se basa en la diferencia de comportamiento entre el material real y la de un material elástico-perfectamente plástico.

Estas dos relaciones se calculan utilizando las zonas ilustradas en la Fig. 99 y se definen como sigue.

Figura 99: Reserva de la Energía de Deformación

Apost/Apeak, donde los parámetros Apost y Apeak son definidos en la figura. Esta relación proporciona información sobre la reserva de energía todavía está disponible después de que se haya alcanzado el pico inicial.

Atot/Aep, donde los parámetros Atot y Aep son, el área bajo la curva de tensióndeformación, y el área total delimitadas por una pendiente de rigidez elástica constante y la meseta plástica, respectivamente. En la Fig. 99 El primer parámetro corresponde a la suma de las áreas sombreadas, y el segundo parámetro es el resultado de sumar las áreas en gris. Cuando esta relación es cercana a 1.0, el elemento estructural muestra un comportamiento casi elástico-perfectamente plástico.

2.4.3. DISEÑO DE VIGA (SEGÚN NORMAS NEC Y ACI)

$$\sigma = \frac{M_c}{I} \rightarrow \sigma = \frac{\left(\frac{P}{2} \cdot a\right) \cdot \frac{h}{2}}{\frac{b \cdot h^3}{12}} \rightarrow \frac{\frac{P \cdot a \cdot h}{4}}{\frac{b * h^3}{12}}$$
$$\rightarrow \frac{3 \cdot P \cdot a \cdot h}{b \cdot h^3} \rightarrow \frac{3 \cdot P \cdot \frac{L}{3}}{b \cdot h^2}$$
$$\sigma = \frac{P \cdot L}{b \cdot h^2} \rightarrow$$
$$P = \frac{210 \, kg/cm^2 \cdot 13 \, cm \cdot (17 \, cm)^2}{140 \, cm} \rightarrow$$
$$P = 5635.50 \, kg$$

$P/2 = 2817.75 \ kg$

I) DISEÑO A FLEXIÓN

$$\rho = \frac{0.85 \cdot f'c}{F_y} \left[1 - \sqrt{1 - \frac{2 \cdot M_u}{0.85 \cdot \emptyset \cdot f'c \cdot b \cdot d^2}} \right]$$

$$\frac{0.85 \cdot 210 \ kg/cm^2}{4200} \left[1 - \sqrt{1 - \frac{2 \cdot 132 \ 434 \ kg \cdot cm}{0.85 \cdot 0.90 \cdot 210 \ kg/cm^2 \cdot 13cm \cdot (14.2cm)^2}} \right] = 0.01661$$

Cuantía Máxima

Cuantía Mínima

$$\rho_{max} = 0.5 \rho_b \qquad \qquad \rho_b = \frac{0.85 \cdot \beta \cdot f'c}{F_y} * \left[\frac{6\,120}{F_y + 6\,120}\right]$$

$$\rho_{max} = 0.0107 \qquad \qquad \rho_b = \frac{0.85 \cdot 0.85 \cdot 210 \, kg/cm^2}{4200} * \left[\frac{6\,120}{4200 + 6\,120}\right]$$

$$\rho_b = 0.0214$$

Área de acero inferior

$$\rho_{min} = \frac{14}{F_y} \qquad \qquad A_s = \rho \cdot b \cdot d$$

$$A_s = 0.0107 \cdot 13cm \cdot 14.1 \ cm$$

$$A_s = 1.96 \ cm^2 \rightarrow 2 \ \emptyset \ 10 \ mm + 1 \ \emptyset \ 8 \ mm$$

Área de acero superior

II) DISEÑO A CORTE

Cortante que resiste el concreto

$$V_{c1} = \mathbf{0.53} \sqrt{f'c} \cdot \mathbf{b} \cdot \mathbf{d} \rightarrow V_{c1} = 0.53 \sqrt{210 \, kg/cm^2} \cdot 13cm \cdot 14.2 \, cm = 1 \, 417.80 \, kg$$
$$V_{c2} = \left(\mathbf{0.5} \cdot \sqrt{f'c} + \mathbf{176} \cdot \mathbf{\rho} \cdot \frac{V_u \cdot \mathbf{d}}{M_u}\right) \cdot \mathbf{b} \cdot \mathbf{d}$$
$$= \left(0.5 \cdot \sqrt{210 \, kg/cm^2} + 176 \cdot 0.0107 \cdot \frac{40 \, 012.05 \, kg \cdot cm}{132 \, 434 \, kg \cdot cm}\right) \cdot 14.2 \, cm$$
$$\cdot 13 \, cm = 1 \, 442.59 \, kg$$

 $V_{c3} \le 0.93 \cdot \sqrt{f'c} \cdot b \cdot d \rightarrow V_{c3} \le 0.93 \cdot \sqrt{210 \, kg/cm^2} \cdot 13cm \cdot 14.2 \, cm = 2\,487.85 \, kg$ \succ Escogemos el menor valor de V_c , el cual es 1 417.80 kg

Cortantes

$$V_{S} = V_{n} - V_{c} = 3757.00 \ kg - 1417.80 \ kg = 2339.20 \ kg$$
$$V_{s} = 2.12 \cdot \sqrt{f'c} \cdot b \cdot d \rightarrow V_{s} = 2.12 \sqrt{210 \ kg/cm^{2}} \cdot 13cm \cdot 14.2cm = 5671.23 \ kg$$
$$\succ \ Escogemos \ el \ menor \ valor \ de \ V_{s}, \ el \ cual \ es \ 2339.20 \ kg$$

►
$$V_n = \frac{V_u}{\emptyset}$$
; $\emptyset = 0.75 \rightarrow V_n = \frac{2817.75 \, kg}{0.75} = 3757.00 \, kg$

Espaciamiento

$$s_{1} = \begin{bmatrix} \frac{d}{4} \rightarrow 14.2 \ cm \ /4 = 3.55 \ cm \\ 6 \cdot \emptyset \rightarrow 6 \cdot 1.0 \ cm = 6.00 \ cm \\ 100 \ mm \rightarrow en \ escala \ 1:2 = 5.00 \ cm \end{bmatrix}$$

Escogemos el menor valor el cual es 3.55 cm

$$s_2 = \left[\frac{d}{2}\right] \rightarrow 14.2 \ cm \ /2 = 7.10 \ cm$$

Longitud de confinamiento

$$\boldsymbol{L_o} = [\boldsymbol{2} \boldsymbol{H}] \rightarrow \boldsymbol{L_o} = 2 \cdot 17 \ cm = 34 \ cm$$

Área

$$A_{v1\,min} = \mathbf{3}.5 \cdot \left(\mathbf{b} \cdot \frac{\mathbf{s_1}}{f_y}\right) \to A_{v\,min} = \mathbf{3}.5 \cdot \left(13\,cm \cdot \frac{3.53\,cm}{4200}\right) \to 0.038\,cm^2$$
$$A_{v2\,min} = \frac{V_s \cdot \mathbf{s_1}}{f_y \cdot \mathbf{d}} \to A_{v2\,min} = \frac{2\,349.18\,kg \cdot 3.53\,cm}{4200 \cdot 14.2\,cm} = 0.1390\,cm^2$$
$$A_{v3\,min} = \frac{\mathbf{0}.196 \cdot \sqrt{f'c} \cdot b \cdot s}{f_y} \to A_{v3\,min} = \frac{0.196 \cdot \sqrt{210} \cdot 13\,cm \cdot 3.55\,cm}{4200} = 0.0312\,cm^2$$

Por lo tanto escogemos el mayor valor el cual es 0.1390 cm²que nos da varillas
 Ø de 4 mm en dos ramales.

Figura 100: Modelo de Diseño de Viga a escala 1:2

2.4.3.1. REFUERZO USADO EN LA EXPERIMENTACIÓN

Una viga de hormigón armado se analiza y se diseña para que complete su vida útil dentro de condiciones aceptables de servicio y resistencia, pero en una obra civil pueden surgir situaciones que generen cambios durante su concepción, afectando así negativamente la capacidad resistente de la misma. De acuerdo con esto, en muchas ocasiones es necesario realizar una reparación de la estructura de hormigón armado para recuperar su capacidad portante. En el modelo utilizado para la experimentación, el refuerzo con material compuesto FRCM se utilizará como suplemento de una armadura insuficiente, por tanto se pega en las zonas de tracción, con la dirección de las fibras paralelas a aquella de mayores tensiones de tracción (eje del elemento).

Figura 101: Modelo de Viga- Fotografía

2.4.4. COLUMNA CON CARGA EXCÉNTRICA

Longitud de la zona de confinamiento

$$L_{o} = \begin{bmatrix} H_{n}/6 = \frac{85 \text{ cm}}{6} = 14.166 \text{ cm} = 142 \text{ mm} \\ 450 \text{ mm} \rightarrow escala \ 1:3 = 150 \text{ mm} \\ > dim. transversal = 100 \text{ cm} \end{bmatrix}$$

Escogemos el mayor valor de L_o, el cual es 150 mm

Espaciamiento de los estribos

$$s_1 en L_o = \begin{bmatrix} 100 \ mm \to escala \ 1:3 = 33.33 \ mm \\ 6 \cdot \phi \to 6 \ \phi \ 6 \ mm = 36 \ mm \\ < D/4 \to \frac{10 \ cm}{4} = 250 \ mm \\ S_o = 100 + \frac{350 - H_x}{3} \to escala \ 1:3 \to S_o = 33.33 + \frac{117 - 73.3}{3} = 47.87 \ mm \end{bmatrix}$$

Escogemos el menor valor de s_1 , el cual es 25 mm

s_2 fuera de L_o

$$= \begin{bmatrix} 6 \cdot \emptyset \to 6 \ \emptyset \ 6 \ mm = 36 \ mm \\ 150 \ \to escala \ 1:3 = 50 \ mm \end{bmatrix}$$

 \blacktriangleright Escogemos el menor valor de s₂, el cual es 36 mm

Área de acero en estribos

$$A_{sh1} = \frac{0.3 * s * b_c * f'c}{F_y} \left(\frac{A_g}{A_c} - 1\right) \qquad A_{sh2} = \frac{0.09 * s * b_c * f'c}{F_y}$$
$$A_{sh1} = \frac{0.3 * 2.5 * 6.93 * 210}{4200} \left(\frac{100}{53.73} - 1\right) \qquad A_{sh2} = \frac{0.09 * 2.5 * 6.93 * 210}{4200}$$
$$A_{sh1} = 0.2238 \ cm^2 \qquad A_{sh2} = 0.07799 \ cm^2$$

Escogemos $A_{sh1} = 0.2238 \text{ cm}^2$ ya que es el mayor valor, el cual nos da un $\emptyset 4 \text{ mm en } 2 \text{ ramales.}$

Momentos actuantes en la columna por excentricidad

CALCULO DE LA CARGA P (REFERENCIA: A STUDY OF COMBINED BENDING AND AXIAL LOAD IN REINFORCED CONCRETE MEMBERS-UNIVERSITY OF ILLINOIS)

MÉTODO 1

$$P = \frac{f'c^{"} \cdot b \cdot d}{2 \cdot \alpha} \cdot \left[-\left(\frac{e'}{d} - 1\right) + \sqrt{\left(\frac{e'}{d} - 1\right)^{2} + 4 \cdot \alpha \cdot \rho \cdot \frac{f_{yp}}{f'c^{"}} \cdot \frac{d'}{d}} \right]$$

$$f'c^{"} = 0.85 \cdot 210 \ kg/cm^{2} = 178.5 \ kg/cm^{2}$$

$$\rho = \frac{A_{s}}{b \cdot d} = \frac{0.565 \ cm^{2}}{10 \ cm \cdot 7.97 \ cm} = 0.0071$$

$$P = \frac{178.5 \ kg/cm^{2} \cdot 10 \ cm \cdot 7.97 \ cm}{2 \cdot 0.5}$$

$$\cdot \left[-\left(\frac{7.97 \ cm}{7.97 \ cm} - 1\right)^{2} + 4 \cdot 0.5 \cdot 0.0071 \cdot \frac{4200 \ kg/cm^{2}}{178.5 \ kg/cm^{2}} \cdot \frac{5.94 \ cm}{7.97 \ cm} \right]$$

$$P = 7 \ 0.96.80 \ kg \to 7.10 \ T$$

-

MÉTODO 2

$$\boldsymbol{P} = \frac{2 \cdot A_s \cdot f_{yp} \cdot d'}{(e'-d) + \sqrt{(e'-d)^2 + 2 \cdot A_s \cdot \frac{f_{yp}}{f'c''} \cdot \frac{d'}{b}}}$$

$$P = \frac{2 \cdot 1.131 \ cm^2 \cdot 4200 \ kg/cm^2 \cdot 5.94 \ cm}{(7.97 \ cm \ -7.97 \ cm) + \sqrt{(7.97 \ cm \ -7.97 \ cm)^2 + 2 \cdot 0.56 \ cm^2 \cdot \frac{4200 \ kg/cm^2}{178.5 \ kg/cm^2} \cdot \frac{5.94 \ cm}{10 \ cm}}$$

$$P = 7 \ 096.80 \ kg \rightarrow 7.10 \ T$$

CÁLCULO DEL MOMENTO

Calculo de la carga P según teoría de la secante

$$\boldsymbol{\sigma}_{MAX} = \frac{P}{A} \cdot \left[1 + \left(\frac{e \cdot c}{r^2}\right) \cdot \sec\left(\frac{L}{2 \cdot r} \cdot \sqrt{\frac{P}{E \cdot A}}\right) \right]$$

$$\mathbf{2100} = \frac{P}{0.01} \cdot \left[1 + \left(\frac{0.05 \cdot 0.05}{\sqrt{\frac{0.1 \cdot 0.1^3}{12}}}\right) \cdot \sec\left(\frac{0.85}{2 \cdot \sqrt{\frac{0.1 \cdot 0.1^3}{12}}} \cdot \sqrt{\frac{P}{2153810 \cdot 0.01}}\right) \right]$$

P = 5.14 T

Deflexión Máxima

$$\boldsymbol{v}_{MAX} = \boldsymbol{e} \cdot \left[\sec \frac{\pi}{2} \left(\sqrt{\frac{P}{P_c}} \right) - 1 \right]$$
$$\boldsymbol{v}_{MAX} = 0.05 \ m \cdot \left[\sec \frac{\pi}{2} \left(\sqrt{\frac{7.09 \ T}{39.369 \ T}} \right) - 1 \right]$$
$$\boldsymbol{v}_{MAX} = 0.0136 \ m \rightarrow 13.6$$

Momento Mayorado

$$M = [P \cdot (e + v_{MAX})]$$
$$M = [7.09 T \cdot (0.05 m + 0.0136m)]$$
$$M = 0.451 T \cdot m$$

MOMENTO SEGÚN DISEÑO ACI

$M_o = P \cdot e$ (1er Orden)

$$M_o = [7.09 \, Ton \, \cdot 0.05 \, m] = 0.3545 \, T * m$$

Cálculo EI

$$EI = \frac{0.2 EI_c I_{g+} E_s I_{sE}}{1 + \beta_{dns}}$$
(ECUACIÓN 10-14)
$$EI = \frac{0.2 \cdot 2153810 T/m^2 \cdot 5.533X10^{-6} m^4 + 21000000 T/m^2 \cdot 1x10^{-7}m^4}{1 + 0.6}$$
$$EI = 2.802 T \cdot m^2$$
$$EI_c = 2153810 T/m^2$$
$$135$$

$$E_{s} = 21\ 000\ 000\ T/m^{2}$$

$$I_{g} = \frac{b \cdot h^{3}}{12} = \frac{0.10 \cdot 0.10^{3}}{12} = 8.333X10^{-6}\ m^{4}$$

$$I_{SE} = \left[\left(\frac{\pi}{4} \cdot r^{4}\right) + A\ d^{2}\right] \cdot 4 = \left[\left(\frac{\pi}{4} \cdot 0.003^{4}\right) + (2.827x\ 10^{-5} \cdot 0.0297^{2}\right] \cdot 4$$

$$I_{SE} = 1x10^{-7}m^{4}$$
(REGLA.10.10.4.1)

Cálculo de Momento Mayorado

$$P_{c} = \frac{\pi^{2} \cdot EI}{(kl)^{2}} = \frac{\pi^{2} \cdot 2.882 T \cdot m^{2}}{(1 \cdot 0.85 m)^{2}} = 39.369 T$$

$$C_{m} = 0.6 + 0.4 \frac{M_{1}}{M_{2}} = 1$$

$$\delta = \frac{C_{m}}{1 - \frac{P}{0.75P_{c}}} = \frac{1}{1 - \frac{7.09 T}{0.75 \cdot 39.369T}} = 1.316$$
(ECUACIÓN 10-12)

$$\boldsymbol{M}_{c} = \boldsymbol{\delta} * \boldsymbol{M}_{o} = 1.316 \cdot 0.3545 \, Ton * m = 0.4665 \, T \cdot m \tag{ECUACIÓN 10-11}$$

Carga y Momento Teórico que puede soportar la columna.

$$P = 7.10 T M_c = 0.4665 T \cdot m$$

Figura 102: Modelo de Diseño de Columna a escala 1:3

Figura 103: Modelo Real de Columna a escala 1:3

2.4.4.1.1. DIAGRAMA DE ITERACCIÓN DE LA COLUMNA

Cargas teóricas que puede resistir la columna Momento [T·m]: Carga [T]: 7.100 0.467 Momento Último Carga Última Momento Último Carga Última Momento **Carga Nominal** Nominal ø 0.90 ø 0.90 ø 0.65 ø 0.65 [T·m] [T] [T] [T·m] [T] [T·m] 0.000 22.600 0.000 20.340 0.000 14.690 0.160 18.270 11.876 0.144 16.443 0.104 0.300 14.430 0.270 12.987 0.195 9.380 0.340 7.590 0.306 6.831 0.221 4.934 0.240 2.100 0.216 1.890 0.156 1.365 Gráfica Carga vs. Momento 25 20 - Curva Nominal **o** = 0.90 15 ø = 0.70 Carga [T] 🛛 Carga Actuante 10 \times 5

DIAGRAMA DE ITERACCIÓN DE LA COLUMNA

0.25

Momento [T.m]

0.3

0.35

0.4

0.45

0.5

0

0

0.05

0.1

0.15

0.2

2.4.5. ELABORACIÓN DE LAS VIGAS Y COLUMNAS DE CONCRETO ARMADO REFORZADAS CON EL SISTEMA FRCM.

Una vez definidos todos los parámetros y características de los materiales a utilizarse se procede al armado y fundición de todos los modelos (12 vigas y 12 columnas). La fundición de las mismas se realizó en 2 días con el fin de reutilizar los encofrados, los materiales utilizados son, arena de río, proveniente de la mina de Penipe (Chimborazo) y ripio, procedente de la mina "La Politécnica", con el fin de que el agregado grueso pueda adentrarse entre los espacios del armado y recubrimiento, el ripio se tamiza por una malla de abertura 3/8", cabe recalcar que ambos agregados fino y grueso se secaron previamente al horno a una temperatura de 110°C, de manera que no exista variación en los porcentajes de agua, para la fundición es importante el uso de un vibrador, dado que son modelos a escala, el uso del mismo permite eliminar burbujas e aire perjudiciales para la resistencia estructural y sirve como medio para amalgamar los materiales

Se realizaron cilindros de hormigón para cada día de fundición, de la misma mezcla destinada a las vigas y columnas, 21 el primer día, y 16 el segundo día con el objeto de ir controlando y conociendo la resistencia a la cual se encuentran las vigas y columnas al momento de ser ensayadas.

Figura 104: Fundición de modelos de concreto armado: a) Vibración de viga, b) Modelos fundidos y desencofrados, c) Modelos vigas y columnas armadas, d) Cilindros.- Hormigón Fresco, e) Cilindros desencofrados de los dos días de fundición, f) Mezcladora.

2.5.5. PREPARACIÓN DE LA SUPERFICIE Y COLOCACIÓN DEL MATERIAL COMPUESTO EN VIGAS Y COLUMNAS

El sistema FRCM está compuesto de tejido de cabuya como refuerzo, cada tejido tratado previamente con resina poliéster tiene unas dimensiones de 139 cm de largo y 12 cm de ancho, en el caso de las vigas, mientras que, para las columnas la dimensión del tejido es de 84 cm de largo y 9 cm de ancho. Para cada elemento de hormigón armado se aplicara el sistema FRCM con un total de 3 tejidos de cabuya separados entre ellos por una capa fina de mortero, el número de tejidos se determina mediante el ensayo a flexión y tracción del material compuesto, con los cuales se constata que, el uso de la fibra del saco de cabuya tiene más resistencia que el tejido en rollo.

Figura 105: Layers de Tejido de Cabuya

Para la colocación del sistema FRCM en los modelos a escala, se debe esperar como mínimo una semana después de la fundición de los mismos, ya que la manipulación temprana de los modelos a una edad prematura del concreto podría ocasionar una disminución de su resistencia final.

Figura 106: Fundición de modelos de concreto armado: a) Vibración de viga, b) Modelos fundidos y desencofrados, c) Modelos vigas y columnas armadas, d) Cilindros.- Hormigón Fresco.

Una vez que se realizan todos los pasos previos y la preparación de la superficie según cada método de adherencia, se procede con la instalación del sistema de refuerzo FRCM, siguiendo los pasos:

- a) Humedecer la superficie del sustrato con agua, para evitar que este absorba agua de amasado del mortero provocando aparición temprana de grietas.
- b) Aplicar la primera capa de mortero sobre el elemento, asegurando de tener un espesor aproximadamente constante en toda la extensión de la superficie.

Figura 107: Colocación de la primera capa de mortero en vigas y columnas.

- c) Se compacta el mortero embebiendo la pasta con las ayuda de las manos, para que esta penetre pueda ocupar todos los espacios y eliminar las burbujas de aire atrapadas por el mezclado.
- d) Cubrir cada layer con la pasta de mortero presionando sobre cada tejido de manera que la pasta se incruste lo mejor posible en el layer

Figura 108: Cortado del tejido de cabuya con resina y colocación de la matriz.

- e) Ubicar el primer layer sobre la fina capa de mortero colocada anteriormente, ejercer pequeños golpes con las manos para eliminar burbujas de aire y asegurar una mejor penetración de la pasta en el layer
- f) Repetir el proceso hasta llegar al tercer layer, enrazar la superficie, luego de unos minutos, colocar papel absorbente previamente humedecido cubriendo al material compuesto de manera que se evite la aparición de grietas por el calor de hidratación que sufre el mortero

Figura 109: Compactación con la manos de la malla en la capa de mortero. Después de dejarlo fraguar algunas horas, se procede a colocar papel absorbente para evitar la evaporación del agua.

Figura 110: Fundición de modelos de concreto armado: a) Vibración de viga, b) Modelos fundidos y desencofrados, c) Modelos vigas y columnas armadas, d) Cilindros.- Hormigón Fresco.

2.5.6. ENSAYOS PARA EVALUAR LA ADHERENCIA DEL SISTEMA FRCM EN VIGAS Y COLUMNAS

En los Laboratorios de Ingeniería Civil, las columnas fueron ensayadas a los treintaicinco días de fabricación y veintiocho días de la colocación del material

compuesto FRCM., los ensayos se realizaron con un actuador hidráulico para doblado de tubos que permite controlar la fuerza.

2.4.6.1. ENSAYO DE FLEXIÓN PURO EN VIGAS (4 PUNTOS) (Adaptación, ASTMC 78 – 02)

La resistencia a la flexión es una medida de la falla por momento de una viga. Se mide mediante la aplicación de cargas puntuales en los puntos tercios de la viga. Sea la viga de la figura, los diagramas de solicitaciones son los que se muestran a continuación:

Figura 111: Diagramas de corte y momento de viga

Un trozo de viga se dice que trabaja a flexión pura, cuando, en cualquier sección de ese trozo solo existe momento flector, es decir, una viga bajo un momento flexionante constante. Puesto que, el propósito de la investigación no radica en evaluar el esfuerzo a corte, sino más bien, evaluar la viga a flexión, mediante este esfuerzo podemos examinar la adherencia y el aumento de la resistencia de la viga con el sistema FRCM, la misma se diseñó para dos cargas puntuales de 2.82 T cada una separadas a 47 cm entre sí, lo que permite que la viga este sometida a un mayor esfuerzo de flexión, que el de cortante.

2.4.6.1.1. PROCEDIMIENTO

Las vigas requieren estar pintadas de color blanco, con el objeto de trazar líneas longitudinales, espaciadas a cada centímetro, en las caras de aparición de fisuras de la viga, esto permite observar de mejor manera la aparición y crecimiento de las grietas a medida que se aplica la carga.

Instalar los apoyos de la viga a una distancia de 140 cm uno respecto al otro, verificar que los apoyos se encuentren totalmente estáticos y alineados entre sí.

Colocar la viga encima de los apoyos de manera que quede totalmente alineada tanto horizontal como verticalmente respecto a los rodillos superiores, supervisando que el material compuesto no entre en contacto con los apoyos de la viga. Poner en contacto los rodillos superiores, exactamente a los tercios de la viga.

Plantar los deformímetros mecánicos marca HUMBOLDT de una pulgada de recorrido los cuales son colocados estratégicamente mediante la adecuación de diferentes dispositivos para lograr plantarlos de manera correcta, con el propósito de medir las deformaciones que experimenta la viga en su zona de compresión, tracción y la deflexión alcanzada al centro de la viga.

Proceder con la aplicación de carga, la misma que requiere de un operador que tenga conocimiento del uso de la máquina, la aplicación de la carga se da de manera progresiva en Newtons,

El ensayo finaliza cuando el deformímetro encargado de medir la deflexión de la viga ha finalizado su recorrido y no puede otorgar más datos. Se registran los valores de carga, deformaciones, número y longitud de grietas, fallas de desprendimiento y se procede a realizar los siguientes cálculos.

I. Ductilidad de Deformación

$$\mu_{\rm E} = \frac{{\rm E}_{\rm u}}{{\rm E}_{\rm y}}$$

Dónde:

 $\mathcal{E}_{u} = Deformación de rotura$

 $\mathcal{E}_{v} = Deformación Elástica Máxima$

II. Energía Absorbida

Área total bajo la curva carga (kN) vs. Deformación (mm) medida en joules

III. Energía de Fractura

$$G_f = \frac{W_f}{A}$$

 W_f = Área total bajo la curva

A =Área de la sección transversal del elemento.

IV. Ductilidad de Energía

$$\mu_{\Delta} = \frac{1 + \frac{A_t}{A_{elastic}}}{2}$$

 $A_t =$ Área total bajo la curva carga (kN) vs. Deformación (mm), Joules

 $A_{elastic} =$ Área bajo la zona elástica

V. Reserva de la Energía

$$\mu_E = \frac{Apost}{Aelastic}$$

Apost = Área bajo la curva carga (kN) vs deformación (mm) posterior a la zona elástica.

VI. Esfuerzo de la viga

$$\sigma_{max} = \frac{P_{max} \cdot L}{b * d^2}$$

 σ_{max} = Esfuerzo ultimo a la flexión en MPa

Pmax = Carga Máxima antes de la ruptura en N

L=Longitud entre apoyos, mm

b= Ancho de la sección transversal en mm

d=Alto de la sección transversal en mm

VII. Deformación Unitaria

La deformación unitaria de las probetas fue calculada de acuerdo a la siguiente fórmula:

$$\epsilon_i = \frac{\epsilon_i}{L_o}$$

Donde:

 ϵ_i = Deformación Unitaria en mm/mm

 \in_{v} = Deformación deflexión viga en mm

 L_o = Distancia de calibracion en mm

2.4.6.2. PRUEBAS EN COLUMNAS

En los Laboratorios de Ingeniería Civil, las columnas fueron ensayadas a los treintaicinco días de fabricación y veintiocho días de la colocación del material compuesto FRCM. Los elementos se ensayaron a compresión y para crear el efecto de flexión-compresión la carga se aplicó sobre la ménsula, debido que al aplicar la carga de forma excéntrica se somete a la columna a un momento.

Las columnas requieren estar pintadas de color blanco, con el objeto de observar de mejor manera la aparición y crecimiento de las grietas a medida que se aplica la carga.

Centrar la mesa metálica tomando como referencia el pistón de carga, la cual se utiliza para lograr la altura adecuada para la adaptación a la máquina.

Apoyar encima de la mesa metálica, una bisagra o rodillo inferior y sobre esta una placa1 de 3cm de espesor para apoyar la columna, verificar que la bisagra y la placa

estén perfectamente centradas. La placa 1 deberá estar inmóvil y totalmente horizontal con la ayuda de un soporte hasta empezar el ensayo

Colocar la columna encima de la placa1, alinear la placa2 (superior) y la bisagra o rodillo superior, los rodillos deberán estar ubicados a una distancia exacta de 5cm con respecto al eje longitudinal de la columna y perfectamente alineados uno del otro, una vez colocada la columna y verificada su perfecta alineación, se le aplica una precarga de 1000 [N] de manera que la columna quede inmóvil

Plantar un total de 4 deformímetros marca HUMBOLDT de una pulgada de recorrido con sus respectivos soportes, para tomar las mediciones de; deformación longitudinal, deformación por pandeo al centro de la columna, giro de la placa inferior y giro de la placa superior

Quitar el soporte de la placa 1 y proceder con la aplicación de carga, el ensayo finaliza cuando la carga no aumenta y disminuya bruscamente.se registran los valores de carga, deformaciones, fallas de desprendimiento y se procede a realizar los siguientes cálculos.

I. Ductilidad de Deformación

$$\mu_{\rm E} = \frac{{\rm E}_{\rm u}}{{\rm E}_{\rm y}}$$

Dónde:

 $\mathcal{E}_{u} = Deformación de rotura$

 $\mathcal{E}_{v} = Deformación Elástica Máxima$

II. Ductilidad de Energía

$$\mu_E = \frac{Atot}{Aep}$$

 A_{tot} = Área total bajo la curva carga (kN) vs. deformación (mm), Joules

 $A_{ep} =$ Área total delimitada por una pendiente de rigidez elástica constante y la meseta plástica

III. Reserva de la Energía

$$\mu_E = \frac{Apost}{Aelastic}$$

Apost =Área bajo la curva carga (kN) vs deformación (mm) posterior a la zona elástica.

