

# UNIVERSIDAD NACIONAL DE CHIMBORAZO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA CIVIL

"Trabajo de grado previo a la obtención del Título de Ingeniero Civil"

## TRABAJO DE GRADUACIÓN

Título del proyecto:

"MANUAL PARA MODELAR PUENTES DE HORMIGON ARMADO Y MIXTOS (TABLERO DE HORMIGON CON VIGAS METALICAS), EMPLEANDO EL SOFTWARE SAP2000 BRIDGE"

Autor:

Teresa Griselda Parra Cepeda

**Director: Ing. Oscar Paredes** 

Riobamba – Ecuador

2016

Los miembros del Tribunal de Graduación del proyecto de investigación de título: "MANUAL PARA MODELAR PUENTES DE HORMIGON ARMADO Y MIXTOS (TABLERO DE HORMIGON CON VIGAS METALICAS), EMPLEANDO EL SOFTWARE CSIBRIDGE" presentado por: **Teresa Griselda Parra Cepeda**, dirigida por: **Ingeniero Oscar Paredes**.

Una vez escuchada la defensa oral y revisado el informe final del proyecto de investigación con fines de graduación escrito en la cual se ha constado en cumplimiento de las observaciones realizadas, remite la presente para uso y custodia en la biblioteca de la Facultad de Ingeniería de la UNACH.

Para constancia de lo expuesto firman:

Ing. Víctor Velásquez Presidente del Tribunal

Ing. Oscar Paredes Director del Proyecto

Firma Firma

Ing. Alexis Martínez Miembro del Tribunal

Firma

## AUTORÍA DE LA INVESTIGACIÓN

La responsabilidad del contenido de este proyecto de graduación le corresponde exclusivamente a: Teresa Griselda Parra Cepeda e Ing. Oscar Paredes, y el patrimonio intelectual de la misma a la Universidad Nacional de Chimborazo

Parra Cepeda Teresa Griselda

C.I: 0603520685

#### AGRADECIMIENTO

A mis padres José y Griselda por ser mi fortaleza y guía en este arduo camino.

A mi hermano Cesar por brindarme sus consejos siempre tan sabios.

Al Director del Proyecto Ingeniero Oscar Paredes y al Ing. Alexis Martínez, quienes con su amplia experiencia me han impartido todos sus conocimientos e información necesaria, para la elaboración de la presente tesis y el cumplimiento de esta meta.

## DEDICATORIA

Dedico a mis padres y a todas las personas que me han apoyado incondicionalmente en la culminación de este sueño

| CONTENIDO |
|-----------|
|-----------|

| ÍNDICE DI       | E FIGURAS                                        | XV               |
|-----------------|--------------------------------------------------|------------------|
| RESUMEN         | ſ                                                | 1                |
| SUMMARY         | YiERROR! MARCADOR N                              | NO DEFINIDO.     |
| INTRODU         | CCIÓN                                            |                  |
| CAPÍTULO        | ) I                                              | 5                |
| 1. EL I         | PROBLEMA DE INVESTIGACION                        | 5                |
| <i>1.1.</i> TI  | EMA DE INVESTIGACION                             | 5                |
| <i>1.2.</i> PH  | ROBLEMATIZACION                                  | 5                |
| 1.2.1. Co       | ontextualización                                 | 5                |
| 1.2.2. Aı       | nálisis critico                                  | 6                |
| 1.2.3. Pr       | ognosis                                          | 6                |
| 1.2.4. De       | elimitación                                      | 6                |
| 1.2.5. Fo       | ormulación del problema                          | 7                |
| 1.2.6. Hi       | pótesis                                          | 7                |
| 1.2.7. Id       | entificación de variables                        | 7                |
| <i>1.3</i> . JU | JSTIFICACION                                     | 7                |
| <i>1.4.</i> O   | BJETIVOS                                         |                  |
| 1.4.1. O        | bjetivo General                                  |                  |
| 1.4.2. O        | bjetivos Específicos                             |                  |
| CAPÍTULO        | ) II                                             | 9                |
| 2. FUN          | DAMENTACION TEORICA                              | 9                |
| 2.1. Al         | NTECEDENTES                                      | 9                |
| 2.2. PU         | JENTES                                           | 9                |
| 2.2.1. Co       | onsideraciones generales de la norma AASHTO LRFD | en la estructura |
| de un pue       | nte                                              |                  |
| 2.2.1.1.        | Factores de carga y combinaciones de carga       |                  |
| 2.2.1.2.        | Análisis de cargas                               |                  |
| 2.2.1.2.1.      | Carga muerta (DC)                                |                  |
| 2.2.1.2.2.      | Carga por capa de rodadura (DW)                  |                  |
| 2.2.1.2.3.      | Carga viva vehicular (LL)                        |                  |

| 2.2.1.2.3.1                   | . Incremento por Carga Dinámica: (IM)                        | 16                   |
|-------------------------------|--------------------------------------------------------------|----------------------|
| 2.2.1.2.3.2                   | 2. Carga peatonal en Barandas                                | 17                   |
| 2.2.1.2.4.                    | Cargas Sísmicas (EQ)                                         | 17                   |
| 2.2.1.3.                      | Prediseño de los elementos del puente                        | 18                   |
| 2.2.1.3.1.                    | Losas de Hormigón                                            | 19                   |
| 2.2.1.3.1.1                   | . Distancia de la carga de la rueda al borde de la losa      | 19                   |
| 2.2.1.3.2.                    | Vigas de Hormigón                                            | 20                   |
| 2.2.1.3.3.                    | Vigas Metálicas                                              | 21                   |
| 2.2.1.3.4.                    | Armadura de repartición                                      | 23                   |
| 2.2.1.3.5.                    | Deformaciones                                                | 24                   |
| 2.2.1.3.6.                    | Propiedades de los materiales                                | 25                   |
| 2.2.1.3.6.1                   | . Hormigón Armado                                            | 25                   |
| 2.2.1.3.6.2                   | 2. Acero de refuerzo                                         | 26                   |
| 2.2.1.3.6.3                   | 3. Acero estructural                                         | 26                   |
| 2.2.1.3.6.4                   | Reforzamientos mínimos                                       | 27                   |
| 2.2.1.3.9.1                   | . Estribo en voladizo de Hormigón Armado                     | 29                   |
| 2.2.1.4.                      | Diseño sísmico de puentes                                    | 30                   |
| 2.2.1.4.1.                    | Coeficiente de Aceleración "Z"                               | 30                   |
| 2.2.1.4.2.                    | Tipo de suelo                                                | 31                   |
| 2.2.1.4.3.                    | Clasificación de las Estructuras                             | 35                   |
| 2.2.1.4.4.                    | Factor de Modificación de Respuesta                          | 35                   |
| 2.2.1.4.5.                    | Espectro elástico horizontal de diseño en aceleraciones      | 37                   |
| 2.2.1.4.6.                    | Categoría de diseño Sísmico según AASHTO LRFD                | 37                   |
| 2.2.1.4.7.                    | Requerimientos mínimos de análisis para Efectos Sísmicos.    | 39                   |
| CAPITULC                      | ) ]]]                                                        | 40                   |
|                               |                                                              | 10                   |
| <b>3.</b> METO                | DOLOGÍA DE ESTUDIO                                           | 40                   |
| 3. <i>1</i> . TIP(            | ) DE ESTUDIO                                                 | 40                   |
|                               |                                                              |                      |
| <i>3.2.</i> <b>POB</b>        | LACIÓN Y MUESTRA                                             | 40                   |
| <i>3.3.</i> OPE               | RACIONALIZACIÓN DE VARIABLES                                 | 42                   |
| 3 <i>1</i> PRO                | CEDIMIENTOS                                                  | 13                   |
| <i>J.</i> <del>7</del> . I KU |                                                              | ····· <del>4</del> 3 |
| 3.5. PRO                      | CESAMIENTO Y ANÁLISIS                                        | 45                   |
| 3.5.1. Di                     | seño de la súper estructura del puente de Hormigón calculo n | nanual               |
|                               |                                                              | 45                   |
| 3.5.1.1.                      | Diseño del tablero                                           | 45                   |
| 3.5.1.2.                      | Diseño de la viga Interior Izquierda                         | 47                   |

| 3.5.2. Resultados de la modelación en el software CSIBRIDGE V15.2           | 49  |
|-----------------------------------------------------------------------------|-----|
| 3.5.3. Diseño de la súper estructura del puente de losa sobre vigas metálic | cas |
| calculo manual                                                              | 53  |
| 3.5.3.1. Diseño de tablero                                                  | 53  |
| 3.5.3.2. Diseño de la viga interior                                         | 55  |
| 3.5.4. Resultados de la modelación en el software CSIBRIDGE V15.2           | 63  |
| CAPITULO IV                                                                 | 67  |
| 4. RESULTADOS                                                               | 67  |
| 4.1. INTERPRETACIÓN DE INFORMACIÓN                                          | 68  |
| 4.1.1. Nudos                                                                | 68  |
| 4.1.1.1. Secciones transversales.                                           | 68  |
| 4.1.2. Discretización de los elementos                                      | 70  |
| 4.1.3. Objeto puente                                                        | 70  |
| 4.1.4. Cargas de vehículos y Clases de vehículos                            | 71  |
| 4.1.5. Casos de carga                                                       | 71  |
| 4.1.6. Cargas puntuales, lineales y distribuidas                            | 72  |
| 4.1.7. Estructuras metálicas                                                | 73  |
| 4.2. PARÁMETROS A UTILIZAR EN NUESTRO MEDIO                                 | 73  |
| 4.2.1. Cargas (AASHTO LRFD-SECCIÓN 3).                                      | 73  |
| 4.2.2. Combinación de Cargas (AASHTO LRFD-SECCIÓN 3)                        | 76  |
| 4.3. HERRAMIENTAS APLICADAS PARA LA MODEACION I                             | DE  |
| LOS PUENTES CALCULADOS DE FORMA MANUAL                                      | 76  |
| 4.3.1. Modelado                                                             | 76  |
| 4.3.1.1. Plantillas                                                         | 76  |
| 4.3.1.2. Asistente de creación y edición del modelo                         | 77  |
| 4.3.1.3. Combinaciones de carga                                             | 77  |
| 4.3.2. Resultados                                                           | 78  |
| 4.3.2.1. Control de la Deflexion                                            | 78  |
| 4.3.2.2. Diagramas de Momentos, Cortantes, Fuerza Axial y torsión           | 78  |
| 4.3.2.3. Superficies de influencia                                          | 79  |
| 4.3.2.4. Edición interactiva de datos.                                      | 79  |
| 4.4. LIMITACIONES DEL PROGRAMA                                              | 80  |
| 4.5. METODOLOGÍA QUE UTILIZA EL SOFTWARE                                    | 80  |
| 4.6. POTENCIALIZACION DEL PROGRAMA                                          | 83  |

| 4.6.1. Información General.                                    | 83               |
|----------------------------------------------------------------|------------------|
| 4.6.1.1. Variación de la línea de eje                          | 83               |
| 4.6.1.2. Secciones paramétricas del tablero.                   | 83               |
| 4.6.1.3. Variaciones paramétricas                              | 84               |
| 4.6.1.4. Muelles (springs)                                     | 85               |
| 4.6.1.5. Evaluación de la super-estructura.                    | 85               |
| 4.6.1.6. Optimización de las vigas metálicas                   | 86               |
| 4.6.1.7. Análisis estático no lineal (PUSHOVER)                | 87               |
| 4.6.1.8. Análisis dinámico                                     | 87               |
| 4.6.1.8.1. Modal                                               | 88               |
| 4.6.1.8.2. Análisis por espectro de respuesta                  | 88               |
| 4.6.1.8.3. Análisis temporal no lineal (TIME HISTORY ANALYSIS) | 89               |
| 4.6.1.9. Análisis de pandeo (BUCKLING).                        | 90               |
|                                                                |                  |
| CAPITULO V                                                     | 91               |
|                                                                |                  |
| 5. DISCUSIÓN                                                   | 91               |
| 5 1 DUENTE DE HODMICÓN                                         | 01               |
| 5.1. FUENTE DE HORMIGON                                        | <b> 91</b><br>01 |
| 5.1.2. Comparación de resultados de la fuerza Cortante         | 01               |
| 5.1.2. Comparación de resultados de la ruerza Cortaine         | 91               |
| 5.2. PUENTE MIXTO TABLERO DE HORMIGÓN SOBRE VI                 | IGAS             |
| METALICAS                                                      | 92               |
| 5.2.1. Comparación de resultados con los Momentos Flexionantes | 92               |
| 5.2.2. Comparación de resultados de la fuerza Cortante         | 92               |
| -                                                              |                  |
| CAPITULO VI                                                    | 93               |
|                                                                |                  |
| 6. CONCLUSIONES Y RECOMENDACIONES                              | 93               |
|                                                                |                  |
| 6.1. CONCLUSIONES                                              | 93               |
| 6.2 RECOMENDACIONES                                            | 94               |
|                                                                | / 4              |
|                                                                | 05               |
|                                                                | 93               |
| 7. PROPUESTA                                                   | 95               |
|                                                                |                  |
| 7.1. TITULO DE LA PROPUESTA                                    | 95               |
|                                                                |                  |
|                                                                | ~ <i>=</i>       |

| 7.3. OBJETIVOS                                                               |
|------------------------------------------------------------------------------|
| 7.3.1. Objetivo General                                                      |
| 7.3.2. Objetivos Específicos                                                 |
| 74 EUNDAMENTACIÓN CIENTIEICA TECNICA 04                                      |
| 7.4.1 Características del software CSIRPIDGE V15 VERSION                     |
| FVALUACION 2                                                                 |
| 7.4.1.1 Fighilidad del Programa                                              |
| 7.4.1.2 Compatibilidad con otros programas y formatos                        |
| 7.4.1.2. Dimensionamiento de la superestructura y subestructura 90           |
| 7.4.1.4. Otras herramientas avanzadas                                        |
| 7.5. DESCRIPCION DE LA PROPUESTA 100                                         |
|                                                                              |
| 7.6. DESARROLLO DE LA PROPUESTA 101                                          |
| 7.6.1. Comandos del CSIBRIDGE V15 VERSION EVALUACION 101                     |
| 7.6.2. Pasos generales para la modelación de un puente de hormigón armado    |
| 104                                                                          |
| 7.6.2.1. Modelación con la plantilla en Blanco (Blank) 106                   |
| 7.6.2.1.1. Utilizando los iconos que presenta el CSIBRIDGE V15.2             |
| VERSION EVALUACIÓN 108                                                       |
| 7.6.2.1.1.1. Definición de la línea base (Layout) 108                        |
| 7.6.2.1.1.2. Definición de los carriles (Lanes) 110                          |
| 7.6.2.1.1.3. Definición de las propiedades de los materiales 113             |
| 7.6.2.1.1.4. Definición de la Super-estructura                               |
| 7.6.2.1.1.5. Definición de la Sub-estructura                                 |
| 7.6.2.1.1.6. Definir el patrón de cargas 131                                 |
| 7.6.2.1.1.7. Definir el vehículo de diseño 132                               |
| 7.6.2.1.1.8. Definición de las cargas aplicadas sobre el puente              |
| 7.6.2.1.1.9. Definición del Objeto Puente 137                                |
| 7.6.2.1.1.10. Actualizar el modelo estructural 142                           |
| 7.6.2.1.1.11. Designación de la variación paramétrica                        |
| 7.6.2.1.1.12. Visualizar las características del puente                      |
| 7.6.2.1.1.13. Asignación carga móvil 144                                     |
| 7.6.2.1.1.14. Definición de las combinaciones de carga                       |
| 7.6.2.1.1.15. Llenar los objetos del puente                                  |
| 7.6.2.1.1.16. Observar las cargas que se aplican sobre el puente             |
| 7.6.2.1.1.17. Vista en 3D 150                                                |
| 7.6.2.1.1.18. Análisis del puente                                            |
| 7.6.2.1.1.19. Deformada del puente, control de deflexión y cálculo del acerc |
| de refuerzo. 151                                                             |