IV. Curvatura de la Columna

Al realizar ensayos con carga excentrica mediante el sistema de a fig. los rodillos provocan que las placas tanto inferior como superior produzcan una rotación

produciendo los efectos $P\Delta$ Por supuesto, como se muestra en la Fig. 10c, esto sólo se produce una vez que la carga excéntrica es suficiente para superar la etapa de compresión inicial.

V. Para el cálculo de la curvatura se utiliza la siguiente expresión:

$$\phi = \frac{\varepsilon_1 - \varepsilon_2}{t}$$

 $\phi = \text{curvatura, mm}^{-1} \times 10^{5}$ t = anchura de la sección $\epsilon_{1} = \frac{Hef - Def1}{Hef}$ $\epsilon_{1} = \frac{Hef - Def2}{Hef}$ Hef = H + 30 mm Def1 = Hef - (def. superior + def. inferior) Def2 = Hef + (def. superior + def. inferior)Dónde:

Hef = altura efectiva

Def1 = deformación longitudinal (lado comprimido) Def2 = deformación longitudinal (lado de tracción) $\mathcal{E}_1 =$ deformación longitudinal (lado comprimido) $\mathcal{E}_2 =$ deformación longitudinal (lado de tracción)

2.4.7. ESQUEMAS DE ENSAYO

Figura 112: Esquema de aparatos de prueba-Flexión en vigas y carga excéntrica en columnas: a) Esquema de aparatos para ensayo de flexión pura en vigas), b) Prueba de flexión en vigas, c) Esquema de aparatos para ensayo, d) Prueba de carga excéntrica en columnas.

Figura 113: Vigas después del ensayo

Figura 114: Columnas después del ensayo

CAPÍTULO III

3. RESULTADOS 2.4. CARACTERIZACIÓN DE LA FIBRA Y TEJIDO DE CABUYA

Propiedades	Unidad	Tejido	Saco
Densidad de la fibra	g/cm ³	1.356	1.441
Masa por unidad de Área	g/m^2	348.900	394.200
Densidad Lineal-Tex	g/1000m	624.848	763.330
Porcentaje de Absorción	%	54.	231
Ensayo de tracción en Tejidos (Rollo)	Unidad	Con Resina	Sin Resina
Esfuerzo máximo	МРа	249.040	208.580
Carga máxima	Ν	918.303	768.649
Deformación Unitaria máxima	mm/mm	0.060	0.076
Módulo de elasticidad	МРа	5314.883	3823.234
Ensayo de tracción en Tejidos (saco)	Unidad	Con Resina	Sin Resina
Esfuerzo máximo	МРа	349.680	304.659
Carga máxima	Ν	2222.811	1936.626
Deformación Unitaria máxima	mm/mm	0.050	0.044
Módulo de elasticidad	МРа	8075.735	8739.921

 Tabla 18: Tabla de resumen de la caracterización de la fibra y tejido de cabuya.

2.5. CARACTERIZACIÓN DEL MORTERO (MATRIZ CEMENTICIA)

PROPIEDADES	UNIDAD	VALOR
Granulometría- Tamaño maximo nominal	mm	0.60
Masa unitaria suelta-Arena Tamizada	g/cm ³	1.227
Masa unitaria compactada-Arena Tamizada	g/cm ³	1.363
Densidad-Árido Fino	g/cm ³	2.575
Absorción del Árido Fino	%	5.143
Flujo en morteros	%	122.250
Tiempo de Fraguado (inicial)	min	67.000
Tiempo de Fraguado (final)	min	197.000
Contenido de aire	%	3.620
Densidad en estado Fresco	g/cm ³	2.091
Densidad en estado endurecido (28 días)	g/cm ³	2.035
Absorción de Mortero en estado Endurecido (28 días)	%	10.763
Resistencia a Flexión en viguetas de morte	ero (28 días)	
Resistencia a la flexión	МРа	7.469
Carga máxima	Ν	3186.908
Deformación Unitaria máxima	mm/mm	0.010
Deflexión Máxima	mm	0.443
Módulo de elasticidad	МРа	799.102
Resistencia a Compresión de cubos de mor	tero (28 días)	
Esfuerzo máximo	МРа	46.678
Carga máxima	Ν	37565.254
Módulo de elasticidad	МРа	794.413

Tabla 19: Tabla de resumen de la caracterización del mortero

2.6. CARACTERIZACIÓN DEL MATERIAL COMPUESTO

PROPIEDADES	UNIDAD	(3L) Tejido	(2L) Tejido	(3L) Saco	
Densidad en estado endurecido (28 días)	g/cm ³	1.701	1.789	1.829	
Absorción de Mortero en estado Endurecido (28 días)	%	15.239	13.106	12.322	
Ensayo de Tra	cción (28 días)				
Esfuerzo máximo	МРа	3.127	3.341	7.625	
Carga máxima	Ν	2501.598	2430.066	6104.892	
Deformación Unitaria máxima	mm/mm	0.055	0.075	0.047	
Módulo de elasticidad	МРа	345.857	502.761	581.007	
Ensayo de Fle	xión (28 días)				
Resistencia a la flexión	МРа	11.164	10.598	13.846	
Carga máxima	Ν	476.339	452.195	590.759	
Deformación Unitaria máxima	mm/mm	1.082	1.265	0.386	
Deflexión Máxima	mm	10.143	9.991	7.780	
Módulo de elasticidad	МРа	470.180	474.622	785.130	

Tabla 20: Tabla de resumen de la caracterización del material compuesto

2.7. CARACTERIZACIÓN DE MATERIALES PARA HORMIGÓN

PROPIEDADES	UNIDAD	VALOR
Tamaño máximo nominal-Ag. Fino	mm	4.750
Tamaño máximo nominal-Ag. Grueso	mm	38.100
Tamaño máximo nominal-Ag. Grueso Tamizado	mm	9.520
Masa unitaria suelta-Ag. Fino	g/cm ³	1.609
Masa unitaria compactada-Ag. Fino	g/cm ³	1.721
Masa unitaria suelta-Ag. Grueso	g/cm ³	1.361
Masa unitaria compactada-Ag. Grueso	g/cm ³	1.450
Contenido de Aire del Concreto	%	2.760
Densidad-Ag. Grueso	g/cm^3	2.477
Absorción del Ag. Grueso	%	5.143
Densidad en estado Fresco del Concreto	g/cm^3	2.236
Densidad en estado endurecido Concreto	g/cm ³	2.106
Absorción en estado endurecido Concreto	%	8.755

Tabla 21: Tabla de resumen de la caracterización del concreto

2.7.1. VARRILLAS CORRUGADAS

Tabla 22: Tabla de resumen de la caracterización de verillas corrugadas

			DIÁMETRO	
ENSAYO DE TRACCIÓN DE VARRILLAS CORRUGADAS	UNIDAD	4 mm	6 mm	8 mm
Carga Máxima	KN	7.740	18.370	32.760
Carga de Rotura	KN	4.765	13.138	24.960
Deformación Máxima	mm	15.160	11.453	53.013
Módulo de Elasticidad	МРа	322262.397	31959.195	35899.267
Esfuerzo de Fluencia	МРа	565.488	564.378	535.030
Esfuerzo Máximo	МРа	615.930	649.706	651.739
Def. Unitaria Máxima	mm/mm	0.048	0.036	0.166

2.8. ENSAYO DE PULL OFF 2.8.1. TABLA DE ANALISIS DE FUERZA Y FALLA

1000 25: 1000 de resultados del ensayo Full Off.	Tabla 23:	Tabla de	resultados	del ensayo	Pull Off.
---	-----------	----------	------------	------------	-----------

_			Area de Pi	rueba [mm²] =	2500
	SEDI	F	CARGA	RESISTENCIA	Falla
	JERI	C	[N]	[MPa]	Falla
		1	1000.000	0.400	El fracaso en la interfaz de unión
	SERIE 1	2	1200.000	0.480	Fallo del sustrato justo debajo de la interfase de unión-sustrato
		3	1100.000	0.440	Fallo del sustrato justo debajo de la interfase de unión-sustrato
		4	500.000	0.200	El fracaso en la interfaz de unión
		5	1100.000	0.440	Fallo en el sustrato justo debajo de la interfase de unión.
	SERIE 2	6	900.000	0.360	Falla de la interfaz de matriz -sustrato, insuficiencia capacidad de unión.
		7	1600.000	0.640	Fallo del sustrato justo debajo de la interfase de unión-sustrato
		8	900.000	0.360	El fracaso en la interfaz de unión, insuficiencia capacidad de unión.
		PROMEDIO	1037.500	0.415	
	DESVIACIÓN	ESTANDAR	311.391	0.125	
COE	FICIENTE DE VARIACIÓN %		30.014	30.014	
		1	600.000	0.240	El fracaso en la interfaz de unión y existencia de huecos en la superficie de fractura
		2	2600.000	1.040	Fallo del sustrato justo debajo de la interfase de unión-sustrato
	SERIE 1	3	1200.000	0.480	Falla de la interfaz de matriz -sustrato, insuficiencia capacidad de unión. Existencia de huecos en la superficie de fractura
		4	1700 000	0.680	Falla de la interfaz de matriz -sustrato, insuficiencia capacidad de unión.
		-	1700.000	0.000	Existencia de huecos en la superficie de fractura
		5	800.000	0.320	Falla debido a la rotura del recubrimiento (matriz)
	SERIE 2	6	2300.000	0.920	Falla de la interfaz de matriz -sustrato, insuficiencia capacidad de unión. Existencia de huecos en la superficie de fractura
		7	2900.000	1.160	El fracaso en la interfaz de unión y existencia de huecos en la superficie de fractura
		8	900.000	0.360	Falla debido a la rotura del recubrimiento (matriz)
		PROMEDIO	1625.000	0.650	
	DESVIACIÓN	ESTANDAR	884.388	0.354	
COE	FICIENTE DE VA	ARIACIÓN %	54.424	54.424	
		1	1800.000	0.720	Fallo del sustrato justo debajo de la interfase de unión-sustrato
		2	1400.000	0.560	El fracaso en la interfaz de unión y existencia de huecos en la superficie de fractura
	SERIE 1	2	600.000	0.240	Falla inicalmente en el tejido, en el siguiente ensayo fallo en el sustrato
		5	2200.000	0.880	justo debajo de la interfase de unión.
		4	400.000	0.160	Falla inicalmente en el tejido, en el siguiente ensayo fallo en el sustrato
		4	900.000	0.360	justo debajo de la interfase de unión.
		5	1700.000	0.680	Fallo del sustrato justo debajo de la interfase de unión-sustrato
	SERIE 2	6	2100.000	0.840	Falla inicalmente en el tejido, en el siguiente ensayo fallo en el sustrato justo debajo de la interfase de unión
		7	1100.000	0.440	Fallo del sustrato justo debajo de la interfase de unión-sustrato
		8	1900.000	0.760	Fallo del sustrato justo debajo de la interfase de unión-sustrato
		PROMEDIO	1410.000	0.564	
	DESVIACIÓN	ESTANDAR	633.246	0.253	
COE	FICIENTE DE VA	ARIACIÓN %	44.911	44.911	
		1	4200.000	1.680	Inicialmente falla el primer de la placa, en el segundo ensayo. Fallo del sustrato iusto debaio de la interfase de unión-sustrato
		2	5500.000	2.200	Falla debido a la rotura del recubrimiento
	SERIE 1		800.000	0.320	Falla inicalmente en el tejido, en el siguiente ensayo fallo en el sustrato
		3	3700.000	1.480	justo debajo de la interfase de unión.
		4	3900.000	1.560	Combinación de fallo del sustrato, fallo de la unión agregada del primer y el fracaso del primer.
		PROMEDIO	3620.000	1.448	· · · ·
	DESVIACIÓN	ESTANDAR	1725.399	0.690	
COE	FICIENTE DE VA	ARIACIÓN %	47.663	47.663	

ENSAYO DE PULL OF- RESULTADOS

*Los valores señalados con rojo son valores de desprendimiento de la matriz al tejido.

2.8.2. GRÁFICAS DE RESULTADOS

Figura 115: Ensayo Pull off: Gráfica de comparación Fuerza vs. Tipo de adherencia

Figura 116: Ensayo Pull off: Gráfica de comparación Resistencia vs. Tipo de adherencia

2.8.3. INDICE DE RENTABILIDAD

Tabla 24: Tabla de indices de rentabilidad	Tabla 24:	Tabla de	índices de	rentabilidad
---	-----------	----------	------------	--------------

	INDICE DE RENTABILIDAD- ENSAYO PULL OFF							
			Área de	ensayo=	2500	mm ²		
		TIÑER [lt/mm ²]	PRIMER [kg/mm ²]	DISCO [u/mm ²]	d1	C1	ESFUERZO [Mpa]	Rsci [Mpa/\$]
LISO NORMAL	Costo [\$/mm2]	0.0001 0.0002			0.0001	0.0002	0.415	8300.000
LISO+PRIMER	Costo [\$/mm2]	0.0001 0.0002	0.0005 0.0120		0.0006	0.0122	0.650	35.534
RUGOSO NORMAL	Costo [\$/mm2]	0.0001 0.0002		0.0001 0.0003	0.0002	0.0005	0.655	2911.111
RUGOSO+PRIMER	Costo [\$/mm2]	0.0001 0.0002	0.0005 0.0120	0.0001 0.0003	0.0007	0.0124	1.730	79.435
2.9. ENSAYO DE CORTE

Serie	Espécimen	Carga Máxima	Esfuerzo Máximo	Def. Unitaria Max.	Tipo de Falla	FOTOGRAFÍA
		[N]	[MPa]	[mm/mm]		
LISO NORMAL	1	913.4335	0.5304	0.0348	El fracaso y el fallo de la unión sustrato- matriz.	
	2	1804.7678	1.0472	0.0374	Combinación de fallo del sustrato, fallo de la unión matriz-sustrato y el fracaso de la matriz dejando visto el tejido. Existencia de huecos en la superficie de fractura.	
	3	751.3727	0.4499	0.0190	El fracaso y el fallo de la unión sustrato- matriz. Dejando en evidencia pequeños desprendimientos del sustrato casi impalpables.	
	4	1278.0703	0.7692	0.0212	El fracaso y el fallo de la unión sustrato- matriz.	
MEDIA		1186.9111	0.6992	0.0281		
DESVIACIÓN ESTANDAR		467.0976	0.2687	0.0094		
COEFICIENTE DE VARIACIÓN %		39.3541	38.4341	33.3009		

LISO + PRIMER	1	2213.6029	1.2935	0.0311	Fallo del sustrato justo debajo de la interface de unión-sustrato, en una área grande, un 40 % del sustrato se desprendió. Es notorio los agregados del sustrato.	
	2	3101.2539	1.8713	0.0390	Fallo del sustrato justo debajo de la interface de unión-sustrato, en una área pequeña. Es notorio los agregados del sustrato.	
	3	3701.6156	2.1581	0.0375	Combinación de fallo del sustrato, fallo de la unión matriz-sustrato y el fracaso de la matriz. Existencia de huecos en la superficie de fractura.	
	4	3686.8826	2.1831	0.0428	Combinación de fallo del sustrato, fallo de la unión matriz-sustrato, existencia de huecos en la superficie de fractura.	
MEDIA		3175.8387	1.8765	0.0376		
DESVIACIÓN ESTANDAR		699.7780	0.4136	0.0049		
COEFICIENTE DE VARIACIÓN %		22.0344	22.0410	12.9378		

RUGOSO NORMAL	1	5377.4714	3.2370	0.0422	Fallo del sustrato justo debajo de la interface de unión-sustrato, en una área pequeña (10 %). Es notorio los agregados del sustrato.	
	2	4364.5915	2.6671	0.0293	Fallo del sustrato justo debajo de la interface de unión-sustrato, en una área pequeña (10 %). Es notorio los agregados del sustrato.	
	3	1454.8638	0.8591	0.0346	Fallo del sustrato justo debajo de la interface de unión-sustrato, en una área pequeña (10 %). Es notorio los agregados del sustrato.	
	4	3771.5963	2.3240	0.0405	Fallo del sustrato justo debajo de la interface de unión-sustrato, en una área pequeña (10 %). Es notorio los agregados del sustrato.	
MEDIA		4504.5531	2.7427	0.0373		
DESVIACIÓN ESTANDAR		812.0349	0.4612	0.0070		
COEFICIENTE DE VARIACIÓN %		18.0270	16.8146	18.8356		

RUGOSO + PRIMER	1	4467.7211	2.6780	0.0356	Fallo del sustrato justo debajo de la interface de unión-sustrato, en una área grande, un 25 % del sustrato se desprendió Es notorio los agregados del	
					sustrato.	
	2	5366.4215	3.1569	0.0355	Fallo del sustrato justo debajo de la interface de unión-sustrato, en una área grande, un 35 % del sustrato se desprendió. Es notorio los agregados del sustrato.	Contraction of the second seco
	3	5012.8347	2.9939	0.0680	Fallo del sustrato justo debajo de la interface de unión-sustrato, en una área grande, un 10 % del sustrato se desprendió. Es notorio los agregados del sustrato.	
	4	4452.9881	2.7536	0.0415	Fallo del sustrato justo debajo de la interface de unión-sustrato, en una área grande, un 15 % del sustrato se desprendió. Es notorio los agregados del sustrato.	
MEDIA		4824.9914	2.8956	0.0452		
DESVIACIÓN ESTANDAR		445.1442	0.2202	0.0155		
COEFICIENTE DE VARIACIÓN %		9.2258	7.6043	34.2329		

Figura 117: Diagrama de Carga vs. Deflexión al Centro de la viga - Viga : SR1

Esfuerzo vs. Deformación Unitaria

Figura 118: Diagrama Esfuerzo vs. Deformación Unitaria- Viga: SR1

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 119: Deformación en las zonas de Compresión y Tracción - Viga: SR1

Carga vs. Longitud de Fisura

Figura 121: Diagrama de Carga vs. Longitud de Fisura- Viga: SR1

2.10.2. VIGA SR2

Figura 122: Diagrama de Carga vs. Deflexión al Centro de la viga – Viga : SR2

Figura 123: Diagrama Esfuerzo vs. Deformación Unitaria - Viga: SR2

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 124: Deformación en las zonas de Compresión y Tracción - Viga: SR2

Figura 125: Diagrama Carga vs. Deformación para Cálculo de Áreas - Viga: SR2

Figura 126: Diagrama de Carga vs. Longitud de Fisura- Viga: SR2

Figura 127: Diagrama de Carga vs. Deflexión al Centro de la viga – Viga : SR3

Figura 128: Diagrama Esfuerzo vs. Deformación Unitaria - Viga: SR3

Figura 129: Deformación en las zonas de Compresión y Tracción - Viga: SR3

Figura 130: Diagrama Carga vs. Deformación para Cálculo de Áreas - Viga: SR3

Figura 131: Diagrama de Carga vs. Longitud de Fisura- Viga: SR3

2.10.4. RESUMEN DE VIGAS SIN REFUERZO

Figura 132: Diagrama de Carga vs. Deflexión al Centro de la viga – RESUMEN: Vigas sin refuerzo

Figura 133: Diagrama Esfuerzo vs. Deformación Unitaria - RESUMEN: Vigas sin refuerzo

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 134: Deformación en las zonas de Compresión y Tracción - RESUMEN: Vigas sin refuerzo

Figura 135: Diagrama de Carga vs. Deflexión al Centro de la viga – Viga : R+FRCM 1

Figura 136: Diagrama Esfuerzo vs. Deformación Unitaria - Viga: R+FRCM 1

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 137: Deformación en las zonas de Compresión y Tracción - Viga: R+FRCM 1

Figura 138: Diagrama Carga vs. Deformación para Cálculo de Áreas - Viga: R+FRCM 1

Figura 139: Diagrama de Carga vs. Longitud de Fisura-Viga: SR3 R+FRCM 1

2.11.2. VIGA R + FRCM 2

Figura 140: Diagrama de Carga vs. Deflexión al Centro de la viga – Viga : R+FRCM 2

Esfuerzo vs. Deformación Unitaria de la Viga

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 142: Deformación en las zonas de Compresión y Tracción - Viga: R+FRCM 2

Figura 143: Diagrama Carga vs. Deformación para Cálculo de Áreas - Viga: R+FRCM 2

Figura 144: Diagrama de Carga vs. Longitud de Fisura- Viga: SR3 R+FRCM 2

2.11.3. VIGA R + FRCM 3

Figura 145: Diagrama de Carga vs. Deflexión al Centro de la viga – Viga : R+FRCM 3

Figura 146: Diagrama Esfuerzo vs. Deformación Unitaria - Viga: SR2 R+FRCM 3

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 147: Deformación en las zonas de Compresión y Tracción - Viga: R+FRCM 3

Figura 148: Diagrama Carga vs. Deformación para Cálculo de Áreas - Viga: R+FRCM 3

Figura 149: Diagrama de Carga vs. Longitud de Fisura- Viga: SR3 R+FRCM 3

2.11.4. RESUMEN DE VIGA R+FRCM

Figura 150: Diagrama de Carga vs. Deflexión al Centro de la viga – RESUMEN: Vigas Rugoso+FRCM

Figura 151: Diagrama Esfuerzo vs. Deformación Unitaria - RESUMEN: Vigas Rugoso+FRCM

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 152: Deformación en las zonas de Compresión y Tracción - RESUMEN: Vigas Rugoso+FRCM

2.12. ENSAYO DE FLEXIÓN -VIGA LISO + PRIMER + FRCM 2.12.1. VIGA L + P +FRCM 1

Figura 153: Diagrama de Carga vs. Deflexión al Centro de la viga – Viga : L+P+FRCM 1

Figura 154: Diagrama Esfuerzo vs. Deformación Unitaria - Viga: L+P+FRCM 1

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 155: Deformación en las zonas de Compresión y Tracción - Viga: L+P+FRCM 1

Figura 156: Diagrama Carga vs. Deformación para Cálculo de Áreas - Viga: L+P+FRCM 1

Figura 157: Diagrama de Carga vs. Longitud de Fisura- Viga: L+P+FRCM 1

2.12.2. VIGA L + P +FRCM 2

Figura 158: Diagrama de Carga vs. Deflexión al Centro de la viga – Viga : L+P+FRCM 2

Figura 159: Diagrama Esfuerzo vs. Deformación Unitaria - Viga: L+P+FRCM 2

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 160: Deformación en las zonas de Compresión y Tracción - Viga: L+P+FRCM 2

Figura 161: Diagrama Carga vs. Deformación para Cálculo de Áreas - Viga: L+P+FRCM 2

Figura 162: Diagrama de Carga vs. Longitud de Fisura- Viga: L+P+FRCM 2

Figura 163: Diagrama de Carga vs. Deflexión al Centro de la viga – Viga : L+P+FRCM 3

Figura 164: Diagrama Esfuerzo vs. Deformación Unitaria - Viga: L+P+FRCM 3

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 165: Deformación en las zonas de Compresión y Tracción - Viga: L+P+FRCM 3

Figura 166: Diagrama Carga vs. Deformación para Cálculo de Áreas - Viga: L+P+FRCM 3

Figura 168: Diagrama de Carga vs. Deflexión al Centro de la viga – RESUMEN: Vigas Liso+Primer+FRCM

Figura 169: Diagrama Esfuerzo vs. Deformación Unitaria - RESUMEN: Vigas Liso+Primer+FRCM

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 170: Deformación en las zonas de Compresión y Tracción - RESUMEN: Vigas Liso+Primer+FRCM

Figura 171: Diagrama de Carga vs. Deflexión al Centro de la viga – Viga : R+P+FRCM 1

Figura 172: Diagrama Esfuerzo vs. Deformación Unitaria - Viga: R+P+FRCM 1

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 173: Deformación en las zonas de Compresión y Tracción - Viga: R+P+FRCM 1

Figura 174: Diagrama Carga vs. Deformación para Cálculo de Áreas - Viga: R+P+FRCM 1

Figura 175: Diagrama de Carga vs. Longitud de Fisura-Viga: R+P+FRCM 1

2.13.2. VIGA R + P + FRCM 2

Figura 176: Diagrama de Carga vs. Deflexión al Centro de la viga – Viga : R+P+FRCM 2

Figura 177: Diagrama Esfuerzo vs. Deformación Unitaria - Viga: R+P+FRCM 2

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 178: Deformación en las zonas de Compresión y Tracción - Viga: R+P+FRCM 2

Figura 179: Diagrama Carga vs. Deformación para Cálculo de Áreas - Viga: R+P+FRCM 2

Figura 180: Diagrama de Carga vs. Longitud de Fisura-Viga: R+P+FRCM 2

Figura 181: Diagrama de Carga vs. Deflexión al Centro de la viga – Viga : R+P+FRCM 3

Figura 182: Diagrama Esfuerzo vs. Deformación Unitaria - Viga: R+P+FRCM 3

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 183: Deformación en las zonas de Compresión y Tracción - Viga: R+P+FRCM 3

Figura 184: Diagrama Carga vs. Deformación para Cálculo de Áreas - Viga: R+P+FRCM 3

Carga vs. Longitud de Fisura

Figura 185: Diagrama de Carga vs. Longitud de Fisura- Viga: R+P+FRCM 3

2.13.4. RESUMEN DE VIGAS R+P+FRCM

Figura 186: Diagrama de Carga vs. Deflexión al Centro de la viga – RESUMEN: Vigas Rugoso+Primer+FRCM

Figura 187: Diagrama Esfuerzo vs. Deformación Unitaria - RESUMEN: Vigas Liso+Primer+FRCM

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 188: Deformación en las zonas de Compresión y Tracción - RESUMEN: Vigas Liso+Primer+FRCM

2.14. RESUMEN GENERAL DE VIGAS

Figura 189: Diagrama de Carga vs. Deflexión al Centro de la viga – RESUMEN: Vigas General

Esfuerzo vs. Deformación Unitaria de la Viga

Figura 190: Diagrama Esfuerzo vs. Deformación Unitaria - RESUMEN: Vigas General

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 191: Deformación en las zonas de Compresión y Tracción - RESUMEN: Vigas General

Figura 192: Elementos de concreto armado (vigas y columnas) después del ensayo.