| 7.6.2.1.1.20. Influencia de las cargas vivas                         | 153    |
|----------------------------------------------------------------------|--------|
| 7.6.2.1.1.21. Momentos, cortantes y axiales                          | 156    |
| 7.6.2.1.1.22. Diseño y Evaluación del puente                         | 157    |
| 7.6.2.1.1.23. Animación con el vehículo en movimiento                | 167    |
| 7.6.2.2. Modelación del Puente empleando una plantilla               | 172    |
| 7.6.2.2.1. Selección de la plantilla y sus dimensiones               | 172    |
| 7.6.2.2.2. Revisión de los parámetros creados del puente             | 173    |
| 7.6.3. Diseño de un puente sobre vigas metálicas                     | 173    |
| 7.6.3.1. Diseño de las vigas metálicas                               | 174    |
| 7.6.3.1.1. Crear un nuevo material                                   | 174    |
| 7.6.3.1.2. Crear nueva sección                                       | 174    |
| 7.6.3.1.3. Crear una viga de acero con platabandas                   | 176    |
| 7.6.3.1.4. Definición el tipo de sección                             | 177    |
| 7.6.3.1.5. Definición de los diafragmas metálicos                    | 178    |
| 7.6.3.1.6. Correr el análisis del puente                             | 179    |
| 7.6.3.1.7. Combos de diseño                                          | 180    |
| 7.6.3.1.8. Diseño de las vigas metálicas                             | 181    |
| 7.6.3.1.9. Diagramas de momentos positivos y negativos               | 182    |
| 7.6.3.1.10. Optimización del diseño                                  | 183    |
| 7.6.3.1.11. Análisis del diseño                                      | 188    |
| 7.6.3.2. Diseño y evaluación de los diafragmas y arriostram          | ientos |
| horizontales                                                         | 189    |
| 7.6.3.2.1. Añadir de forma externa los arriostramientos horizontales | 189    |
| 7.6.3.2.2. Evaluar los Arriostramiento horizontales                  | 191    |
| 7.6.4. Diseño a sismo de puentes en el CSIBRIDGE V15.2 VER           | SION   |
| EVALUACIÓN                                                           | 199    |
| 7.6.4.1. Análisis dinámico por espectro de respuesta                 | 199    |
| 7.6.4.2. Definición de los casos para el análisis dinámico a sismo   | 202    |
| 7.7. DISEÑO ORGANIZACIONAL                                           | 206    |
|                                                                      |        |
| 7.8. MONITOREO Y EVALUACIÓN DE LA PROPUESTA                          | 207    |
| CAPITULO VIII                                                        | 208    |
| 8. BIBLIOGRAFIA                                                      | 208    |
| CAPITULO IX                                                          | 209    |
| 9. ANEXOS                                                            | 209    |

| 9.1. ANEXO Ejemplo de aplicación del manual median              | te la modelación |
|-----------------------------------------------------------------|------------------|
| de la superestructura del puente Matus-Aulabug ubicad           | lo en el cantón  |
| Penipe, empleando el software CSIBRIDGE V                       | 15.2 VERSION     |
| EVALUACIÓN                                                      |                  |
| 9.1.1. Datos del Puente                                         |                  |
| 9.1.1.1. Detalles de la sección transversal de concreto         |                  |
| 9.1.1.2. Detalles de la sección transversal de acero            |                  |
| 9.1.2. Modelación con la plantilla en blanco del puente Matu    | ıs-Aulabug 212   |
| 9.1.2.1. Definición de la línea base                            |                  |
| 9.1.2.2. Definición de los carriles                             |                  |
| 9.1.2.3. Definición de las propiedades de los materiales        |                  |
| 9.1.2.3.1. Tramo de hormigón                                    |                  |
| 9.1.2.3.2Tramo Metálico                                         |                  |
| 9.1.2.3.3. Definición de las propiedades de las secciones       |                  |
| 9.1.2.3.4. Definición de las secciones de hormigón              |                  |
| 9.1.2.3.5. Definición de las secciones de acero                 |                  |
| 9.1.2.4. Acero de refuerzo                                      |                  |
| 9.1.2.5. Definición de la sección transversal del tablero       |                  |
| 9.1.2.5.1. Sección del tramo de concreto                        |                  |
| 9.1.2.5.2. Sección transversal metálica                         |                  |
| 9.1.2.6. Definición de los diafragmas                           |                  |
| 9.1.2.7. Definición de los apoyos                               |                  |
| 9.1.2.8. Definición de la Cimentación                           |                  |
| 9.1.2.9. Definición de los Estribos                             |                  |
| 9.1.2.10. Definición de la Pila                                 |                  |
| 9.1.2.11. Definición del Vehículo de diseño                     |                  |
| 9.1.2.12. Definir los patrones de carga                         |                  |
| 9.1.2.13. Definición de las cargas del puente                   |                  |
| 9.1.2.14. Definición de carga móvil                             |                  |
| 9.1.2.15. Definición del objeto puente                          |                  |
| 9.1.2.15.1. Asignación del Span                                 |                  |
| 9.1.2.15.2. Asignación de los estribos                          |                  |
| 9.1.2.15.3. Asignación del Bent                                 |                  |
| 9.1.2.15.4. Asignación de los Diafragmas                        |                  |
| 9.1.2.15.5. Asignación de las varillas de refuerzo longitudina  | ıl 270           |
| 9.1.2.15.6. Asignación de las varillas de acero de refuerzo tra | nsversal 272     |
| 9.1.2.15.7. Asignación de las cargas                            |                  |
| 9.1.2.16. Visualizar las cargas sobre el puente                 |                  |
| 9.1.2.17. Selección de las combinaciones de carga               |                  |
| 9.1.2.18. Definición de los arriostramientos horizontales       |                  |

| 9.1.2.19. Enviar analizar el puente                                   | 292     |
|-----------------------------------------------------------------------|---------|
| 9.1.2.20. Análisis de resultados                                      | 294     |
| 9.1.2.20.1. Tramo de acero                                            | 295     |
| 9.1.2.20.2. Tramo de concreto                                         | 297     |
| 9.1.2.20.3. Desplazamiento con respecto a la carga de resistencia     | 298     |
| 9.1.2.20.4. Diagramas de Momentos y cortantes de las vigas con el con | mbo de  |
| "Resistencia 1"                                                       | 299     |
| 9.1.2.21. Diseño y Evaluación de las vigas                            | 304     |
| 9.1.2.21.1. Resultados de la evaluación Demanda/ Capacidad            | 310     |
| 9.1.2.21.2. Evaluación a Corte de las vigas de concreto con la combi  | inación |
| resistencia 1                                                         | 314     |
|                                                                       |         |

# ÍNDICE DE TABLAS

| Tabla 1.Combinaciones de Carga                                       | . 14 |
|----------------------------------------------------------------------|------|
| Tabla 2. Factores de Carga Permanente                                | . 14 |
| Tabla 3. Fracción de tráfico de camiones en un único carril          | . 15 |
| Tabla 4. Factores por presencia múltiple de sobrecargas              | . 16 |
| Tabla 5. Incremento por carga Dinámica (IM)                          | . 16 |
| Tabla 6. Profundidades mínimas utilizadas para superestructuras      | . 18 |
| Tabla 7. Fórmulas para el cálculo de las deformaciones               | . 24 |
| Tabla 8. Valores del factor Z en función de la zona sísmica adoptada | . 31 |
| Tabla 9. Clasificación de los perfiles de suelo                      | . 33 |
| Tabla 10. Tipo de suelo y Factores de sitio Fa                       | . 34 |
| Tabla 11. Tipo de suelo y factores de sitio Fd                       | . 34 |
| Tabla 12. Factor del comportamiento inelástico del subsuelo Fs       | . 35 |
| Tabla 13. Factores de modificación de Respuesta "R" Sub-estructura   | . 36 |
| Tabla 14. Factores de modificación de respuesta "R" Conexiones       | . 36 |
| Tabla 15.Requerimientos mínimos análisis para efectos sísmicos       | . 39 |
| Tabla 16.Referencias y normas                                        | . 41 |
| Tabla 17. Variables Dependiente e Independiente                      | . 42 |
| Tabla 18. Resultados del puente de Hormigón                          | . 51 |
| Tabla 19. Resultados del puente Mixto                                | . 65 |
| Tabla 20. Cargas a considerar en nuestro medio                       | . 74 |
| Tabla 21. Comparación de momentos                                    | . 91 |
| Tabla 22. Comparación de Cortante                                    | . 91 |

| Tabla 23. Comparación   | de Momento    |                     |  |
|-------------------------|---------------|---------------------|--|
| Tabla 24. Comparación   | de Cortante   |                     |  |
| Tabla 25. Fórmulas para | el cálculo de | las deformaciones . |  |

# ÍNDICE DE FIGURAS

| Figura | 1. Detalle de los límites que establece la norma AASHTO LRFD | 19 |
|--------|--------------------------------------------------------------|----|
| Figura | 2. Estribo en voladizo                                       | 29 |
| Figura | 3. Zonas Sísmicas del Ecuador                                | 30 |
| Figura | 4. Espectro de diseño                                        | 37 |
| Figura | 5. Modelado del puente de Hormigón                           | 49 |
| Figura | 6. Momento último de la viga interior                        | 50 |
| Figura | 7. Cortante último de la viga interior                       | 51 |
| Figura | 8. Modelado del puente Losa sobre vigas metálicas            | 63 |
| Figura | 9. Momento último de la viga interior                        | 64 |
| Figura | 10. Cortante ultimo de la viga interior                      | 64 |
| Figura | 11. Nudos del Puente de Hormigón y Mixto                     | 68 |
| Figura | 12. Sección transversal del puente de Hormigón Armado        | 69 |
| Figura | 13. Sección transversal del puente Mixto                     | 69 |
| Figura | 14. Discretización de elementos                              | 70 |
| Figura | 15. Objeto de puente (Bridge Object Model)                   | 70 |
| Figura | 16. Vehículo empleado en la modelación                       | 71 |
| Figura | 17. Patrones de carga empleados en la modelación             | 72 |
| Figura | 18.Carga en Asfalto del Puente de Hormigón                   | 72 |
| Figura | 19. Estructuras metálicas                                    | 73 |
| Figura | 20. Cargas AASHTO HL-93                                      | 74 |
| Figura | 21. Cargas AASHTO HL-93                                      | 74 |
| Figura | 22. Carga Especial (Tándem).                                 | 75 |

| Figura | 23. Diferentes tipos de plantillas que posee el CSI BRIDGE       | 76 |
|--------|------------------------------------------------------------------|----|
| Figura | 24. Asistente de creación y edición de modelos                   | 77 |
| Figura | 25. Combinaciones de carga                                       | 77 |
| Figura | 26. Deflexiones máximas                                          | 78 |
| Figura | 27. Diagramas de cortante y momento                              | 78 |
| Figura | 28. Superficies de influencia                                    | 79 |
| Figura | 29. Edición interactiva de datos                                 | 79 |
| Figura | 30. Normas de diseño para puentes.                               | 81 |
| Figura | 31. Flujograma análisis por el Método de Elementos finitos (MEF) | 82 |
| Figura | 32. Línea de eje                                                 | 83 |
| Figura | 33. Secciones paramétricas del tablero                           | 84 |
| Figura | 34. Variaciones Paramétricas                                     | 84 |
| Figura | 35. Muelles                                                      | 85 |
| Figura | 36. Diseño y evaluación de la super-estructura                   | 86 |
| Figura | 37. Optimización de las vigas metálicas                          | 86 |
| Figura | 38. Análisis no lineal (PUSHOVER).                               | 87 |
| Figura | 39. Análisis (MODAL).                                            | 88 |
| Figura | 40.Espectro de repuesta                                          | 89 |
| Figura | 41. Análisis temporal no lineal (TIME HISTORY ANÁLYSIS)          | 90 |
| Figura | 42. Análisis de Pandero (BUCKLING).                              | 90 |
| Figura | 43. Presentación del CSIBRIDGE                                   | 97 |
| Figura | 44. Menú "ORB" 1                                                 | 01 |
| Figura | 45. Menú "HOME"                                                  | 01 |

| Figura | 46. Menú "LAYOUT"                                           | 102 |
|--------|-------------------------------------------------------------|-----|
| Figura | 47. Menú "COMPONENTS"                                       | 102 |
| Figura | 48. Menú "LOADS"                                            | 102 |
| Figura | 49. Menú "BRIDGE"                                           | 103 |
| Figura | 50.Menú "ANALYSIS"                                          | 103 |
| Figura | 51. Menú "DESING/RATING"                                    | 103 |
| Figura | 52. Menú "ADVANCED"                                         | 104 |
| Figura | 53. Ventana de trabajo y elección de unidades               | 104 |
| Figura | 54.Selección de la plantilla a trabajar                     | 105 |
| Figura | 55.Información general del proyecto                         | 105 |
| Figura | 56. Ventana donde se encuentra el "Bridge Wizard"           | 106 |
| Figura | 57.Ventana del "Bridge Wizard"                              | 107 |
| Figura | 58.Ventana para definir la línea base del puente            | 108 |
| Figura | 59.Selección de la línea base                               | 109 |
| Figura | 60. Ventana para modificar, copiar y eliminar la línea base | 110 |
| Figura | 61. Ventana para ingresar las dimensiones de los carriles   | 111 |
| Figura | 62. Ventana para ver los carriles                           | 112 |
| Figura | 63. Ventana para seleccionar los carriles                   | 112 |
| Figura | 64.Ventana del diseño de los carriles                       | 113 |
| Figura | 65. Ventana de las propiedades de los materiales            | 113 |
| Figura | 66. Propiedades de los materiales                           | 114 |
| Figura | 67. Ventana para seleccionar el tipo de puente              | 115 |
| Figura | 68. Dimensionamiento del puente                             | 116 |

| Figura | 69. Dimensionamiento de las vigas                          | 117 |
|--------|------------------------------------------------------------|-----|
| Figura | 70. Dimensionamiento de los volados                        | 117 |
| Figura | 71. Detalles del puente                                    | 118 |
| Figura | 72. Ventana para definir los diafragmas                    | 118 |
| Figura | 73. Características de los diafragmas                      | 119 |
| Figura | 74. Ventana para definir la variación paramétrica          | 119 |
| Figura | 75. Dimensionamiento de la variación paramétrica izquierda | 120 |
| Figura | 76. Dimensionamiento de la variación paramétrica derecha   | 121 |
| Figura | 77. Crear los apoyos                                       | 121 |
| Figura | 78. Configuración del apoyo Fijo                           | 122 |
| Figura | 79. Definición del apoyo móvil                             | 122 |
| Figura | 80. Definición de la cimentación                           | 123 |
| Figura | 81. Elegir los estribos                                    | 124 |
| Figura | 82. Definición de las características de los estribos      | 124 |
| Figura | 83. Añadir una nueva sección                               | 125 |
| Figura | 84. Selección del material                                 | 126 |
| Figura | 85. Dimensiones de la sección                              | 126 |
| Figura | 86.Características de una columna                          | 127 |
| Figura | 87.Características de una viga                             | 128 |
| Figura | 88. Configuración de los elementos del estribo             | 128 |
| Figura | 89. Definición de los pilares                              | 129 |
| Figura | 90. Modificar las pilas                                    | 130 |
| Figura | 91. Crear los patrones de carga                            | 131 |

| Figura | 92. Selección del vehículo de diseño 1                               | 132 |
|--------|----------------------------------------------------------------------|-----|
| Figura | 93. Selección del vehículo de diseño 1                               | 133 |
| Figura | 94. Crear la clase de vehículos 1                                    | 134 |
| Figura | 95. Seleccionar las cargas del puente 1                              | 135 |
| Figura | 96. Configuración de la carga lineal 1                               | 135 |
| Figura | 97. Configuración de la carga en área 1                              | 136 |
| Figura | 98. Ventana inicial del objeto puente 1                              | 137 |
| Figura | 99. Definición de los tramos del puente 1                            | 138 |
| Figura | 100. Definir las características de los estribos 1                   | 138 |
| Figura | 101. Definir las características de la pila 1                        | 139 |
| Figura | 102. Espaciamiento de los diafragmas 1                               | 140 |
| Figura | 103. Elevación del puente 1                                          | 141 |
| Figura | 104. Configuración del refuerzo longitudinal y transversal 1         | 141 |
| Figura | 105. Definir las opciones del modelo estructural 1                   | 142 |
| Figura | 106.Configuración en los tramos del puente 1                         | 142 |
| Figura | 107. Definición de la variación parametrica en toda la profundidad 1 | 143 |
| Figura | 108. Ver las secciones definidas en el puente 1                      | 143 |
| Figura | 109. Ubicación de la carga móvil 1                                   | 144 |
| Figura | 110. Asignación de la carga móvil 1                                  | 144 |
| Figura | 111. Asignación de las combinaciones de carga 1                      | 145 |
| Figura | 112. Crear combos automáticamente 1                                  | 146 |
| Figura | 113. Ventana para llenar los objetos del puente 1                    | 147 |
| Figura | 114. Seleccionar la carga asignada 1                                 | 147 |

| Figura | 115. Selección de las cargas lineales                          | 148 |
|--------|----------------------------------------------------------------|-----|
| Figura | 116. Ventana para elegir la carga a observar                   | 149 |
| Figura | 117. Visualización de la carga seleccionada                    | 149 |
| Figura | 118. Vista en 3D                                               | 150 |
| Figura | 119.Correr el programa                                         | 151 |
| Figura | 120. Ver deformada de la estructura                            | 151 |
| Figura | 121. Deformada por carga                                       | 152 |
| Figura | 122. Deformada con respecto al eje Z                           | 153 |
| Figura | 123. Influencia de las cargas vivas                            | 154 |
| Figura | 124. Ver la influencia de cargas en el puente                  | 154 |
| Figura | 125.Configurar la ventana para el diseño del acero de refuerzo | 155 |
| Figura | 126. Ver el acero de refuerzo                                  | 155 |
| Figura | 127. Diagrama de Momentos                                      | 156 |
| Figura | 128. Diagrama de cortante                                      | 157 |
| Figura | 129. Combinaciones de carga                                    | 158 |
| Figura | 130. Código de diseño                                          | 159 |
| Figura | 131. Solicitud de diseño a flexión                             | 160 |
| Figura | 132. Solicitud de diseño a corte                               | 161 |
| Figura | 133. Enviar a diseñar                                          | 162 |
| Figura | 134. Ventana después de enviar a diseñar                       | 162 |
| Figura | 135. Evaluación de la resistencia positiva a flexión           | 163 |
| Figura | 136. Desbloquear el modelo                                     | 164 |
| Figura | 137. Añadir refuerzo longitudinal en las vigas                 | 164 |

| Figura 138. Analizar y Diseñar el modelo                                | . 165 |
|-------------------------------------------------------------------------|-------|
| Figura 139. Evaluación a flexión de la viga con la resistencia positiva | . 166 |
| Figura 140. Evaluación a flexión de la viga con la resistencia negativa | . 166 |
| Figura 141. Evaluación del cortante en la viga                          | . 167 |
| Figura 142. Abrir el candado                                            | . 168 |
| Figura 143. Añadir un nuevo patrón de carga                             | . 168 |
| Figura 144. Modificar la carga viva                                     | . 169 |
| Figura 145. Analizar la carga agregada                                  | . 169 |
| Figura 146. Ventana de animación                                        | . 170 |
| Figura 147. Crear animación del puente                                  | . 170 |
| Figura 148. Establecer propiedades del vehículo                         | . 171 |
| Figura 149. Animación de los vehículos                                  | . 171 |
| Figura 150. Selección de una plantilla                                  | . 172 |
| Figura 151. Características del puente                                  | . 172 |
| Figura 152. Ventana del puente creado automáticamente                   | . 173 |
| Figura 153. Ventana crear un nuevo material                             | . 174 |
| Figura 154. Crear una sección                                           | . 175 |
| Figura 155. Ventana para ingresar los valores de la viga                | . 175 |
| Figura 156. Ventana del refuerzo en el acero                            | . 176 |
| Figura 157. Dimensionamiento de las platabandas                         | . 176 |
| Figura 158. Elección del tipo de puente                                 | . 177 |
| Figura 159. Dimensionamiento del puente sobre vigas metálicas           | . 177 |
| Figura 160. Características de los diafragmas diagonales                | . 178 |
|                                                                         |       |

| Figura | 161. Características de los diafragmas tipo vigas         | 178 |
|--------|-----------------------------------------------------------|-----|
| Figura | 162. Ventana para correr el análisis                      | 179 |
| Figura | 163. Deformada del puente                                 | 179 |
| Figura | 164. Ventana para crear las combinaciones de carga        | 180 |
| Figura | 165. Verificar el código con el que se está trabajando    | 180 |
| Figura | 166. Solicitud para el diseño de puente                   | 181 |
| Figura | 167. Ventana para enviar a diseñar el puente              | 182 |
| Figura | 168. Diagrama de momentos                                 | 182 |
| Figura | 169. Seleccionar la optimización                          | 183 |
| Figura | 170. Ventana del diseño optimizado                        | 183 |
| Figura | 171. Configuración de los momentos                        | 184 |
| Figura | 172. Ventana para modificar las dimensiones               | 185 |
| Figura | 173. Valores a modificar                                  | 186 |
| Figura | 174. Ventana para recalcular los valores modificados      | 186 |
| Figura | 175. Determinar los valores de momento en un cierto punto | 187 |
| Figura | 176. Completar la optimización                            | 188 |
| Figura | 177. Análisis del Diseño                                  | 188 |
| Figura | 178.Elección de la sección a dibujar                      | 189 |
| Figura | 179.Dibujo de los arriostramientos horizontales           | 190 |
| Figura | 180. Vista de los arriostramientos horizontales           | 190 |
| Figura | 181.Preferencias a emplear en el diseño                   | 191 |
| Figura | 182.Normas y parámetros de diseño                         | 191 |
| Figura | 183.Opción para agregar los combos de diseño              | 192 |

| Figura | 184.Combinaciones de carga incluidas en el diseño                | 192 |
|--------|------------------------------------------------------------------|-----|
| Figura | 185.Enviar a diseñar la estructura metálica                      | 193 |
| Figura | 186.Elegir las propiedades                                       | 193 |
| Figura | 187.Eleccion del ángulo de (100x100x8) mm                        | 194 |
| Figura | 188.Ubicación de los diafragmas y arriostramientos horizontales  | 194 |
| Figura | 189. Selección de los diafragmas y arriostramientos horizontales | 195 |
| Figura | 190.Diseño de la estructura metálica                             | 196 |
| Figura | 191.Pasos a seguir para mostrar los valores de diseño            | 196 |
| Figura | 192.Chequeo de la estructura metálica                            | 197 |
| Figura | 193.Selección del ángulo a chequear                              | 198 |
| Figura | 194.Detalles del ángulo de 100x100x8                             | 198 |
| Figura | 195.Crear el espectro desde un archivo                           | 199 |
| Figura | 196.Opciones para añadir el espectro                             | 200 |
| Figura | 197.Busqueda del archivo en txt                                  | 200 |
| Figura | 198.Ingreso de los datos del espectro                            | 201 |
| Figura | 199.Configuración del espectro                                   | 202 |
| Figura | 200.Añadir las cargas de espectro                                | 203 |
| Figura | 201.Definición del sismo en "X"                                  | 204 |
| Figura | 202.Definición del sismo en "Y"                                  | 205 |
| Figura | 203. Puente Matus–Aulabug                                        | 209 |
| Figura | 204. Sección transversal del tramo de concreto                   | 210 |
| Figura | 205. Sección transversal del tramo metálico                      | 211 |
| Figura | 206. Ventana de trabajo                                          | 212 |

| Figura 207.Selección de unidades                          | . 212 |
|-----------------------------------------------------------|-------|
| Figura 208.Crear un nuevo modelo                          | . 213 |
| Figura 209.Selección de la plantilla del puente           | . 213 |
| Figura 210.Ventana lista para crear el modelo             | . 214 |
| Figura 211.Definición de la línea base                    | . 215 |
| Figura 212.Detalle de la sección transversal del puente   | . 215 |
| Figura 213.Definición del carril derecho                  | . 216 |
| Figura 214.Definición del carril izquierdo                | . 216 |
| Figura 215.Configuración para visualizar los carriles     | . 217 |
| Figura 216.Observar los carriles                          | . 217 |
| Figura 217.Crear un nuevo material                        | . 218 |
| Figura 218.Definición de las características del hormigón | . 219 |
| Figura 219.Definición del acero de refuerzo               | . 220 |
| Figura 220.Propiedades del acero de refuerzo              | . 220 |
| Figura 221.Definición del acero A36                       | . 221 |
| Figura 222.Propiedades del acero A36                      | . 222 |
| Figura 223.Definición del acero A588                      | . 223 |
| Figura 224.Propiedades del acero A588                     | . 224 |
| Figura 225.Crear las secciones                            | . 225 |
| Figura 226.Designación de la sección                      | . 225 |
| Figura 227.Detalle transversal de la columna de la pila   | . 226 |
| Figura 228.Definición de la columna de la pila            | . 226 |
| Figura 229.Elección del material y forma de la viga       | . 227 |

| Figura | 230.Detalle de la viga                                             | 228 |
|--------|--------------------------------------------------------------------|-----|
| Figura | 231.Definición de la viga de la pila                               | 228 |
| Figura | 232.Vista de la viga                                               | 229 |
| Figura | 233.Elección del material y forma de la viga ubicada en el estribo | 230 |
| Figura | 234.Definición de la viga del estribo                              | 231 |
| Figura | 235.Ventana de la viga del estribo                                 | 231 |
| Figura | 236.Elección del material y la forma de la viga principal          | 232 |
| Figura | 237.Detalle de la sección transversal de concreto                  | 233 |
| Figura | 238.Definición de la viga de concreto                              | 233 |
| Figura | 239.Elección del material y forma del ángulo de 100x100x8          | 234 |
| Figura | 240.Configuración del ángulo de 100x100x8                          | 235 |
| Figura | 241.Elección de la forma de la viga de acero                       | 236 |
| Figura | 242.Detalles de la viga de acero                                   | 237 |
| Figura | 243.Definición de las características de la viga de acero          | 238 |
| Figura | 244.Crear el acero de refuerzo                                     | 238 |
| Figura | 245.Añadir el acero de refuerzo                                    | 239 |
| Figura | 246. Ventana para crear una sección transversal del puente         | 239 |
| Figura | 247.Elegir la sección transversal de concreto                      | 240 |
| Figura | 248.Sección transversal de concreto                                | 241 |
| Figura | 249.Configuración de la sección transversal de concreto            | 241 |
| Figura | 250.Configuración de la sección transversal de concreto            | 242 |
| Figura | 251.Elegir la sección transversal de Acero                         | 243 |
| Figura | 252.Detalle de la sección transversal metálica                     | 243 |

| Figura | 253.Configuración de la sección transversal metálica | 244 |
|--------|------------------------------------------------------|-----|
| Figura | 254.Configuración de la sección transversal metálica | 244 |
| Figura | 255.Crear un nuevo Diafragma                         | 245 |
| Figura | 256.Detalle del diafragma                            | 245 |
| Figura | 257.Definición del diafragma de concreto             | 246 |
| Figura | 258.Detalle del diafragma metálico                   | 247 |
| Figura | 259.Definición del diafragma metálico                | 247 |
| Figura | 260.Crear un apoyo                                   | 248 |
| Figura | 261.Definición del apoyo fijo                        | 248 |
| Figura | 262.Definición del apoyo móvil                       | 249 |
| Figura | 263.Crear la cimentación                             | 249 |
| Figura | 264.Definición de la cimentación                     | 250 |
| Figura | 265.Crear un estribo                                 | 250 |
| Figura | 266.Definición del estribo                           | 251 |
| Figura | 267.Crear la pila                                    | 252 |
| Figura | 268.Definición de la pila                            | 253 |
| Figura | 269.Detalle de las columnas de la pila               | 254 |
| Figura | 270.Configuración de las columnas de la pila         | 254 |
| Figura | 271.Elegir el vehículo tipo                          | 255 |
| Figura | 272.Vehículo tipo                                    | 255 |
| Figura | 273.Características del vehículo tipo                | 256 |
| Figura | 274.Crear una clase de vehículo                      | 256 |
| Figura | 275.Definición de la clase de vehículo               | 257 |

| Figura | 276.Definición de los patrones de carga           | 258 |
|--------|---------------------------------------------------|-----|
| Figura | 277.Creación de la carga puntual                  | 258 |
| Figura | 278.Definición de los postes a la derecha         | 259 |
| Figura | 279.Definición de los postes izquierdos           | 260 |
| Figura | 280.Crear la carga lineal                         | 260 |
| Figura | 281.Definición de la carga de baranda derecha     | 261 |
| Figura | 282.Definición de la carga de baranda Izquierda   | 262 |
| Figura | 283.Crear la carga de asfalto                     | 262 |
| Figura | 284.Definición de la carga de asfalto             | 263 |
| Figura | 285.Crear la carga móvil                          | 264 |
| Figura | 286.Configuración de la carga móvil               | 264 |
| Figura | 287.Asignación del tramo de concreto y acero      | 265 |
| Figura | 288.Asignación de los espacios                    | 266 |
| Figura | 289.Asignación del estribo de inicio              | 267 |
| Figura | 290.Asignación del estribo del fin                | 268 |
| Figura | 291.Asignación de la pila                         | 269 |
| Figura | 292.Asignación de los diafragmas                  | 270 |
| Figura | 293.Asignación del acero de refuerzo longitudinal | 271 |
| Figura | 294. Asignación del acero de refuerzo transversal | 273 |
| Figura | 295.Asignación de la carga de frenado y postes    | 274 |
| Figura | 296.Asignación de la carga de baranda             | 274 |
| Figura | 297.Asignación de la carga de asfalto             | 275 |
| Figura | 298.Ventana del objeto puente                     | 276 |

| Figura | 299.Actualización del modelo                      | 277 |
|--------|---------------------------------------------------|-----|
| Figura | 300.Configuración de la carga de asfalto          | 278 |
| Figura | 301.Visualización de la carga de asfalto          | 278 |
| Figura | 302.Configuración de la carga de baranda          | 279 |
| Figura | 303.Visualización de la carga de baranda          | 279 |
| Figura | 304.Configuración de la carga de postes           | 280 |
| Figura | 305.Visualización de las cargas de postes         | 280 |
| Figura | 306.Configuración de las combinaciones de carga   | 281 |
| Figura | 307.Elección de las combinaciones de carga        | 282 |
| Figura | 308.Combinaciones de carga creadas                | 282 |
| Figura | 309.Configuración de la visibilidad de las juntas | 283 |
| Figura | 310.Visualización de las juntas                   | 284 |
| Figura | 311.Vista en el plano "XY"                        | 284 |
| Figura | 312.Configuración del puente para la vista en 2D  | 285 |
| Figura | 313.Vista en 2D                                   | 285 |
| Figura | 314.Elección de la sección a dibujar              | 286 |
| Figura | 315.Dibujo de los arriostramientos horizontales   | 287 |
| Figura | 316.Vista de los arriostramientos horizontales    | 287 |
| Figura | 317.Vista en 3D                                   | 288 |
| Figura | 318.Seleccionar las propiedades                   | 288 |
| Figura | 319.Elegir las secciones creadas                  | 289 |
| Figura | 320.Selección del ángulo de (100x100x8)           | 289 |
| Figura | 321.Elementos seleccionados                       | 290 |