2.15. RESUMEN DE RESULTADOS EN VIGAS

Tabla 25: Resumen de Cargas Obtenidas en Vigas Después del Ensayo a Flexión Pura

Тіро	Espécimen	Carga Max. [N]	Deformación Max. [mm]	Esfuerzo [MPa]	Def. Unitaria Max. [mm/mm]	
	SR1	31320.000	24.280	11.671	0.14284	
Sin Refuerzo	SR2	32580.000	24.079	12.141	0.14164	
	SR2	31950.000	25.350	11.906	0.14911	
	MEDIA	31950.000	24.570	11.906	0.145	
DESVIA	CIÓN ESTANDAR	630.000	0.683	0.235	0.004	
COEFICIENTE D	E VARIACIÓN %	1.972	2.780	1.972	2.776	
Rugoso + FRCM	R+FRCM1	39400.000	29.032	14.6819271	0.17078	
	R+FRCM2	41800.000	24.656	15.5762577	0.14503	
	R+FRCM3	40100.000	24.892	14.9427735	0.14642	
	MEDIA	40433.333	26.193	15.067	0.154	
DESVIA	CIÓN ESTANDAR	1234.234	2.461	0.460	0.014	
COEFICIENTE D	E VARIACIÓN %	3.053	9.397 3.053		9.397	
Liso + Primer + FRCM	L+P+FRCM1	39630.000	23.509	14.768	0.13829	
	L+P+FRCM2	37600.000	25.679	14.011	0.15106	
	L+P+FRCM3	38000.000	23.724	14.160	0.13955	
	MEDIA	38410.000	24.304	14.313	0.143	
DESVIA	CIÓN ESTANDAR	1075.314	1.196	0.401	0.007	
COEFICIENTE DE VARIACIÓN %		2.800	4.921	2.800	4.921	
Rugoso + Primer + FRCM	R+P+FRCM1	40700.000	23.622	15.166	0.13895	
	R+P+FRCM2	40200.000	22.885	14.980	0.13462	
	R+P+FRCM3	42400.000	25.806	15.800	0.15180	
	MEDIA	41100.000).000 24.105 15.3		0.142	
DESVIA	CIÓN ESTANDAR	1153.256	1.519	0.430	0.009	
COEFICIENTE D	E VARIACIÓN %	2.806	6.302	2.806	6.302	

ENSAYO A FLEXIÓN PURA EN VIGAS A ESCALA

2.16. INDICES DE DUCTILIDAD Y ENERGÍA EN VIGAS

Tabla 26: Resumen de Índices de Ductilidad y energía en vigas

				-					-		-
τιρο	Espécimen	٤y [mm]	Eu [mm]	A _{total} [kN∙mm]	A _{post} [kN∙mm]	A _{elastic} [kN∙mm]	Ductilidad de Deformación [mm/mm]	Ductilidad de Energía [J/J]	Reserva de la Energía de Deformación [J/J]	Energía Absorbida [J]	Energía de Fractura o Tenacidad [J/m ²]
Sin Refuerzo	SR1	9.58	26.54	564.91	482.41	82.50	2.770	3.924	5.847	564.910	25561.538
	SR2	9.90	25.17	530.94	446.80	84.14	2.542	3.655	5.310	530.940	24024.434
	SR2	7.29	25.35	555.32	505.73	49.59	3.477	6.099	10.198	555.320	25127.602
MEDIA							2.930	4.559	7.119	550.390	24904.525
DESVIACIÓN ESTANDAR							0.487499402	1.340260148	2.680520296	17.51339202	792.4611773
COEFICIENTE DE VARIACIÓN %							16.63792963	29.39616456	37.65513166	3.181996769	3.181996769
Rugoso + FRCM	R+FRCM1	5.97	29.03	907.76	819.39	88.37	4.863	5.636	9.272	907.760	41075.113
	R+FRCM2	5.69	24.66	810.86	723.26	87.60	4.334	5.128	8.256	810.860	36690.498
	R+FRCM3	4.83	24.89	790.82	719.94	70.88	5.153	6.079	10.157	790.820	35783.710
MEDIA							4.783	5.614	9.229	836.480	37849.774
DESVIACIÓN ESTANDAR							0.415374388	0.475569445	0.951138889	62.53822191	2829.783797
COEFICIENTE DE VARIACIÓN %						8.683921375	8.470674967	10.30641768	7.47635591	7.47635591	
Liso +	L+P+FRCM1	6.50	23.51	723.91	615.25	108.66	3.617	3.831	5.662	723.910	32756.109
Primer +	L+P+FRCM2	6.12	25.68	736.21	677.17	59.04	4.196	6.735	11.470	736.210	33312.670
FRCM	L+P+FRCM3	6.50	23.72	752.75	627.51	125.24	3.649	3.505	5.010	752.750	34061.086
MEDIA							3.821	4.690	7.381	737.623	33376.621
DESVIACIÓN ESTANDAR							0.325450221	1.778032541	3.556065082	14.47185314	654.8349838
COEFICIENTE DE VARIACIÓN %						8.517980081	37.908045	48.18016142	1.96195707	1.96195707	
Rugoso +	R+P+FRCM1	6.63	25.30	811.23	705.13	106.10	3.816	4.323	6.646	811.230	36707.240
Primer +	R+P+FRCM2	6.78	24.33	750.78	642.59	108.19	3.588	3.970	5.939	750.780	33971.946
FRCM	R+P+FRCM3	9.02	25.81	780.24	648.77	131.47	2.861	3.467	4.935	780.240	35304.977
MEDIA				3.422	3.920	5.840	780.750	35328.054			
DESVIACIÓN ESTANDAR					0.498597155	0.429951491	0.859902983	30.22822687	1367.793071		
COEFICIENTE DE VARIACIÓN %						14.57048178	10.96810533	14.72428511	3.871690922	3.871690922	

ÍNDICES DE DUCTILIDAD Y ENERGÍA EN VIGAS

2.17. ENSAYO DE COMPRESIÓN EXCENTRICAS EN COLUMNAS SIN REFUERZO 2.17.1. COLUMNA – SR1

Carga vs. Deformación Longitudinal

Figura 193: Diagrama Carga vs. Deformación Longitudinal - Columna: SR1

Figura 194: Diagrama Carga vs. Pandeo- Columna: SR1

Figura 195: Momento vs. Curvatura Columna: SR1

Figura 196: Diagrama Carga vs. Deformación para cálculo de áreas - Columna: SR1

Carga vs. Deformación Longitudinal

Figura 197: Diagrama Carga vs. Deformación Longitudinal - Columna: SR1

Carga vs. Pandeo

Figura 198: Diagrama Carga vs. Pandeo- Columna: SR2

Figura 199: Momento vs. Curvatura Columna: SR2

199

Carga vs. Deformación Longitudinal

Figura 201: Diagrama Carga vs. Deformación Longitudinal - Columna: SR3

Figura 202: Diagrama Carga vs. Pandeo- Columna: SR3

Figura 203: Momento vs. Curvatura Columna: SR3

201

2.17.4. RESUMEN DE COLUMNAS SR

Figura 205: Diagrama Carga vs. Deformación Longitudinal - RESUMEN: columnas SR

Figura 206: Diagrama Carga vs. Pandeo- RESUMEN: columnas SR

Figura 207: Momento vs. Curvatura RESUMEN: columnas SR

2.18. COLUMNAS RUGOSO + FRCM

2.18.1. COLUMNA – R+FRCM 1

Figura 208: Diagrama Carga vs. Deformación Longitudinal - Columna: R+FRCM 1

Figura 209: Diagrama Carga vs. Pandeo- Columna: R+FRCM 1

Momento vs. Curvatura

Figura 210: Momento vs. Curvatura Columna: R+FRCM 1

Figura 212: Diagrama Carga vs. Deformación Longitudinal - Columna: R+FRCM 2

Figura 213: Diagrama Carga vs. Pandeo- Columna: R+FRCM 2

Figura 214: Momento vs. Curvatura Columna: R+FRCM 2

2.18.3. COLUMNA R+FRCM 3

Figura 216: Diagrama Carga vs. Deformación Longitudinal - Columna: R+FRCM 3

Figura 217: Diagrama Carga vs. Pandeo- Columna: R+FRCM 3

Figura 218: Momento vs. Curvatura Columna: R+FRCM 3

Figura 220: Diagrama Carga vs. Deformación Longitudinal - RESUMEN: columnas R+FRCM

Figura 221: Diagrama Carga vs. Pandeo- RESUMEN: columnas R+FRCM

Figura 222: Momento vs. Curvatura RESUMEN: columnas R+FRCM

2.19. Columnas – LISO+PRIMER+FRCM 2.19.1. COLUMNA – L+P+FRCM 1

Figura 223: Diagrama Carga vs. Deformación Longitudinal - Columna: P+L+FRCM 1

Figura 224: Diagrama Carga vs. Pandeo- Columna: P+L+FRCM 1

Figura 225: Momento vs. Curvatura Columna: P+L+FRCM 1

Carga vs. Deformación Longitudinal

Figura 227: Diagrama Carga vs. Deformación Longitudinal - Columna: P+L+FRCM 2

Figura 228: Diagrama Carga vs. Pandeo- Columna: P+L+FRCM 2

Momento vs. Curvatura

Figura 229: Momento vs. Curvatura Columna: P+L+FRCM 2

Figura 230: Diagrama Carga vs. Deformación para cálculo de áreas - Columna: P+L+FRCM 2

Carga vs. Deformación Longitudinal

Figura 231: Diagrama Carga vs. Deformación Longitudinal - Columna: P+L+FRCM 3

Figura 232: Diagrama Carga vs. Pandeo- Columna: P+L+FRCM 2

Momento vs. Curvatura

Figura 234: Diagrama Carga vs. Deformación para cálculo de áreas - Columna: P+L+FRCM 3

2.19.4. RESUMEN DE COLUMNAS L+P+FRCM

Figura 235: Diagrama Carga vs. Deformación Longitudinal - RESUMEN: columnas P+L+FRCM

Figura 236: Diagrama Carga vs. Pandeo- RESUMEN: columnas P+L+FRCM

Figura 237: Momento vs. Curvatura RESUMEN: columnas P+L+FRCM

2.20. COLUMNAS RUGOSO + PRIMER + FRCM 2.20.1. COLUMNAS R + P+ FRCM

Figura 238: Diagrama Carga vs. Deformación Longitudinal - Columna: R+P+FRCM 1

Figura 239: Diagrama Carga vs. Pandeo- Columna: R+P+FRCM 1

Figura 240: Momento vs. Curvatura Columna: R+P+FRCM 1

2.20.2. COLUMNA R + P + FRCM 2

Figura 242: Diagrama Carga vs. Deformación Longitudinal - Columna: R+P+FRCM 2

Figura 243: Diagrama Carga vs. Pandeo- Columna: R+P+FRCM 2

Figura 244: Momento vs. Curvatura Columna: R+P+FRCM 2

Figura 245: Diagrama Carga vs. Deformación para cálculo de áreas - Columna: R+P+FRCM 2

Figura 246: Diagrama Carga vs. Deformación Longitudinal - Columna: R+P+FRCM 3

Figura 247: Diagrama Carga vs. Pandeo- Columna: R+P+FRCM 3

Momento vs. Curvatura

Figura 248: Momento vs. Curvatura Columna: R+P+FRCM 3

Figura 249: Diagrama Carga vs. Deformación para cálculo de áreas - Columna: R+P+FRCM 3

Figura 250: Diagrama Carga vs. Deformación Longitudinal - RESUMEN: columnas R+P+FRCM

Figura 251: Diagrama Carga vs. Pandeo- RESUMEN: columnas R+P+FRCM

Momento vs. Curvatura

Figura 252: Momento vs. Curvatura RESUMEN: columnas R+P+FRCM

2.21. RESUMEN DE COLUMNAS - GENERAL

Figura 253: Diagrama Carga vs. Pandeo- RESUMEN: General columnas

Figura 254: Momento vs. Curvatura RESUMEN: General columnas

2.22. RESUMEN GENERAL DE RESULTADOS EN COLUMNAS.

		-					
	Espécimen	Carga Max. [N]	Deformación	Deformación	Momento	Momento	Curvatura
Тіро			Compresión	Pandeo	1er. Orden	2do. Orden	[mm ⁻¹]v10 ⁻⁵
			[mm]	[Mpa]	[kN·mm]	[kN·mm]	
	SR1	91040.000	8.350	7.440	4552.000	5229.338	18.176
Sin Refuerzo	SR2	73000.000	6.690	9.804	3650.000	4209.968	18.924
	SR2	72100.000	5.610	8.840	3605.000	4242.364	19.706
	MEDIA	78713.333	6.883	8.695	3935.667	4560.557	18.935
DESVIAC	IÓN ESTANDAR	10684.687	1.380	1.189	534.234	579.408	0.765
COEFICIENTE D	E VARIACIÓN %	13.574	0.201	0.137	0.136	0.127	0.040
Bugoso I	R+FRCM1	84000.000	7.950	7.874	4200.000	4861.416	24.367
Rugoso +	R+FRCM2	83000.000	8.100	8.560	4250.000	4897.700	22.134
FRCIVI	R+FRCM3	85500.000	6.900	9.144	3750.000	4150.050	22.246
MEDIA		84166.667	7.650	8.526	4066.667	4636.389	22.916
DESVIACIÓN ESTANDAR		1258.306	0.654	0.636	275.379	421.572	1.258
COEFICIENTE DE VARIACIÓN %		1.495	8.547	7.456	6.772	9.093	5.491
	L+P+FRCM1	104300.000	9.900	8.992	5000.000	5533.400	24.898
LISO + Primer +	L+P+FRCM2	89800.000	6.500	8.839	3750.000	4098.615	20.920
FRCIVI	L+P+FRCM3	70100.000	7.600	8.382	3505.000	4092.578	21.688
	MEDIA	88066.667	8.000	8.738	4085.000	4574.864	22.502
DESVIAC	IÓN ESTANDAR	17165.760	1.735	0.317	801.826	830.122	2.110
COEFICIENTE DE VARIACIÓN %		19.492	21.687	3.631	19.629	18.145	9.377
Rugoso + Primer + FRCM	R+P+FRCM1	97800.000	8.990	8.382	4890.000	5709.760	22.832
	R+P+FRCM2	89700.000	8.790	9.576	4485.000	5343.949	24.088
	R+P+FRCM3	108570.000	8.000	8.890	5250.000	5818.071	21.939
MEDIA		98690.000	8.593	8.949	4875.000	5623.927	22.953
DESVIAC	IÓN ESTANDAR	9466.430	0.523	0.599	382.721	248.442	1.080
COEFICIENTE D	E VARIACIÓN %	9.592	6.092	6.694	7.851	4.418	4.704

Tabla 27: Resumen General de resultados de columnas

ENSAYO DE COLUMNAS CON CARGA EXCÉNTRICA

2.23. ÍNDICES DE DUCTILIDAD Y ENERGÍA EN COLUMNAS

τιρο	Espécimen	Ey [mm]	٤ ս [mm]	A _{total} [kN∙mm]	A _{post} [kN∙mm]	A _{elastic} [kN∙mm]	A _{ep} [kN∙mm]	Ductilidad de Deformación [mm/mm]	Ductilidad de Energía [J/J]	Reserva de la Energía de Deformación [J/J]	Energía Absorbida [J]
C	SR1	7.28	9.23	376.25	169.53	206.72	4.39	1.268	85.706	0.820	376.250
Sin	SR2	5.74	7.92	329.74	153.79	175.95	4.99	1.380	66.080	0.874	329.740
Refuerzo	SR2	4.5	6.6	286.04	201.22	84.82	9.22	1.467	31.024	2.372	286.040
			•	•	-		MEDIA	1.371	60.937	1.355	330.677
						DESVIACIÓN	N ESTANDAR	0.100	27.702	0.881	45.112
					COEFI	CIENTE DE VA	ARIACIÓN %	7.267	45.460	64.996	13.642
Durana	R+FRCM1	6.83	10.11	490.13	344.8	145.33	9.39	1.480	52.197	2.373	490.130
Rugoso +	R+FRCM2	6.3	9.1	330.83	217.04	113.79	8.21	1.444	40.296	1.907	330.830
FRCIVI	R+FRCM3	5.81	8.4	420	214.49	205.51	6.42	1.446	65.421	1.044	420.000
							MEDIA	1.457	52.638	1.775	413.653
						DESVIACIÓN	I ESTANDAR	0.020	12.568	0.674	79.839
COEFICIENTE DE VARIACIÓN %						1.393	23.877	37.999	19.301		
Liso +	L+P+FRCM1	8.28	10.98	472.55	266.74	205.81	5.84	1.326	80.916	1.296	472.550
Primer +	L+P+FRCM2	4.96	7.8	377.13	242.18	134.95	8.27	1.573	45.602	1.795	377.130
FRCM	L+P+FRCM3	6.58	9.1	285.69	169.07	116.62	5.07	1.383	56.349	1.450	285.690
							MEDIA	1.427	60.956	1.513	378.457
DESVIACIÓN ESTANDAR							0.129	18.102	0.255	93.437	
COEFICIENTE DE VARIACIÓN %							9.043	29.697	16.869	24.689	
Rugoso +	R+P+FRCM1	7.98	10.11	382.43	199.35	183.08	5.35	1.267	71.482	1.089	382.430
Primer +	R+P+FRCM2	7.52	9.92	408.86	207.46	201.4	5.2	1.319	78.627	1.030	408.860
FRCM	R+P+FRCM3	6.3	9.9	508.54	369.62	138.92	15.14	1.571	33.589	2.661	508.540
							MEDIA	1.386	61.233	1.593	433.277
DESVIACIÓN ESTANDAR						0.163	24.205	0.925	66.506		
COEFICIENTE DE VARIACIÓN %						11.750	39.530	58.054	15.350		

Tabla 28: Resumen de Índices de Ductilidad y energía en columnas

CAPITULO IV

4. DISCUSIÓN

- Las características del material compuesto FRCM se encuentran relacionadas con las propiedades mecánicas que la malla puede aportar al material, específicamente la resistencia a esfuerzos de tracción. Una caracterización completa se llevó a cabo tanto del tejido en rollos como los sacos de cabuya, con y sin resina, para comparar los efectos que la incorporación de la resina poliéster tiene sobre las características mecánicas del tejido. El tejido de sacos con resina es un 14.56% más resistente que uno sin resina y en comparación con el tejido en rollos, el de sacos lo supera en el 28.78%, razón por la cual este fue escogido para el reforzamientos de nuestros modelos de concreto armado.
- Para el caso de la matriz cementicia, el comportamiento en estado fresco muestra un mortero fluido y con un tiempo abierto bastante amplio, que permite realizar el trabajo de reparación sin inconvenientes.
- En los ensayos de caracterización de probetas de material compuesto, permitió establecer la cantidad de fibra optima a ser adicionada en el sistema de refuerzo de los modelos de concreto armado ya que, el ensayo de tracción muestra la curva esfuerzo vs. deformación donde a partir de la rotura de la matriz, los tejidos empiezan a trabajar superando el esfuerzo generado por el mortero, es decir existe una trasferencia de esfuerzos, pero se debe tomar en cuenta que entre más número de tejidos más probabilidades tiene el material compuesto de que exista falla por delaminación.
- La densidad en los materiales compuesto es un 10.10 % más bajo que el de la matriz cementícea, debido a que la matriz es un solo componente por el contario el material compuesto al poseer la malla o tejido de cabuya, se vuelve más ligera.
- La combinación de material compuesto que presentó las mejores propiedades mecánicas tanto de tracción como de flexión fue la correspondiente a la configuración de la fibra del saco de cabuya en 3 layers ya que esta permitió al compuesto superar las propiedades mecánicas de la del tejido en rollos de igual manera de 3 layers en aproximadamente el 58.98% en el esfuerzo máximo a la

tracción, 40.47% en el módulo de elasticidad, 19.37% en el esfuerzo máximo a la flexión.

• El ensayo de corte nos muestra que las superficies rugosas con o sin primer son capaces de resistir más el deslizamiento de la matriz cementicia a lo largo de la interface, las superficies lisas a pesar de la incorporación del primer la carga que soportan es menor.

• En el ensayo de desprendimiento o Pull off, se tuvo un 10.71 % de fallas entre la matriz- tejido debido a que el sistema FRCM es en realidad un material compuesto en donde sus dos componentes se aplican uno embebido en el otro, por lo tanto, cuando el fallo se produce en la interfaz entre la primera y la segunda capa de mortero, donde está incrustado el tejido, el fracaso en sí se produce porque el mortero que conecta las dos capas se rompe.

COMPARACIÓN DE LA DUCTILIDAD EN VIGAS

• La ductilidad de deformación que se observa en las vigas sin el sistema de refuerzo FRCM es relativamente baja si la relacionamos con las vigas en las que se aplica el sistema FRCM.

Figura 255: Ductilidad de Deformación en Cada Sistema de Adherencia (Vigas)

Figura 256: Ductilidad de Energía en Cada Sistema de Adherencia (Vigas)

- Si la viga presenta una capacidad de seguir deformándose no linealmente en el rango plástico esta adquiere mayor ductilidad, en la Fig. 255 podemos observar como las vigas con el sistema de anclaje adquieren una capacidad de deformación del 54.88% más que las vigas sin refuerzo, lo que indica la mayor ductilidad que el sistema FRCM ofrece al aplicarlo en elemento flexionados.
- Pero si nos basamos en los datos de ductilidad de energía nos encontramos con que las vigas sin refuerzo presenta un 16.30% más que el sistema R+P+FRCM.
- Otra observación se basa en que el sistema más óptimo para adquirir mayor ductilidad y por consiguiente es el que tiene mejor adherencia es el sistema de anclajes.

INDICES DE ENERGÍA EN VIGAS

• Las propiedades de energía se definen como la capacidad que tiene un material para almacenar energía, en forma de deformación plástica, antes de romperse.

Figura 258: Energía Absorbida en Vigas

Figura 259: Energía de Fractura en Vigas

 En base al concepto de energía, notoriamente se observa como el sistema de anclajes tiene la capacidad de absorber prácticamente el doble de la energía con respecto a los demás sistemas. Esto nos orienta a determinar claramente que el sistema de anclajes es la solución más óptima de adherencia, puesto que, si no fuese así, las vigas ancladas no podrían poseer tal energía.

• COMPARACION DE LAS CARGAS y ESFUERZOS MÁXIMOS A FLEXIÓN EN VIGAS

Figura 260: Cargas Máximas en Vigas

Figura 261: Esfuerzo Máximo a Flexión en Vigas

- Las gráficas de carga y esfuerzo a flexión en vigas nos indican un crecimiento progresivo de la capacidad resistente de las vigas reforzadas con FRCM, Las vigas R+FRCM adquieren una resistencia del 26.53% con respecto a las vigas no reforzadas, el sistema L+P+FRCM un 20.15%, el sistema R+P+FRCM un 28.63% mientras que, el sistema de anclajes tiene una mejor capacidad mecánica a flexión alcanza un 43.58%, respecto a las vigas no reforzadas poniendo en manifiesto la calidad del sistema FRCM.
- En cuanto a la adherencia, cada sistema o método de conexión responde de manera satisfactoria en la unión entre el sustrato y matriz cementicia, finalizado cada ensayo ninguna de las vigas tuvo falla por desprendimiento entre el hormigón armado y FRCM. Pero cuando la viga se encuentra en la zona plástica en el punto más alto de la curva y los incrementos de carga son mínimos existió un desprendimiento entre layers, esto habla también de una correcta adherencia

entre layers, puesto que la falla no ocurrió en la zona elástica sino cuando la viga se encontraba en su zona de plástica, aun así la necesidad de evitar la falla por desprendimiento entre layers llevo a la investigación a usar un método de anclaje el mismo que impida que ocurra este tipo de falla llevando a la viga a trabajar a su máxima capacidad, otorgando lo mejores resultados.

CARGA DE DISEÑO EXPERIMENTAL FRENTE A CARGA TEÓRICA EN VIGAS

El diseño original de la viga corresponde a someterla a una carga total de 55146.75 N, el área de acero destinada para cubrir esta carga es de 1.96 cm² (2 Ø 10 mm + 1 Ø 8 mm), pero en el diseño experimental planteado en la investigación se reduce el área de acero a (2 Ø 8 mm) de modo que la viga presente deficiencia a la flexión y esta se pueda cubrir con el material compuesto FRCM de modo que se pueda llegar a la carga de diseño original. En el caso de las vigas sin refuerzo se obtuvo una resistencia de 31950 N en promedio lo que indica una reducción de carga del 72.60% con respecto al diseño original, mientras que el sistema de anclaje obtuvo una carga promedio de 45897.50 N faltando un total de 20.15% de carga para que el sistema de anclaje determinado como el más óptimo llegue a la carga de diseño original.

COMPARACIÓN DE LA DUCTILIDAD EN COLUMNAS

Figura 262: Ductilidad de Deformación de Columnas

Figura 263: Ductilidad de Energía de Deformación en Columnas.

 Todos los sistemas planteados en la investigación para columnas tienen índices de ductilidad relativamente iguales, esto se debe al modo de esfuerzo de flexo compresión que se somete a la columna, esto provoca un carácter explosivo en ellas, que se ven reflejado en los índices de ductilidad los cuales no superan la relación de 2, por ende se definen con un carácter frágil.

Figura 264: Energía de Deformación en Columnas

Figura 265: Energía Absorbida en columnas

A pesar de que los índices de ductilidad demuestran un carácter frágil en las vigas, mediante la energía absorbida, se determina como la columna reforzada con anclajes absorbe más energía y se opone a su rotura, con respecto a la energía absorbida de los modelos no reforzados con FRCM existe una diferencia del 45.38% de energía.

CARGAS DE DISEÑO EXPERIMENTAL FRENTE A CARGAS TEÓRICAS EN COLUMNAS

 La carga con la que se diseñó la columna es de 69572.72 N carga que se dedujo de la teoría de pandeo de Euler. En el caso de las columnas prácticamente todos los modelos ensayados superaron tal carga.

Figura 266: Cargas Máximas en Columnas

Figura 267: Deformación Longitudinal en Columnas

Figura 268: Deformación por pandeo al centro de la columna

 Se observa un aumento progresivo de la carga, 6.93% entre SR y R+FRCM, 4.63 % entre R+FRCM y L+P+FRCM, un 12.06% entre L+P+FRCM y R+P+FRCM y por último un 13.51 % entre R+P+FRCM y ANCLAJES.

MOMENTO Y CURVATURA EN COLUMNAS

Figura 269: Curvatura en Columnas

 La índices de curvatura indican que los sistemas, R+FRCM, L+P+FRCM, R+P+FRCM tiene una curvatura menos del 2% entre ellos, la curvatura en los tres sistemas trabaja de manera idéntica, la diferencia que se observa es entre el sistema de anclaje y las columnas no reforzadas con SR en la que existe una diferencia de 27.40% es decir las columnas no reforzadas alcanzan una curvatura promedio de 18.94 [mm⁻¹]x10⁵ es decir llegan a la falla sin permitir mucha curvatura a diferencia del sistema de anclajes.

Figura 270: Momentos de 1er Orden en Vigas

Figura 271: Momentos de 2do Orden en Vigas.

El momento teórico de 1er orden de la columna se calculó de 3476.45 y el de segundo orden de 4579.7 analizando los datos experimentales se verifica que la columna sin refuerzo resistió las cargas de diseño, pero, lo importante es observar como los sistemas de adherencia R+P+FRCM supera a los sistemas, R+FRCM, L+P+FRCM y SR en un 23%, mientras que el sistema de anclajes comparándolo con el sistema sin refuerzo lo mejora en un 37.56% en cuanto a la resistencia de momentos de 20rden. Lo que habla de la buena adherencia entre el sistema FRCM y el sustrato.

CAPITULO V

5. CONCLUSIONES Y RECOMENDACIONES 5.1.CONCLUSIONES

- De todo lo anterior se puede concluir que el sistema de refuerzo FRCM, estudiado en esta investigación (matriz cementicia mortero 1:10 y tejido de cabuya), posee características válidas para la reparación y rehabilitación de elementos de concreto armado. No obstante se debe tener en cuenta el problema de desprendimiento entre la matriz y el tejido, desarrollando tejidos cuyos espacios entre fibras puedan dejar que le matriz penetre completamente, reduciendo las discontinuidades a lo largo del material, de manera que se minimicen los deslizamiento de la fibra con respecto a la matriz y se mejore el comportamiento general del refuerzo, favoreciendo con un tipo de falla más dúctil al elemento.
- En términos de ductilidad, se observa que la solución que mayor elongación genera es la solución rugoso más primer mas FRCM, tanto para las columnas como paras vigas ya que el sistema de refuerzo permanece sujeto al sustrato permitiendo un elemento que trabaje monolíticamente.
- El uso de fibras de cabuya genera múltiples ventajas para el medio ambiente, ya que constituyen un recurso natural y renovable, además de poseer baja densidad, alta rigidez y capacidad de biodegradarse, pero se requiere estudios que permitan generar una prolongación de la vida útil de la fibra.
- El número de mallas necesarias para el material compuesto depende del servicio que preste la estructura a reparar, por ejemplo, para elementos no estructurales sería suficiente una mall; pero para elementos estructurales donde se requiera recuperar resistencia y ductilidad, como pilares, muros, vigas de marcos, arrostramientos, fundaciones, pedestales, etc., el comportamiento dúctil y la capacidad de absorber energía debe ser cuidadosamente estudiado.
- Los materiales compuesto estudiados en esta investigación demostraron un comportamiento dúctil y resistencias a la tracción moderadas. La resistencia a la tracción rendimiento de estos materiales compuestos sostenibles se puede mejorar con unas mayores fracciones de volumen de fibra.

- Una vez evaluado cada uno de los sistemas de adherencia en vigas, mediante la aplicación del ensayo a flexión pura, propuesto en la presente investigación, se puede determinar que los sistemas R+FRCM, L+P+FRCM, R+P+FRCM presentan similitud de resultados en cuanto a la resistencia a flexión, llegando a comprobar que estos métodos no presentan fallas de desprendimiento cuando la viga se encuentra en la zona elástica, la falla de desunión ocurre entre tejidos de cabuya, pero esto se da cuando, la viga a alcanzado su mayor deflexión y carga máxima, y los incrementos de carga son muy pequeños.
- El sistema de anclajes en vigas permite evitar la falla de desprendimiento entre tejidos de cabuya, otorgando un aumento de la resistencia a flexión de 10.45% respecto al sistema R+P+FRCM que fue el que tenía la mayor resistencia, y de un 30.39% del sistema SR (sin refuerzo), resultados que ponen en manifiesto como el sistema de adherencia por anclajes aprovecha en mayor cantidad las propiedades mecánicas de la unión entre el sistema FRCM y el sustrato, explota de mejor manera las propiedades de resistencia del material compuesto.
- La situación de una viga, con falta de acero que trabaje a tracción, cambia considerablemente al incorporar el sistema FRCM, el cual es capaz de proveer un aumento en la resistencia mecánica de la viga de un 20% si hablamos de los sistemas, R+FRCM, L+P+FRCM y R+P+FRCM y de un aumento del 43% para el sistema por anclajes, con respecto a las vigas no reforzadas.
- El sistema FRCM no solo le aporta resistencia a la flexión a una viga mal armada, si no que genera una mayor ductilidad de deformación, característica muy requerida en el hormigón armado dado su carácter frágil, en promedio los sistemas R+FRCM, L+P+FRCM, R+P+FRCM poseen una ductilidad de deformación de 4, y el sistema de anclajes genera un 4.538, respecto al índice de ductilidad que produce las vigas sin refuerzo FRCM que es de 2.9
- Estudiado cada uno de los sistemas de adherencia en columnas, al igual que en las vigas se determina la buena adherencia que existe entre el sistema FRCM y el sustrato, ya que ninguna columna presento fallas entre la unión matriz-sustrato, pero si se dio fallas entre tejidos de cabuya, aun así eso no impidió que el sistema FRCM trabaje de gran manera sometido a esfuerzos de flexo compresión en columnas.

- Los sistemas de anclajes propuestos para columnas, les otorgaron a las mismas aprovechar en un 42% más su capacidad mecánica con respecto a las columnas sin el sistema FRCM, y en un 14% respecto al sistema R+P+FRCM que era el que mejores resultados otorgaba.
- Los índices de ductilidad en columnas demuestran un carácter frágil de las mismas, sin embargo si analizamos la capacidad de absorber la energía se observa una gran resistencia a su rotura principalmente en columnas que tiene el sistema de anclajes

5.2.RECOMENDACIONES

- Si se desea trabajar con fibras naturales como parte del refuerzo de una matriz cementicia, se debe prever que el tejido tenga una adecuada separación entre hilos, tanto transversal, como, longitudinalmente, de manera que la matriz penetre totalmente entre los espacios entre hilos de tejido, generando así, une mejor adherencia entre layers o tejidos de fibra natural.
- Cuando se trabaje con fibras naturales embebidas en una matriz de cemento se requiere un tratamiento superficial previo a su instalación, debido al deterioro que estas pueden experimentar con el paso del tiempo, en nuestro caso las fibras se impregnaron de resina poliéster, adquiriendo con ello nuevas propiedades de resistencia, adherencia con la matriz y durabilidad.
- El mortero utilizado para la matriz cementicia en un sistema compuesto FRCM debe poseer una alta resistencia a la compresión, además de tener un grado de fluidez óptimo que permita un manejo de mezcla adecuado al momento de la elaboración del material compuesto para ello el uso de un plastificante le ayuda al mortero a adquirir el flujo adecuado.
- Se recomienda el seguimiento de la investigación de los sistemas de reforzamiento estructural FRCM, considerando como datos de partida los valores de las propiedades de los diferentes materiales determinados en la investigación.

CAPITULO VI

6. **PROPUESTA**

6.1. TITULO DE LA PROPUESTA

Verificación experimental de la influencia del método de adherencia por medio de superficie rugoso con primer mas anclajes en estructuras de concreto armado reforzadas con material compuesto FRCM, a base de fibras naturales de cabuya.

6.2. INTRODUCCION

La técnica de reforzamiento de elementos de hormigón armado, mediante sistemas FRCM permiten aumentar las características a flexión de componentes estructurales sometidos a esta clase de esfuerzo, además que resulta económicamente competitivo frente a otros métodos, se permite instalar el refuerzo mientras la estructura se encuentra en servicio.