| Figura | 322.Configuración para visualizar la estructura metálica             | 290         |
|--------|----------------------------------------------------------------------|-------------|
| Figura | 323.Arriostramientos horizontales y diafragmas                       | 291         |
| Figura | 324.Configurar ver todo el puente                                    | 291         |
| Figura | 325.Vista en 3D                                                      | 292         |
| Figura | 326.Correr el análisis                                               | 293         |
| Figura | 327.Proceso de análisis                                              | 293         |
| Figura | 328.Deformada por carga muerta                                       | 294         |
| Figura | 329.Configuración de la deformada                                    | 295         |
| Figura | 330.Deflexión con la carga de servicio                               | 296         |
| Figura | 331.Deflexión tramo metálico                                         | 296         |
| Figura | 332.Deflexión del tablero de concreto                                | 297         |
| Figura | 333.Configuración del desplazamiento con la combinación de resister  | ncia<br>298 |
| Figura | 334. Desplazamiento en el estribo con la combinación de resistencia  | 299         |
| Figura | 335.Diagrama de momento respecto a la carga muerta                   | 300         |
| Figura | 336.Diagrama de momento con el combo de resistencia de la viga exte  | rior<br>301 |
| Figura | 337.Diagrama de momento con el combo de resistencia de la viga inte  | rior<br>302 |
| Figura | 338.Diagrama de cortante con el combo de resistencia de la viga exte | rior<br>303 |
| Figura | 339.Diagrama de cortante con el combo de resistencia de la viga inte | rior<br>304 |
| Figura | 340.Añadir las solicitudes de diseño                                 | 305         |
| Figura | 341.Solicitud de diseño por flexión con el combo 1                   | 306         |

| Figura             | 342. Solicitud de diseño por resistencia combo 1 307                           |
|--------------------|--------------------------------------------------------------------------------|
| Figura             | 343.Solicitud de diseño a corte                                                |
| Figura             | 344. Solicitudes de diseño creadas 309                                         |
| Figura             | 345.Diseño de la superestructura                                               |
| Figura             | 346. Ventana que aparece después de correr en programa 310                     |
| Figura<br>resister | 347.Evaluación de la viga exterior de concreto con el combo de acia            |
| Figura             | 348.Evaluación de la viga exterior metálica combo de resistencia 312           |
| Figura             | 349.Evaluación de la viga interior de concreto con el combo de resistencia<br> |
| Figura             | 350.Evaluación de la viga interior metálica combo de resistencia 314           |
| Figura             | 351.Evaluación de la viga exterior izquierda a corte                           |
| Figura             | 352.Evaluación de la viga interior a corte                                     |

#### RESUMEN

El conocer el manejo de nuevas herramientas informáticas, genera mayor competitividad y por ende productividad en cuanto al diseño, análisis y evaluación de una estructura, siendo de gran importancia en la provincia de Chimborazo la creación de un, "MANUAL PARA MODELAR PUENTES DE HORMIGON ARMADO Y MIXTOS (TABLERO DE HORMIGON CON VIGAS METALICAS), empleando el software CSIBRIDGE VERSION EVALUACION"

La presente investigación inicia tomado en cuenta todas las consideraciones generales para el diseño y evaluación de un puente, y posteriormente se establece un prediseño del mismo, todos estos parámetros están basados en la norma AASHTO LRFD (2012), mientras que el CSIBRIDGE V15.2 VERSION EVALUACIÓN emplea la AASHTO LRFD 2007 la cual no cambia en cuanto a consideraciones de diseño.

Posteriormente se realiza el cálculo manual de un puente de hormigón armado y mixto (tablero de hormigón sobre vigas metálicas) con su respectiva modelación en el software CSIBRIDGE, permitiendo establecer parámetros de comparación, interpretación y metodología que emplea el programa.

La última etapa de esta investigación comprende elaborar el manual para modelar y evaluar un puente de hormigón armado y posteriormente para un puente mixto (tablero de hormigón con vigas metálicas) con su respectiva descripción para mayor entendimiento.

Finalmente se realiza la aplicación del manual, mediante la modelación y evaluación de la superestructura del puente Matus-Aulabug ubicado en el cantón Penipe, empleando el software CSIBRIDGE V15.2 VERSION EVALUACIÓN, el cual se encuentra especificado de forma detallada y a manera de ejemplo representativo en el Anexo 9.1.



# UNIVERSIDAD NACIONAL DE CHIMBORAZO CENTRO DE IDIOMAS INSTITUCIONAL

Lic. Eduardo Heredia

15 de Julio del 2016

### ABSTRACT

Knowing the use of new tools, generates greater competitiveness, and as a result productivity in terms of the design, analysis and evaluation of a structure, being of great importance in the province of Chimborazo the creation of a "MANUAL FOR MODELLING BRIDGES OF MIXED AND REINFORCED CONCRETE (BOARD CONCRETE WITH METAL BEAMS), employing the CSIBRIDGE VERSION EVALUACION software"

This research starts taking into account all the general considerations for the design and evaluation of a bridge, and subsequently a pre-design of thereof is established, all these parameters are based on the AASHTO LRFD (2012) standard, whilst the CSIBRIDGE V15.2 EVALUATION VERSION employs the AASHTO LRFD 2007 which does not change in terms of design considerations.

Later on, the manual calculation of a bridge of mixed and reinforced concrete (concrete deck on metal beams) with its respective modeling in CSIBRIDGE software, by allowing establishing parameters for comparison, interpretation and methodology used by the program.

The last stage of this research involves developing the manual for modeling and evaluating a bridge of reinforced concrete and later a mixed concrete bridge (concrete deck with metal beams) with its respective description for better understanding.

Finally, the application of the manual is performed by means of the modeling and evaluation of the superstructure of Matus-Aulabug bridge located in the Penipe canton, using the software CSIBRIDGE EVALUATION VERSION V15.2, which is specified in detail and as representative example in Annex 9.1.



Werender Illagia

2

#### **INTRODUCCIÓN**

"Desde los puentes emana una fascinación a la que solo pocos pueden sustraerse. Con ellos supera el hombre los límites de su espacio vital, une lo separado, triunfa sobre los obstáculos de la naturaleza."

#### Hans Wittfoht

El software SAP2000 es uno de los programas más empleados en la Ingeniería Civil para el diseño de todo tipo de estructuras, desde la más sencilla hasta la más compleja, a diferencia del software CSI BRIDGE con una aplicación independiente para realizar el análisis estructural, sísmico, diseño y evaluación de todo tipo de puentes en un único modelo.

En la actualidad el software CSIBRIDGE V15 es la evolución del SAP2000 BRIDGE creado por la compañía Computers & Structures Inc.

CSIBRIDGE es lo último en herramientas informáticas el cual presenta mayor facilidad de uso ya que posee un ambiente de trabajo intuitivo, crea modelos de puentes parametricamente, contiene plantillas predefinidas para los diferentes modelos de puentes.

En el Ecuador no existen Códigos o Reglamentos para el diseño, análisis y construcción de puentes por ende nos vemos obligados a emplear normas de otros países.

Dentro del diseño de puentes se adopta las especificaciones de la norma AASHTO LRFD (American Association of State Highway and Transportation Officials), siendo esta la más utilizada en el Ecuador para tal fin.

La norma AASHTO LRFD contiene todos los parámetro, formulas y criterios necesarios para el diseño y análisis de cada uno de los elementos que comprende un puente.

El CSIBRIDGE V15 VERSION EVALUACION emplea las especificaciones de la Norma AASHTO LRFD, convirtiéndolo en una herramienta fundamental para conocer el comportamiento de la estructura al estar expuesta a constantes solicitaciones de carga; además este Software garantiza un diseño estructural óptimo y seguro, es por ello la realización de este manual; el cual ayudará a fortalecer los conocimientos de todas aquellas personas interesadas en el manejo de este software aplicado al diseño de puentes de hormigón armado y mixtos (tablero de hormigón con vigas metálicas).

El trabajo se encuentra comprendido por nueve capítulos, donde se describen las bases teóricas, la metodología empleada, resultados obtenidos, discusión de los resultados, conclusiones y la propuesta, en la cual se desarrolla el manual para modelar puentes de hormigón armado y mixtos (tablero de hormigón con vigas metálicas), empleando el software CSIBRIDGE V15.2 VERSION EVALUACION.

## **CAPÍTULO I**

#### 1. EL PROBLEMA DE INVESTIGACION

#### **1.1.TEMA DE INVESTIGACION**

"MANUAL PARA MODELAR PUENTES DE HORMIGON ARMADO Y MIXTOS (TABLERO DE HORMIGON CON VIGAS METALICAS), EMPLEANDO EL SOFTWARE SAP2000 BRIDGE"

#### **1.2.PROBLEMATIZACION**

#### 1.2.1. Contextualización

A medida que la tecnología avanza se van creando nuevos y mejores programas dentro de la Ingeniería Civil que permitan realizar el análisis y diseño de las estructuras.

Las técnicas que utiliza el CSIBRIDGE son avanzadas y permiten paso a paso demostrar un mejor análisis, diseño y evaluación, pero su eficiencia depende del buen criterio estructural y conocimiento técnico y práctico del Ingeniero Civil que lo utilice.

Siendo el cálculo estructural la esencia de un diseño, que busca el mejor funcionamiento de las estructuras; sin embargo existe gran complejidad para el desarrollo del cálculo y diseño de las diferentes estructuras, por ello es necesario el empleo de programas especializados como el CSIBRIDGE, para el diseño de puentes de hormigón armado y mixtos (tablero de hormigón sobre vigas metálicas) que permite optimizar el tiempo de cálculo.
#### 1.2.2. Análisis critico

En la provincia de Chimborazo no existe un manual para modelar Puentes mixtos y de hormigón en el software CSIBRIDGE, lo cual conlleva a no conocer el manejo del mismo y por ende no se puede visualizar el comportamiento de la estructura ante un sismo, de igual manera no se puede comprobar los resultados del diseño realizado ya sea de forma manual o empleando otro software, pues el software CSIBRIDGE emplea el método de elementos finitos, posee un diseño en acero y concreto completamente integrado, todos disponibles desde la misma interfaz usada para modelar y analizar el modelo. En miembros de acero permite el pre diseño inicial y una optimización interactiva, y en el diseño de elementos de concreto incluye el cálculo de la cantidad de acero de refuerzo requerido, considerando incluso un nivel de diseño sismorresistente.

#### 1.2.3. Prognosis

Debido a la usencia de una guía de aprendizaje acerca de la modelación en el software CSIBRIDGE se plantea realizar un manual para el diseño estructural de PUENTES DE HORMIGON ARMADO Y MIXTOS (TABLERO DE HORMIGON CON VIGAS METALICAS), el cual permitirá fortalecer los conocimientos a toda la sociedad interesada en el tema y por ende a todos los profesionales afines al diseño y construcción de Obras Civiles, ya que el programa está encaminado a facilitar el cálculo y diseño de estructuras propias de ingeniería, con resultados exactos y confiables

#### 1.2.4. Delimitación

La investigación se limita a los profesionales de la provincia de Chimborazo que van a utilizar el software por primera vez en el diseño de puentes.

#### 1.2.5. Formulación del problema

¿Cómo generar conocimiento de fácil acceso e información confiable, para la modelación de puentes de hormigón armado y mixtos (tablero de hormigón con vigas metálicas) en el software CSIBRIDGE?

#### 1.2.6. Hipótesis

La utilización del manual para modelar puentes de hormigón armado y mixtos (tablero de hormigón con vigas metálicas), empleando el software CSIBRIDGE, mejorará la calidad y eficiencia de los resultados obtenidos en el cálculo estructural de un puente.

#### 1.2.7. Identificación de variables

En el presente trabajo de investigación se consideran dos variables:

#### a) Variable Independiente:

La ausencia de información confiable acerca de la modelación de puentes en software CSIBRIDGE

#### b) Variable Dependiente:

Crear conocimiento fundamentado en normas y de fácil acceso en el manejo del software CSIBRIDGE para la modelación de puentes.

#### **1.3.JUSTIFICACION**

La falta de información confiable genera desconfianza al momento de utilizar un software especializado como el CSIBRIDGE empleado para modelar todo tipo de puentes, por lo cual se plantea el desarrollo de un manual para modelar puentes

de hormigón armado y mixtos (tablero de hormigón con vigas metálicas) en el software CSIBRIDGE V15.2 VERSION EVALUACION, quien se encuentra basada en la norma AASHTO LRFD utilizada en el Ecuador; este tipo de puentes en particular fueron elegidos debido a que son los más empleados en Chimborazo.

El software CSIBRIDGE permite tener mayor exactitud y eficiencia en el proceso de diseño y cálculo de la estructura; para la determinación de los esfuerzos actuantes en los elementos estructurales del tablero y las acciones transmitidas a la sub-estructura: es decir a la cimentación, pilas, pantallas y muros de ala del estribo.

## 1.4.OBJETIVOS

#### 1.4.1. Objetivo General

Elaborar un manual para modelar puentes de hormigón armado y mixto (tablero de hormigón con vigas metálicas), empleando el software CSIBRIDGE V15.2 VERSION EVALUACION.

#### 1.4.2. Objetivos Específicos

- Consultar bibliografía acera de la normativa y parámetros que emplea el software CSIBRIDGE.
- Realizar el cálculo manual de la superestructura de un puente mixto (tablero de hormigón sobre vigas metálicas), empleando la normativa AASHTO LRFD y comparar los resultados obtenidos del diseño con la modelación en el software CSIBRIDGE V15.2 VERSION EVALUACION
- Modelar en el software CSIBRIDGE V15.2 VERSION EVALUACION un ejemplo de un puente de Hormigón Armado con su respectiva comprobación de resultados.

## CAPÍTULO II

## 2. FUNDAMENTACIÓN TEÓRICA.

#### 2.1.ANTECEDENTES.

A lo largo de la historia se han utilizado diferentes formas para el diseño y cálculo de puentes, que dependen de los recursos disponibles y el conocimiento que posea el ingeniero encargado, siendo indispensable el empleo de software que permita agilitar el proceso, mediante la investigación bibliografía realizada, se pudo determinar que no existen publicaciones, libros, textos, tutoriales afines al diseño de puentes de hormigón armado y mixtos (tablero de hormigón con vigas metálicas) en el software CSIBRIDGE V15.2 VERSION EVALUACION, sirviendo también como una guía de aprendizaje de fácil acceso para todas las personas interesadas en el tema, con el fin de proveer una herramienta útil para comprobar los resultados obtenidos de un cálculo manual , además el programa permite diseñar, analizar y evaluar de forma directa, generando un nivel técnico altamente competitivo sobre esta temática.

#### 2.2.PUENTES

Un puente es una obra que se construye para salvar un obstáculo dando así continuidad a una vía, permite sustentar un camino, una carretera o una vía.

# 2.2.1. Consideraciones generales de la norma AASHTO LRFD en la estructura de un puente

La norma AASHTO LRFD emplea factores de carga y resistencia, basados en los estados límites lo cual proporciona mayor confiabilidad en las estructuras.

Esta norma aplica coeficientes de ductilidad, redundancia e importancia que permite combinar las cargas, generando un margen de seguridad en el diseño de la estructura.

## 2.2.1.1. Factores de carga y combinaciones de carga<sup>1</sup>

A continuación se describen las combinaciones que presenta la norma AASHTO LRFD

- **Resistencia I:** Combinación de carga básica para el camión normal sin viento.
- **Resistencia II:** Combinación de cargas que representa el uso del puente por parte de vehículos de diseño especiales especificados por el propietario, vehículos de circulación restringida (sobrepeso), o ambos, sin viento.
- **Resistencia III:** Combinación de carga que representa el puente expuesto a velocidades del viento mayores a 90 (k*m/hr*).
- **Resistencia IV**: Combinación de carga que representa una alta relación entre las solicitaciones provocadas por sobrecarga y carga muerta.
- **Resistencia V:** Combinación de carga que representa el uso del puente por parte de vehículos normales con una velocidad del viento de 90 (*Km/hr*).
- Evento Extremo I: Combinaciones de carga que incluye sismo.

<sup>&</sup>lt;sup>1</sup>AASHTO LRFD Sección 3.4.1

• Evento Extremo II: Combinaciones de cargas que incluye carga de hielo, colisión de embarcaciones, vehículos, y ciertos eventos hidráulicos con una sobre carga reducida diferente a la que forma parte de la carga de colisión de vehículos, CT.

Las combinaciones de carga del estado de servicio son las siguientes:

 Servicio I: Combinación de cargas que representa la operación normal del puente con un viento de 90 (km/h), tomando todas las cargas con sus valores nominales. También se relaciona con el control de las deflexiones de las estructuras metálicas enterradas, revestimientos de túneles y tuberías termoplásticas y con el control del ancho de fisuración de las estructuras de hormigón armado.

Esta combinación de cargas también se debería utilizar para investigar la estabilidad de taludes.

- Servicio II: Combinación de carga cuya intención es controlar la fluencia de las estructuras de acero y la falla de las conexiones críticas debido a la carga viva vehicular.
- Servicio III: Combinación de carga relativa sólo a la tracción en estructuras de hormigón pretensado con el objetivo de controlar el agrietamiento.
- Fatiga: Combinación de cargas de fatiga y fractura que se relaciona con la sobrecarga gravitatoria vehicular repetitiva y las respuestas dinámicas bajo un único camión de diseño con la separación entre ejes especificados en el Articulo 3.6.1.4.1 (AASHTO LRFD, 2012)

# Designación de cargas<sup>2</sup>

| <b>DC</b> Carga muerta de la estructura                                  |
|--------------------------------------------------------------------------|
| <b>DW</b> Carga muerta de las superficies de revestimiento y accesorios. |
| EH: Empuje horizontal del suelo                                          |
| ES: Sobrecarga de suelo                                                  |
| DD: Fricción Negativa                                                    |
| EV: Presión Vertical del suelo de relleno                                |
| <b>BR:</b> Fuerza de frenado de vehículos                                |
| <b>CE:</b> Fuerza centrífuga de vehículos                                |
| CR: Creep o Fluencia Lenta                                               |
| CT: Fuerza de Colisión de un vehículo                                    |
| CV: Fuerza de Colisión de una embarcación                                |
| EQ: Sismo                                                                |
| R: Fricción                                                              |
| IC: Carga de Hielo                                                       |
| IM: Carga Dinámica                                                       |
| LL: Carga Viva vehicular                                                 |

LS: Sobrecarga Viva

<sup>&</sup>lt;sup>2</sup> AASHTO LRFD 2012, sección 3.3.2

PL: Carga Peatonal

SE: Asentamiento

SH: Contracción

**TG:** Gradiente de Temperatura

TU: Temperatura uniforme

WA: Carga Hidráulica y Presión del flujo de agua

WL: Viento sobre la Carga Vehicular

WS: Viento sobre la Estructura

Las cargas más empleadas son las siguientes:

DC.- Carga muerta de la estructura

**DW.-**Carga muerta de las superficies de revestimiento y accesorios.

LL.- Carga viva vehicular.

IM.- Incremento por carga vehicular dinámica.

En la siguiente tabla se encuentran los factores que afectan a cada una de las diferentes combinaciones de carga.

## Tabla 1.Combinaciones de Carga

| Combinación de Cargas                                      | DC<br>DD<br>DW        | LL<br>IM       |      |      |     |      |           |     |     | Usa  | r sólo ı | uno por | vez  |
|------------------------------------------------------------|-----------------------|----------------|------|------|-----|------|-----------|-----|-----|------|----------|---------|------|
|                                                            | EH<br>EV<br>ES        | CE<br>BR<br>PL |      |      |     |      | TU<br>CR  |     |     |      |          |         |      |
| Estado Límite                                              | EL                    | LS             | WA   | WS   | WL  | FR   | SH        | TG  | SE  | EQ   | IC       | CT      | CV   |
| RESISTENCIA I (a menos que<br>se especifique lo contrario) | $\gamma_{\rm p}$      | 1,75           | 1,00 | -    | -   | 1,00 | 0,50/1,20 | γtg | γse | -    | -        | -       | -    |
| RESISTENCIA II                                             | $\gamma_{\rm p}$      | 1,35           | 1,00 | -    | -   | 1,00 | 0,50/1,20 | γtg | γse | -    | -        | -       | -    |
| RESISTENCIA III                                            | $\gamma_{\rm P}$      | -              | 1,00 | 1,40 | -   | 1,00 | 0,50/1,20 | γtg | γse | -    | -        | -       | -    |
| RESISTENCIA IV –<br>Sólo <i>EH, EV, ES, DW, DC</i>         | γ <sub>p</sub><br>1,5 | -              | 1,00 | -    | -   | 1,00 | 0,50/1,20 | -   | -   | -    | -        | -       | -    |
| RESISTENCIA V                                              | $\gamma_p$            | 1,35           | 1,00 | 0,40 | 1,0 | 1,00 | 0,50/1,20 | γтg | γse | -    | -        | -       | -    |
| EVENTO EXTREMO I                                           | $\gamma_{\rm P}$      | γeq            | 1,00 | -    | -   | 1,00 | -         | -   | -   | 1,00 | -        | -       | -    |
| EVENTO EXTREMO II                                          | $\gamma_p$            | 0,50           | 1,00 | -    | -   | 1,00 | -         | -   | -   | -    | 1,00     | 1,00    | 1,00 |
| SERVICIO I                                                 | 1,00                  | 1,00           | 1,00 | 0,30 | 1,0 | 1,00 | 1,00/1,20 | γтg | γse | -    | -        | -       | -    |
| SERVICIO II                                                | 1,00                  | 1,30           | 1,00 | -    | -   | 1,00 | 1,00/1,20 | -   | -   | -    | -        | -       | -    |
| SERVICIO III                                               | 1,00                  | 0,80           | 1,00 | -    | -   | 1,00 | 1,00/1,20 | γtg | γse | -    | -        | -       | -    |
| SERVICIO IV                                                | 1,00                  | -              | 1,00 | 0,70 | -   | 1,00 | 1,00/1,20 | -   | 1,0 | -    | -        | -       | -    |
| FATIGA - Sólo LL, IM y CE                                  | -                     | 0,75           | -    | -    | -   | -    | -         | -   | -   | -    | -        | -       | -    |

#### Fuente: AASHTO LRFD, 2012 sección 3.4.1-1

## Tabla 2. Factores de Carga Permanente

| Tipo de carga                                                                                                                                                                                                                                                                                                                                   | Factor                                       | Factor de Carga                             |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------|--|--|
| Tipo de carga                                                                                                                                                                                                                                                                                                                                   | Máximo                                       | Mínimo                                      |  |  |
| DC: Elemento y accesorios                                                                                                                                                                                                                                                                                                                       | 1,25                                         | 0,90                                        |  |  |
| DD: Fricción negativa (downdrag)                                                                                                                                                                                                                                                                                                                | 1,80                                         | 0,45                                        |  |  |
| DW: Superficies de rodamiento e instalaciones para servicios públicos                                                                                                                                                                                                                                                                           | 1,50                                         | 0,65                                        |  |  |
| <ul><li><i>EH</i>: Empuje horizontal del suelo</li><li>Activo</li><li>En reposo</li></ul>                                                                                                                                                                                                                                                       | 1,50<br>1,35                                 | 0,90<br>0,90                                |  |  |
| EL: Tensiones residuales de montaje                                                                                                                                                                                                                                                                                                             | 1,00                                         | 1,00                                        |  |  |
| <ul> <li>EV: Empuje vertical del suelo</li> <li>Estabilidad global</li> <li>Muros de sostenimiento y estribos</li> <li>Estructura rígida enterrada</li> <li>Marcos rígidos</li> <li>Estructuras flexibles enterradas u otras, excepto alcantarillas metálicas rectangulares</li> <li>Alcantarillas metálicas rectangulares flexibles</li> </ul> | 1,00<br>1,35<br>1,30<br>1,35<br>1,95<br>1,50 | N/A<br>1,00<br>0,90<br>0,90<br>0,90<br>0,90 |  |  |
| ES: Sobrecarga de suelo                                                                                                                                                                                                                                                                                                                         | 1,50                                         | 0,75                                        |  |  |

#### Fuente: AASHTO LRFD, 2012 sección 3.4.1-2

#### 2.2.1.2. Análisis de cargas

#### 2.2.1.2.1. Carga muerta (DC)

Es el peso permanente de la estructura en su totalidad, es decir: las vigas, barandas, diafragmas, pilas y otros servicios públicos.

#### 2.2.1.2.2. Carga por capa de rodadura (DW)

Es el peso del revestimiento en área que se le da al puente, el cual está en función del espesor y del peso específico de la misma.

#### 2.2.1.2.3. Carga viva vehicular (LL)

Es el peso de las cargas móviles, es decir: los camiones, autos y peatones.

La Norma AASHTO LRFD define unos coeficientes de acuerdo con el número de carriles y la presencia de múltiples sobrecargas que puedan presentarse en el puente. Estos coeficientes no son aplicables en el estado límite de fatiga.

| Número de carriles disponibles<br>para camiones | р    |
|-------------------------------------------------|------|
| 1                                               | 1,00 |
| 2                                               | 0,85 |
| 3 ó más                                         | 0,80 |

Tabla 3. Fracción de tráfico de camiones en un único carril

Fuente: AASHTO LRFD 2012, Tabla 3.6.1.4.2-1

| Número de carriles<br>cargados | Factor de presencia<br>múltiple, <i>m</i> |
|--------------------------------|-------------------------------------------|
| 1                              | 1,20                                      |
| 2                              | 1,00                                      |
| 3                              | 0,85                                      |
| > 3                            | 0,65                                      |

**Tabla 4.** Factores por presencia múltiple de sobrecargas

Fuente: AASHTO LRFD 2012, Tabla 3.6.1.1.2-1

# 2.2.1.2.3.1. Incremento por Carga Dinámica: (IM)<sup>3</sup>

Los efectos estáticos del camión de diseño, se debe mayorar con los siguientes porcentajes:

| Tabla 5 | Incremento | por carga | Dinámica | (IM) |
|---------|------------|-----------|----------|------|
|---------|------------|-----------|----------|------|

| COMPONENTES                                   |     |  |  |  |  |
|-----------------------------------------------|-----|--|--|--|--|
| Juntas del tablero- todos los estados límites | 75% |  |  |  |  |
| Todos los demás componentes                   |     |  |  |  |  |
| • Estado límite de fatiga y fractura          | 15% |  |  |  |  |
| Todos los demás Estados limites               | 33% |  |  |  |  |

#### Fuente: AASHTO LRFD

<sup>3</sup> AASHTO LRFD 2012, Art.3.6.2

**Nota.-** No se aplica a cargas peatonales ni a cargas de carril de diseño. Tampoco en muros de sostenimiento no solicitados por reacciones verticales de la superestructura ni en componentes de fundaciones que estén completamente por debajo del nivel del terreno.

## **2.2.1.2.3.2.** Carga peatonal en Barandas<sup>4</sup>

La carga peatonal es de 367 kg/m<sup>2</sup>en las aceras con un ancho mayor a 0.60m, la cual será aplicada simultáneamente con la sobrecarga vehicular. En caso de que las cargas peatonales se combinen con uno o más carriles con sobre carga vehicular, se pueden considerar las cargas peatonales como un carril cargado (AASHTO LRFD Art. 3.6.1.1.2).

Los puentes peatonales son diseñados para una sobrecarga de 418 kg/m<sup>2</sup>.

#### 2.2.1.2.4. Cargas Sísmicas (EQ)

Las cargas sísmicas generan desplazamientos laterales, siendo estos determinados en base al coeficiente de respuesta elástica Csm y al peso que genera la superestructura al tener que ser ajustado al factor de respuesta R.

Los coeficientes empleados para modelar los efectos sísmicos son tomados de la Norma Ecuatoriana de Construcción en el capítulo de CARGAS SISMICAS-DISEÑO SISMORESISTENTE (NEC-SE-DS).

<sup>&</sup>lt;sup>4</sup> AASHTO LRFD 2012, Art. 3.6.1.6

#### 2.2.1.3. Prediseño de los elementos del puente

Al realizar el pre diseño se debe definir la geometría de soporte de la estructura, es decir dar dimensiones tanto a los elementos de la sub-estructura como a los de la super-estructura en función de los parámetros mínimos que sugiere la norma AASHTO LRFD 2012.

| -                                                   |                                                                                  | -                                                                                                                                                                                                                                      |                                        |  |  |
|-----------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--|--|
| Superestructura                                     |                                                                                  | Profundidad mínima (incluyendo el tablero)<br>Si se utilizan elementos de profundidad variable, estos valores<br>se pueden ajustar para considerar los cambios de rigidez<br>relativa de las secciones de momento positivo y negativo. |                                        |  |  |
| Material                                            | Tipo                                                                             | Tramos simples                                                                                                                                                                                                                         | Tramos continuos                       |  |  |
| Losas con armadura principal<br>paralela al tráfico |                                                                                  | $\frac{1,2(S+3000)}{30}$                                                                                                                                                                                                               | $\frac{S+3000}{30} \ge 165 \text{ mm}$ |  |  |
| Hormigón Armado                                     | Vigas T                                                                          | 0,070 <i>L</i>                                                                                                                                                                                                                         | 0,065 L                                |  |  |
|                                                     | Vigas cajón                                                                      | 0,060 L                                                                                                                                                                                                                                | 0,055 L                                |  |  |
|                                                     | Vigas de estructuras peatonales                                                  | 0,035 <i>L</i>                                                                                                                                                                                                                         | 0,033 L                                |  |  |
| Losas                                               |                                                                                  | 0,030 <i>L</i> ≥ 165 mm                                                                                                                                                                                                                | 0,027 <i>L</i> ≥ 165 mm                |  |  |
| Hormigón<br>Pretensado                              | Vigas cajón coladas in situ                                                      | 0,045 <i>L</i>                                                                                                                                                                                                                         | 0,040 <i>L</i>                         |  |  |
|                                                     | Vigas doble T prefabricadas                                                      | 0,045 <i>L</i>                                                                                                                                                                                                                         | 0,040 L                                |  |  |
|                                                     | Vigas de estructuras peatonales                                                  | 0,033 <i>L</i>                                                                                                                                                                                                                         | 0,030 <i>L</i>                         |  |  |
|                                                     | Vigas cajón adyacentes                                                           | 0,030 <i>L</i>                                                                                                                                                                                                                         | 0,025 L                                |  |  |
|                                                     | Profundidad total de una viga doble<br>T compuesta                               | 0,040 <i>L</i>                                                                                                                                                                                                                         | 0,032 <i>L</i>                         |  |  |
| Acero                                               | Profundidad de la porción de<br>sección doble T de una viga doble T<br>compuesta | 0,033 <i>L</i>                                                                                                                                                                                                                         | 0,027 <i>L</i>                         |  |  |
|                                                     | Cerchas                                                                          | 0,100 <i>L</i>                                                                                                                                                                                                                         | 0,100 L                                |  |  |

Tabla 6. Profundidades mínimas utilizadas para superestructuras.

Fuente: AASHTO LRFD 2012, sección 2.5.2.6.3-1

**S:** Luz del tramo de losa (mm)

L: Luz del tramo de puente (mm)

#### 2.2.1.3.1. Losas de Hormigón

La norma AASHTO LRFD establece los siguientes parámetros: limita la longitud del volado a 1.80 m ó **0.5 S**, además limita la longitud de la calzada del volado a 0.91 m.

S=separación de las vigas.



Figura 1. Detalle de los límites que establece la norma AASHTO LRFD

En la sección 9.7.1.1 de la AASHTO LRFD indica que el peralte mínimo para una losa de hormigón no debe ser menor a 175 mm, evitando cualquier disposición de pulido, texturizado y superficie de sacrificio.