El modo de falla local, característica de elementos de concreto armado reparados mediante el empleo de materiales compuestos FRCM, se halla asociado al despegue del material externo de refuerzo o bien al desprendimiento de las capas de tejido del mismo. Estos mecanismos de falla conducen al deficiente comportamiento mecánico del sistema FRCM incumpliendo así el objetivo de aumentar la solidez del elemento a fortalecer, con ello, surge la necesidad de proponer un método de conexión que certifique un trabajo unitario entre el sustrato y el material FRCM, para hacer frente a este problema deben conocerse los elementos que condicionan la adherencia y proponer alternativas de anclaje que retrasen el desprendimiento.

El presente estudio propone una técnica de unión, mediante, un sistema de superficie rugosa más la aplicación de un adhesivo, conjugada con un sistema de anclajes. Para evaluar la capacidad de adherencia en vigas se realizan ensayos a flexión pura, mientras que, para, columnas se somete a estas a una carga excéntrica, de modo que, el fenómeno de pandeo producido en la columna, nos permita estimar mejor si el método de adherencia planteado permite retrasar o eliminar la delaminación tejido-matriz.

6.3. OBEJTIVOS 6.3.1. GENERAL

 Realizar la verificación experimental de la influencia del método de adherencia por medio de superficie rugoso con primer mas anclajes en estructuras de concreto armado reforzadas con material compuesto FRCM, a base de fibras naturales de cabuya.

6.3.2. ESPECIFICOS

- Efectuar la producción de 4 vigas y 4 columnas excéntricas, a escala 1:2 y 1:3 respectivamente, reforzadas con material compuesto FRCM, a base de fibras naturales (cabuya), utilizando el método de Rugoso+Primer+Anclajes para analizar su beneficio estructural.
- Calcular las propiedades tanto de vigas como de columnas excéntricas con el método de adherencia.
- Comparar los resultados obtenidos usando cada uno de los métodos propuestos para mejorar la adherencia.

6.4. FUNDAMENTACIÓN CIENTIFICA-TECNICA:

6.4.2. CONCEPTOS BÁSICOS SOBRE ANCLAJES

Los anclajes metálicos tienen muchas aplicaciones en el campo de la construcción, razón por la cual existen diferentes tipos de ellos en el mercado. De forma muy general se describirán algunos conceptos importantes para tener en cuenta en el momento en que se aborde este componente en el diseño del sistema de adherencia. (HILTI, 2004)

6.4.2.1. Condiciones del Material Base

Como es de esperar, las características del material base deben limitar el uso de uno u otro tipo de anclaje, ya que el desarrollo de la adherencia entre el anclaje y el material base, depende tanto de la geometría del vástago como de la resistencia del material base ante la solicitación que se le imprime con el anclaje. En el caso del concreto, las propuestas de diseño están basadas principalmente en dos variables que influencian el comportamiento del anclaje. Estas son la resistencia a la compresión, y el estado de fisuración del concreto. Si bien un anclaje inserto en el concreto no genera grandes solicitaciones a compresión en el material base, la resistencia a compresión es tal vez la propiedad mecánica más fácil de medir en el concreto, y alrededor de esta, se han desarrollado varias correlaciones con otras propiedades igualmente importantes, pero de medición poco sencilla.

Para la gran mayoría de anclajes, se han desarrollado tablas de diseño en función de la resistencia a la compresión del concreto, y se han barrido rangos que van desde los 14 hasta los 28 MPa principalmente, y para algunas referencias, se han desarrollado investigaciones en concretos de mayor resistencia alrededor de los 45 MPa. El caso de las fisuras, está relacionado con la forma en que se distribuyen los esfuerzos dentro de la masa de concreto. Esto se puede ver esquemáticamente en la Figura 272. Debido a la escasa resistencia a tracción del concreto, es imposible encontrar un elemento estructural libre de fisuras, sin embargo, si la estructura ha sido correctamente concebida y su uso ha estado de acuerdo con las suposiciones de carga de diseño, el ancho de estas fisuras no debe superar los 0.3 mm aproximadamente. Las investigaciones disponibles a la fecha, involucran siempre concreto sano, es decir, concreto con fisuración controlada adecuadamente. Solo hasta ahora se están iniciando investigaciones sobre concreto fisurado, cuyos resultados se empezarán a conocer en un futuro cercano. (HILTI, 2004)

Figura 272: Influencia de las fisuras en la resistencia de los anclajes. Fuente: HILTI, 2004

Formas de Trabajo Por regla general, se reconocen tres formas principales de trabajo de los anclajes, advirtiendo que algunos sistemas pueden presentar combinaciones de estas formas. La primera forma de trabajo, es el trabajo por fricción. En este tipo de sistemas, la fuerza de arrancamiento que debe soportar el anclaje, es transmitida al material base mediante fricción en la zona donde el inserto metálico hace contacto con la masa de concreto. Para ello, se utiliza algún dispositivo que expanda la punta del anclaje y genere una fuerza de expansión normal a la superficie de contacto, la cual depende

generalmente del par de apriete con que se ajuste el sistema (expansión por fuerza controlada). Otra forma de trabajo de los anclajes, es el trabajo por forma. En este tipo de sistemas, la fuerza de arrancamiento es contrarrestada por las fuerzas de reacción que se presentan en los puntos donde se genera una deformación permanente a la masa de concreto. En este caso, la expansión del anclaje se logra mediante el desplazamiento de uno de los componentes del inserto metálico (expansión por deformación controlada). Finalmente se reconoce como forma de trabajo de los anclajes, el trabajo por adherencia. En este tipo de sistemas, el inserto metálico queda embebido entre una resina epóxica o híbrida, la cual penetra los poros del material base y luego de endurecer y curar, crea un ajuste por forma, adicional al trabajo que genera la adherencia química. (HILTI, 2004)

6.4.2.2.Modos de falla

En los anclajes se reconocen varios tipos de falla, las cuales dependen en gran medida no solo de las características propias del inserto metálico, sino de las propiedades del material base, del proceso de construcción y de la geometría misma del sistema. Cuando el anclaje es poco profundo, generalmente no se alcanza a desarrollar toda la resistencia al arrancamiento que se requiere, y se presenta una falla por deslizamiento, en la que el inserto metálico sale de la masa de concreto, sin arrastrar consigo mayor parte del material base. Este fenómeno también se puede presentar cuando no se tienen los cuidados necesarios en el proceso de anclado y se dejan películas de grasa o impurezas en la superficie del material base que impiden la adherencia. (HILTI, 2004)

Figura 273: Formas de trabajo de los sistemas de anclaje en el concreto. Fuente: HILTI, 2004

Si las solicitaciones del anclaje superan la resistencia del inserto metálico, se presenta una falla por rotura a cortante o a tensión. Esto ocurre generalmente en anclajes profundos en materiales base de alta resistencia. En un caso intermedio, la fuerza de arrancamiento sobrepasa la resistencia del material base, generando una falla por extracción en la que el inserto metálico sale de la masa de concreto adherido al cono de extracción limitado por la superficie de falla. Otro de los modos de falla reconocidos, es la falla por distancia al borde insuficiente, que ocurre cuando el cono de extracción se sale de los límites de la pieza de concreto, y por ello se presenta una falla de extracción parcial, con una carga de extracción menor que la que se lograría si el anclaje estuviera lo suficientemente alejado del borde de la pieza. (HILTI, 2004)

Figura 274: Modos de falla característicos en anclaje. Fuente: HILTI, 2004

6.4.3. REFUERZO TOTALMENTE REVERSIBLE DE MADERA BLANDA, VIGAS CON PLACAS DE MATERIAL COMPUESTO NO UNIDAS (Marco Corradi, 2016)

6.4.3.1.Fortalecimiento Externo

El fortalecimiento se realizó con la aplicación de las placas GFRP antes de que se aplican las cargas de flexión. La superficie de la madera fue limpiada por chorro de aire para deshacerse de partículas sueltas y el polvo. La cara de la placa que se adhiere también se limpió con acetona. Las placas pretaladradas se fijan a la superficie de la madera usando tornillos de metal disponibles en el mercado, se aplica de acuerdo a diferentes configuraciones.

Para la disposición geométrica de los tornillos de las vigas pequeñas, se han utilizado cuatro configuraciones. De acuerdo con la primera disposición, 28 tornillos para madera (longitud 50 mm, diámetro de la rosca 4 mm) se colocaron de forma transversal a una distancia de centro a centro de 100 mm. Todos los tornillos se colocaron 25 mm de los bordes de la placa. De acuerdo con la segunda disposición, 28 tornillos del mismo tipo se colocaron en diagonal (45 °) a una distancia de centro a centro de 100 mm. Dos o cuatro soportes de acero en forma de U se han utilizado para aumentar la eficiencia de la conexión. (Corradi, 2016)

Figura 275: Los soportes de acero para armaduras de pequeño a) y grandes vigas de madera blanda b) Fuente: Marco Corradi, 2016

Para las grandes vigas, se utilizaron 8 tornillos metálicos o pernos de 18 mm de diámetro (80 y 100 mm de longitud, respectivamente). Tres arreglos se adoptó, de acuerdo con la primera configuración se aplicaron (5 disposiciones) 8 tornillos de 8 mm de diámetro (longitud = 80 mm). Los tornillos se han colocado a una distancia de centro a centro de 200 mm. Para la segunda configuración (sexta disposición de tornillo), 6

tornillos de 8 mm de diámetro (longitud = 100 mm) se utilizaron para cada extremo de la placa, para un total de 12 tornillos. La última configuración (séptima disposición de tornillo) es similar a la primera: Se han usado 6 pernos metálicos de 18 mm de diámetro. Para todos los arreglos, tornillos o pernos se colocaron 50 mm del GFRP el borde del plato. Con el objetivo de comparar la eficacia de la técnica de refuerzo, un número limitado de pequeños y grandes vigas de madera blanda se reforzaron mediante la unión de la placa de GFRP utilizando una resina epoxi. Al asegurar una perfecta adherencia entre la placa de GFRP y madera, fue posible definir un límite superior a la capacidad de las vigas reforzadas. (Corradi, 2016)

Por último, para un pequeño número de vigas, soportes de acero se utiliza para aumentar el nivel de conexión entre y material de madera y la placa GFRP. Para cada haz, 2 soportes de acero se aplicaron cerca de los soportes, donde la fuerza de cizallamiento alcanza el valor máximo. La placa GFRP fue epoxi-pegado a la superficie interna de los soportes de acero y mediante la perforación de agujeros en los que era posible aplicar un mayor número de tornillos de metal. El objetivo era producir una mejor distribución de las cargas de corte y una reducción de la concentración de tensión alrededor de los orificios y de deslizamiento entre el GFRP y madera. (Corradi, 2016)

Figura 276: Los cuatro vigas pequeñas después de la aplicación de la armadura de acero. Fuente: Marco Corradi, 2016

6.4.4. UN MODELO BASADO EN LA FRACTURA DEL SISTEMA FRP, DESUNIÓN EN LAS VIGAS REFORZADAS (Oguz Gunes, Oral Buyukozturk, Erdem Karaca, 2009)

6.4.4.1.Estudio Experimental

El estudio experimental presentado en este documento es parte de un programa integral experimental llevado a cabo para investigar el rendimiento de la carga monotónica y cíclica de vigas de hormigón armado reforzado en flexión y/o cizalladura usando placas y láminas compuestas FRP. El foco del estudio fue la caracterización y prevención de fallos de desunión como afectados por el fortalecimiento de cizallamiento y de las condiciones de anclaje. En este trabajo, los resultados primarios de este programa experimental se presentan como una base para el modelo presentado en la Sección 5. Las vigas de hormigón armado se han reforzado con placas de compuestos FRP de carbono en cortante y / o flexión con y sin anclaje del refuerzo de FRP a la flexión, y se cargaron en cuatro puntos de flexión hasta rotura. Las propiedades de los materiales utilizados en el programa experimental se dan la Tabla 26. (Oguz, 2009)

 Tabla 29: Propiedades de los materiales utilizados en la investigación. Fuente: Oguz Gunes, Oral Buyukozturk, Erdem Karaca, 2009

Material	Compressive strength (MPa)	Yield strength (MPa)	Tensile strength (MPa)	Elastic modulus (MPa)	Ult. tensile strain (%)
Concrete	41.4	-	-	25,000	-
#3 and #5 rebars	-	440	-	200,000	-
D4 deformed bars	-	620	-	200,000	-
CFRP plate	-	-	2800.0	165,000	1.69
Epoxy adhesive	-	-	24.8	4500	1.00

La geometría y refuerzo detalles de la muestra de control (CM1) se muestran en Fig. 274 y el fortalecimiento de las configuraciones de las vigas ensayadas se muestran en Fig. 54. Todos los modelos que figuran de la Fig. 274 se fortalecieron en flexión usando 1.270 mm (50 pulgadas) de largo, 38,1 mm (1,5 pulgadas) de ancho y 1,2 mm (0,047 pulgadas) de espesor placas de FRP unidireccionales. Para el fortalecimiento de cizallamiento, de 40 mm de ancho recta (vigas S3PS1M y S3PS2M) y en forma de L (vigas S4PS1M y S4PS2M) se utilizaron placas de FRP unidireccionales, el último de los cuales también sirve como anclaje para el refuerzo de flexión FRP. Con el fin de comparar la influencia de fortalecimiento de desunión, la capacidad de corte de una viga se incrementó mediante el uso de mayor refuerzo de corte interno. Utilizando el análisis de la sección, la capacidad de carga de flexión calculada fue de 118,6 kN en el caso del haz de control (CM1) y 158,6 kN para todas las vigas reforzadas, con todo espera que fracase por aplastamiento del hormigón. Las capacidades de corte calculados fueron 202 kN para el haz de control (D4 refuerzo de corte), 339 kN para S2PF7M (# 3

barras de refuerzo refuerzo de corte), y 300 kN en secciones de vigas de refuerzo de FRP con cizalla.

Todas las vigas fallaron a través de desunión FRP excepción de S1PF1M haz que fracasó a través de desunión cubierta seguida de una falla de corte. La comparación de las curvas de carga-deflexión de haz S1PF1M y S2PF7M, la influencia de la capacidad de corte de una viga en su comportamiento de fallo de desunión es inmediatamente evidente. (Oguz, 2009)

Figura 277: La geometría y el fortalecimiento de las configuraciones de las muestras de ensayo en mm. Fuente: Oguz Gunes, Oral Buyukozturk, Erdem Karaca, 2009

Figura 278: Resultados Experimentales. Fuente: Oguz Gunes, Oral Buyukozturk, Erdem Karaca, 2009

6.4.4.2.Conclusiones

A través de la investigación experimental y estudios de modelos analíticos, un modelo de fractura mundial fue desarrollado para predecir los fallos de desunión FRP en vigas reforzadas. El modelo incluye la geometría, la configuración de fortalecimiento, y los efectos de anclaje de bonos adicionales teniendo en cuenta el balance de energía en el sistema y la disipación de energía a través del refuerzo de acero rendimiento y desunión FRP. La implementación del modelo de varios juegos de forma independiente informó datos experimentales muestran que el modelo puede predecir satisfactoriamente las cargas de rotura de desunión FRP para diversos tamaños de vigas reforzadas en varias configuraciones, con o sin anclaje de bonos. El modelo puede mejorarse aún más mediante una mejor caracterización de sus componentes, tales como la disipación de energía de fractura de modo mixto en las interfaces de FRP de hormigón y FRP-FRP.

El modelo desarrollado puede ser fácilmente integrado en el diseño de FRP fortalecidos vigas para asegurar que la carga de rotura de desunión es mayor que la capacidad de flexión de la viga. Una posible aproximación se perfila para determinar el área de unión o zona de anclaje enlace adicional requerida para evitar fallos de desunión frágiles. Con nuevas mejoras y validación, el modelo puede ser utilizado como una disposición de código para la prevención de fallos de desunión FRP. (Oguz, 2009)

6.5. DESCRIPCIÓN DE LA PROPUESTA

Si una estructura de concreto armado se conforma a partir de dos secciones, la forma en que trabajará el elemento compuesto, dependerá de la correcta adherencia entre las partes que la conforman, ya que si no se ligan correctamente las secciones, se producirá un deslizamiento relativo en la interfase de contacto o en el tejido con la matriz, y los esfuerzos internos no se transmitirán de una sección a otra, por otra parte si se garantiza una correcta adherencia entre las secciones, los esfuerzos internos se desarrollarán como si la estructura fuera monolítica.

La principal limitación que se ha observado en los refuerzos FRCM, ha sido la de los modos de falla. La falla de un refuerzo FRCM puede darse en la interface o en el propio refuerzo, siendo comúnmente llamado debonding (delaminación). La mayor parte de los ensayos de vigas y columnas excéntricas realizados para evaluar la eficiencia de los

diferentes métodos de unión planteados, mostraron modos de fallo del material compuesto especialmente el despegue matriz-tejido con cargas y deformaciones mostradas en la tabla 19, de igual manera en el ensayo de Pull off, surgieron estos problemas de unión tejido-matriz, ya que algunas de las muestras fallaron en un promedio 0.6 KN, al despegarse en el primero o segundo layer.

Para hacer frente al fallo por despegue, se sugiere no solo un método para prevenir el despegue matriz-sutrato sino también tejido-matriz proponiendo una alternativa de anclaje para que reduzca o retrase este desprendimiento.

La técnica de unión, matriz- sustrato es una superficie rugosa más primer, ya que con la rugosidad la matriz cementicia y el primer seguirán cada detalle de esta superficie, cuanto mayor sea la rugosidad del sustrato, el entrelazamiento será mayor, pero para evitar el fenómeno de la delaminación tejido-matriz se colocó un sistema de anclajes el cual consta de placas metálicas a lo ancho del elemento, sujetas a este por medio de pernos de expansión. Cabe mencionar que este procedimiento de unión como los anteriores no fue calculado sino más bien se lo analizará como experimental, es decir de comprobarse su eficiencia se sugiere un método de cálculo tanto del número de placas como dimensiones de los pernos. Un total de 4 columnas excéntricas y 4 vigas, fueron ensayadas en la prensa para ensayo de tubos de los Laboratorios de Ingeniería Civil de la Universidad Nacional de Chimborazo, con las mimas condiciones en las que fueron evaluadas los sistemas de adherencia de esta investigación.

Figura 279: Sistema de anclajes: a) falla por delaminación en columnas, b) Falla por delaminación en viga, c) desprendimientos matriz-tejido y d) Fallas reflejadas en la matriz.

VIGA	τιρο	CARGA MÁXIMA [N]	CARGA [N]	DEFORMACIÓN [cm]	DEFORMACIÓ N DEBOLDING [cm]	Δ CARGA [N]	% PORCENTAJE
D1P4	Liso+primer+F RCM	39500	41500	3.3	5.8	2000	4.81
D1P4	Rugoso+FRCM	40000	42000	3.5	5.3	2000	4.76
D1P1	Rugoso+prime r+FRCM	38000	41000	4.1	6	3000	7.31

Tabla 30: Cargas y deformaciones promedio antes del fenómeno de debonding.

Una vez que el ensayo llega a su final, en las vigas debido a que no se despegó el material compuesto, procedimos a retar los deformímetros para llevar a la falla o desprendimiento del material compuesto, la tabla Nº 30 muestra los resultados.

6.5.1. FABRICACIÓN DE LAS VIGAS Y COLUMNAS DE CONCRETO ARMADO REFORZADAS CON EL SISTEMA FRCM ADHERIDAS MEDIANTE EL METODO RUGOSO + PRIMER + ANCLAJES.

Las vigas tienen una longitud de 150 cm y una sección transversal de 13 x 17 cm, diseñadas de igual forma como se especifica en el numeral 2.4.3.3.4. y las columnas de dimensiones y diseño según el 2.4.3.4. Para el encofrado se utilizó madera recubierta con melanina, la cual no permite la absorción de agua y por ende el hormigón no pierde esta. La dosificación del hormigón utilizado fue el mismo especificado en el numeral 2.5.2., obteniendo así resultados que pueden ser comparados con los otros modelos de la investigación. La fundición y colocación del material compuesto en los modelos es el corresponde a lo especificado en el numeral 6.4.6. ya que se trata de la misma estructura.

Figura 280: Sistema de anclajes: a) Tejido con resina b) Preparación de la superficie rugosa, c) Modelos pintados para ensayo y d) Colocación de la primera capa de matriz cementicia.

6.5.2. COLOCACIÓN DEL SISTEMA DE ANCLAJE

El sistema de anclaje consta de placas metálicas de e=4 mm y dimensiones: 5x13 cm para vigas y 5x10 cm para columnas, las cuales están sujetas a la estructura y al material compuesto por medio de pernos de expansión, estos anclajes están constituidos de acero inoxidable y consisten de cuatro partes: un poste roscado con su final en forma de campana, una camisa expansiva tubular, una arandela y una tuerca. Estos anclajes son utilizados para trabajos livianos y medianos; y pueden ser utilizados en concreto, ladillos o bloques. Su funcionamiento es sencillo, mientras se aprieta la tuerca, la campana se inserta dentro de la camisa expansiva, creando así presión entre las paredes del orificio donde es insertado el anclaje, haciendo casi imposible su deslizamiento.

Elemento	Dimensiones de Perno de Camisa de Expansión				
Vigas	5/16 x 2 ½ "				
Columnas	5/16 x 1 ½ "	60			

 Tabla 31: Especificaciones de pernos de expansión en el sistema de unión por anclaje.

Se colocaron 4 placas por elemento, a una distancia mostrada en la figura, cada placa consta de 2 pernos de expansión, los cuales fueron insertados al sustrato y al material compuesto mediante una perforación con taladro ya que es un método que provoca poco esfuerzo en la estructura, cuidando de que no toque o pueda dañar los estribos o el acero de refuerzo.

Figura 281: Sistema de Anclajes- Configuración columnas

Figura 282: Sistema de Anclajes- Configuración vigas.

Figura 283: Sistema de Anclajes- a) Anclajes en columnas y b) Anclajes en vigas.

6.5.3. MONITEREO Y EVALUACIÓN DE LA PROPUESTA

En los Laboratorios de Ingeniería Civil, las columnas fueron ensayadas a los treintaicinco días de fabricación y veintiocho días de la colocación del material compuesto FRCM., los ensayos se realizaron con un actuador hidráulico para doblado de tubos que permite controlar la fuerza. Las especificaciones del ensayo se muestran en el numeral 2.4.7. Obteniendo lo siguientes resultados:

6.5.3.1.VIGAS – RUGOSO + PRIMER + FRCM + ANCLAJES 6.5.3.1.1. VIGA - A1

Figura 284: Diagrama de Carga vs. Deflexión al Centro de la viga – Viga: Al

Figura 285: Diagrama Esfuerzo vs. Deformación Unitaria - Viga: Al

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 286: Deformación en las zonas de Compresión y Tracción - Viga: Al

Figura 287: Diagrama Carga vs. Deformación para Cálculo de Áreas - Viga: Al

Carga vs. Longitud de Fisura

6.5.3.2.VIGA – A2

Figura 289: Diagrama de Carga vs. Deflexión al Centro de la viga – Viga: A2

Figura 290: Diagrama Esfuerzo vs. Deformación Unitaria - Viga: A2

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 291: Deformación en las zonas de Compresión y Tracción - Viga: A2

259

Figura 292: Diagrama Carga vs. Deformación para Cálculo de Áreas - Viga: A2

Figura 293: Diagrama de Carga vs. Longitud de Fisura-Viga: A2

Figura 294: Diagrama de Carga vs. Deflexión al Centro de la viga – Viga: A3

Esfuerzo vs. Deformación Unitaria de la Viga

Figura 295: Diagrama Esfuerzo vs. Deformación Unitaria - Viga: A3

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 296: Deformación en las zonas de Compresión y Tracción - Viga: A3

Figura 297: Diagrama Carga vs. Deformación para Cálculo de Áreas - Viga: A3

6.5.3.4.VIGA A4

Figura 299: Diagrama de Carga vs. Deflexión al Centro de la viga - Viga: A4

Figura 300: Diagrama Esfuerzo vs. Deformación Unitaria - Viga: A4

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 301: Deformación en las zonas de Compresión y Tracción - Viga: A4

Figura 302: Diagrama Carga vs. Deformación para Cálculo de Áreas - Viga: A4

Carga vs. Longitud de Fisura

Figura 303: Diagrama de Carga vs. Longitud de Fisura-Viga: A4

Figura 304: Diagrama de Carga vs. Deflexión al Centro de la viga – Viga: Resumen Anclajes

Esfuerzo vs. Deformación Unitaria de la Viga

Figura 305: Diagrama Esfuerzo vs. Deformación Unitaria - Viga: Resumen Anclajes

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 306: Deformación en las zonas de Compresión y Tracción - Viga: Resumen Anclajes

6.5.5. RESUMEN DE CARGAS EN VIGAS CON ANCLAJES

Tabla 32: Resumen de Cargas de Vigas con anclajes

Тіро	Espécimen	Carga Max. [N]	Deformación Max. [mm]	Esfuerzo [MPa]	Def. Unitaria Max. [mm/mm]
Buggese I	ANCLAJES1	45650.000	43.840	17.011	0.25788
Rugoso +	ANCLAJES2	46860.000	48.971	17.462	0.28807
	ANCLAJES3	47080.000	39.548	17.544	0.23263
+ Anciajes	ANCLAJES4	44000.000	26.314	16.396	0.15479
	MEDIA	45897.500	39.668	17.103	0.233
DESVIA	CIÓN ESTANDAR	1412.619	9.700	0.526	0.057
COEFICIENTE D	DE VARIACIÓN %	3.078	24.454	3.078	24.454

ENSAYO A FLEXIÓN PURA EN VIGAS A ESCALA

6.5.1. ÍNDICES DE DUCTILIDAD Y ENERGÍA EN VIGAS

Tabla 33: Resumen de Índices de Ductilidad y energía en vigas

				-	-			-	-		
τιρο	Espécimen	εy [mm]	٤ ս [mm]	A _{total} [kN∙mm]	A _{post} [kN∙mm]	A _{elastic} [kN∙mm]	Ductilidad de Deformación [mm/mm]	Ductilidad de Energía [J/J]	Reserva de la Energía de Deformación [J/J]	Energía Absorbida [J]	Energía de Fractura o Tenacidad [J/m ²]
Rugoso +	ANCLAJES1	10.24	43.84	1527.04	1380.49	146.55	4.281	5.710	9.420	1527.040	69096.833
Primer +	ANCLAJES2	9.42	48.97	1789.15	1695.84	93.31	5.199	10.087	18.174	1789.150	80957.014
FRCM +	ANCLAJES3	9.58	39.55	1483.08	1317.09	165.99	4.128	4.967	7.935	1483.080	67107.692
Anclajes	ANCLAJES4	9.63	43.76	1570.81	1412.18	158.63	4.544	5.451	8.902	1570.810	71077.376
	MEDIA					4.538	6.554	11.108	1592.520	72059.729	
	DESVIACIÓN ESTANDAR					0.472586836	2.375499356	4.750998711	135.8914089	6148.932527	
				COE	FICIENTE DE V	/ARIACIÓN %	10.41382341	36.24552268	42.77164843	8.533105321	8.533105321

ÍNDICES DE DUCTILIDAD Y ENERGÍA EN VIGAS

Figura 307: Diagrama de Carga vs. Deflexión al Centro de la viga – Viga: Resumen General

Esfuerzo vs. Deformación Unitaria de la Viga

Figura 308: Diagrama Esfuerzo vs. Deformación Unitaria - Viga: Resumen General

Carga vs. Deformación en las Zonas de Compresión y Tracción de la Viga

Figura 309: Deformación en las zonas de Compresión y Tracción - Viga: Resumen General

6.5.3. COLUMNAS – RUGOSO + PRIMER + FRCM + ANCLAJES 6.5.3.1.COLUMNA – R+P+FRCM+A1

Figura 310: Diagrama Carga vs. Deformación Longitudinal - Columna: A1

Figura 311: Diagrama Carga vs. Pandeo- Columna: A1

Figura 312: Momento vs. Curvatura Columna: A1

Figura 313: Diagrama Carga vs. Deformación para cálculo de áreas - Columna: A1

6.5.3.2.COLUMNA – R+P+FRCM+A2

271

Figura 315: Diagrama Carga vs. Pandeo- Columna: A2

Momento vs. Curvatura

Figura 316: Momento vs. Curvatura Columna: A2

Figura 317: Diagrama Carga vs. Deformación para cálculo de áreas - Columna: A2

6.5.3.3.COLUMNA – R+P+FRCM+A3

Figura 318: Diagrama Carga vs. Deformación Longitudinal - Columna: A3

Figura 319: Diagrama Carga vs. Pandeo- Columna: A3

Momento vs. Curvatura

Figura 320: Momento vs. Curvatura Columna: A3

Figura 321: Diagrama Carga vs. Deformación para cálculo de áreas - Columna: A3

6.5.3.4.COLUMNA – R+P+FRCM+A4

Figura 322: Diagrama Carga vs. Deformación Longitudinal - Columna: A4

Figura 323: Diagrama Carga vs. Pandeo- Columna: A4

Figura 324: Momento vs. Curvatura Columna: A4

Figura 325: Diagrama Carga vs. Deformación para cálculo de áreas - Columna: A4

6.5.4. RESUMEN DE ANCLAJES EN COLUMNAS

Figura 326: Diagrama Carga vs. Deformación Longitudinal - Columna: Resumen Anclajes

Figura 327: Diagrama Carga vs. Pandeo- Columna: Resumen Anclajes

Figura 328: Momento vs. Curvatura Columna: Resumen Anclajes

6.5.5. RESUMEN GENERAL DE RESULTADOS EN COLUMNAS CON ANCLAJES.

	ENSAYO DE COLUMNAS CON CARGA EXCÉNTRICA									
		Carga Max.	Deformación	Deformación	Momento	Momento	Curvatura			
Тіро	Espécimen	[N]	Compresión	Pandeo	1er. Orden	2do. Orden	[mm ⁻¹]v10 ⁻⁵			
		[[1]]	[mm]	[Mpa]	[kN·mm]	[kN·mm]	[IIIII]XIO			
Bugoco I	ANCLAJES1	114400.000	8.925	9.601	5720.000	6202.356	24.674			
Rugoso +	ANCLAJES2	124400.000	8.200	9.550	6220.000	6693.964	23.530			
	ANCLAJES3	109700.000	8.850	10.160	5485.000	6599.552	24.451			
+ Anciajes	ANCLAJES4	99600.000	7.930	10.439	4980.000	5599.811	23.837			
	MEDIA	112025.000	8.476	9.938	5601.250	6273.921	24.123			
DESVIAC	IÓN ESTANDAR	10304.8128	0.488456327	0.433725608	515.24064	497.332135	0.531			
COEFICIENTE D	E VARIACIÓN %	9.19867243	5.762646535	4.364424627	9.19867243	7.92697511	2.200			

 Tabla 34: Resumen General del sistema de anclaje en columnas.