En las losas de hormigón con volado no puede ser menor a 200 mm según la sección 13.7.3.1.2 de la norma AASHTO LRFD.

#### 2.2.1.3.1.1. Distancia de la carga de la rueda al borde de la losa

Tomar en cuenta que la línea de acción de la carga de la rueda se asume a 0.30 m. de la cara del guardarruedas o bordillo, si la losa no tiene bordillo la carga se encuentra a 0.30 m. de la cara de la baranda.

#### 2.2.1.3.2. Vigas de Hormigón

Los puentes de vigas tipo T simplemente apoyados se los utilizan en luces de hasta 24 m de longitud.

El diseño de un puente de vigas continuas debe tomar en cuenta que el peralte de las secciones está en función del momento el cual varía desde el mínimo en el centro hasta un máximo en los apoyos. En tal caso, el efecto de la carga muerta en el diseño se reduce favorablemente.

Las cargas permanentes del tablero y las que actúan sobre el mismo se pueden distribuir uniformemente entre las vigas.<sup>5</sup>

En las vigas de hormigón Armado se debe controlar las deformaciones y fisuraciones.<sup>6</sup>

## a. Viga interior<sup>7</sup>

Para vigas interiores, el ancho efectivo deberá tomarse como el menor valor entre:

- Un cuarto de la luz efectiva de la viga.
- 12 veces el espesor de la losa, más el mayor valor entre el ancho del alma o la mitad del ancho del ala superior de la viga.
- El espaciamiento promedio entre vigas adyacentes.

<sup>&</sup>lt;sup>5</sup> AASHTO LRFD 2012, sección4.6.2.2.1

<sup>&</sup>lt;sup>6</sup> AASHTO LRFD 2012, sección 5.5.2.

<sup>&</sup>lt;sup>7</sup> AASHTO LRFD 2012, sección 5.5.

#### b. Viga exterior

Para las vigas exteriores el ancho de ala efectivo se puede tomar como la mitad del ancho efectivo de la viga interior adyacente, más el menor valor entre:

- Un octavo de la luz efectiva de la viga.
- 6 veces el espesor de la losa, más el mayor valor entre la mitad del ancho del alma o un cuarto del ancho del ala superior de la viga no compuesta.
- El ancho del voladizo.

#### 2.2.1.3.3. Vigas Metálicas

Para el diseño de las vigas metálicas se emplea las especificaciones del American Institute of Steel Construction (AISC) dentro de la cual consta que se debe realizar chequeos de esbeltez, resistencia a momento y cortante ya sean vigas armadas o laminadas.

**Vigas de perfiles laminados**: Se las emplea en tramos de poca longitud, son creadas en las plantas de laminado integral. Generalmente se utilizan los perfiles "IR" compuestos de dos patines y un alma, en donde los patines resisten el momento flector y el alma los esfuerzos de corte.

**Vigas compuestas por placas<sup>8</sup>:** Son utilizadas en longitudes intermedias y por ende son de mayor sección que una viga de perfil laminado.

Una viga compuesta se encuentra formada por:

 Platabandas: Son placas de acero que se remachan o sueldan sobre los patines superiores e inferiores de la viga compuesta y sirven para aumentar la capacidad de carga de la misma.

<sup>&</sup>lt;sup>8</sup> Manual de Diseño de Puentes por www.ssingenieria.com

- 2. Rigidizadores de apoyo: Están constituidos por placas o ángulos que se sueldan o remachan en posición vertical al alma de la viga, en los sitios de apoyo. Su función principal es transmitir los esfuerzos de cortante del alma de la viga al dispositivo de apoyo elegido, lo cual evita el pandeo o aplastamiento de la misma.
- **3. Rigidizadores intermedios**: Se utilizan en los puntos de aplicación de cargas concentradas o en las vigas compuestas de mucha altura para evitar el aplastamiento o el pandeo del alma.

## Consideraciones generales para las vigas compuestas<sup>9</sup>

- En general, evitar el uso de espesor de alma menores a  $1.27 \text{ cm} (\frac{1}{2})$ .
- Las conexiones en cruz con el marco actuarán como atiesadores del alma.
   Las especificaciones del manual LRFD no prescribe un espaciamiento del cruce de marcos. Si los atiesadores del alma están espaciados a tres veces el peralte de la viga o menos, se considera que la viga está completamente atiesada. Por lo tanto, si los marcos transversales se localizan a tres veces el peralte de la viga o menos, entonces la viga estará completamente atiesada.
- Las almas que no están atiesadas transversalmente son generalmente más económicas para peraltes de almas de 127 cm (50 pulgadas) o menos aproximadamente.
- En general, las almas parcialmente atiesadas son más económicas para una viga típica.

<sup>&</sup>lt;sup>9</sup>Construcción de puentes de Acero con AASHTO LRFD

- Los atiesadores transversales intermedios deben ser colocados en un sólo lado del alma y deben ser cortados como mínimo a 2.54 cm (una pulgada) del patín de tensión para acomodar la pintura. La distancia entre soldaduras debe estar limitada a 4 o 6 veces el espesor del ama para prevenir el desgarramiento del alma.
- Los atiesadores longitudinales deben ser evitados, pero cuando se usen con atiesadores transversales en claros largos con almas peraltadas, éstos deben ser colocados del lado opuesto del alma al atiesador transversal. Cuando esto no sea posible, como en las intersecciones con placas de conexión entre los marcos, el refuerzo longitudinal no debe ser interrumpido por el refuerzo transversal.

Generalmente se utilizan aceros de Grado A-36 y A-50.

#### 2.2.1.3.4. Armadura de repartición

Refuerzo principal perpendicular a la dirección del tránsito.

$$\% = \frac{3480}{\overline{s}}$$
 delaarmaduraenflexion. Max = 67%

Refuerzo principal paralelo a la dirección del tránsito.

$$\% = \frac{1750}{\overline{s}}$$
 de la armaduraenflexion. Max = 50%

S=Luz de cálculo en mm

## **2.2.1.3.5. Deformaciones**<sup>10</sup>

Para observar la deformación que tendrá el puente se debe realizar lo siguiente:

- La máxima deflexión se obtiene al estar cargados todos los carriles de diseño, asumiendo que todos los elementos portantes se deforman de igual manera.
- Se debe aplicar la carga viva vehicular, incluyendo el incremento por carga dinámica. La combinación de cargas a emplear es la de Servicio I de la Tabla 3.4.1-1 de la norma AASHTO LRFD.
- La sobrecarga viva se debe tomar de la norma AASHTO LRFD, sección 3.6.1.3.2

Para las construcciones de acero, aluminio y hormigón se pueden considerar los siguientes límites para la deflexión.

| FORMULAS PARA CALCULAR LA DEFORMACION  |          |  |  |  |  |
|----------------------------------------|----------|--|--|--|--|
| CARGA                                  | FORMULAS |  |  |  |  |
| Vehicular                              | L/800    |  |  |  |  |
| Vehicular y/o peatonal                 | L/1000   |  |  |  |  |
| vehicular sobre voladizos              | L/300    |  |  |  |  |
| vehicular y/o peatonal sobre voladizos | L/375    |  |  |  |  |

| Tabla 7. | Fórmulas       | para el | cálculo | de las | deforma  | ciones |
|----------|----------------|---------|---------|--------|----------|--------|
| Labla /  | 1 Official dis | puru er | culculo | uc ius | actornia | nones  |

Fuente: AASHTO LRFD, sección 2.5.2.2

<sup>&</sup>lt;sup>10</sup>AASHTO LRFD, sección 5.7.3.6.2

#### 2.2.1.3.6. Propiedades de los materiales

#### 2.2.1.3.6.1. Hormigón Armado

Para concreto diseñado y construido de acuerdo con el Reglamento (ACI 318-08), f<sup>°</sup><sub>c</sub>; no puede ser inferior a 17 MPa.

#### Módulo de elasticidad Ec según el ACI-318-08, pág. 115

Para concreto con densidad normal, *Ec* puede tomarse como:

**4700**  $\overline{f'c}$ ; f'c: Resistencia a la compresión en Mpa

## Módulo de Rotura<sup>11</sup>

A menos que se realicen ensayos físicos, el módulo de rotura, *fr*, para hormigones de densidad normal

**0.63**  $\overline{f'c}$ ; f'c: Resistencia a la compresión en MPa

## Coeficiente de Expansión Térmica<sup>12</sup>

El coeficiente de expansión térmica se debería determinar realizando ensayos en laboratorio sobre la mezcla específica a utilizar.

En ausencia de datos más precisos, el coeficiente de expansión térmica se puede tomar como:

- Para hormigón de densidad normal:  $10.8 \times 10-6$ /°C, y
- Para hormigón de baja densidad:  $9,0 \times 10-6$ /°C

<sup>&</sup>lt;sup>11</sup>AASHTO LRFD, sección 5.4.2.6

<sup>&</sup>lt;sup>12</sup>AASHTO LRFD, sección 5.4.2.2

## Coeficiente de Poisson<sup>13</sup>

Los coeficientes de Poisson para los materiales del pavimento y la subrasante son 0,2 y 0,4 respectivamente.

## 2.2.1.3.6.2. Acero de refuerzo<sup>14</sup>

El refuerzo corrugado que resiste fuerzas axiales y de flexión inducidas por sismo en elementos, debe cumplir con las disposiciones de ASTM A706M. Se permite el uso de acero de refuerzo ASTM A615M, grados 280 y 420, en estos elementos siempre y cuando:

- La resistencia real a la fluencia basada en ensayos realizados por la fábrica no sea mayor que fy en más de 125 MPa.
- La relación entre la resistencia real de tracción y la resistencia real de fluencia no sea menor de 1.25

El límite de fluencia fy del acero ASTM A706 Gr42 es de  $4200 \frac{kg}{cm^2}$ 

## 2.2.1.3.6.3. Acero estructural<sup>15</sup>

Los aceros más empleados en puentes son:

ASTM A36 con un fy= $2531 \frac{kg}{cm^2}$ ; ASTM A588 Gr50 con un fy= $3515 \frac{kg}{cm^2}$ 

<sup>&</sup>lt;sup>13</sup> AASHTO LRFD 2012, sección 3.11.6.4

<sup>&</sup>lt;sup>14</sup>ACI-318-08, pág. 343

<sup>&</sup>lt;sup>15</sup> AISC 360-10

## 2.2.1.3.6.4. Reforzamientos mínimos<sup>16</sup>

En toda sección de un elemento sometido a flexión cuando por análisis se requiera refuerzo de tracción, el *As* proporcionado no debe ser menor que el obtenido por medio de:

$$A_{smin} = \frac{0.25}{f_y} \overline{f'c} b_w d$$

Pero no menor a  $\frac{1.4b_w d}{f_y}$ 

*b<sub>w</sub>*: Ancho del alma (mm) *f<sub>v</sub>*: Tensión de fluencia del acero de refuerzo

#### 2.2.1.3.7. Separación Mínima del acero de refuerzo<sup>17</sup>

Para el hormigón colado in situ, la distancia libre entre barras paralelas ubicadas en una capa no debe ser menor que 1.5 veces el diámetro nominal de las barras, 1.5 veces el tamaño máximo del agregado grueso, o 3.8 cm

Para el hormigón prefabricado en planta, la distancia libre entre barras paralelas ubicadas en una capa no debe ser menor que el diámetro nominal de las barras, 1.33 veces el tamaño máximo del agregado grueso o 2.5 cm

Múltiples capas de Armadura: Excepto en los tableros en los cuales se coloca armadura paralela en dos o más capas, con una distancia libre entre capas no mayor que 15 cm, las barras de las capas superiores se deberán ubicar

<sup>&</sup>lt;sup>16</sup>ACI-318-08, pág. 145

<sup>&</sup>lt;sup>17</sup>AASHTO LRFD, sección 5.10.3

directamente sobre las de la capa inferior, y la distancia libre entre capas deberá ser mayor o igual que 2.5 cm o el diámetro nominal de las barras.

**Paquetes de Barras:** El número de barras paralelas dispuestas en un paquete de manera que actúen como una unidad no deberá ser mayor que cuatro, excepto en los elementos flexionados en ningún paquete el número de barras mayores que N° 36 deberá ser mayor que dos. Los paquetes de barras deberán estar encerrados por estribos o zunchos.

El traslape de las varillas es de 40 diámetros de barra los cuales deben ser colocados de forma alternada.

## 2.2.1.3.8. Separación Máxima del acero de refuerzo<sup>18</sup>

La separación de la armadura en tabiques y losas no deberá ser mayor que 1.5 veces el espesor del elemento ó 45 cm.

#### 2.2.1.3.9. Estribos

Son estructuras diseñadas para soportar el peso de la superestructura en forma de apoyos en los extremos del puente, también sirven como muros de contención frente al empuje que generan los terraplenes de acceso. Los estribos pueden ser de concreto simple (estribos de gravedad), concreto armado (muros en voladizo o con pantalla y contrafuertes), etc.

<sup>&</sup>lt;sup>18</sup>AASHTO LRFD, sección 5.10.3.2

#### 2.2.1.3.9.1. Estribo en voladizo de Hormigón Armado

Este tipo de estribos se los emplea en alturas de 4 a 10 metros.



Figura 2. Estribo en voladizo

Fuente: DISEÑO DE PUENTES Ing. Arturo Rodríguez Serquén

#### 2.2.1.3.10. Cimentación

Está diseñada para soportar todas las cargas permanentes y temporales transmitidas desde la super-estructura.

Se deben realizar estudios de suelos para cada elemento de la subestructura, con el fin de obtener la información necesaria para el diseño y la construcción de cimentaciones. La extensión de los estudios se basa en las condiciones sub-superficiales, el tipo de estructura y los requisitos del proyecto.

#### 2.2.1.4. Diseño sísmico de puentes

#### 2.2.1.4.1. Coeficiente de Aceleración "Z"

El valor de Z, representa la aceleración máxima en roca esperada para el sismo de diseño, expresada como fracción de la aceleración de la gravedad. (NEC-SE-DS). lugar en donde se construirá la estructura establecerá una de las seis zonas sísmicas del Ecuador, definidas por el valor del factor de zona Z, conforme al mapa de la Figura 3.



Figura 3. Zonas Sísmicas del Ecuador

Fuente: NEC-SE-DS

| Zona sísmica                           | 1          | Ш    | III  | IV   | V    | VI       |
|----------------------------------------|------------|------|------|------|------|----------|
| Valor factor Z                         | 0.15       | 0.25 | 0.30 | 0.35 | 0.40 | ≥ 0.50   |
| Caracterización del<br>peligro sísmico | Intermedia | Alta | Alta | Alta | Alta | Muy alta |

#### Tabla 8. Valores del factor Z en función de la zona sísmica adoptada

#### Fuente: NEC-SE-DS

#### 2.2.1.4.2. Tipo de suelo<sup>19</sup>

La Norma Ecuatoriana de la construcción establece que el espectro de respuesta elástico de aceleraciones expresado como fracción de la celeración de la gravedad Sa, para el nivel del sismo de diseño, se proporciona en la consistente con el factor de zona sísmica Z, el tipo de suelo del sitio de emplazamiento de la estructura y considerando los valores de los coeficiente de amplificación o de amplificación de suelo. Dicho espectro, que obedece a una fracción de amortiguamiento respecto al crítico de 0.05, se obtiene mediante las siguientes ecuaciones, válidas para periodos de vibración estructural T pertenecientes a 2 rangos:

 $Sa = n Z Fa para \quad 0 \le T \le Tc$  $Sa = n Z Fa \left(\frac{T_c}{T}\right)^r para \quad T > Tc$ 

Donde r=1, para tipo de suelo A, B o C y r=1.5, para tipo de suelo D o E.

Asimismo, de los análisis de las ordenadas de los espectros de peligro uniforme en roca para el 10% de probabilidad de excedencia en 50 años (Periodo de retorno

<sup>&</sup>lt;sup>19</sup> NEC-SE-DS

475 años) y, normalizándolos para la aceleración máxima en el terreno, Z, se definieron los valores de la relación de amplificación espectral, n (Sa/Z, en roca), que varían dependiendo de la región del Ecuador, adoptando los siguientes valores: n = 1.8 (Provincias de la Costa), 2.48 (Provincias de la Sierra), 2.6 (Provincias del Oriente).

Los límites para el periodo de vibración Tc y TL (éste último a ser utilizado para la definición de espectro de respuesta en desplazamientos) se obtienen de las siguientes expresiones:

$$T_{\sigma} = 0.55 F_s \frac{F_d}{F_a}$$
$$T_L = 2.4 F_s$$

No obstante, para los perfiles de suelo tipo D y E, los valores de T<sub>L</sub> se limitarán a un valor máximo de 4 segundos. Para análisis dinámico y, únicamente para evaluar la respuesta de los modos de vibración diferentes al modo fundamental, el valor de Sa debe evaluarse mediante la siguiente expresión, para valores de periodo de vibración menores a To:

$$Sa = Z Fa\left(1 + (n-1)\frac{T}{T_0}\right) \quad para \quad T \le T_0$$
$$T_0 = 0.10 F_S \frac{F_d}{F_0}$$

Mientras se ejecutan los estudios de microzonificación sísmica, pueden utilizarse los requisitos establecidos en esta sección, los cuales son requisitos mínimos y no substituyen los estudios detallados de sitio, los cuales son necesarios para el caso de proyectos de infraestructura importante y otros proyectos distintos a los de edificación.

| Tipo de<br>perfil | Descripción                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Definición                                                                                                                                                           |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| A                 | Perfil de roca competente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $Vs \geq 1500 \ m/s$                                                                                                                                                 |  |  |  |  |
| в                 | Perfil de roca de rigidez media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1500 m/s $>$ Vs $\geq$ 760 m/s                                                                                                                                       |  |  |  |  |
| C                 | Perfiles de suelos muy densos o roca<br>blanda, que cumplan con el criterio de<br>velocidad de la onda de cortante, o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 760 m/s > Vs $\geq$ 360 m/s                                                                                                                                          |  |  |  |  |
| č                 | perfiles de suelos muy densos o roca<br>blanda, que cumplan con cualquiera<br>de los dos criterios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\label{eq:N} \begin{array}{l} N \geq 50.0 \\ Su \geq 100 \ \text{KPa} \ (\approx 1 \ \text{kgf/cm2}) \end{array}$                                                   |  |  |  |  |
|                   | Perfiles de suelos rígidos que<br>cumplan con el criterio de velocidad<br>de la onda de cortante, o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $360 \ \mathrm{m/s} > \mathrm{Vs} \geq 180 \ \mathrm{m/s}$                                                                                                           |  |  |  |  |
| D                 | perfiles de suelos rígidos que<br>cumplan cualquiera de las dos<br>condiciones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 50 > N \geq 15.0 \\ 100 \ \text{kPa} \ (\approx 1 \ \text{kgf/cm2}) > \text{Su} \geq 50 \ \text{kPa} \ (\approx 0.5 \ \text{kgf7cm2}) \end{array}$ |  |  |  |  |
| -                 | Perfil que cumpla el criterio de<br>velocidad de la onda de cortante, o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $Vs \le 180 \text{ m/s}$                                                                                                                                             |  |  |  |  |
| Е                 | perfil que contiene un espesor total H<br>mayor de 3 m de arcillas blandas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{l} {\rm IP} > 20 \\ {\rm w} \geq 40\% \\ {\rm Su} < 50 \ {\rm kPa} \ ({\approx}0.50 \ {\rm kfg7cm2}) \end{array}$                                     |  |  |  |  |
| F                 | Su < 50 kPa (≈0.50 kfg7cm2)         Los perfiles de suelo tipo F requieren una evaluación realizada explícitamente en el sitio por un ingeniero geotecnista (Ver 2.5.4.9). Se contemplan las siguientes subclases:         F1—Suelos susceptibles a la falla o colapso causado por la excitación sísmica, tales como; suelos licuables, arcillas sensitivas, suelos dispersivos o débilmente cementados, etc.         F2—Turba y arcillas orgánicas y muy orgánicas (H > 3m para turba o arcillas orgánicas y muy orgánicas).         F3—Arcillas de muy alta plasticidad (H > 7.5 m con índice de Plasticidad IP > 75)         F4—Perfiles de gran espesor de arcillas de rigidez mediana a blanda (H > 30m)         F5—Suelos con contrastes de impedancia a ocurriendo dentro de los primeros 30 m superiores del perfil de subsuelo, incluyendo contactos entre suelos blandos y roca, con variaciones bruscas de velocidades de ondas de corte.         F6—Rellenos colocados sin control ingenieril |                                                                                                                                                                      |  |  |  |  |

Tabla 9. Clasificación de los perfiles de suelo

Fuente: NEC-SE-DS

Coeficientes de amplificación o desamplificación dinámica de perfiles de suelo fa, fd y fs:

En la siguiente tabla se presentan los valores del coeficiente Fa que amplifica las ordenadas del espectro de respuesta elástico de aceleraciones para diseño en roca, tomando en cuenta los efectos de sitio.

|                                | Zona<br>Sísmica                                   | Ι        | п        | ш        | IV       | V        | VI       |
|--------------------------------|---------------------------------------------------|----------|----------|----------|----------|----------|----------|
| Tipo de perfil<br>del subsuelo | Valor Z<br>(Aceleración<br>esperada en<br>roca, g | 0.15     | 0.25     | 0.30     | 0.35     | 0.40     | ≥ 0.50   |
| Α                              |                                                   | 0.9      | 0.9      | 0.9      | 0.9      | 0.9      | 0.9      |
| В                              |                                                   | 1        | 1        | 1        | 1        | 1        | 1        |
| C                              |                                                   | 1.4      | 1.3      | 1.25     | 1.23     | 1.2      | 1.18     |
| D                              |                                                   | 1.6      | 1.4      | 1.3      | 1.25     | 1.2      | 1.15     |
| E                              |                                                   | 1.8      | 1.5      | 1.4      | 1.28     | 1.15     | 1.05     |
| F                              |                                                   | Ver nota |

Tabla 10. Tipo de suelo y Factores de sitio Fa

#### Fuente: NEC-SE-DS

En la Tabla 11 se presentan los valores del coeficiente **Fd** que amplifica las ordenadas del espectro elástico de respuesta de desplazamientos para diseño en roca, considerando los efectos de sitio.

|                                | Zona Sísmica                                      | Ι        | П        | Ш        | IV       | V        | VI       |
|--------------------------------|---------------------------------------------------|----------|----------|----------|----------|----------|----------|
| Tipo de perfil<br>del subsuelo | Valor Z<br>(Aceleración<br>esperada en<br>roca, g | 0.15     | 0.25     | 0.30     | 0.35     | 0.40     | ≥0.50    |
| A                              | •                                                 | 0.9      | 0.9      | 0.9      | 0.9      | 0.9      | 0.9      |
| В                              |                                                   | 1        | 1        | 1        | 1        | 1        | 1        |
| C                              |                                                   | 1.6      | 1.5      | 1.4      | 1.35     | 1.3      | 1.25     |
| D                              |                                                   | 1.9      | 1.7      | 1.6      | 1.5      | 1.4      | 1.3      |
| E                              |                                                   | 2.1      | 1.75     | 1.7      | 1.65     | 1.6      | 1.5      |
| F                              |                                                   | Ver nota |

Tabla 11. Tipo de suelo y factores de sitio Fd

#### Fuente: NEC-SE-DS

En la Tabla 12 se presentan los valores del coeficiente **Fs** que consideran el comportamiento no lineal de los suelos, la degradación del periodo del sitio que depende de la intensidad y contenido de frecuencia de la excitación sísmica y los desplazamientos relativos del suelo, para los espectros de aceleraciones y desplazamientos.

|                                | Zona Sísmica                                      | I        | п        | III      | IV       | V        | VI       |
|--------------------------------|---------------------------------------------------|----------|----------|----------|----------|----------|----------|
| Tipo de perfil<br>del subsuelo | Valor Z<br>(Aceleración<br>esperada en<br>roca, g | 0.15     | 0.25     | 0.30     | 0.35     | 0.40     | ≥0.50    |
| A                              |                                                   | 0.75     | 0.75     | 0.75     | 0.75     | 0.75     | 0.75     |
| В                              |                                                   | 0.75     | 0.75     | 0.75     | 0.75     | 0.75     | 0.75     |
| C                              |                                                   | 1        | 1.1      | 1.2      | 1.25     | 1.3      | 1.45     |
| D                              |                                                   | 1.2      | 1.25     | 1.3      | 1.4      | 1.5      | 1.65     |
| E                              |                                                   | 1.5      | 1.6      | 1.7      | 1.8      | 1.9      | 2        |
| F                              |                                                   | Ver nota |

Tabla 12. Factor del comportamiento inelástico del subsuelo Fs

#### Fuente: NEC-SE-DS

Si de estudios de microzonificación sísmica realizados para una región determinada del país, se establecen valores de **Fa**, **Fd**, **Fs** y de **Sa** diferentes a los establecidos en esta sección, se podrán utilizar los valores de los mencionados estudios, prevaleciendo los de este documento como requisito mínimo.

## 2.2.1.4.3. Clasificación de las Estructuras<sup>20</sup>

- **Puentes críticos:** Deben quedar ilesos luego de presenciar un gran sismo.
- Puentes esenciales: Deben quedar ilesos después de presenciar un Sismo.
- Otros puentes

## 2.2.1.4.4. Factor de Modificación de Respuesta<sup>21</sup>

Las fuerzas de diseño sísmico para sub-estructuras y las conexiones entre las partes de la estructura, se determinarán dividiendo las fuerzas resultantes de un análisis elástico por el

<sup>&</sup>lt;sup>20</sup> DISEÑO DE PUENTES CON AASHTO-LRFD 2010. Autor: Ing. Arturo Rodríguez Serquén

<sup>&</sup>lt;sup>21</sup> AASHTO LRFD 2012, Sección 3.10.7.1.

factor de modificación de respuesta  $\mathbf{R}$  apropiado. Si un método de análisis tiempo-historia inelástico es usado, el factor de modificación de respuesta  $\mathbf{R}$  será tomado como 1.0 para toda la sub-estructura y conexiones.

| SUB-ESTRUCTURA                                                       | IMPORTANCIA |          |       |  |  |
|----------------------------------------------------------------------|-------------|----------|-------|--|--|
|                                                                      | CRITICO     | ESENCIAL | OTROS |  |  |
| Pila tipo placa de gran dimension                                    | 1.50        | 1.50     | 2.00  |  |  |
| Pilotes de contreto armado                                           |             |          |       |  |  |
| <ul> <li>Solo pilotes verticales</li> </ul>                          | 1.5         | 2.00     | 3.00  |  |  |
| <ul> <li>Grupo depilotes incluyendo pilote<br/>inclinados</li> </ul> | 1.5         | 1.50     | 2.00  |  |  |
| Columnas individuales                                                | 1.50        | 2.00     | 3.00  |  |  |
| Pilotes de acero o acero compuesto con<br>concreto                   |             |          |       |  |  |
| <ul> <li>Solo nilotes verticales</li> </ul>                          | 1.50        | 3.50     | 5.00  |  |  |
| Grupo depilotes incluyendo pilotes     inclinados                    | 1.50        | 2.00     | 3.00  |  |  |
| Columnas multiples                                                   | 1.50        | 3.50     | 5.00  |  |  |

Tabla 13. Factores de modificación de Respuesta "R" Sub-estructura

| Fuente: A | AASHTO | LRFD 2012 |
|-----------|--------|-----------|
|-----------|--------|-----------|

Tabla 14. Factores de modificación de respuesta "R" Conexiones

| CONEXIONES                                                            | PARA TODAS LAS CATEGORIAS<br>DE IMPORTANCIA |
|-----------------------------------------------------------------------|---------------------------------------------|
| Superestructura a estribo                                             | 0.80                                        |
| Juntas de expansión dentro de la<br>superestructura.                  | 0.80                                        |
| Columnas, pilares o pilotes a las vigas<br>cavezal o superestructura. | 1.00                                        |
| Columnas o pilares a la cimentacion                                   | 1.00                                        |

Fuente: AASHTO LRFD 2012

#### 2.2.1.4.5. Espectro elástico horizontal de diseño en aceleraciones

El espectro de respuesta elástico de aceleraciones expresado como fracción de la aceleración de la gravedad, para el nivel del sismo de diseño. (AASHTO LRFD, sección 3.10.4.1)



Figura 4. Espectro de diseño



#### 2.2.1.4.6. Categoría de diseño Sísmico según AASHTO LRFD

#### Categoría A

- 1. No se especifica un sistema resistente a sismo en particular.
- 2. No requiere análisis de demanda.
- 3. No se requiere verificación de capacidad implícita.
- 4. No se requiere diseño por capacidad.
- Se debe cumplir con los requerimientos mínimos de detalle, referidos a longitud de soportes, fuerza de diseño en las condiciones de superestructura/infraestructura y acero transversal en columnas.
- 6. No se requiere evaluación de potencia de licuación.

#### Categoría B

- 1. Se debe considerar el uso de un sistema resistente a sismo en particular
- 2. Requiere análisis de demanda
- Requiere verificación de capacidad implícita (desplazamiento P-Δ, longitud de soporte)
- Se debe considerar el diseño por capacidad para cortante en la columna, se deben considerar las verificaciones por capacidad para evitar vínculos débiles en el sistema resistente a sismo
- 5. Nivel de detalle acorde a B
- 6. Se debe considerar la evaluación de potencial licuación para ciertas condiciones

#### Categoría C

- 1. Se especifica un sistema resistente a sismo en particular
- 2. Requieren análisis de demanda
- Requieren verificación de capacidad implícita (desplazamiento P-Δ, longitud de soporte)
- 4. Se debe considerar el diseño por capacidad y requerimientos por cortante en la columna.
- 5. Nivel de detalle acorde a C
- 6. Se requiere la evaluación de potencial de licuación.

## Categoría D

- 1. Se especifica en un sistema resistente a sismo en particular
- 2. Requieren análisis de demanda
- Requieren verificación de capacidad basada en el desplazamiento mediante análisis Pushover (desplazamiento P-Δ, longitud de soporte)

- 4. Se debe considerar el diseño por capacidad y requerimientos por cortante en la columna.
- 5. Nivel de detalle acorde a D
- 6. Se requiere la evaluación de potencial de licuación.

## 2.2.1.4.7. Requerimientos mínimos de análisis para Efectos Sísmicos<sup>22</sup>

| Tabla 15. Requerimientos mínimo | s análisis para | efectos | sísmicos |
|---------------------------------|-----------------|---------|----------|
|---------------------------------|-----------------|---------|----------|

|                     |                                    | Multispan Bridges |           |                   |           |                  |           |
|---------------------|------------------------------------|-------------------|-----------|-------------------|-----------|------------------|-----------|
| Seismic Single-Span |                                    | Other Bridges     |           | Essential Bridges |           | Critical Bridges |           |
| Zone                | Bridges                            | regular           | irregular | regular           | irregular | regular          | irregular |
| 1                   | No seismic<br>analysis<br>required | *                 | *         | *                 | *         | *                | *         |
| 2                   |                                    | SM/UL             | SM        | SM/UL             | MM        | MM               | MM        |
| 3                   |                                    | SM/UL             | MM        | MM                | MM        | MM               | TH        |
| 4                   |                                    | SM/UL             | MM        | MM                | MM        | TH               | TH        |

Fuente: AASHTO LRFD (2012)

\*= No se requiere análisis sísmico

UL= Método Elástico de Carga Uniforme

SM= Método Elástico de un modo de vibración

MM= Método Elástico Multi-Modal

TH= Método de análisis con tiempo-historia

<sup>&</sup>lt;sup>22</sup> AASHTO LRFD 2012, sección 4.7.4.3.1

#### **CAPITULO III**

## 3. METODOLOGÍA DE ESTUDIO.

#### **3.1.TIPO DE ESTUDIO.**

Los tipos de investigación utilizados son:

**Investigación Exploratoria.-** Se aplicó este tipo de investigación debido a que el tema elegido ha sido poco explorado y reconocido y por ende es difícil identificar las variables y formular hipótesis precisas.