6.5.6. ÏNDICES DE DUCTILIDAD EN VIGAS COLUMNAS CON ANCLAJES

Tabla 35: Resumen General del sistema de anclaje en vigas.

ΤΙΡΟ	Espécimen	εy [mm]	Eu [mm]	A _{total} [kN∙mm]	A _{post} [kN∙mm]	A _{elastic} [kN∙mm]	A _{ep} [kN∙mm]	Ductilidad de Deformación [mm/mm]	Ductilidad de Energía [J/J]	Reserva de la Energía de Deformación [J/J]	Energía Absorbida [J]
Rugoso +	ANCLAJES1	7.2	10.72	547.12	378.46	168.66	14.95	1.489	36.597	2.244	547.120
Primer +	ANCLAJES2	6.66	9.89	502.15	364.62	137.53	21.63	1.485	23.215	2.651	502.150
FRCM +	ANCLAJES3	7.59	10.11	442.45	262.44	180.01	7.31	1.332	60.527	1.458	442.450
Anclajes	ANCLAJES4	5.97	9.34	431.18	312.07	119.11	15.78	1.564	27.324	2.620	431.180
	MEDIA						1.468	36.916	2.243	480.725	
	DESVIACIÓN ESTANDAR					0.098	16.706	0.555	54.120		
	COEFICIENTE DE VARIACIÓN %						6.644	45.254	24.755	11.258	

6.5.7. RESUMEN GENERAL COLUMNAS

Figura 329: Diagrama Carga vs. Deformación Longitudinal - Columna: Resumen General

Figura 330: Diagrama Carga vs. Pandeo- Columna: Resumen General

Figura 331: Momento vs. Curvatura Columna: Resumen General

7. BIBLIOGRAFÍA

ACI 440.2R-02 (2002). Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. Reported by ACI Committee 440. American Concrete Institute, Farmington Hills, Michigan, USA.

ALVARADO C. Y RODRIGUEZ P. (2003). Uso De Fibras Naturales De Lechuguilla Para El Refuerzo De Concreto-Paginas 7-9

AREQUIPA, COBO, GARZON Y VARGAS (2012) "Módulo Estático de Elasticidad del Hórmigon en Base a su Resistencia a la Compresión Simple" Universidad Central del Ecuador.

BABAEIDARBAD, S (2014), "Flexural Behavior of RC Beams Strengthened with Fabric-Reinforced Cementitious Matrix (FRCM) Composite"

BANHOLZER B. (2004) Bond Behavior Of A Multi-Filament Yarn Embedded In A Cementitious Matrix.

BELTRÁN L. (1986). *Concreto Reforzado Con Fibras De Polipropileno*, Tesis de Grado de la Escuela Politécnica Nacional, pp. 6, 39, Quito.

BRENES. A (2013) "Comparación de las propiedades mecánicas entre una resina reforzada con fibra de cabuya y una resina reforzada con fibra de vidrio" Universidad de Costa Rica.

BERARDI F.(2011) "Rinforzo di un viadotto ferroviario con PBO-FRCM"

CEVALLOS O, (2014) "Sustainable Fabric-Reinforced Cementitious Composites For The Strengthening Of Masonry Elements"

CEVALLOS J. (2013). Análisis De Elementos Estructurales Que Trabajan A Flexión Con Fibras De Carbono, Universidad Técnica de Ambato.

CARILLO D. (2014) "Estudio del comportamiento a fatiga mecánica por flexión de materiales compuestos con fibra de cabuya (30%) y matriz poliéster (70%) para determinar el diagram s-n" Universidad Técnica de Ambato

D' AMBRISI Y FOCACCI (2011) "Prediction of Flexural Capacity of RC Beams Strengthened in Flexure with FRP Fabric and Cementitious Matrix"

E. SAYED-AHMED, R. BAKAY AND N. SHRIVE: (2009). *Electronic Journal of Structural Engineering Vol 9*, Páginas 45-61

FERNÁNDEZ-CANTELI, L. CASTAÑÓN, B. NIETO, M. LOZANO (2014). "Determining fracture energy parameters of concrete from the modified compact tension test"

KOLSCH H. (1998). "Carbon Fiber Cement Matrix (Cfcm) Overlay System For Masonry Strensthening".

LORETO G (2014), "Flexural Behavior of RC Beams Strengthened with Fabric-Reinforced Cementitious Matrix (FRCM) Composite"

M. MAALEJ *, K.S. LEONG (2005) "Engineered cementitious composites for effective FRP-strengthening of RC beams"

McCormac. C (2011). "Diseño de Concreto Reforzado"

MARTINEZ A. (1998). Criterios Fundamentales para Resolver Problemas de Resistencia de Materiales. Ediciones de la Universidad Simón Bolívar.Caracas-Venezuela. Páginas 393-397

MARTINEZ M. (2016) "Guía para el diseño de refuerzos de elementos estructurales de hormigón armado mediante material compuesto por mallas de fibras minerales embebidas en matriz cementícea (frcm)" Universidad de Chile

MENNA C, ASPRONE D, DURANTE M, ZINNO A, BALSAMO A Y PROTA A.(2015). Structural behaviour of masonry panels strengthened with an innovative hemp fibre composite grid.

MONTELEONE A. (2009) "Numerical Analysis of Crack Induced Debonding Mechanisms in FRP-Strengthened RC Beams" Universidad de Waterloo

NILSON H, (2001) "Diseño de Estructuras de Concreto Armado"

NANNI A.(2012) "A New Tool for Concrete and Masonry Repair"

NANNI A., M. S. NORRIS. (1995). Frp Jacketed Concrete Under Flexure And Combined Flexure-Compression. Construction And Building Materials. Páginas 273-281.

NISHIHARA, J. (2012). Influencia de las Fibras Naturales de Maguey a Manera de Adiciones en el Control de Fisuras por Contracción Plástica en los Pavimentos Rígidos de Concreto Hidráulico, Perú.

O'R. 2014 10 PASOS PARA UNA CONSTRUCCION SOSTENIBLE. Direccion:http://atelieroreilly.com/wp-content/uploads/2011/07/OR-WEB-10-pasos-para-la-construccion-sostenible.pdf

ORTLEPP R.; ORTLEPP S. AND CURBACH M.(2004); Stress Transfer In The Bond Joint Of Subsequently Applied Textile Reinforced Concrete Strengthening.

PIERRE ROCHETTE1 AND PIERRE LABOSSIE`RE (2000)"Axial testing of rectangular column models confined with composites"

Portales Edu. (2013). *COLUMNAS*. Dirección: http://portales.puj.edu.co/wjfajardo/CONCRETO%20I/NOTAS%20CLASE/7-%20COLUMNAS.pdf.

PROAÑO FIALLOS E. (2015). Desarrollo De Un Material Compuesto De Matriz De Poliuretano Rigido Reforzado Con Fibras De Cabuya Y Con Raquis De Palma Africana. Tesis de grado para la obtención del título de Ingeniero Químico. Escuela Politécnica Nacional. Páginas 1-26

ROMO M, (2008) "*Temas de Hormigón Armado*" Escuela Superior Politécnica del Ejército.

R.C. HIBBELER. (2012). *Mecánica de Materiales*. Edición de la Cámara Nacional de la Industria. México D.F. Páginas 692-697

RODRIGUEZ (2016) "Evaluación funcional y estructural del puente vehicular quebrada rondán, ubicado en la carretera Guamote – socavón kilómetro 7 + 000, del Cantón Guamote, Provincia de Chimborazo, y análisis de dos alternativas de diseño" Universidad Nacional de Chimborazo.

ROCHEL AWAD R. (1998). Concreto Reforzado, Tomo I, Colombia.

SANDOVAL P. (2014). Evaluación Experimental Del Comportamiento Mecánico De Refuerzos De Fibra De Carbono Con Matriz Cementícea (Frcm), Influencia Del Tipo De Matriz. Tesis de grado para la obtención del título de Ingeniero Civil. Universidad de Chile. Páginas 2-8

SIKA "CONCRETO REFORZADO CON FIBRAS". Sika Informaciones técnicas.ISSN-0122-0594. Páginas 6-25

Tamayo A. (2012). COMPUESTO DE MATRIZ POLISTER REFORZADO CON FIBRA DE CABUYA MEDIANTE ESTRATIFICACIÓN -Escuela Politécnica Nacional .Paginas 3-49

YAULI J. (2014). *Desempeño Sísmico De Vigas Reparadas Con Fibras De Carbono*. Tesis de grado para la obtención del título de Ingeniero Civil. Universidad Técnica de Ambato. Páginas 1-26

Marco Corradi (2016). "Fully reversible reinforcement of softwood beams with unbonded composite plates". Páginas 3-9

Oguz Gunes, Oral Buyukozturk, Erdem Karaca, (2009). "Un Modelo Basado En La Fractura Del Sistema Frp, Desunión En Las Vigas Reforzadas ".Páginas 3-25

10. APÉNDICES O ANEXOS

10.1.CARACTERIZACIÓN TEJIDO Y FIBRA DE CABUYÁ

10.1.1. DENSIDAD ESPECÍFICA

10.1.1.1. TEJIDO DE CABUYA

	DENSIDAD	ESPECÍFICA TEJID	O DE CABUYA		
Proyecto:	Tesis J. Alm	Fecha:	26/01/2016		
MA	SA CANASTA+	ESTRUCTURA (g):	232.57	<u>.</u>	
MUESTRA MASA SECA		MASA CANAT+ ESTRUC+MUEST	MASA DE LA MUESTRA SUMERGIDA	DENSIDAD	
	[g]	[g]	[g]	[g/cm ³]	
R1	1.930	233.020	0.450	1.304	
R2	2.080	233.150	0.580	1.387	
R3	1.760	233.070	0.500	1.397	
R4	1.860	233.060	0.490	1.358	
R5	2.010	233.120	0.550	1.377	
R6	1.640	233.040	0.470	1.402	
R7	1.790	233.000	0.430	1.316	
R8	1.680	233.020	0.450	1.366	
R9	2.190	233.110	0.540	1.327	
R10	2.310	233.140	0.570	1.328	
			MEDIA [g/cm ³]	1.356	
		DESVIACIÓN EST	ANDAR [g/cm ³]	0.035	
	E VARIACIÓN%	0.026			

FÓRMULAS UTILIZADAS

-Densidad de la Fibra

$$\delta = \frac{P_s}{(P_s - P_{sum})}$$

-Masa de la muestra sumergida

 $P_{sum}=P_e-P_{e+m}$

	DENSID	AD ESPECÍFICA SA	CO DE CABUYA	
Proyecto:	21/06/2016			
MASA	CANASTA+	ESTRUCTURA (g):	226.66	
MUESTRA	MASA SECA	MASA CANAT+ ESTRUC+MUEST	MASA DE LA MUESTRA SUMERGIDA	DENSIDAD
	[g]	[g]	[g]	[g/cm ³]
R1	1.530	227.050	0.390	1.342
R2	1.600	227.200	0.540	1.509
R3	1.580	227.070	0.410	1.350
R4	1.630	227.190	0.530	1.482
R5	1.780	227.180	0.520	1.413
R6	1.750	227.100	0.440	1.336
R7	1.640	227.170	0.510	1.451
R8	1.590	227.200	0.540	1.514
R9	1.600	227.220	0.560	1.538
R10	1.530	227.150	0.490	1.471
			MEDIA [g/cm ³]	1.441
	0.076			
		COEFICIENTE DE	VARIACIÓN [%]	5.279

FÓRMULAS UTILIZADAS

-Densidad de la Fibra

$$\delta = \frac{P_s}{(P_s - P_{sum})}$$

-Masa de la muestra sumergida

 $P_{sum} = P_e - P_{e+m}$

10.1.2. MASA POR UNIDAD DE ÁREA (ASTM D 3776)

10.1.2.1. TEJIDO DE CABUYA

MASA POR UNIDA	AD DE ÁREA TEJIDO	DE CABUYA				
Norma:	ASTM	D3776				
Proyecto:	Tesis J. Almache - D. Tapia					
Dimensiones de las Mu	Auestras: 100mm x 100mm					
Fecha:	27/01/2016					
Muestra	Masa	Masa por Unidad de Área				
	[g]	[g/m²]				
1	3.75	375.00				
2	3.78	378.00				
3	3.18	318.00				
4	3.45	345.00				
5	3.55	355.00				
6	3.06	306.00				
7	3.23	323.00				
8	3.00	300.00				
9	3.73	373.00				

10 4.16 MEDIA [g/m2] DESVIACIÓN ESTÁNDAR [g/m2] COEFICIENTE DE VARIACIÓN %

F	ń	R	N.	Λ	11	1/	١c	Ш	IT	17	Δ	n	Δ	ς
Г	U	n	11		υ	ᅝ	43	- U	, , ,	-	н	υ	н	3

Masa por unidad de área

$$M_A = \frac{M_m * 10^6}{A_m}$$

416.00

348.900 37.299

10.690

10.1.2.2. SACO DE CABUYA

MASA POR UNIDAD DE ÁREA SACO DE CABUYA						
Norma:	ASTM D3776					
Proyecto:	Tesis J. Almacl	ne - D. Tapia				
Dimensiones de	e las Muestras:	100mm x 100mm				
Fecha:	21/06/	2016				
Muestra	Masa	Masa por Unidad de Área				
	[g]	[g/m²]				
1	3.78	378.00				
2	4.06	406.00				
3	3.81	381.00				
4	3.88	388.00				
5	3.97	397.00				
6	4.07	407.00				
7	4.09	409.00				
8	4.00	400.00				
9	3.82	382.00				
10	3.94	394.00				
	MEDIA [g/m2]	394.200				
DESVIACI	ÓN ESTÁNDAR [g/m2]	11.487				
COEFICIE	NTE DE VARIACIÓN %	2.914				

FÓRMULAS UTILIZADAS

Masa por Unidad de Área

$$M_A = \frac{M_m * 10^6}{A_m}$$

10.1.3. DENSIDAD LINEAL-TEX (ASTM D 1577)

10.1.3.1. TEJIDO DE CABUYA

D	DENSIDAD LINEAL TEJIDO DE CABUYA							
Norma:		ASTM D1577						
Proyecto:	Tesis	J. Almache - D.	Таріа					
Fecha:		27/01/2016						
Lc	ongitud Muestra:	1500 mm						
	Masa	TFX	DTFX					
Muestra	[mg]	[g/1000m]	[g/10 000m]					
1	770.00	513.33	5133.33					
2	910.00	606.67	6066.67					
3	890.00	593.33	5933.33					
4	860.00	573.33	5733.33					
5	850.00	566.67	5666.67					
6	1110.00	740.00	7400.00					
7	1420.00	946.67	9466.67					
8	1030.00	686.67	6866.67					
9	790.00	526.67	5266.67					
10	930.00	620.00	6200.00					
11	750.00	500.00	5000.00					
	MEDIA	624.848	6248.485					
DESVIA	CIÓN ESTANDAR	128.723	1287.233					
COEFICIENTE	DE VARIACIÓN %	20.601	20.601					

FÓRMULAS UTILIZADAS

$$Tex = \frac{M_{tm} * 1000}{L_M * 1\ 000\ 000}$$

DTex
$$DTex = \frac{M_{tm} * 10000}{L_M}$$

DE	DENSIDAD LINEAL SACO DE CABUYA							
Norma:		ASTM D1577						
Proyecto:	Tesis	J. Almache - D	. Tapia					
Fecha:		20/06/2016						
Lon	gitud Muestra:	1500 mm						
Musstra	Masa	TEX	DTEX					
Muestra	[mg]	[g/1000m]	[g/10 000m]					
1	1020.00	680.00	6800.00					
2	1110.00	740.00	7400.00					
3	1290.00	860.00	8600.00					
4	1310.00	873.33	8733.33					
5	1100.00	733.33	7333.33					
6	860.00	573.33	5733.33					
7	1280.00	853.33	8533.33					
8	1230.00	820.00	8200.00					
9	1310.00	873.33	8733.33					
10	940.00	626.67	6266.67					
	MEDIA	763.333	7633.333					
DESVIAC	IÓN ESTANDAR	109.556	1095.558					
COEFICIENTE DI	E VARIACIÓN %	14.352	14.352					

FÓRMULAS UTILIZADAS

$$Tex = \frac{M_{tm} * 1000}{L_M * 1\,000\,000}$$

DTex
$$DTex = \frac{M_{tm} * 10000}{L_M}$$

10.1.4. PORCENTAJE DE ABSORCIÓN (INEN 862-ADAPTACIÓN)

POI	RCENTAJE DE	ABSORCION	FIBRA DE CA	BUYA					
Proyecto:	Tesis J. Alı Ta	06/05/2016							
Muestra	Masa Cabuya Seca [g]	Masa Cabuya Saturada [g]	Masa de Agua Retenida [g]	% de Absorción					
M1	0.174	0.377	0.203	53.779					
M2	0.193	0.408	0.215	52.699					
M3	0.190	0.382	0.192	50.275					
M4	0.195	0.428	0.233	54.456					
M5	0.170	0.392	0.222	56.640					
M6	0.150	0.362	0.212	58.547					
M7	0.179	0.404	0.225	55.767					
M8	0.209	0.455	0.246	54.068					
M9	0.180	0.401	0.221	55.148					
M10	0.241	0.491	0.250	50.926					
			MEDIA	54.231					
		DESVIACIÓN	NESTANDAR	2.513					
	COEF	ICIENTE DE V	ARIACIÓN %	4.634					
	FOR	MULAS UTILIZ	FÓRMULAS UTILIZADAS						

Absorción
$$%Absorción = \frac{(W-D)}{D} * 100$$

10.1.5. ENSAYO DE TRACCIÓN EN TEJIDOS (ASTM D5034-ADAPTACIÓN) 10.1.5.1. TEJIDO DE CABUYA 10.1.5.1.1. SIN RESINA

TRACCIÓN EN TEJIDOS DE CABUYA SIN RESINA							
Proyecto:	Tesis J. Almac	ne - D. Tapia	-	Fecha:	04/03/2016	-	
Nùmero de hi	ilos por muestra	8	u	Densidad	1.356	g/cm ³	
Área hilos		3.69	mm ²	TEX	624.85	g/1000m	
			_				
		Carga	Deformación	Esfuerzo	Deformación	Módulo de	
Espécimen	LO	Máxima	a la Rotura	Máximo	Unitaria	Elasticidad	
	[mm]	[N]	[mm]	[MPa]	[mm/mm]	[MPa]	
P1	173.00	861.830	28.599	233.784	0.076	4340.138	
P2	176.00	714.508	29.724	193.821	0.090	3526.254	
P3	172.00	872.879	30.502	236.782	0.101	3242.560	
P4	175.00	961.272	34.590	260.759	0.091	4675.215	
P5	172.00	813.950	27.788	220.796	0.079	3657.202	
P6	179.00	644.531	27.573	174.839	0.059	3364.920	
P7	182.00	795.535	20.139	215.801	0.042	6339.499	
P8	163.00	762.388	31.776	206.809	0.069	3446.002	
P9	175.00	618.750	25.570	167.845	0.059	2900.823	
P10	177.00	640.848	32.438	173.840	0.090	2739.724	
	MEDIA		28.870	208.508	0.076	3823.234	
DESVIA	CIÓN ESTANDAR	113.824	4.046	30.877	0.018	1062.219	
COEFICIENTE	DE VARIACIÓN %	14.808	14.015	14.808	24.227	27.783	

FÓRMULAS UTILIZADAS

Esfuerzo máximo	$\sigma_{max} = \frac{F_{max}}{A}$
Área del tejido	$A = \frac{Tex * n \'umero \ de \ hilos}{\delta * 1000}$
Deformación Unitaria	$\epsilon_i = \frac{\epsilon_i}{L_o}$
Módulo de Elasticidad	$E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_i - 20\% \epsilon_i)}$

GRÁFICA CARGA VS. DEFORMACIÓN TEJIDO SIN RESINA

10.1.5.1.2. CON RESINA

	TR	ACCION EN TE	JIDOS DE CABL	JYA CON RESIN	IA	-
Proyecto: Tesis J. Almache - D. Tapia		Fecha:		04/03/2016		
Nùmero de hi	los por muestra:	8	u	Densidad:	1.356	g/cm ³
Área hilos :		3.69	mm ²	TEX:	624.85	g/1000m
Espécimen	Lo	Carga Máxima [N]	Deformación a la Rotura [mm]	Esfuerzo Máximo [MPa]	Deformaciòn Unitaria Máxima [mm/mm]	Módulo de Elasticidad [MPa]
P1	161.000	998,1021	11.8002	270,7503	0.0733	3657.709
P2	167.000	1060.7137	10.2776	287.7346	0.0615	5689.422
P3	155.000	1141.7405	8.6061	309.7143	0.0555	8996.975
P4	172.000	1020.2003	9.8473	276.7447	0.0573	5097.154
P6	154.000	850.7808	7.2633	230.7871	0.0472	5841.509
P7	161.000	979.6869	9.3343	265.7549	0.0580	5319.904
P8	171.000	880.2450	8.7385	238.7798	0.0511	5593.878
P9	166.000	644.5308	6.3884	174.8387	0.0385	5654.697
P10	172.000	688.7273	16.1364	186.8277	0.0938	1982.701
MEDIA 918.303		918.303	9.821	249.104	0.060	5314.883
DESVIA	CIÓN ESTANDAR	167.477	2.855	45.431	0.016	1873.026
COEFICIENTE DE VARIACIÓN % 18.238			29.072	18.238	26.933	35.241

FÓRMULAS UTILIZADAS

Esfuerzo máximo

$$\sigma_{max} = \frac{F_{max}}{A}$$

Área del tejido

$$A = \frac{Tex * n \acute{u}mero \ de \ hilos}{\delta * 1000}$$

Deformación Unitaria

Módulo de Elasticidad
$$E = \frac{(60\%\sigma - 20\%\sigma)}{(60\%\epsilon_i - 20\%\epsilon_i)}$$

 $\epsilon_i = \frac{\epsilon_i}{L_o}$

GRÁFICA CARGA VS. DEFORMACIÓN TEJIDO CON RESINA

10.1.5.2. SACO DE CABUYA

10.1.5.2.1. SIN RESINA

Proyecto:	Tesis J.	Almache - D.	Таріа	Fecha:	04/03/2016		
Nùmero de hilos po	or muestra	12	u	Densidad	1.441	g/cm³	
Área hilos		6.36	mm ²	TEX	763.333	g/1000m	
			-				
Espécimen Lo		Carga Máxima	Deformación a la Rotura	Esfuerzo Máximo	Deformaciòn Unitaria Máxima	Módulo de Elasticidad	
	[mm]	[N]	[mm]	[MPa]	[mm/mm]	[MPa]	
P1	175.000	1863.6990	7.3056	293.1867	0.0417	8856.297	
P2	176.000	2125.2061	8.0628	334.3256	0.0458	9399.069	
P3	173.000	2047.8589	6.3031	322.1577	0.0364	10228.147	
P4	174.000	1937.3630	8.3295	304.7751	0.0479	7477.878	
P5	174.000	1709.0046	8.5428	268.8511	0.0491	7738.212	
	MEDIA	1936.626	7.709	304.659	0.044	8739.921	
DESVI	ACIÓN ESTANDAR	162.069	0.914	25.496	0.005	1146.627	
COEFICIENTE	E DE VARIACIÓN %	8.369	11.862	8.369	11.669	13.119	

FÓRMULAS UTILIZADAS

Esfuerzo máximo

$$\sigma_{max} = \frac{F_{max}}{A}$$
$$A = \frac{Tex * número de hilos}{\delta * 1000}$$

Deformación Unitaria

$$E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_i - 20\% \epsilon_i)}$$

Módulo de Elasticidad

 $\epsilon_i = \frac{\epsilon_i}{L_o}$

10.1.5.3. CON RESINA

	TRACCIÓN EN TEJIDOS DE CABUYA CON RESI					
Proyecto:	recto: Tesis J. Almache - D. Tapia			Fecha:	04/03/2016	_
Nùmero de hilos por	muestra	12	u	Densidad	1.441	g/cm ³
Área hilos		6.36	mm ²	TEX	763.333	g/1000m

	Espécimen	Lo	Carga Máxima	Deformación a la Rotura	Esfuerzo Máximo	Deformaciòn Unitaria Máximo	Módulo de Elasticidad
		լտոյ	נואן	լոույ	[IVIPa]	[mm/mm]	[IVIPa]
	P1	170.000	2147.3053	6.0806	337.8021	0.0556	6735.701
	P2	167.000	2430.9117	5.4561	382.4174	0.0508	8614.311
	P3	171.000	2232.0189	5.1335	351.1287	0.0467	9405.350
	P4	170.000	2081.0077	4.9551	327.3725	0.0453	7547.579
	MEDIA		2222.811	5.406	349.680	0.050	8075.735
DESVIACIÓN ESTANDAR 151.			151.877	0.495	23.892	0.005	1173.681
COEFICIENTE DE VARIACIÓN			6.833	9.157	6.833	9.346	14.533

FÓRMULAS UTILIZADAS

Esfuerzo máximo	$\sigma_{max} = \frac{F_{max}}{A}$
Área del tejido	$A = \frac{Tex * n \acute{u}mero \ de \ hilos}{\delta * 1000}$
Deformación Unitaria	$\epsilon_i = \frac{\epsilon_i}{L_o}$
Módulo de Elasticidad	$E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_i - 20\% \epsilon_i)}$

GRÁFICA CARGA VS. DEFORMACIÓN TEJIDO CON RESINA

10.2.CARACTERIZACION DE MATERIALES PARA MORTERO (MATRIZ CEMENTICIA)

		ANÁLISIS GRANULOMÉTRICO DEL AGREGADO FINO TAMIZADO № 20							
			Norma:		NTE INEN 696	5			
Proyecto:	Tesis	s: Almache - T	apia	_		Procedencia:	Mir	ia de Penip	e
Masa Inicial:		2000 g		-		Fecha:	2	5/01/2016	
Malla	Abertura	Rete Par	nido cial	Promedio Ret. Parcial	Retenido Acumulado	Retenido Acumulado	Pasa	Lím Granulo	ites métricos
	[mm]	[8	g]	[g]	[g]	%	%	Inferior	Superior
Nº 20	0.83	0.00	0.00	0.00	0.00	0.00	100.00	100	100
Nº 30	0.60	73.00	84.00	78.50	78.50	7.87	92.13	25	60
Nº 50	0.30	388.00	342.00	365.00	443.50	44.44	55.56	5	30
Nº 100	0.15	391.00	436.00	413.50	857.00	85.87	14.13	0	10
Nº 200	0.075	124.00	108.00	116.00	973.00	97.49	2.51	0	0
Ban	deja	26.00	24.00	25.00	998.00	100.00	0.00		
То	tal	1002.00	994.00	998.00	Módulo de F	inura:	2.36	% Error:	0.20
Tamaño Maximo de las Particulas: 0.83			3 mm Tamaño Máximo Nominal			no Nominal:	0.60	mm	
Fórmulas Aplicadas									

10.2.1. Granulometría Agregado Fino-Arena Tamizada (INEN 696)

10.2.2. Masa unitaria suelta y compactada-Arena Tamizada (INEN 858)

10.2.2.1. Masa Unitaria Suelta

MASA UNITARIA SUELTA AGREGADO FINO TAMIZADO							
	Norma:			NTE INEN 85	8		
Proyecto:	Tesis J. Almache -	D. Tapia	_		Procedencia:	Mina de I	Penipe
Material :	Arena Tamiza	da			Fecha:	27/04/	2016
Densidad del Agua (g/cm ³): 1					Volumen Recip	iente (cm³):	3333.00
Datos Previos			Lectura	Masa Molde + Masa Compactada	Masa Mortero	MUS	
					[g]	[g]	[g/cm ³]
Ν	Masa Molde (g):	2650.00	1	1	6716.00	4066.00	1.220
Masa	a Molde + Placa(g):	4467.00		2	6732.00	4082.00	1.225
Masa Mo	olde + Placa + Agua (g):	7800.00		3	6740.00	4090.00	1.227
			_		M	EDIA [g/cm3]	1.224
DESVIACIÓN ESTANDAR [g/cm3]					0.004		
COEFICIENTE DE VARIACIÓN %					0.300		
		FORMUI	LA	SUTILIZADAS)		
	Masa Unita	ria	N	$A = \frac{G - T}{V}$			

Volumen del molde $V = P - P_A$

10.2.2.2. Masa Unitaria Compactada

MASA UNITARIA COMPACTADA AGREGADO FINO TAMIZADO						
	Norma: Proyecto: Tesis J. Almache - D. Tapia Material : Arena Tamizada			58		
Proyecto:				Procedencia:	Mina de I	Penipe
Material :				Fecha:	27/04/2016	
Densidad del	l Agua (g/cm³):	1	-	Volumen Recip	iente (cm³):	3333.00
Datos Previos			Lectura	Masa Molde + Masa Compactada	Masa Mortero	мис
				[g]	[g]	[g/cm ³]
M	lasa Molde (g):	2650.00	1	7194.00	4544.00	1.363
Masa	Molde + Placa(g):	4467.00	2	7178.00	4528.00	1.359
Masa Mo	lde + Placa + Agua (g):	7800.00	3	7204.00	4554.00	1.366
				Μ	EDIA [g/cm3]	1.363
			0	ESVIACIÓN ESTAI	NDAR [g/cm3]	0.004
				COEFICIENTE DE	VARIACIÓN %	0.289

FÓRMULAS UTILIZADAS					
Masa Unitaria	$M = \frac{G - T}{V}$				
Volumen del molde	$V = P - P_A$ 297				

10.2.3. Determinación de la Densidad Y Absorción del Árido Fino (INEN 856)

DENSIDAD AGREGADO FINO TAMIZADO

10.2.3.1. Densidad del Árido Fino

	Norma:	NTE INE	N 856-2010		
Proyecto:	Tesis J. Almache - D.	Tapia Procedencia :		Per	nipe
Material :	Arena Tamizada	a	Fecha:	03/05	6/2016
Descri	pción	Unidad	Lectura 1	Lectura 2	Lectura 3
Masa Picnómetro		[g]	417.600	417.600	417.600
Masa Picnómetro + agua (c	alibrado)	[g]	1241.800	1241.800	1241.800
Temperatura		[ªC]	23.200	24.900	24.100
Masa del Picnómetro + aric	lo fino estado "sss"	[g]	918.500	867.500	915.000
Masa del Picnómetro + aric	[g]	1550.400	1516.500	1544.400	
Densidad del agua respect	o a su temperatura	[g/cm ³]	1.000	1.000	1.000
Masa del arido fino estado	"sss"	[g]	500.900	449.900	497.400
Volumen desalojado		[cm ³]	192.300	175.200	194.800
Densidad "sss"		[g/cm ³]	2.605	2.568	2.553
			ME	DIA [g/cm3]	2.575
		DESVI	ACIÓN ESTAN	DAR [g/cm3]	0.026
COEFICIENTE DE VARIACIÓN %					1.029
FÓRMULAS UTILIZADAS					

Densidad

$$\delta = \frac{a}{(b+a-c)}$$

10.2.3.2. Absorción del Árido Fino

Norma: Tesis I. Almache - D.	NTE INE	N 856-2010			
Tesis I. Almache - D.					
icolo un annuelle Di	Таріа	Procedencia	Pen	ipe	
Arena Tamizada	a .	Fecha:	03/05	03/05/2016	
ón	Unidad	Lectura 1	Lectura 2	Lectura 3	
	[g]	168.900	498.100	172.800	
s"	[g]	669.800	948.000	670.200	
0	[g]	653.990	931.500	660.200	
	[g]	500.900	449.900	497.400	
	[g]	485.090	433.400	487.400	
arido	[g]	15.810	16.500	10.000	
do Fino	[%]	3.259	3.807	2.052	
			MEDIA [%]	3.039	
	D	ESVIACIÓN ES	TANDAR [%]	0.898	
COEFICIENTE DE VARIACIÓN %					
) arido do Fino) [g] [g] [g] arido [g] do Fino [%] DI COE	[g] 653.990 [g] 500.900 [g] 485.090 arido [g] 15.810 do Fino [%] 3.259	[g] 653.990 931.500 [g] 500.900 449.900 [g] 485.090 433.400 [g] 15.810 16.500 do Fino [%] 3.259 3.807 MEDIA [%] DESVIACIÓN ESTANDAR [%] COFFICIENTE DE VARIACIÓN %	

FÓRMULAS UTILIZADAS

Absorción

$$%Absorción = \frac{(W-D)}{D} * 100$$

10.2.4. Tiempo de Fraguado (INEN 158)

DE	DETERMINACIÓN DEL TIEMPO DE FRAGUADO MORTERO 1:1.10					
	MÉTODO DE AGUJA DE VICAT					
		Norma:	NTE IN	EN 158		
Proyecto:	Tesis J. Alma	che - D. Tapia	Fecha:	06/05	/2016	
Inicio de	amasado:		9:50 h am			
Lectura	Temperatura [°C]	Humedad %	Hora de Lectura	Tiempo Transcurrido [min]	Penetración [mm]	
1	35	30.3	10:30 AM	40	41	
2	32	30.4	10:45 AM	55	38	
3	29	30.1	11:00 AM	70	22	
4	31	30.1	11:10 AM	80	7	
5	29	30.3	11:20 AM	90	2	
6	32	30.3	11:30 AM	100	1	
7	31	30.3	11:35 AM	105	1	
8	30	30.3	11:40 AM	110	1	
9	30	30.3	11:45 AM	115	0.5	
10	39	30.3	11:50 AM	120	0.5	
11	31	31	11:55 AM	125	0.5	
12	32	31	12:00 PM	130	0	
	Fra F	aguado Inicial raguado Final		67 130	min min	

GRÁFICA PENETRACIÓN VS. TIEMPO

10.2.5. Determinación del flujo en morteros (INEN 2 502)

	DETERI	-				
	Nor	ma:	NTE IN	NTE INEN 2502		
Proyecto: Tesis J. Almache - D. Tapia			Tipo:	Morter	o 1:10	
· · · · · · · · · · · · · · · · · · ·			Fecha:	28/03,	/2016	
Muestra	Diámetro 1 [%]	Diámetro 2 [%]	Diámetro 3 [%]	Diámetro 4 [%]	Porcentaje	
1	32.00	32.50	32.00	33.00	129.50	
2	29.50	29.00	28.50	28.00	115.00	
	MEDIA (%) 122.25					
		I	DESVIACIÓN E	STANDAR (%)	10.25	
COEFICIENTE DE VARIACIÓN(%) 8.39						

10.2.6. Contenido de aire (ASTM C231)

10.2.7. Densidad en estado Fresco (ASTM C 138)

DENSIDAD EN ESTADO FRESCO DEL MORTERO DOS	IFICACIÓN 1:1.10
---	------------------

Norma: ASTM C 138

Proyecto: Tesis J. Almache - D. Tapia Fecha: 28/03/2016 3000.00 Densidad del Agua [g/cm³]: 1 Volumen Recipiente [cm³]: Masa Masa Densidad Lectura Molde + Mortero Mortero **Datos Previos** [g] [g/cm³] [g] Masa Molde (g): 2650.00 1 8916.00 6266.00 2.09 Masa Molde + Placa (g): 4800.00 2 8889.00 6239.00 2.08 Masa Molde + Placa + Agua (g): 7800.00 3 8953.00 6303.00 2.10 2.090 MEDIA [g/cm3] DESVIACIÓN ESTÁNDAR [g/cm3] 0.011

COEFICIENTE DE VARIACIÓN% 0.512

FÓRMULAS UTILIZADAS				
Densidad	$\delta = \frac{G - T}{V}$			
Volumen del molde	$V = P - P_A$			

10.2.8. Resistencia a Flexión en viguetas de mortero (INEN 198)

Proyecto: Tesis J. Almache - D. Tapia

10.2.8.1. 7 Días

FLEXIÓN VIGUETAS DE MORTERO DOSF. 1:1.10 (7 DÍAS)

Norma: NTE INEN 198

Fecha: 04/04/2016

	Espécimen	Carga Max. [N]	Deformación Max. [mm]	Resistencia a la Flexión [MPa]	Def. Unitaria Max. [mm/mm]	Deflexión Max. [mm]	Módulo de Elasticidad [MPa]
	P1	2651.665	0.352	6.215	0.009	0.447	578.679
	P2	2695.859	0.427	6.318	0.011	0.455	675.222
	P3	3016.269	0.331	7.052	0.008	0.509	892.973
	MEDIA	2787.931	0.370	6.528	0.009	0.470	715.625
DESVIA	CIÓN ESTÁNDAR	198.977	0.050	0.456	0.001	0.034	160.995
COEFICIENTE DE VARIACIÓN%		7.137	13.632	6.992	13.632	7.137	22.497

FÓRMULAS UTILIZADAS

Resistencia a la flexión	$\sigma_{max} = \frac{F_{max} * L}{b_v * d^2}$
Deformación Unitaria	$\epsilon_i = \frac{\epsilon_i}{L_o}$
Módulo de Elasticidad	$E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_i - 20\% \epsilon_i)}$
Deflexión	$D_f = \frac{P_v + L^3}{48 E I}$

Curva Esfuerzo vs Tiempo Mortero 1:10

10.2.8.2. 14 Días

FLEXIÓN VIGUETAS DE MORTERO DOSF. 1:1.10 (14 DÍAS)

Norma: NTE INEN 198

Proyecto: Tesis J. Almache - D. Tapia

Fecha: 11/04/2016

	Probeta	Carga Max. [N]	Deformación Max. [mm]	Resistencia a la Flexión [MPa]	Def. Unitaria Max. [mm/mm]	Deflexión Max. [mm]	Módulo de Elasticidad [MPa]	
P4		2714.274	0.341	6.362	0.009	0.368	719.691	
	P5	2596.422	0.363	6.085	0.009	0.352	608.625	
	MEDIA	2655.348	0.352	6.223	0.009	0.360	664.158	
DESVIACIÓN ESTÁNDAR		83.334	0.015	0.195	0.000	0.011	78.536	
COEFICIENTE DE VARIACIÓN%		3.138	4.285	3.138	4.285	3.138	11.825	

FÓRMULAS UTILIZADAS

Resistencia a la flexión	$\sigma_{max} = \frac{F_{max} * L}{b_v * d^2}$
Deformación Unitaria	$\epsilon_i = \frac{\epsilon_i}{L_o}$
Módulo de Elasticidad	$E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_i - 20\% \epsilon_i)}$
Deflexión	$D_f = \frac{P_v + L^3}{48 E I}$

10.2.8.3. 21 Días

		FLEXIÓ	N VIGUETAS DI	E MORTERO DO	SF. 1:1.10 (21	DÍAS)	
			Norma:	NTE IN	EN 198		
	Proyecto:	Tesis J. Alma	che - D. Tapia			Fecha:	18/04/2016
	Probeta Carga Max. [N]		Deformación Max. [mm]	Resistencia a la Flexión [MPa]	Def. Unitaria Max. [mm/mm]	Deflexión Max. [mm]	Módulo de Elasticidad [MPa]
	P6	2953.660	0.245	6.923	0.006	0.310	930.007
	P7	2824.760	0.277	6.621	0.007	0.297	967.972
	MEDIA	2889.210	0.261	6.772	0.007	0.303	948.990
DESVIACIÓN ESTÁNDAR		91.146	0.023	0.214	0.001	0.010	26.846
COEFICIENTE	DE VARIACIÓN%	3.155	8.658	3.155	8.658	3.155	2.829

FÓI	RMULAS UTILIZADAS
Esfuerzo máximo	$\sigma_{max} = \frac{F_{max} * L}{b_{v} * d^{2}}$
Deformación Unitaria	$\epsilon_i = \frac{\epsilon_i}{L_o}$
Módulo de Elasticidad	$E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_i - 20\% \epsilon_i)}$
Deflexión	$D_f = \frac{P_v + L^3}{48 E I}$

Curva Esfuerzo vs Tiempo Mortero 1:10

10.2.8.4. 28 Días

FLEXIÓN VIGUETAS DE MORTERO DOSF. 1:1.10 (28 DÍAS)

Norma: NTE INEN 198

Proyecto: Tesis J. Almache - D. Tapia

Fecha: 25/04/2016

		Carga Max. [N] 3399.287 3229.875 2931.563 A 3186.908 R 236.804 7.431	Deformación	Resistencia a	Def. Unitaria	Deflexión	Módulo de	
	Probeta		Max.	la Flexión	Max.	Max.	Elasticidad	
			[mm]	[MPa]	[mm/mm]	[mm]	[MPa]	
P8 P9		3399.287	0.501	7.967	0.013	0.472	702.699	
P9 3		3229.875	0.299	7.570	0.007	0.449	952.325	
	P10	2931.563	0.352	6.871	0.009	0.407	742.282	
	MEDIA	3186.908	0.384	7.469	0.010	0.443	799.102	
DESVIACIÓN ESTÁNDAR		236.804	0.105	0.555	0.003	0.033	134.163	
COEFICIENTE	DE VARIACIÓN%	7.431	27.358	7.431	27.358	7.431	16.789	

FÓRMULAS UTILIZADAS

Esfuerzo máximo	$\sigma_{max} = \frac{F_{max} * L}{b_v * d^2}$
Deformación Unitaria	$\epsilon_i = \frac{\epsilon_i}{L_o}$
Módulo de Elasticidad	$E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_i - 20\% \epsilon_i)}$
Deflexión	$D_f = \frac{P_v + L^3}{48 E I}$

10.2.9. Resistencia a Compresión de cubos de 50 cm de aristas (INEN 488) 10.2.10. Curva de resistencia a la Compresión

		DETERN	VINACION DE	LA RESISTEN	CIA A COMPR	ESION DE MO	DRTERO	-			
			NORMA	NTE IN	EN 488						
Proyecto:	Tesis J	. Almache - D). Tapia	. Tapia Tipo:			Mortero 1:10				
Relación a/c	=	0.47		Fecha de e	laboración:		28/04/2016				
			Dimension	es Promedio	Área	Carga	Esfuerzo	Esfuerzo			
Día	Fecha	Especimen	Alta []	Laura (mm)	. 2.	[VAI]	[MD-1	Promedio			
			Alto [mm]	Largo [mm]	[mm ⁻]	[KN]	[IVIPa]	[Kg /cm ²]			
		1	50.130	49.625	2487.701	55.335	22.243				
7	04/04/2016	2	50.225	49.590	2490.658	67.375	27.051	262 888			
,		3	50.585	49.900	2524.192	63.078	24.989	202.000			
		4	50.045	49.400	2472.223	71.294	28.838				
		5	50.300	49.895	2509.719	100.367	39.991				
14	11/04/2016	6	51.470	49.865	2566.552	90.557	35.284	272 010			
14	11/04/2010	7	50.080	48.280	2417.862	80.023	33.097	572.010			
		8	44.650	50.710	2264.202	85.033	37.555				
		9	51.150	50.240	2569.776	105.382	41.008				
21	10/01/2016	10	48.335	50.350	2433.667	100.094	41.129	424 227			
21	10/04/2010	11	50.720	51.615	2617.913	102.030	38.974	424.237			
		12	49.970	50.055	2501.248	113.314	45.303				
		13	50.795	50.845	2582.672	87.347	33.820				
20	25/04/2016	14	49.850	49.525	2468.821	108.451	43.928	466 797			
20	25/04/2010	15	48.940	50.305	2461.927	120.585	48.980	400.787			
		16	49.665	49.330	2449.974	108.829	44.420				

FÓRMULAS UTILIZADAS

Esfuerzo máximo

 $\sigma_{max} = \frac{F_{max}}{A}$

Curva Esfuerzo vs Tiempo Mortero 1:10

Tiempo (Días)

10.2.11. Gráfica esfuerzo vs. Deformación mortero 1:1.10 (28 días)

10.2.12. Propiedades del mortero por día

10.2.12.1. 7 Días

Proyecto: Tesis J. Almache - D. Tapia Tipo: Mortero 1:10 Relación a/c: 0.47 Fecha de elaboración: 28/03/2016 Timpo (días): 7 Fecha de elaboración: 28/03/2016 Espécimen Dimensiones Promedio Área Lo fc Carga Deformación Módulo de Elasticidad real E1 50.1300 49.6250 2487.7013 50.1300 22.2430 37274.3025 1.0025 769.8844 E2 50.2250 49.9000 2524.1915 50.5850 24.987.013 372724.302 0.9492 778.6841 E4 50.0450 49.9000 2470.6578 50.250 27.0510 37189.602 9.8745 817.6610 Deformación Unitaria E1 50.0450 49.4000 2472.223 50.0450 24.9890 37189.602 0.8745 817.6610 Deformación Unitaria $e_1 = \frac{e_1}{t_o}$ 0.9431 6.7462 5.0385 Deformación Unitaria $e_1 = \frac{e_1}{t_o}$ 0.9431 6.7462 5.0385 Jobuo de Elastic			DETERMINAC	ION DEL MÓ	DULO DE EL	ASTICIDAD DE	l mortero			
Techna de: Isopio Techna de: elaboración: 28/03/2016 Techna de elaboración: 28/03/2016 Od/04/02/016 Techna de elaboración: 28/03/2016 Od/04/04/2016 Elasticidadi real Elasticidadi Techna de elaboración: 28/03/2016 Elasticidad TEGEN Maima Midulo de Elasticidad Elasticidad SUBOR 27.23.0 37274.302 37274.302 0.08745 80.08745 80.08745 80.08745 80.08745 80.08745 80.08745 80.08745 80.08745 80.0874 378.6841 0.08745 <th colspa="</th"><th>Provecto:</th><th>Tesis I</th><th>Almache - D</th><th>Tania</th><th></th><th></th><th>Tino:</th><th>Morter</th><th>n 1·10</th></th>	<th>Provecto:</th> <th>Tesis I</th> <th>Almache - D</th> <th>Tania</th> <th></th> <th></th> <th>Tino:</th> <th>Morter</th> <th>n 1·10</th>	Provecto:	Tesis I	Almache - D	Tania			Tino:	Morter	n 1·10
Trempo (días): Trempo (días)	Relación a/c	103133	0.47	Tupiu	-	Fecha de	elaboración:	28/03/2016		
	Tiempo (días):		7		-	Foch	a de ensavo:	04/04/	2016	
	nempo (ulas).		,		-	reci	la de elisayo.	04/04/	2010	
$\begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Espécimen	Dimension	es Promedio	Promedio Área		f'c	Carga Máxima	Deformación Máxima	Módulo de Elasticidad real	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Alto [mm]	Largo [mm]	[mm ²]	[mm]	[MPa]	[N]	[mm]	[MPa]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E1	50.1300	49.6250	2487.7013	50.1300	22.2430	37274.3052	1.0025	769.8884	
E3 50.5850 49.9000 2524.1915 50.5850 24.9890 37241.1623 0.9492 738.6841 E4 50.0450 49.4000 2472.2230 50.0450 28.8380 37189.6020 0.8745 817.6610 MEDIA DESVIACIÓN ESTÁNDAR COEFICIENTE DE VARIACIÓN 37189.6020 0.9952 786.7762 S0.6470 0.9942 738.6841 S0.610 DESVIACIÓN ESTÁNDAR COEFICIENTE DE VARIACIÓN 37189.6020 0.9952 786.7762 S0.647 0.9953 0.9953 0.9617 DEformación Unitaria $\epsilon_1 = \frac{\epsilon_1}{L_0}$ Deformación Unitaria $\epsilon_1 = \frac{\epsilon_1}{L_0}$ Módulo de Elasticidad $E = \frac{(60 \% \sigma - 20 \% \sigma)}{(60 \% \epsilon_1 - 20 \% \epsilon_1)}$ GRÁFICA CARGA VS DEFORMACIÓN S0000 $\frac{25000}{5000}$ $\frac{25000}{60 0}$ $\frac{25000}{$	E2	50.2250	49.5900	2490.6578	50.2250	27.0510	37226.4283	0.8745	820.8714	
E4 50.0450 49.4000 2472.2230 50.0450 28.8380 37189.6020 0.8745 817.6610 MEDIA DESVIACIÓN ESTÁNDAR COEFICIENTE DE VARIACIÓN 37232.8745 0.9252 786.7762 335.1153 0.0624 39.6417 OCOFFICIENTE DE VARIACIÓN FÓRMULAS UTILIZADAS Deformación Unitaria $e_i = \frac{e_i}{L_o}$ Módulo de Elasticidad $E = \frac{(60 \% \sigma - 20 \% \sigma)}{(60 \% e_i - 20 \% e_i)}$ $E = \frac{(40 \% \sigma)}{(60 \% e_i - 20 \% e_i)}$ GRÁFICA CARGA VS DEFORMACIÓN	E3	50.5850	49.9000	2524.1915	50.5850	24.9890	37241.1623	0.9492	738.6841	
	E4	50.0450	49.4000	2472.2230	50.0450	28.8380	37189.6020	0.8745	817.6610	
$\frac{\text{Desviación Estándar}}{\text{COEFICIENTE DE VARIACIÓN}} \xrightarrow[0.0624]{6.7462} \xrightarrow[39.6417]{5.0385}}$ $\frac{50385}{100043}$ $\frac{10000}{10000} = \frac{10000}{10000} = \frac{100000}{10000} = \frac{10000}{10000} = 1$						MEDIA	37232.8745	0.9252	786.7762	
COEFICIENTE DE VARIACIÓN 0.0943 6.7462 5.0385 FÓRMULAS UTILIZADAS Deformación Unitaria $\epsilon_i = \frac{\epsilon_i}{L_o}$ Módulo de Elasticidad $E = \frac{(60 \% \sigma - 20 \% \sigma)}{(60 \% \epsilon_i - 20 \% \epsilon_i)}$ GRÁFICA CARGA VS DEFORMACIÓN 6RÁFICA CARGA VS DEFORMACIÓN 0000 35000 0 25000 0 25000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					DESVIACI	ÓN ESTÁNDAR	35.1153	0.0624	39.6417	
$FÓRMULAS UTILIZADAS$ $Deformación Unitaria \epsilon_i = \frac{\epsilon_i}{L_o}$ $Módulo de Elasticidad E = \frac{(60 \% \sigma - 20 \% \sigma)}{(60 \% \epsilon_i - 20 \% \epsilon_i)}$ $GRÁFICA CARGA VS DEFORMACIÓN$ 40000 35000 35000 25000 5				со	EFICIENTE D	DE VARIACIÓN	0.0943	6.7462	5.0385	
FÓRMULAS UTILIZADASDeformación Unitaria $\epsilon_i = \frac{\epsilon_i}{L_o}$ Módulo de Elasticidad $E = \frac{(60 \% \sigma - 20 \% \sigma)}{(60 \% \epsilon_i - 20 \% \epsilon_i)}$ GRÁFICA CARGA VS DEFORMACIÓN000										
$Deformación Unitaria \qquad \epsilon_i \frac{\epsilon_i}{L_o}$ $Módulo \ de \ Elasticidad \qquad E = \frac{(60 \ \% \ \sigma - 20 \ \% \ \sigma)}{(60 \ \% \ \epsilon_i - 20 \ \% \ \epsilon_i)}$ $\overline{GRÁFICA \ CARGA \ VS \ DEFORMACIÓN}$				FÓRN	/IULAS UTIL	IZADAS				
$E = \frac{(60 \% \sigma - 20 \% \sigma)}{(60 \% \epsilon_i - 20 \% \epsilon_i)}$ GRÁFICA CARGA VS DEFORMACIÓN GRÁFICA CARGA VS DEFORMACIÓN G			D () (<i>∈i</i>					
$E = \frac{(60\%\sigma - 20\%\sigma)}{(60\%\epsilon_i - 20\%\epsilon_i)}$			Deformación	Unitaria	$\epsilon_i = \frac{1}{L_o}$					
$E = \frac{1}{(60\% \epsilon_i - 20\% \epsilon_i)}$ GRÁFICA CARGA VS DEFORMACIÓN					-	(60 % <i>σ</i> – 20	%σ)			
GRÁFICA CARGA VS DEFORMACIÓN			Modulo de Elc	isticidad	E = -($60\%\epsilon_i-20\%$	$(\% \epsilon_i)$			
$ \begin{array}{c} 4000 \\ 3500 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $				GRÁFICA C/	ARGA VS DE	FORMACIÓN				
40000 35000 25000 5000 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1										
35000 30000 25000 25000 25000 5000 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1		40000 Ŧ								
$30000 \\ \underbrace{25000}_{E_{2}} \\ \underbrace{5000}_{0} \\ \underbrace{5000}_{0} \\ \underbrace{5000}_{0} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		35000								
$\begin{array}{c} 25000 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		30000								
$ \begin{array}{c} 25000 \\ \overline{E} \\ 15000 \\ 15000 \\ 5000 \\ 0 \\ 0 \\ 0 \\ $										
20000	2	25000 +								
15000 10000 5000 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1		5 ‡						E1		
$10000 \begin{bmatrix}$		15000			^			E2		
5000 0 0 0 0 0 0 0 0 0 0 0 0		10000 ‡						—— ЕЗ		
5000 0 0 0 0 0 0 0 0 0 0 0 0		[‡]						E4		
		5000	-					·		
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1		o ‡+++				****	+++++++++++++++++++++++++++++++++++++++			
		0	0.1 0.2	0.3	0.4 0.5	6 0.6	0.7 0.8	0.9 1		

10.2.12.2. 14 Días

		DETERMINA	CIÓN DEL MÓ	DULO DE ELA	STICIDAD DEL	MORTERO		
Proyecto: Relación a/c:	Tesis J	. Almache - D 0.47	. Tapia		Fecha de e	Tipo: elaboración:	Morter 28/03/	o 1:10 2016
Tiempo (días):		14			Fecha	a de ensayo:	11/04/	2016
Espécimen	Dimensiones Promedio		Área	Lo	f'c	Carga Máxima	Deformación Máxima	Módulo de Elasticidad real
	Alto [mm]	Largo [mm]	[mm ²]	[mm]	[MPa]	[N]	[mm]	[MPa]
5	50.300	49.895	2509.7185	50.3000	39.9910	37392.1598	0.8212	917.5791
6	51.470	49.865	2566.5516	51.4700	35.2840	37182.2350	0.8212	909.7034
7	50.080	48.280	2417.8624	50.0800	33.0970	37108.5781	0.7679	879.9967
8	44.650	50.710	2264.2015	44.6500	37.5550	37417.9399	0.8319	1025.1807
			со	DESVIACIÓ	MEDIA N ESTÁNDAR VARIACIÓN	37275.228 153.253 0.411	0.811 0.029 3.563	933.115 63.475 6.802
			FÓRM	ULAS UTILIZ	ADAS			

Deformación Unitaria

```
\epsilon_i = \frac{\epsilon_i}{L_o}
```

Módulo de Elasticidad

```
E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_i - 20\% \epsilon_i)}
```


10.2.12.3. 21 Días

		DETERMINA	ACIÓN DEL MÓI	DULO DE EL/	ASTICIDAD	DEL MORTERO						
Proyecto: Relación a/c: Tiempo (días):	Tesis	J. Almache - D 0.47 21	D. Tapia	-	Fecha d Feo	Tipo: e elaboración: cha de ensayo:	Morte 28/03 18/04	ro 1:10 /2016 /2016				
Espécimen	Dimension	es Promedio	Área	Lo	f'c	Carga Máxima	Deformación Máxima	Módulo de Elasticidad real				
	Alto [mm]	Largo [mm]	[mm²]	[mm]	[MPa]	[N]	[mm]	[MPa]				
9	51.150	50.240	2569.776	51.150	41.008	37454.766	0.843	872.061				
10	48.335	50.350	2433.667	48.335	3541.1292038.974	38909.501	0.832	879.082				
11	50.720	51.615	2617.913	50.720		37565.254	0.907	769.383				
12	49.970	50.055	2501.248	49.970	45.303	37565.254	0.821	873.638				
					MEDIA	37873.694	0.851	848.541				
			D	ESVIACIÓN	ESTÁNDAR	692.500	0.038	52.858				
			COEFI	CIENTE DE V	ARIACIÓN	1.828	4.507	6.229				
Γάρλημι ος μτιμαρος												
		Deformación	Unitaria	$\epsilon_i = \frac{\epsilon_i}{L_o}$								
		Módulo de Ela	asticidad	$E = \frac{(60)}{(60)}$	$\% \sigma - 20$ $\% \epsilon_i - 20$	$\frac{\% \sigma}{\% \epsilon_i}$						

GRÁFICA CARGA VS DEFORMACIÓN

10.2.12.4. 28 Días

	DETERMINACION DEL MÓDULO DE ELASTICIDAD DEL MORTERO												
Proyecto:	Tesis J	. Almache - D	. Tapia			Mortero	0 1:10						
Relación a/c:		0.47			Fecha de elaboración: 28/03/2016								
Tiempo (días):		28			Fecha	25/04/	2016						
Espécimen	Dimensione	es Promedio	Área	Lo	f'c	Carga Máxima	Deformación Máxima	Módulo de Elasticidad real					
	Alto (mm)	Alto (mm) Largo (mm)		mm	MPa	N	mm	MPa					
13	50.795	50.845	2582.67178	50.845	33.82	37933.5387	0.8319	837.3645					
14	49.85	49.525	2468.82125	49.525	43.928	37340.5995	1.1732	664.6175					
15	48.94	50.305	2461.9267	50.305	48.98	37381.1093	0.8852	879.7295					
16	49.665	49.33	2449.97445	49.33	44.42	37565.2539	0.9065	795.9396					
					MEDIA	37565.2539	0.949	794.413					
				DESVIACIÓ	N ESTÁNDAR	37565.2539	0.153	93.046					
		37565.2539	16.074	11.713									

FÓRMULAS UTILIZADAS

$$\epsilon_i = \frac{\epsilon_i}{L_o}$$

Deformación Unitaria

$$E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_i - 20\% \epsilon_i)}$$

Módulo de Elasticidad

10.2.13. Absorción por capilaridad de Morteros (ASTM C1403)

ABSORCIÓN POR CAPILARIDAD MORTERO

NORMA ASTM C 1403

	Proyecto:		Tesis J. Alma	che - D. Tapia		-			Fech	a de elabo	ración de p	probetas:		28/03	/2016		
	Tipo:		Morte	ro 1:10		-					Rela	nción a/c:		0.4	17		
-			•														
Día	Fecha	Fsnécimen	Dimensione	es Promedio	Área	Peso Seco					AT [g/cm²]					
514	. centa	Lopeennen	Ancho [mm]	Largo [mm]	[mm ²]	[g]	1 min	3 min	5 min	10 min	15 min	20 min	60 min	90 min	120 min	360 min	24 h
		1	39.995	77.818	3112.311	235.800	5.462	8.033	10.282	12.531	14.459	16.708	25.383	30.203	34.058	56.228	88.037
7	05/04/2016	2	40.570	80.028	3246.716	238.700	4.620	8.624	10.472	13.244	15.708	18.172	27.720	32.956	36.960	58.213	90.553
,	03/04/2010	3	41.280	80.325	3315.816	239.600	5.730	7.540	9.952	12.365	14.476	16.587	25.936	30.762	34.381	53.984	82.031
		4	40.560	79.443	3222.188	236.400	5.586	8.069	10.241	12.724	14.897	16.759	26.380	31.345	35.069	54.932	84.415
						MEDIA	5.350	8.066	10.237	12.716	14.885	17.057	26.355	31.316	35.117	55.839	86.259
					DESVIACI	ÓN ESTÁNDAR	0.499	0.443	0.215	0.381	0.585	0.747	0.997	1.189	1.299	1.830	3.781
-	COEFICIENTE DE				VARIACIÓN %	9.320	5.496	2.098	3.000	3.930	4.381	3.785	3.796	3.700	3.278	4.383	
14	12/04/2016	1	40.210	77.178	3103.307	228.700	4.318	5.704	7.057	9.216	11.311	13.179	22.267	27.261	33.255	53.814	82.493
	12, 0 1, 2010	2	39.900	82.093	3275.491	238.550	9.831	11.204	12.365	13.952	15.448	16.883	24.241	28.393	33.277	49.000	78.614
						MEDIA	7.074	8.454	9.711	11.584	13.379	15.031	23.254	27.827	33.266	51.407	80.553
					DESVIACI	ÓN ESTÁNDAR	3.898	3.890	3.753	3.349	2.926	2.619	1.396	0.800	0.016	3.403	2.742
				C	DEFICIENTE DE	VARIACIÓN %	55.101	46.010	38.648	28.910	21.867	17.422	6.003	2.875	0.048	6.621	3.405
21	19/04/2016	1	41.105	79.428	3264.867	247.100	7.964	10.720	12.864	15.621	18.071	20.215	30.047	35.836	40.094	58.195	88.518
	13, 0 1, 2010	2	40.290	79.213	3191.472	242.000	5.013	7.520	9.713	12.847	15.980	18.487	33.308	41.674	47.752	74.574	100.894
						MEDIA	6.488	9.120	11.289	14.234	17.026	19.351	31.677	38.755	43.923	66.385	94.706
					DESVIACI	ÓN ESTÁNDAR	2.086	2.263	2.228	1.962	1.479	1.222	2.305	4.128	5.416	11.581	8.751
r				C	DEFICIENTE DE	VARIACIÓN %	32.151	24.812	19.736	13.781	8.685	6.316	7.278	10.651	12.330	17.446	9.240
		1	40.360	83.083	3353.210	274.640	2.505	3.758	4.444	5.815	6.740	7.247	10.169	11.183	12.197	15.478	19.325
28	26/04/2016	2	39.850	77.530	3089.571	258.270	2.784	4.143	4.823	6.441	7.088	7.865	11.393	12.623	13.659	17.057	20.844
20		3	40.485	79.220	3207.222	268.430	1.434	2.276	2.869	3.461	3.866	4.209	6.174	6.672	7.608	10.102	15.278
ļ	4 41.155 79.890 3287.873 26						1.308	2.099	2.433	3.346	3.741	4.045	6.357	7.330	7.725	4.045	13.626
	MED					MEDIA	2.008	3.069	3.642	4.766	5.359	5.842	8.523	9.452	10.297	11.671	17.268
	DESVIACIÓN ESTÁNDA					ÓN ESTÁNDAR	0.746	1.032	1.168	1.595	1.802	1.997	2.656	2.903	3.096	5.891	3.379
	COEFICIENTE DE VARIACIÓN %						37.140	33.643	32.083	33.458	33.630	34.182	31.161	30.712	30.067	50.479	19.566

GRÁFICA ABSORCIÓN VS TIEMPO

Absorción del Agua $A_T = (W_T - W_0) * 10\ 000/(L_1 * L_2)$

10.2.14. Densidad y porcentaje de Absorción de Mortero en estado Endurecido (Principio de Arquímedes)

	Proyecto:	Tesis J. Almache - D. Tapia Tipo: Mortero 1:10 Fecha: 28/03/2016									
Día	Fecha	Especimen	Masa Saturada [g]	Masa 1 Agua+Recipiente [g]	Masa 2 Agua+Recipiente [g]	Masa Seca [g]	Densidad	Densidad Promedio [g/cm ³]	% Absorciòn	% Absorción Promedio	
_		M1	274.160	775.500	907.100	237.900	1.808	[6/ cm]	15.242		
7	05/04/2016	M2	277.250	799.900	930.600	241.400	1.847	1.827	14.851	15.046	
14	12/04/2016	M1	275.500	775.000	898.360	239.700	1.943	1 021	14.935	15.062	
14	12/04/2016	M2	274.730	770.000	894.250	238.500	1.920	1.931	15.191	15.063	
21	10/04/2016	M1	272.700	700.800	788.360	237.800	2.716	1 090	14.676	14 620	
21	19/04/2010	M2	275.000	596.500	789.250	240.000	1.245	1.960	14.583	14.030	
28	26/04/2016	M1	258.230	583.000	711.250	233.230	1.819	2 025	10.719	10.763	
20	26/04/2016	M2	289.260	584.900	700.890	261.050	2.251	2.055	10.806		

DETERMINACIÓN DE DENSIDAD Y % DE ABSORCIÓN DE MORTERO EN ESTADO ENDURECIDO

FÓRMULAS UTILIZADAS $\delta = \frac{S}{(R-T)}$ Densidad

Absorción

 $\%Absorción = \frac{(W-D)}{D} * 100$

10.3.CARACTERIZACIÓN DEL MATERIAL COMPUESTO 10.3.1. ENSAYO DE TRACCIÓN

10.3.1.1. Material Compuesto con Tejido de Cabuya

10.3.1.1.1. 2 Layers

		TRACCIÓ	ÓN MATERIAL C	OMPUESTO	2 LAYERS	
	Proyecto:	Tesis J. Alma	iche - D. Tapia		Fecha:	11/04/2016
	Probeta	Carga Max. [N]	Deformación Max. [mm]	Esfuerzo [MPa]	Def. Unitaria Max. [mm/mm]	Módulo de Elasticidad [MPa]
	1	2603.9049	5.7058	3.2549	0.0528	264.4981
	2	2423.4362	3.8608	3.0293	0.0354	714.0808
	3	3156.3601	5.3006	3.9455	0.0486	224.8032
	4	3281.5831	7.2310	4.1020	0.0657	182.9364
	5	1937.2758	5.6418	2.4216	0.0527	491.0567
	6	2018.3025	5.8871	2.5229	0.0535	234.2520
	7	1801.0036	5.3219	2.2513	0.0488	421.3277
	8	3340.5118	7.6256	4.1756	0.0706	224.5129
	9	1952.0079	7.0176	2.4400	0.0644	355.2414
-	MEDIA	2501.5985	5.9547	3.1270	0.0547	345.8566
DESVIAC	IÓN ESTÁNDAR	622.7317	1.1687	0.7784	0.0107	172.2832
COEFICIENTE D	EFICIENTE DE VARIACIÓN%		19.6273	24.8934	19.5942	49.8135

FÓRMULAS UTILIZADAS

Esfuerzo máximo

$$\sigma_{max} = \frac{F_{max}}{A}$$

Deformación Unitaria

$$\epsilon_i = \frac{\epsilon_i}{L_o}$$

Módulo de Elasticidad

 $E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_i - 20\% \epsilon_i)}$

10.3.1.1.2. 3 Layers

	TRACCIÓN MATERIAL COMPUESTO 3 LAYERS										
	Proyecto:	Tesis J. Alma	ache - D. Tapia		Fecha:	11/04/2016					
	Probeta	Carga Max. [N]	Deformación Max. [mm]	Esfuerzo [MPa]	Def. Unitaria Max. [mm/mm]	Módulo de Elasticidad [MPa]					
	1	2423.4362	7.7215	3.0293	0.0708	116.6285					
	2 3		8.7881	3.0615	0.0799	1066.2205					
			12.7022	4.4519	0.1165	208.2179					
	4	3196.8735	6.4311	3.9961	0.0590	418.6406					
	5	2574.4407	4.6500	3.2181	0.0431	618.4942					
	6	467.7453	6.8897	3.6140	0.0638	352.4939					
	7	1834.1509	8.5534	2.2927	0.0785	993.3169					
	8	2478.6819	8.6387	3.0984	0.0793	215.5829					
	9	2710.7128	11.1984	3.3884	0.1027	537.3814					
	10	2603.9049	5.9191	3.2549	0.0543	500.6316					
-	MEDIA	2430.0658	8.1492	3.3405	0.0748	502.7608					
DESVIACI	ÓN ESTANDAR	830.4310	2.4216	0.5865	0.0221	319.8455					
COEFICIENTE DE	FICIENTE DE VARIACIÓN%		29.7156	17.5564	29.5501	63.6178					

FÓRMULAS UTILIZADAS

Esfuerzo máximo

$$\sigma_{max} = \frac{F_{max}}{A}$$

Deformación Unitaria

$$\epsilon_i = \frac{\epsilon_i}{L_o}$$

Módulo de Elasticidad

 $E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_i - 20\% \epsilon_i)}$

10.3.1.2. Material Compuesto con Tejido de Saco de Cabuya

10.3.1.2.1. 3 Layers

	Proyecto:	Tesis J. Alma	ache - D. Tapia		Fecha:	06/04/2016
	Probeta	Carga Max. [N]	Deformación Max. [mm]	Esfuerzo [Mpa]	Def. Unitaria Max.	Módulo de Elasticidad [Mpa]
	1 2		6.424	7.122	0.06060	157.670
			4.763	6.846	0.04215	460.426
	3	6758.367	5.188	8.448	0.05037	798.416
	4	6161.716	4.097	7.702	0.03978	718.574
	5	6191.180	5.442	7.739	0.05336	563.482
	6	6618.412	3.891	8.227	0.03570	981.328
	7	5830.243	4.399	7.288	0.04356	387.155
-	MEDIA	6104.8918	4.8865	7.6245	0.0465	581.0072
DESVIACI	DESVIACIÓN ESTÁNDAR		0.8784	0.5820	0.0087	276.3114
COEFICIENTE DE	OEFICIENTE DE VARIACIÓN%		17.9761	7.6332	18.6288	47.5573

FLEXIÓN MATERIAL COMPUESTO 3 LAYERS

FÓRMULAS UTILIZADAS

Esfuerzo máximo

$$\sigma_{max} = \frac{F_{max}}{A}$$

Deformación Unitaria

 $\epsilon_i = \frac{\epsilon_i}{L_o}$

Módulo de Elasticidad

 $E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_i - 20\% \epsilon_i)}$

10.3.2. Ensayo de Flexión

10.3.2.1. Material Compuesto con Tejido de Cabuya

10.3.2.1.1. 2 Layers

	FLEXION MATERIAL COMPUESTO 2 LAYERS											
	Proyecto: Tesis J. Almache - D. Tapia Fecha:											
	Probeta	Carga Max. [N]	Deformación Max. [mm]	Resistencia a la Flexión [MPa]	Def. Unitaria Max. [mm/mm]	Deflexión Max. [mm]	Módulo de Elasticidad [MPa]					
1		511.9417	23.1220	11.9986	1.4451	11.5139	434.2074					
	2	511.9417	9.6946	11.9986	0.6059	11.3546	440.3016					
	3	482.4774	16.9149	11.3081	1.0572	9.7023	485.6268					
	4	416.1828	18.8346	9.7543	1.1772	12.2808	330.9456					
	5	486.1605	18.0134	11.3944	1.1258	11.1293	426.5898					
	6	438.2810	20.2637	10.2722	1.2665	8.4548	506.2291					
	7	464.0623	13.5234	10.8765	0.8452	8.5543	529.7746					
	8	578.2363	15.8484	13.5524	0.9905	11.8250	477.5329					
	9	397.7677	19.5385	9.3227	1.2212	6.4696	600.4113					
	MEDIA	476.3391	17.3059	11.1642	1.0816	10.1428	470.1799					
DESVIAC	IÓN ESTÁNDAR	55.2762	3.9515	1.2955	0.2470	1.9615	75.4793					
COEFICIENTE D	EFICIENTE DE VARIACIÓN%		22.8332	11.6044	22.8332	19.3394	16.0533					

FÓRMULAS UTILIZADAS

Resistencia a la flexión Deformación Unitaria Módulo de Elasticidad Deflexión

$$\sigma_{max} = \frac{F_{max} * L}{b_v * d^2}$$
$$\epsilon_i = \frac{\epsilon_i}{\epsilon_o}$$
$$E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_i - 20\% \epsilon_i)}$$

$$D_f = \frac{P_v + L^3}{48 E I}$$

10.3.2.1.2. 3 Layers

	FLEXION MATERIAL COMPOSITO STATERS											
	Proyecto: Tesis J. Almache - D. Tapia Fecha: 18/04/20											
	Probeta	Carga Max. [N]	Deformación Max. [mm]	Resistencia a la Flexión [MPa]	Def. Unitaria Max. [mm/mm]	Deflexión Max. [mm]	Módulo de Elasticidad [MPa]					
	1	349.8882	23.0686	8.2005	1.4418	18.0926	188.8549					
	2	504.5756	19.4425	11.8260	1.2152	9.3011	529.7747					
	3	441.9641	24.7431	10.3585	1.5464	7.2453	595.7021					
	4	401.4507	17.3202	9.4090	1.0825	8.8605	442.4599					
	5	526.6739	19.3679	12.3439	1.2105	11.4437	449.4428					
	6	456.6962	19.4425	10.7038	1.2152	9.7470	457.5683					
	7	430.9150	19.5812	10.0996	1.2238	7.7370	543.9020					
	8	556.1381	19.9118	13.0345	1.2445	9.1170	595.7021					
	9	401.4507	19.2719	9.4090	1.2045	8.3735	468.1940					
-	MEDIA	452.1947	20.2388	10.5983	1.2649	9.9909	474.6223					
DESVIACI	ÓN ESTÁNDAR	66.4167	2.2449	1.5566	0.1403	3.2703	122.8951					
COEFICIENTE DI	E VARIACIÓN%	14.6876	11.0920	14.6876	11.0920	32.7330	25.8933					

FLEXIÓN MATERIAL COMPLIESTO 3 LAYERS

FÓRMULAS UTILIZADAS

GRÁFICA ESFUERZO VS DEFORMACIÓN UNITARIA

 $\sigma_{max} = \frac{F_{max} * L}{b_v * d^2}$ Resistencia a la flexión Deformación Unitaria Módulo de Elasticidad Deflexión

 $\epsilon_i = \frac{\epsilon_i}{L_o}$ $E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_i - 20\% \epsilon_i)}$ $D_f = \frac{P_v + L^3}{48 E I}$

14 HI HI HI HI HI HI HI HI Ρ1 12 P2 Ρ3 Esfuerzo [MPa] 6 4 Ρ4 P5 P6 P7 -P8 4 Ρ9 2 0 0 0.5 1.5 2 1

10.3.2.2.Material Compuesto con Tejido de Saco de Cabuya10.3.2.2.1.3 Layers

			FL	EXIÓN MATE	RIAL COMPUE	STO 3 LAYERS			
	Proyecto:	06/04/2016							
		Carga Max	Deformación	Resistencia	Def. Unitaria	Deflexión	Módulo de	Energía	Energía de
	Probeta		Max.	a la Flexión	Max.	Max.	Elasticidad	Absorbida	Fractura
		[14]	[mm]	[MPa]	[mm/mm]	[mm]	[MPa]	[1]	[J/m ²]
	1	556.138	5.394	13.034	0.33715	10.380	616.309	6.260	7825
	2	633.482	5.635	14.847	0.35216	6.917	894.417	4.930	6162.5
	3	633.482	5.099	14.847	0.31870	7.233	855.286	5.030	6287.5
	4	596.652	9.608	13.984	0.60051	8.272	704.353	6.601	8251.25
	5	534.040	5.168	12.517	0.32299	6.098	855.286	5.060	6325
	MEDIA	590.7587	6.1808	13.8459	0.3863	7.7799	785.1301	5.5762	6970.2500
DESVIACI	ÓN ESTÁNDAR	244.5120	3.0560	5.7308	0.1910	3.5019	119.1771	2.3838	988.2451
OEFICIENTE DE	E VARIACIÓN%	41.3895	49.4431	41.3895	49.4431	45.0116	15.1793	42.7490	14.1780

Deformación Unitaria [mm/mm]

10.3.3. Densidad y porcentaje de Absorción del Material Compuesto (Principio de Arquímedes)

10.3.3.1. Tejido

			Densidad y % de ai	BSORCION M	ATERIAL COMPUEST	0		
Proyecto:	Tesis: Almac	he - Tapia	-	Tiempo: 28 Fecha: 19/C				
Número de layers	Masa Saturada [g]	Lectura 1 [ml]	Masa 1 Agua+Recipiente [g]	Lectura 2 [ml]	Masa 2 Agua+Recipiente [g]	Masa Seca [g]	Densidad [g/cm3]	% ABSORCION
2	512.370	600.000	593.300	855.000	846.500	453.000	1.789	13.106
3	477.550	600.000	593.000	845.000	836.600	414.400	1.701	15.239
					DESVIACIÓ COEFICIENTE DE V	MEDIA N ESTÁNDAR 'ARIACION %	1.745 0.062 3.564	14.172 1.508 10.642

ń٨

10.3.3.2. Saco

		DEN	SIDAD Y % DE ABSO	RCIÓN MATE	RIAL COMPUESTO (Saco)		
Proyecto:	royecto: Tesis: Almache - Tapia		-		Tiempo: Fecha:	28 días 19/05/2016		
Número de layers	Masa Saturada [g]	Lectura 1 [ml]	Masa 1 Agua+Recipiente [g]	Lectura 2 [ml]	Masa 2 Agua+Recipiente [g]	Masa Seca [g]	Densidad [g/cm3]	% ABSORCION
3	444.900	600.000	593.600	820.000	810.700	396.000	1.824	12.348
3	453.900	600.000	593.800	825.000	814.100	404.200	1.835	12.296
					DESVIACIÓ	MEDIA N ESTÁNDAR	1.829 0.008	12.322 0.037
					COEFICIENTE DE V	ARIACIÓN %	0.415	0.302

319

10.4. CARACTERIZACIÓN DE MATERIALES PARA CONCRETO ARMADO

10.4.1. Granulometría Agregado Fino y Agregado Grueso (INEN 696)

Agregado Fino 10.4.1.1.

ANÁLISIS GRANULOMÉTRICO DEL AGREGADO FINO									
			Norma:		NTE INEN 696	5			
Proyecto:	Tesis J. Alr	mache - D	. Tapia	_	F	Procedencia:	Mina de Penipe		
Masa Inicial:		2000 g				Fecha:	1	8/01/2016	
	Abortura	Rete	nido	Promedio	Retenido	Retenido	Pasa	Lím	ites
Malla	Abertura	Par	cial	Ret. Parcial	Acumulado	Acumulado	rasa	Granulo	métricos
	[mm]	[8	3]	[g]	[g]	%	%	Inferior	Superior
3/8"	9.53	0.00	0.00	0.00	0	0.00	100.00	100	100
Nº 4	4.75	114.00	97.00	105.50	105.50	10.50	89.50	95	100
Nº 8	2.36	78.00	83.00	80.50	186.00	18.51	81.49	80	100
Nº 16	1.18	87.00	89.00	88.00	274.00	27.26	72.74	50	85
Nº 30	0.60	91.00	94.00	92.50	366.50	36.47	63.53	25	60
Nº 50	0.30	188.00	204.00	196.00	562.50	55.97	44.03	5	30
Nº 100	0.15	335.00	308.00	321.50	884.00	87.96	12.04	0	10
Nº 200	0.075	97.00	113.00	105.00	989.00	98.41	1.59	0	0
Band	leja	14.00	18.00	16.00	1005.00	100.00	0.00	-	-
Total 1004.00 1006.00			1005.00	Módulo de l	Finura:	2.37	% Error:	0.50	
Tamaño Max	kimo de las Pa	articulas:		3/8"	Tan	naño Máximo	Nominal:	4.75	mm
			% Reten % que pa	ido Acumula asa	ndo $\%R_A =$ % Pasa= 2	$\frac{M_{RA}}{M_0} * 100$			
			Módulo (de Finura	$M_F = \frac{2}{3}$ % Error	$\frac{\frac{\gamma_0 R_A}{100}}{\frac{M_0 - M_f}{100}} $	0		
			% Error		70 211 01	M_f	•		
			c	urva Granulo	ométrica				
		7	7	~ ~	7				
		1º 20	lº 10	lº 30	l º 16	N 5 0N	3/8"		
		-	ě	+ +	• •	× +		10	00
								a	n
			Lí	mite Superio	r			ŧ.,	-
						7		= 1 80	ס
								70	asa c
				- 14					b e
								5.	edi
Curva Granulométrica			11					entaj	
					Límite	Inferior		3	Porce

Diámetro de las Partículas (mm)

1.00

.

0.10

0.01

10.00

10.4.1.2. Agregado Grueso

10.4.1.3. Normal

		Α	ADO GRUESO)	-				
			Norma:		NTE INEN 696	5			
Proyecto:	yecto: Tesis J. Almache - D. Tapia					Procedencia:	Mina	de la Politéo	cnica
Masa Inicial:	al: 4000 g			-		Fecha:	-	18/01/2016	
Malla	Abertura Retenido Parcial			Promedio Ret. Parcial	Retenido Acumulado	Retenido Acumulado	Pasa	Lím Granulo	ites métricos
	[mm]	[g]		[g]	[g]	%	%	Inferior	Superior
2"	50.8	0.00	0.00	0.00	0.00	0	100.00	100	100
1 1/2"	38.10	195.00	237.00	216.00	216.00	10.82	89.18	100	100
1"	25.40	477.00	394.00	435.50	651.50	32.63	67.37	90	100
3/4"	19.10	226.00	207.00	216.50	868.00	43.48	56.52	40	85
1/2"	12.70	330.00	433.00	381.50	1249.50	62.58	37.42	10	40
3/8"	9.52	206.00	242.00	224.00	1473.50	73.80	26.20	0	15
Nº 4	4.76	298.00	252.00	275.00	1748.50	87.58	12.42	0	5
Nº 8	2.38	85.00	76.00	80.50	1829.00	91.61	8.39	0	0
Ban	Bandeja 179.00 156.00		156.00	167.50	1996.50	100.00	0.00	-	-
To	Total 1996.00 1997.00		1997.00	1996.50	Módulo de F	inura:	3.07	% Error:	0.18
Tamaño	Tamaño Maximo de las Particulas:				1	Tamaño Máxin	no Nominal:	11	/2"

10.4.1.4. Tamizado

	-	ANÁLISIS	GRANULOM	ÉTRICO DEL A	GREGADO GE	RUESO TAMIZ	ADO 3/8"	-	
			Norma:		NTE INEN 696	5			
Provecto:	Tesis I	Almache - D	Tania			Procedencia:	Mina de	a la Polité	cnica
Masa Inicial:	103133	6000 g		-		Fecha:	17	/02/2016	
		0000 8		-			_,	/02/2020	
		Rete	nido	Promedio	Retenido	Retenido		Lím	ites
Malla	Abertura	Par	cial	Ret. Parcial	Acumulado	Acumulado	Pasa	Granulo	métricos
	[mm]	[8	:]	[g]	[g]	%	%	Inferior	Superior
3/8"	9.52	43.00	30.00	36.50	36.50	1.22	98.78	100	100
1/4"	6.25	1493.00	1268.00	1380.50	1417.00	47.29	52.71	98	100
Nº 4	4.76	631.00	532.00	581.50	1998.50	66.69	33.31	95	100
Nº 8	2.36	495.00	515.00	505.00	2503.50	83.55	16.45	80	100
Nº 16	1.18	84.00	134.00	109.00	2612.50	87.19	12.81	50	85
Nº 20	0.83	69.00	41.00	55.00	2667.50	89.02	10.98	0	0
Ban	deja	183.00	475.00	329.00	2996.50	100.00	0.00		
То	tal	2998.00	2995.00	2996.50	Módulo de F	inura:	2.39	% Error:	0.12
Tamaño	Maximo de la	s Particulas:	3/	/8"	1	「amaño Máxir	mo Nominal:	3/	/8''
	-		Fór	mulas Aplica	das				
	-			p					
			% Retenido	Acumulado	$\% R_A = \frac{R_A}{2}$	$\frac{M_{RA}}{M_0} * 100$			
% que pasa				% Pasa=	100 % - %R _A				
Módulo de F			inura	$M_F = \frac{\sum Q}{1}$	$\frac{V_0R_A}{00}$				
			% Error		% Error	$=\frac{M_0-M_f}{M_f}*100$)		
	-	Cupr	Granulomá	trico Ag. Grue	so Tamizado	2 /0"			
	-	Curva	a Granuforne	anca Ag. Grue		5/8			
	Nº 2(Nº 1€		3 aN		7 ōN	1/4	3/8	
		•							100
						×			90
Lími	ita Supariar								50
				~~~					80
									70 g
			Límite Infer	ior					en se
									dne
		X		Curva	Granulomét	rica			50 <u>e</u>
		1		curve					40 8
	· /								a b
	· · ·							ŧ	30
								Ŧ	20
	•	•						Į	10
								Ŧ	
0.6		1	i	1			6	+	U
0.0			Diámetro	de las Partícul	as (mm)		~		

322

# 10.4.2. Masa unitaria suelta y compactada- Agregado Fino y Ag. Grueso (INEN 858)

## 10.4.2.1. Agregado Fino

## 10.4.2.1.1. Masa Suelta

MASA UNITARIA SUELTA AGREGADO FINO						
	Norma: oyecto: Tesis J. Almache - D. Tapia		NTE INEN 8	58		
Proyecto:				Procedencia:	Mina de	Penipe
Material :	Arena Sin Tam	izar	-	Fecha:	28/04	/2016
Densidad de	l Agua (g/cm³):	1	Volumen Recipiente (cm ³ ):			3000.00
	Datos Previos		Lectura	Masa Molde + Masa Compactada	Masa Mortero	MUS
N	/asa Molde (g):	2650.00	1	7477.00	4827.00	1.609
Masa	a Molde + Placa(g):	4800.00	2	7480.00	4830.00	1.610
Masa Mo	olde + Placa + Agua (g):	7800.00	3	7472.00	4822.00	1.607
				ME	DIA [g/cm3]	1.609
			DE	SVIACION ESTÁN	DAR [g/cm3]	0.001
			c	OEFICIENTE DE V	ARIACION %	0.084
		FÓRMUL	AS UTILIZADAS	;		

FÓRMULAS UTILIZADAS				
Masa Unitaria	$M = \frac{G - T}{V}$			
Volumen del molde	$V = P - P_A$			

## 10.4.2.1.2. Masa compactada

	MASA UI					
	Norma: Proyecto: Tesis J. Almache - D. Tapia		NTE INEN 858			
Proyecto:				Procedencia:	Mina de	Penipe
Material :	aterial : Arena Sin Tamizar			Fecha:	28/04	/2016
Densidad de	l Agua (g/cm³):	1	•	Volumen Recip	iente (cm³):	3000.00
Datos Previos			Lectura	Masa Molde + Masa Compactada	Masa Mortero	мис
				[g]	[g]	[g/cm³]
N	1asa Molde (g):	2650.00	1	7812.00	5162.00	1.721
Masa	Molde + Placa(g):	4800.00	2	7805.00	5155.00	1.718
Masa Mo	lde + Placa + Agua (g):	7800.00	3	7820.00	5170.00	1.723
				ME	DIA [g/cm3]	1.721
			DES	SVIACIÓN ESTÁN	DAR [g/cm3]	0.003
COEFICIENTE DE VARIACIÓN %						0.145

FÓRML	ILAS UTILIZADAS	
Masa Unitaria	$M = \frac{G - T}{V}$	
Volumen del molde	$V = P - P_A$	

## 10.4.2.2. Agregado Grueso

## 10.4.2.2.1. Masa Suelta

MASA UNITARIA SUELTA AGREGADO GRUESO TAMIZADO 3/8"					0 3/8"	
Norma			NTE INEN 8	358		
Proyecto:	Tesis J. Almache - D. Tapia			Procedencia:	Mina de la Po	olitécnica
Material :	Ripio Tamizad	lo		Fecha:	28/04/2	2016
Densidad del A	ensidad del Agua (g/cm ³ ): 1 Volumen Recipiente (cm ³ ):			iente (cm³):	3000.00	
	Datos Previos		Lectura	Masa Molde + Masa Compactada	Masa Mortero	MUS
				[g]	[g]	[g/cm ³ ]
Masa Molde (g): 2650.00		1	6749.00	4099.00	1.366	
Masa Molde + Placa(g): 4800.00		2	6694.00	4044.00	1.348	
Masa Mold	le + Placa + Agua (g):	7800.00	3	6756.00	4106.00	1.369
MEDIA [g/cm3]						
			D	ESVIACIÓN EST	ÁNDAR [g/cm3]	0.011
COEFICIENTE DE VARIACIÓN %						0.832
=	Masa Unita	<b>FÓRMULA</b>	S UTILIZAD $M = \frac{G - C}{M}$	<b>DAS</b>		

Volumen del molde  $V = P - P_A$ 

#### 10.4.2.2.2. Masa compactada

Norma:       NTE INEN 858         Proyecto:       Tesis J. Almache - D. Tapia       Procedencia:       Mina de la Politécnica         Material :       Ripio Tamizado       Fecha:       28/04/2016         Densidad del Agua (g/cm ³ ):       1       Volumen Recipiente (cm ³ ):       3000.00         Datos Previos       Masa (g)       Masa (g)       Masa (g)       Muc (g)       Muc (g)         Masa Molde (g):       2650.00       1       6975.00       4325.00       1.442         Masa Molde + Placa(g):       4800.00       2       7014.00       4364.00       1.455         Masa Molde + Placa + Agua (g):       7800.00       3       7009.00       4359.00       1.450         MEDIA [g/cm3]       0.007	-	MASA UNITARIA COMPACTADA AGREGADO GRUESO TAMIZADO						
Proyecto: Material :       Tesis J. Almache - D. Tapia Ripio Tamizado       Procedencia: Fecha:       Mina de la Politécnica 28/04/2016         Densidad del Agua (g/cm ³ ):       1       Volumen Recipiente (cm ³ ):       3000.00         Datos Previos       Masa Lectura       Masa Molde + Masa Compactada [g]       Masa [g]       Muc [g]       MUC         Masa Molde (g):       2650.00       1       6975.00       4325.00       1.442         Masa Molde + Placa(g):       4800.00       2       7014.00       4364.00       1.455         Masa Molde + Placa + Agua (g):       7800.00       3       7009.00       4359.00       1.450         DESVIACION ESTÁNDAR [g/cm3]       1.450	-	Norma: Norm		Ν	NTE INEN 858			
Densidad del Agua (g/cm ³ ):         1         Volumen Recipiente (cm ³ ):         3000.00           Datos Previos         Masa Molde + Masa Compactada [g]         Masa Mortero         MuC           Masa Molde (g):         2650.00         1         6975.00         4325.00         1.442           Masa Molde + Placa(g):         4800.00         2         7014.00         4364.00         1.455           Masa Molde + Placa + Agua (g):         7800.00         3         7009.00         4359.00         1.453           MEDIA [g/cm3]         1.450         DESVIACION ESTÁNDAR [g/cm3]         1.450	Proyecto:			_		Procedencia:	Mina de la P 28/04/	olitécnica
Densidad del Agua (g/cm ³ ):         1         Volumen Recipiente (cm ³ ):         3000.00           Datos Previos         Masa Lectura         Masa Molde + Masa Compactada [g]         Masa Mortero         MUC           Masa Molde (g):         2650.00         1         6975.00         4325.00         1.442           Masa Molde + Placa(g):         4800.00         2         7014.00         4364.00         1.455           Masa Molde + Placa + Agua (g):         7800.00         3         7009.00         4359.00         1.453           MEDIA [g/cm3]           MEDIA [g/cm3]         1.450           DESVIACION ESTÁNDAR [g/cm3]         0.007	-			-		· contai	20,01,	04/2010
Datos Previos         Masa Lectura         Masa Molde + Masa Compactada         Masa Mortero         MUC           Masa Molde (g):         2650.00         1         6975.00         4325.00         1.442           Masa Molde + Placa(g):         4800.00         2         7014.00         4364.00         1.455           Masa Molde + Placa + Agua (g):         7800.00         3         7009.00         4359.00         1.453           MEDIA [g/cm3]         1.450           DESVIACION ESTÁNDAR [g/cm3]         0.007	Densidad del	l Agua (g/cm³):	1	_		Volumen Recip	oiente (cm³):	3000.00
Image: Masa Molde (g):         2650.00         1         6975.00         4325.00         1.442           Masa Molde + Placa(g):         4800.00         2         7014.00         4364.00         1.455           Masa Molde + Placa + Agua (g):         7800.00         3         7009.00         4359.00         1.453           Masa Molde + Placa + Agua (g):         7800.00         3         7009.00         4359.00         1.453           DESVIACION ESTÁNDAR [g/cm3]         0.007         0.007         0.007         0.007         0.007		Datos Previos		T	Lectura	Masa Molde + Masa Compactada	Masa Mortero	MUC
Masa Molde (g):       200000       1       0013.00       4023.00       1.442         Masa Molde + Placa(g):       4800.00       2       7014.00       4364.00       1.455         Masa Molde + Placa + Agua (g):       7800.00       3       7009.00       4359.00       1.453         MEDIA [g/cm3]       1.450         DESVIACION ESTÁNDAR [g/cm3]       0.007	M	lasa Molde (g):	2650.00	-	1	6975.00	1325 00	1 //2
Masa Molde + Placa + Agua (g):         7800.00         3         7009.00         4359.00         1.453           MEDIA [g/cm3]         1.450         DESVIACION ESTÁNDAR [g/cm3]         0.007	Masa	Molde + Placa(g):	4800.00		2	7014.00	4364.00	1.455
MEDIA [g/cm3] 1.450 DESVIACION ESTÁNDAR [g/cm3] 0.007	Masa Mol	lde + Placa + Agua (g):	7800.00		3	7009.00	4359.00	1.453
DESVIACION ESTÁNDAR [g/cm3] 0.007							MEDIA [g/cm3]	1.450
					D	ESVIACION EST	ÁNDAR [g/cm3]	0.007
COEFICIENTE DE VARIACION % 0.488						COEFICIENTE D	E VARIACION %	0.488

FÓRML	JLAS UTILIZADAS
Masa Unitaria	$M = \frac{G - T}{V}$
Volumen del molde	$V = P - P_A$

## 10.4.3. Contenido de Aire del Hormigón (ASTM C231)

CONTENIDO DE AIRE MÉTODO A PRESIÓN DEL HORMIGÓN						
	Norma: ASTM		1C231			
Proyecto:	Tesis J. Alma	che - D. Tapia	Fecha:	06/04/2016		
	Lectura	% de Aire				
	1	2.8				
	2	2.9				
	3	2.8				
	4	2.7				
	5	2.6				
	MEDIA	2.760				
DESVIAC	IÓN ESTÁNDAR	0.114				
COEFICIENTE D	E VARIACIÓN%	4.131				

#### 10.4.4. Densidad en estado Fresco del Hormigón (ASTM C 138)

				- <i>4</i> <b></b>			
	DEN	ISIDAD HORI	NIC	GON ESTADO	D FRESCO		
Proyecto:	Tesis J. Almache - D	). Tapia			Dosificación:		
					Fecha:	26/04	/2016
Densidad de	l Agua (g/cm ³ ):	1	_		Volumen Recipi	ente (cm³):	3000.00
	Datos Previos			Lectura	Masa Molde + Masa Compactada	Masa Mortero	Densidad
					[g]	[g]	[g/cm ³ ]
M	lasa Molde (g):	2650.00		1	9382.00	6732.00	2.244
Masa	Molde + Placa(g):	4800.00		2	9350.00	6700.00	2.233
Masa Mo	lde + Placa + Agua (g):	7800.00		3	9345.00	6695.00	2.232
			-	4	9358.00	6708.00	2.236
				5	9360.00	6710.00	2.237
MEDIA						2.236	
DESVIACIÓN ESTÁNDAR						0.005	
COEFICIENTE DE VARIACIÓN %							0.212
FÓRMULAS UTILIZADAS							
	Densidad		δ	$=\frac{G-T}{V}$			
Volumen del molde $V = P - P_A$							

#### 10.4.5. Determinación de la Densidad Y Absorción del Árido Grueso (INEN 857) Densidad del Árido Grueso 10.4.5.1.

DENSIDAD AGREGADO GRUESO TAMIZADO 3/8"						
	Norma:	NTEINE	EN 857	-		
Proyecto:	Tesis: Almache - Tapia	Procedencia:	Mina	a de la Politéc	nica	
Material :	Ripio Tamizado	Fecha:		05/05/2016		
	Descripción	Unidad	Lectura 1	Lectura 2	Lectura 3	
Masa Canastilla vacia	a al aire	[g]	745.500	761.500	760.100	
Masa Canastilla al air	re + agregado grueso en estado "sss" al aire	[g]	2746.000	2757.800	2755.600	
Masa Canastilla vacia	a sumergida	[g]	651.200	657.200	655.100	
Masa Canastilla sumergida + agregadoen estado "sss"		[g]	1842.600	1848.600	1845.900	
Masa Seca + bandeja		[g]	2396.000	2398.000	2393.000	
Masa Bandejas		[g]	497.300	494.600	495.900	
Masa agregado en estado "sss" al aire		[g]	2000.500	1996.300	1995.500	
Masa agregado en es	stado "sss" sumergido	[g]	1191.400	1191.400	1190.800	
Volumen de desaloj	0	[cm ^{3]}	809.100	804.900	804.700	
Densidad sss		[g/cm ³ ]	2.473	2.480	2.480	
MEDIA [g/cm3]					2.477	
DESVIACION ESTANDAR [g/cm3]					0.004	
COEFICIENTE DE VARIACION %					0.175	

FÓRMULAS UTILIZADAS

Densidad

$$\delta = \frac{a}{(b+a-c)}$$

#### Absorción del Árido Grueso 10.4.5.2.

	Norma:	NTE INI	EN 857			
Proyecto:	to: Tesis: Almache - Tapia		Mina de la Politécnica		nica	
Material :	Ripio Tamizado	o Fecha:		05/05/2016		
	Descripción	Unidad	Lectura 1	Lectura 2	Lectura 3	
Masa recipiente		[g]	497.300	494.600	495.900	
Masa recipiente + ari	do sss	[g]	2497.800	2490.900	2491.400	
M1= masa recipiente	+ arido seco	[g]	2396.000	2398.000	2393.000	
Masa arido estado "s	ss"	[g]	2000.500	1996.300	1995.500	
Masa arido estado se	со	[g]	1898.700	1903.400	1897.100	
Masa del area conter	nida en el arido	[g]	101.800	92.900	98.400	
% de Absorcion de ag	gua del Arido Grueso	[%]	5.362	4.881	5.187	
		<u>.</u>		MEDIA [%]	5.143	
DESVIACIÓN ESTANDAR [%]					0.243	
COEFICIENTE DE VARIACIÓN %					4.732	

#### FÓRMULAS UTILIZADAS

Absorción

 $\%Absorción = \frac{(W-D)}{D}$ *100

10.4.6. Absorción por (	Capilaridad Del I	Hormigón (AS'	ГМ С 1585)
-------------------------	-------------------	---------------	------------

ABSORCÓN POR CAPILARIDAD DEL HORMIGÓN																			
	NORMA ASTM C 1585-4																		
	Ag. Fino:	Arena de	Penipe		Relación a/c:		0.7		1	voyecto:	Tesis	Almache-Ta	pia		Número de	muest	ras:		4
	Ag. Grueso:	Ripio tami	zado 3/8"	-	Tiempo:		28 días	F	echa de ela	oración		27/04/2016			Fecha de ei	nsayo:		25/05/2016	
		-	-									-		_				-	
Datos Pevi	ios	Tiempo	Tiempo	[s] ^{1/2}	Éspe	pecimen 1		És	specimen 2		Éspecimen 3		Éspecimen 4		Media	Desviación	Coeficiente de		
Datos i er	.05	[min]	[seg]	[3]	Masa [g]	∆Masa [g]	I [mm]	Masa [g]	∆Masa [g]	I [mm]	Masa [g	∆Masa [g]	I [mm]	Masa [g]	∆Masa [g]	I [mm]	meana	Estándar	Variación [%]
Peso Muestra	s Secas	1	60	7.746	887.200	4.700	0.523	914.900	4.100	0.450	905.000	4.600	0.511	931.500	4.400	0.484	0.492	0.032	6.560
Éspecimen 1 [g]	882.500	3	180	13.416	889.000	6.500	0.724	916.900	6.100	0.670	906.300	5.900	0.655	933.100	6.000	0.660	0.678	0.032	4.653
Éspecimen 2 [g]	910.800	5	300	17.321	890.000	7.500	0.835	917.700	6.900	0.758	907.000	6.600	0.733	934.300	7.200	0.793	0.780	0.044	5.678
Éspecimen 3 [g]	900.400	10	600	24.495	891.500	9.000	1.002	919.200	8.400	0.923	909.100	8.700	0.966	936.100	9.000	0.991	0.971	0.035	3.617
Éspecimen 4 [g]	927.100	15	900	30.000	892.700	10.200	1.136	920.600	9.800	1.077	910.300	9.900	1.100	937.300	10.200	1.123	1.109	0.026	2.352
		20	1200	34.641	893.900	11.400	1.270	921.700	10.900	1.198	911.400	11.000	1.222	938.500	11.400	1.255	1.236	0.032	2.623
Área de Mue	estras	60	3600	60.000	899.500	17.000	1.893	927.600	16.800	1.846	916.900	16.500	1.833	944.500	17.400	1.915	1.872	0.039	2.079
Éspecimen 1 [mm ² ]	8979.422	90	5400	73.485	903.400	20.900	2.328	932.000	21.200	2.329	921.200	20.800	2.311	949.300	22.200	2.444	2.353	0.061	2.603
Éspecimen 2 [mm ² )	9101.182	120	7200	84.853	905.300	22.800	2.539	933.900	23.100	2.538	923.100	22.700	2.522	951.400	24.300	2.675	2.568	0.071	2.782
Éspecimen 3 (mm ² )	9002.111	360	21600	146.969	918.600	36.100	4.020	947.700	36.900	4.054	936.800	36.400	4.043	965.600	38.500	4.238	4.089	0.100	2.454
Éspecimen 4 (mm ² )	9084.280	1440	86400	293.939	943.100	60.600	6.749	970.400	59.600	6.549	961.900	61.500	6.832	988.100	61.000	6.715	6.711	0.119	1.771

FÓRMULAS UTILIZADAS

Absorción 
$$I = \frac{m_i}{r/d}$$



327

# 10.4.6. Densidad y porcentaje de Absorción del Hormigón en estado Endurecido (Principio de Arquímedes)

DENSIDAD Y % DE ABSORCIÓN HORMIGÓN 28 DÍAS									
Proyecto:	Tesi	s: Almache -	Tapia		Fecha:		25/05/2016		
Especimen	Masa Saturada [g]	Lectura 1 [ml]	Masa 1 Agua+Recip. [g]	Lectura 2 [ml]	Masa 2 Agua+Recip. [g]	Masa Seca [g]	Densidad [g/cm³]	% ABSORCION	
M1	602.300	600.000	594.500	868.000	857.200	554.100	2.109	8.699	
M2	585.200	600.000	594.600	861.000	851.800	537.300	2.089	8.915	
M3	599.800	600.000	594.200	869.000	855.900	550.200	2.102	9.015	
M4	582.200	600.000	594.400	860.000	847.500	536.300	2.119	8.559	
M5	600.600	600.000	594.500	869.000	856.800	553.100	2.109	8.588	
						MEDIA	2.106	8.755	
	DESVIACIÓN ESTÁNDAR 0.011 0.202								
COEFICIENTE DE VARIACIÓN % 0.523 2.304									
			FÓRI	MULAS UTILI	ZADAS				

Densidad

%Absorción =  $\frac{(W-D)}{D}$ *100

 $\delta = \frac{S}{(R-T)}$ 

Absorción

# 10.4.7. Ensayo de Tracción De Varillas Corrugadas (INEN 109)

## 10.4.7.1. Diámetro de 4 mm

	Proyecto:	Tesis J. Alma	che - D. Tapia	<u>.</u>		Fecha:	04/05/2016		
	Prueba	Carga Máxima	Carga de Rotura	Deformación Máxima	Módulo de Elasticidad	Esfuerzo de Fluencia	Esfuerzo Máximo	Def. Unitaria Máxima	
	1		4.4700	17 5 190			(1VIF d)	0.0547	
	T	7.8200	4.4700	17.5180	080801.1100	550.9500	022.2958	0.0547	
	2	7.6300	4.3000	16.6520	273086.9690	563.6400	607.1761	0.0537	
	3	7.9000	4.5100	17.4330	71380.2551	584.8200	628.6620	0.0562	
	4	7.6100	5.7800	9.0350	257721.2458	562.5400	605.5846	0.0282	
-	MEDIA	7.7400	4.7650	15.1595	322262.3966	565.4875	615.9296	0.0482	
DESVIACI	DESVIACIÓN ESTANDAR		0.6828	4.1016	259780.5858	14.1089	11.3473	0.0134	
COEFICIENTE DE VARIACIÓN%		1.8423	14.3287	27.0560	80.6115	2.4950	1.8423	27.7243	
	•								

#### FÓRMULAS UTILIZADAS

## Esfuerzo máximo

$$\sigma_{max} = \frac{F_{max}}{A}$$

Deformación Unitaria

$$\epsilon_i = \frac{\epsilon_i}{L_o}$$

ENSAYO A TRACCIÓN VARILLA 4mm

Módulo de Elasticidad

 $E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_i - 20\% \epsilon_i)}$ 

Esfuerzo de fluencia

Pendiente de la línea paralela de la gráfica esfuerzo vs. deformación unitaria = 0.2%  $\epsilon_i$ 



#### 10.4.7.2. Diámetro de 6 mm

	Proyecto:		che - D. Tapia	-	Fecha:	04/05	/2016	
	Prueba	Carga Máxima	Carga de Rotura	Deformación Máxima	Módulo de Elasticidad	Esfuerzo de Fluencia	Esfuerzo Máximo	Def. Unitaria Máxima
	1	18 8300	12 0200	13 1010	210/6 6/01		665 0750	0.0/12
	2	19.0200	13.4400	12.9840	31423.2191	604.4300	672.6949	0.0412
	3	17.6100	13.4500	8.7150	32278.9989	538.6400	622.8263	0.0272
	4	18.0200	12.7400	10.9210	32187.9110	535.6700	637.3271	0.0341
-	MEDIA	18.3700	13.1375	11.4528	31959.1945	564.3775	649.7058	0.0358
DESVIACI	ÓN ESTANDAR	0.6669	0.3626	2.0932	383.8459	33.1556	23.5862	0.0065
COEFICIENTE DI	FICIENTE DE VARIACIÓN%		2.7602	18.2767	1.2011	5.8747	3.6303	18.2767

#### ENSAYO A TRACCIÓN VARILLA 6mm

FÓRMULAS UTILIZADAS

Deformación Unitaria

Esfuerzo máximo

$$\epsilon_i = \frac{\epsilon_i}{L_o}$$

 $\sigma_{max} = \frac{F_{max}}{A}$ 

Módulo de Elasticidad

$$E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_{i} - 20\% \epsilon_{i})}$$

Esfuerzo de fluencia

Pendiente de la línea paralela de la gráfica esfuerzo vs. deformación unitaria = 0.2%  $\epsilon_i$ 



#### 10.4.7.3. Diámetro de 8 mm

	Proyecto:	Tesis J. Alma	che - D. Tapia	<u>.</u>		Fecha:	04/05/2016		
	Prueba	Carga Máxima [KN]	Carga de Rotura [KN]	Deformación Máxima [mm]	Módulo de Elasticidad [MPa]	Esfuerzo de Fluencia [MPa]	Esfuerzo Máximo [MPa]	Def. Unitaria Máxima [mm/mm]	
	1	32.8800	25.6100	53.2000	33320.3889	508.0200	654.1268	0.1663	
	2	32.8200	26.1900	52.3180	38385.0280	517.3600	652.9332	0.1635	
	3	32.5300	24.4700	53.0000	40615.2080	515.5900	647.1638	0.1656	
	4	32.8100	23.5700	53.5320	31276.4418	599.1500	652.7342	0.1673	
-	MEDIA	32.7600	24.9600	53.0125	35899.2667	535.0300	651.7395	0.1657	
DESVIACI	DESVIACIÓN ESTANDAR		1.1701	0.5124	4337.4429	42.9382	3.1118	0.0016	
COEFICIENTE DE	OEFICIENTE DE VARIACIÓN%		4.6880	0.9665	12.0823	8.0254	0.4775	0.9665	
	•								

#### ENSAYO A TRACCIÓN VARILLA 8mm

FÓRMULAS UTILIZADAS							
	Esfuerzo máximo	$\sigma_{max} = \frac{F_{max}}{A}$					
	Deformación Unitaria	$\epsilon_i = \frac{\epsilon_i}{L_o}$					
	Módulo de Elasticidad	$E = \frac{(60\% \sigma - 20\% \sigma)}{(60\% \epsilon_i - 20\% \epsilon_i)}$					
	Esfuerzo de fluencia	Pendiente de la línea paralela de la gráfica esfuerzo vs. deformación unitaria = 0.2% $\epsilon_i$					


# 10.5.Ensayo de la Resistencia a Compresión del Hormigón De Cemento Hidráulico- Cilindros (INEN 1572-1576)

#### 10.5.1.1. Primer día de Fundición

#### RESITENCIA A LA COMPRESIÓN DE CILINDROS - PRIMER DÍA DE FUNDICIÓN

Proyecto: Tesis J. Almache - D. Tapia

Día	Espécimen	Diámetro Altura Promedio Paromedio		Peso	Área	Carga	Esfuerzo
Dia		[mm]	[mm]	[kg]	[mm]	[KN]	[Mpa]
	D1-P1	152.295	303.500	12.358	18216.342	243.537	13.369
7	D1-P2	152.088	306.000	12.328	18166.737	261.578	14.399
/	D1-P3	152.195	305.000	12.432	18192.427	251.702	13.836
	D1-P4	151.558	302.500	12.199	18040.341	213.781	11.850
	-	18153.962	242.649	13.363			
		78.409	20.611	1.093			
		(	COEFICIENTE DE	E VARIACIÓN %	0.432	8.494	8.180
	D1-P1	151.720	304.500	12.160	18079.048	294.984	16.316
14	D1-P2	151.955	305.500	12.284	18135.097	307.625	16.963
14	D1-P3	151.543	306.500	12.291	18036.770	322.422	17.876
	D1-P4	150.493	300.000	11.738	17787.692	324.001	18.215
				PROMEDIO	18009.652	312.258	17.342
			DESVIAC	IÓN ESTANDAR	153.356	13.676	0.865
		(	COEFICIENTE DE	E VARIACIÓN %	0.852	4.380	4.985
	D1-P3	148.568	302.500	11.794	17335.545	349.978	20.188
	D1-P1	151.510	305.500	12.169	18029.035	349.959	19.411
21	D1-P4	151.958	302.500	11.980	18135.693	365.173	20.136
	D1-P3	152.330	305.000	12.178	18224.716	377.751	20.727
	D1-P4	150.485	300.500	11.695	17785.919	335.715	18.875
	-			PROMEDIO	17902.182	355.715	19.868
			DESVIAC	IÓN ESTANDAR	356.806	16.133	0.726
		(	COEFICIENTE DE	E VARIACIÓN %	1.993	4.535	3.653
	D1-P2	151.405	303.500	12.245	18004.054	379.014	21.052
20	D1-P2	151.625	303.000	11.025	18056.414	386.825	21.423
20	D1-P3	151.780	300.500	12.456	18093.350	395.022	21.832
	D1-P4	151.038	304.000	12.325	17916.759	387.281	21.616
	-	-		PROMEDIO	18017.644	387.035	21.481
			DESVIAC	IÓN ESTANDAR	76.587	6.538	0.331
		(	0.425	1.689	1.543		
	D1-P1	151.435	304.500	12.245	18011.190	397.551	22.072
25	D1-P2	151.773	305.500	11.025	18091.562	395.175	21.843
55	D1-P4	151.265	306.500	12.456	17970.774	406.712	22.632
	D1-P4	150.868	300.000	12.325	17876.450	405.405	22.678
			17987.494	401.211	22.306		
			89.446	5.706	0.414		
		(	0.497	1.422	1.855		





## 10.5.1.2. Segundo día de Fundición

#### RESITENCIA A LA COMPRESIÓN DE CILINDROS DE HORMIGÓN - SEGUNDO DÍA DE FUNDICIÓN

Día	Espécimen	Diámetro men Promedio	Altura Paromedio	Peso	Área	Carga	Esfuerzo
Dia	Lopeennen	[mm]	[mm]	[kg]	[mm]	[KN]	[MPa]
7	D2-P1	151.983	304.500	12.244	18141.661	229.127	12.630
/	D2-P2	151.768	304.500	12.249	18090.370	242.969	13.431
5	-		18116.015	236.048	13.030		
		36.269	9.788	0.566			
		0.200	4.147	4.347			
	D2-P1	152.500	305.000	12.178	18265.416	311.695	17.065
14	D2-P4	152.000	306.500	12.281	18145.839	290.277	15.997
14	D2-P4	151.553	305.500	12.243	18039.151	294.696	16.336
	D2-P1	151.565	300.500	12.218	18042.127	263.317	14.595
				PROMEDIO	18123.133	289.996	15.998
			DESVIAC	ÓN ESTANDAR	107.044	20.040	1.036
		(	COEFICIENTE DE	VARIACIÓN %	0.591	6.910	6.478
	D2-P4	151.218	304.000	12.127	17959.490	342.781	19.086
21	D2-P3	151.763	307.000	12.154	18089.178	381.295	21.079
21	D2-P1	151.288	305.000	12.123	17976.121	379.471	21.110
	D2-P2	152.463	302.500	12.199	18256.434	339.325	18.587
	-			PROMEDIO	18070.306	360.718	19.965
			DESVIAC	ÓN ESTANDAR	136.810	22.763	1.319
		(	COEFICIENTE DE	VARIACIÓN %	0.757	6.311	6.609
	D2-P3	151.940	305.500	12.097	18131.516	398.680	21.988
	D2-P1	151.783	306.000	12.151	18093.946	391.976	21.663
28	D2-P2	152.088	304.500	12.167	18166.737	373.677	20.569
	D2-P2	149.473	300.000	11.616	17547.388	364.649	20.781
	D2-P1	151.940	303.500	12.030	18131.516	387.123	21.351
				PROMEDIO	18014.221	383.221	21.271
			DESVIAC	ÓN ESTANDAR	262.234	13.846	0.593
		1.456	3.613	2.789			
	D2-P3	150.925	302.500	12.125	17890.079	400.765	22.402
25	D2-P2	151.360	300.000	12.428	17993.354	400.683	22.268
35	D2-P2	151.823	303.500	12.136	18103.484	380.970	21.044
	D2-P4	150.970	305.000	12.280	17900.749	382.371	21.361
			17971.916	391.197	21.769		
			99.217	11.016	0.669		
		(	0.552	2.816	3.072		

Proyecto: Tesis J. Almache - D. Tapia





333

## **10.6.ENSAYOS DE ADHERENCIA**

## 10.6.1. Ensayo de Corte

## 10.6.1.1. Adherencia Liso+Normal

ENSAYO DE CORTE - ADHERENCIA LISO NORMAL								
Proyecto: Tesis J. Almache - D. Tapia Fecha: 30/08/20								
Especimen	Ancho	Carga Máxima	Esfuerzo Máximo					
	[mm]	[mm]	[mm]	[mm²]	[N]	[MPa]		
LN1	41.05	41.950	45.860	1722.048	913.433	0.530		
LN2	40.60	42.450	46.110	1723.470	1804.768	1.047		
LN3	41.27	40.470	45.980	1670.197	751.373	0.450		
LN4	41.33	40.200	46.050	1661.466	1278.070	0.769		
				MEDIA	1186.911	0.699		
	DESVIACIÓN ESTANDAR 467.098 0.269							
COEFICIENTE DE VARIACIÓN % 39.354 38.434								
FÓRMULAS APLICADAS								



ENSAYO DE CORTE -ADHERENCIA LISO +PRIMER								
Proyecto: Tesis J. Almache - D. Tapia Fecha: 30/08/2								
Especimen	Ancho	Alto	Espesor Total	Área	Carga Máxima	Esfuerzo Máximo		
	[mm]	[mm]	[mm]	[mm ² ]	[N]	[MPa]		
LP1	40.92	41.820	46.440	1711.274	2213.603	1.294		
LP2	40.98	40.440	46.320	1657.231	3101.254	1.871		
LP3	41.31	41.520	46.680	1715.191	3701.616	2.158		
LP4	41.06	41.130	46.000	1688.798	3686.883	2.183		
	MEDIA 3175.839 1.877							
	DESVIACIÓN ESTANDAR 699.778 0.414							
COEFICIENTE DE VARIACIÓN % 22.034 22.041								
FÓRMULAS APLICADAS								

Esfuerzo máximo

$$\sigma_{max} = \frac{F_{max}}{A}$$



GRÁFICA CARGA VS. DEFORMACIÓN

1000

0

0

0.2

0.4

0.6

	ENSAYO DE CORTE - ADHERENCIA RUGOSO NORMAL								
Proyecto:	Tesis J. Alma	che - D. Tapia	<u>.</u>		Fecha:	30/08/2016			
Especimen	Ancho	Alto	Espesor Total	Área	Carga Máxima	Esfuerzo Máximo			
	[mm]	[mm]	[mm]	[mm ² ]	[N]	[MPa]			
RN1	41.13	40.390	46.770	1661.241	5377.471	3.237			
RN2	40.84	40.070	46.440	1636.459	4364.592	2.667			
RN3	41.66	40.650	46.250	1693.479	1454.864	0.859			
RN4	40.25	40.320	46.330	1622.880	3771.596	2.324			
				MEDIA	4504.553	2.743			
			DESVIACIÓ	N ESTANDAR	812.035	0.461			
		COE	FICIENTE DE V	ARIACIÓN %	18.027	16.815			
		EÓPI							
		FURI	VIULAS APLIC	ADAS					
	Esfuerzo máximo $\sigma_{max} = \frac{F_{max}}{A}$								
		GRÁFICA CA	ARGA VS. DEF	ORMACIÓN					
600									
500	0 + R	N1				1			
400 E		N2 N3		$\square$					
arga []	0 + R	N4							
200	o			$\mathcal{N}$					



0.8

Deformación [mm]

1

1.2

1.4

1.6

1.8

ENSAYO DE CORTE - ADHERENCIA RUGOSO + PRIMER								
Proyecto:	Tesis J. Alma	Fecha:	30/08/2016					
Especimen	Ancho [mm]	Alto [mm]	Espesor Total [mm]	Área [mm²]	Carga Máxima [N]	Esfuerzo Máximo [MPa]		
RP1	40.99	40.700	46.300	1668.293	4467.721	2.678		
RP2	41.32	41.140	46.320	1699.905	5366.422	3.157		
RP3	41.20	40.640	46.340	1674.368	5012.835	2.994		
RP4	41.16	39.290	46.160	1617.176	4452.988	2.754		
				MEDIA	4824.991	2.896		
		445.144	0.220					
		9.226	7.604					

## FÓRMULAS APLICADAS

Esfuerzo máximo

$$\sigma_{max} = \frac{F_{max}}{A}$$



#### GRÁFICA CARGA VS. DEFORMACIÓN

# 10.7. ANEXO FOTOGRÁFICO



Falla de vigueta de mortero



Encofrados metálicos para cubos de mortero



Equipo Vicat



Probetas de corte ensayadas



Cubos y viguetas de mortero



Medidas de cubos antes del ensayo



Ensayo de asentamiento del hormigón



Probetas de ensayo de Absorción por capilaridad del hormigón



Tejidos de cabuya con resina poliéster



Resina Poliéster



Preparando la muestra de material compuesto para colocación de pernos



Encofrados y armado de elementos de hormigón



Muestras para ensayo de tejidos sin resina



Fallas en cilindros de Hormigón



Elaboración de Cilindros



Concretera para fundición de elementos de hormigón armado



Viga- Ensayo de Flexión



Fisuras después del desprendimiento del material compuesto



Viga después del ensayo



Elementos de hormigón armado ensayados



Columnas antes del ensayo



Viga en el momento del ensayo



Columnas después del ensayo



Tejido de cabuya roto- sistema de anclaje