**Investigación Descriptiva.-** Ha permitido detallar las características fundamentales que contiene el software CSIBRIDGE, mediante el empleo de criterios sistemáticos que permitan conocer el manejo de este programa.

**Investigación Explicativa.-** Ha sido utilizada debido a que fue necesario profundizar en el conocimiento del software, para entender el manejo y poder aplicar en los puentes, alcanzando así una mejora en el tiempo de cálculo de los mismos.

Se realizó un tipo de estudio bibliográfico ya que se determinó fuentes importantes de consulta con son: normas para el diseño y construcción de puentes, especificaciones técnicas, libros, etc.

## 3.2.POBLACIÓN Y MUESTRA.

La población donde se desarrolla la investigación está definida por códigos, normativas, manuales, guías, libros relacionados con el diseño de puentes de hormigón armado y mixtos (tablero de hormigón con vigas metálicas), empleando el software CSIBRIDGE. La muestra de población que se tomará para alcanzar los objetivos, del problema y la hipótesis, serán los siguientes mencionados.

| REFERENCIAS                                                                                    | AUTOR                                                                               |  |  |  |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|
| PUENTES-AASHTO LRFD (2010)                                                                     | Ing. Arturo Rodríguez Serquén                                                       |  |  |  |
| DISEÑO DE SUPERESTRUCTURAS<br>EN PUENTES                                                       | Ing. Jorge Cabanillas Rodríguez.                                                    |  |  |  |
| CONGRESO LATINOAMERICANO<br>EN INGENIERIA CIVIL                                                | JULIACA 2012                                                                        |  |  |  |
| TESIS "MÉTODOS DE ANÁLISIS<br>SÍSMICO DE PUENTES<br>SIMPLEMENTE APOYADOS"                      | CAPT. E. Gudiño Auz Edison<br>Fernando y CAPT. DE E. Ayala<br>Salcedo Fredy Gustavo |  |  |  |
| NORMATIVA                                                                                      |                                                                                     |  |  |  |
| AASHTO LRFD BRIDGE (2012), American Association of State Highway and Transportation Officials  |                                                                                     |  |  |  |
| AASHTO LRFD BRIDGE (2007), American Association of State Highway and Transportation Officials  |                                                                                     |  |  |  |
| NORMA ECUATORIANA VIAL NEVI-12-MTOP, Volumen N°2-LIBRO B<br>NORMA PARA ESTUDIOS Y DISEÑO VIAL. |                                                                                     |  |  |  |
| ANCI/AISC 360-10 American Institute of Steel Construction                                      |                                                                                     |  |  |  |
| NORMA ECUATORIANA DE LA CONSTRUCCIÓN -NEC-SE-DS                                                |                                                                                     |  |  |  |

# Tabla 16.Referencias y normas
# 3.3. OPERACIONALIZACIÓN DE VARIABLES.

Las variables, serán calificadas y cuantificadas de acuerdo al siguiente cuadro.

| VARIABLES                                                                | DEFINICIÓN<br>CONCEPTUAL                                                        | DIMENSIONES                                  | INDICADORES                                 | ÍNDICE                                                             | TÉCNICAS DE<br>RECOPILACIÓN DE<br>INFORMACIÓN                                       | INSTRUMENTO                                             |  |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------|--|
|                                                                          |                                                                                 |                                              | AASHTO                                      |                                                                    |                                                                                     |                                                         |  |
| La ausencia de información<br>confiable acerca de la                     |                                                                                 | Normativas,<br>Códigos y<br>Articulos Afines | Articulos afines                            | artículos de los códigos<br>aplicables en el cálculo               | Observación:<br>Mediante la lectrura<br>comprensiva                                 | Archivos digitales<br>e impresos<br>referentes al tema. |  |
|                                                                          | Es el análisis de la<br>estructura para<br>encontrar el resultado               |                                              | Normativa Ecuatoriana<br>de la Construcción | y                                                                  |                                                                                     |                                                         |  |
| software CSIBRIDGE<br>V15.2                                              | encontrar el resultado<br>correpondiente del<br>cálculo realizado               |                                              | Carga Viva                                  | ¿Cuál es el resultado                                              | Obramasián                                                                          |                                                         |  |
|                                                                          |                                                                                 | Cuantificación<br>de Cargas                  | Carga Muerta                                | de no cuantificar con<br>gran presición los<br>diferentes tipos de | Mediante la<br>cuantificación de<br>cargas de la estructura.                        |                                                         |  |
|                                                                          |                                                                                 |                                              | Sismos                                      | carga?                                                             |                                                                                     |                                                         |  |
|                                                                          |                                                                                 |                                              | eso en el manejo del so                     | ¿Cuáles son los                                                    |                                                                                     |                                                         |  |
|                                                                          |                                                                                 | Cargas de diseño                             | Losas                                       | esfuerzos máximos<br>permitidos para cada<br>uno de los elementos  |                                                                                     | Memoría impresa                                         |  |
| Crear conocimiento<br>fundamentado en normas y<br>de fácil acceso en el  | Software<br>especializado de<br>cálculo en un rango<br>elastico lineal de las   |                                              | Estribos                                    | estructurales'?                                                    | Memoria descriptiva,<br>desarrollo de cálculo<br>de puentes de<br>hormigón armado y |                                                         |  |
| manejo del software<br>CSIBRIDGE V15.2 para la<br>modelación de puentes. | elastico lineal de las<br>estructuras por el<br>método de elementos<br>finitos. | Elementos<br>estructurales                   | Vigas                                       | ¿Cuál sera el mejor                                                | mixtos (Tablero de<br>hormigón con vigas<br>metálicas).                             | de computo                                              |  |
|                                                                          |                                                                                 |                                              | Losas                                       | cálculo de los<br>elementos estructurales<br>con el software       |                                                                                     |                                                         |  |
|                                                                          |                                                                                 |                                              | Estribos                                    | especializado.                                                     |                                                                                     | l                                                       |  |

Tabla 17. Variables Dependiente e Independiente

Fuente: Autor

## 3.4. PROCEDIMIENTOS

Procedimiento a seguir en la presente investigación



## 1. Acumulación de referencias.

Recolección de información bibliográfica basada en referencias que permita sustentar el trabajo de investigación, para lo cual se acudió a: manuales, tutoriales, apuntes y artículos referentes al manejo del software CSIBRIDGE V15.2 VERSION EVALUACIÓN, además se realizó la respectiva consulta sobre normas, especificaciones técnicas y libros empleados para el diseño, análisis y construcción de puentes.

Este proceso fue realizado teniendo en cuenta el plan de trabajo para evitar el exceso de información no deseada.

## 2. Selección de referencias

Determinación de la bibliografía a ser utilizada dentro de la investigación con una lectura rápida de cada una de las referencias, para poder determinar si es útil o no la información, quedando solo la información que se empleara específicamente en el trabajo.

## 3. Incorporación de referencias al plan de trabajo:

Mediante un proceso sistemático se colocaron las referencias útiles para cada parte del trabajo, luego se procederá al desarrollo de la investigación.

## 4. Fichado

Se procedió a llevar las referencias al contenido ya sea de forma directa, indirecta, comentario o un resumen de la misma.

## 5. Redacción

Se realizó un análisis e interpretar el proceso y resultado obtenido de la modelación de puentes de: hormigón armado y mixtos (tablero de hormigón con vigas metálicas) en el software CSIBRIDGE V15.2 VERSION EVALUACIÓN.

Dentro de la redacción en el marco teórico se mencionó al autor de cuya información se está utilizando, complementando con las fichas de referencia creadas anteriormente.

#### 6. Confrontación y verificación.

Se procedió a revisar todo el trabajo de forma detallada de pronto exista alguna falla para poder corregirla antes de su presentación.

## 7. Correcciones y revisiones finales:

Se realizó el desarrollo del informe final o tesis ya corregido en esta fase se procede a elaborar el informe final de la investigación.

## 3.5. PROCESAMIENTO Y ANÁLISIS.

Dentro del procesamiento y análisis se realiza el cálculo manual y la modelación en el software CSIBRIDGE V15.2 VERSION EVALUACION para un puente de hormigón y un mixto (Tablero de hormigón sobre vigas metálicas)

# 3.5.1. Diseño de la súper estructura del puente de Hormigón calculo manual

## 3.5.1.1. Diseño del tablero

Para el diseño de la losa de hormigón Armado se utilizó el Método Elástico Aproximado (especificado en el artículo 4.6.2.1 de la Norma AASTHO LRFD), Método Refinado (especificado en el artículo 4.6.3.2 de la Norma AASTHO LRFD), o el Método Empírico (especificado en el artículo 9.7.2 de la Norma AASTHO LRFD), pueden ser utilizados para realizar el diseño de losas de hormigón Armado.

El método Elástico Aproximado, conocido también como método de las Franjas, simula franjas que van de un lado a otro del tablero, modelándolas como vigas simplemente apoyadas. Este método corresponde a un método similar utilizado en la Norma AASTHO STANDARD.

El diseño del tablero se realizará en hormigón armado F'c=280 kg/cm<sup>2</sup>, con armadura perpendicular y transversal al tráfico y malla electro soldada para la contracción y dilatación de temperatura.

Carga Viva (AASHTO, sección 3.4), se empleará el peso del Camión tipo HS 20-44, tiene un peso de 3,63(T) en el eje delantero y de 14,52(T) en cada uno de los ejes posteriores y es el que se ocupa en nuestro país, cuyo peso es 7,27 Ton/m2 por eje.

## Calculo del tablero

|                  |                 |         | 2.5            | 9,3 m       |           |            |             |
|------------------|-----------------|---------|----------------|-------------|-----------|------------|-------------|
|                  |                 |         |                |             | 10.00     |            |             |
|                  |                 |         | 1,2 m 2,3 m    | 2,3 m       | 2,3 m     | 1,2 m      |             |
|                  |                 |         |                |             |           |            |             |
|                  |                 |         |                |             | 12        | 0.2m       |             |
|                  |                 |         | 0.6 m          |             | -         |            |             |
|                  |                 |         |                | 1           |           |            |             |
|                  |                 |         | 2820           | i and       | -         |            |             |
|                  |                 | 0,18 m  |                |             |           |            |             |
|                  |                 |         |                |             |           |            |             |
|                  |                 |         | -in            | يد مليه     |           |            |             |
|                  |                 |         | 0,4 m          | 0,4 m 0,    | 4 m 0,4   | m          |             |
|                  |                 |         |                |             |           |            |             |
|                  |                 |         |                |             |           |            |             |
|                  |                 |         | DATOS          | DEL PUENTE  |           |            | 7           |
|                  | Ancho           | 9.30    | m              | Camion Tipo | 7.27      | Т          |             |
|                  | Longitud        | 22      | m              | R. Hormigon | 280       | Kø/cm2     | -           |
|                  | h               | 40      | cm             | P. Acero    | 4200      | Kg/cm2     |             |
|                  | v<br>tacumida   | 40      | m              | t calc      | 4200      | m m        | 4           |
|                  |                 | 0.18    | III<br>T/m2    | L Calc      | 0.18      | 111<br>T/m | -           |
|                  | r. específico H | 2.4     | 1/m3           | вarandas    | 0.15      | ı/m        | J           |
|                  |                 |         |                |             |           |            |             |
| # VIGAS          | S*              | 1       | 1.9            | 1.9         | 1.9       | 1          | (m)         |
| 4                | S               | 1.2     | 2.3            | 2.3         | 2.3       | 1.2        | 9.30        |
|                  | -               |         |                |             |           | 1          |             |
|                  |                 |         |                |             |           |            |             |
|                  |                 | DATO    | OS VOLADO      |             |           |            |             |
|                  | ACERA           | 2       | BARANDA        | 2           |           |            |             |
|                  | ANCHO           | 0.8     | ALTURA         | 1.1         |           |            |             |
|                  | ESPESOR         | 0.2     | BASE           | 0.2         |           |            |             |
|                  |                 |         | ESPESOR        | 0.2         |           |            |             |
|                  |                 |         |                |             |           |            |             |
|                  |                 |         |                |             |           |            |             |
|                  |                 |         |                | TABLERO     |           |            |             |
|                  |                 |         |                |             |           |            |             |
| CARGA MUERTA     |                 |         |                |             |           |            |             |
| Losa             | 0.432           | T/m2    |                |             |           |            |             |
| Acera            | 0.083           | T/m2    |                |             | _         |            |             |
| Carpeta rodadura | 0.120           | T/m2    | Mcm            | 0.235       | Tm/m2     |            |             |
| baranda          | 0.0161          | T/m2    |                | <u>e</u>    |           |            |             |
| Pcm              | 0.651           | T/m2    |                |             |           | Mu         | 4.375 Tm/m2 |
|                  | 0.031           | .,      |                |             |           |            |             |
|                  | 0.254           | Z=20    | Max            | 1 070       | Tm/m2     |            |             |
| 1                | 0.254           | <u></u> | IVICV          | 1.8/8       | 1111/1112 |            |             |
| t a constat      | 40              | 1       |                |             |           |            |             |
| φ asumido        | 16              |         |                |             |           |            |             |
| d                | 12.2            | cm      |                |             |           |            |             |
| k                | 0.117           |         |                |             |           |            |             |
| q                | 0.126           |         |                |             |           |            |             |
| р                | 0.0084          |         |                |             |           |            |             |
| dcomparacion     | 12.2            | Ok      |                |             |           |            |             |
|                  |                 | -       |                | (cm2)       | #         | Ψ          |             |
|                  |                 |         | 4.0            | (cm2)       | π         | Ψ          | 7           |
|                  |                 |         | As             | 10.25       | 6         | 16         |             |
|                  |                 |         | As real        | 12.06       | Ok        | 1          |             |
|                  |                 |         | As Total       | 265.32      | 132       | 16         |             |
|                  | 87.78           | <=67%   | As reparticion | 8.08        | 5         | 16         |             |
|                  |                 |         | As real        | 10.05       | Ok        |            |             |
|                  |                 |         | As Total       | 93.47       | 47        | 16         | 1           |
|                  |                 |         |                |             |           | 1 -        | <b>_</b>    |
|                  |                 |         |                |             |           |            |             |



3.5.1.2. Diseño de la viga Interior Izquierda

| DATOS                    |      |        |  |  |  |  |  |  |  |
|--------------------------|------|--------|--|--|--|--|--|--|--|
| f´c=                     | 280  | Kg/cm2 |  |  |  |  |  |  |  |
| Fy=                      | 4200 | Kg/cm2 |  |  |  |  |  |  |  |
| Luz del puente           | 22   | m      |  |  |  |  |  |  |  |
| # Vigas                  | 4    | u      |  |  |  |  |  |  |  |
| Carga vehiculo de diseño | 7.27 | Т      |  |  |  |  |  |  |  |
| s=                       | 2.3  | m      |  |  |  |  |  |  |  |
| s*=                      | 1.9  | m      |  |  |  |  |  |  |  |
| b=                       | 0.4  | m      |  |  |  |  |  |  |  |
| t=                       | 0.18 | m      |  |  |  |  |  |  |  |
| Carga Pasamanos          | 0.15 | T/m    |  |  |  |  |  |  |  |
| Ancho acera              | 0.6  | m      |  |  |  |  |  |  |  |
| Espesor acera            | 0.2  | m      |  |  |  |  |  |  |  |
| δha=                     | 2.4  | T/m3   |  |  |  |  |  |  |  |
| δhaceras=                | 2.4  | T/m3   |  |  |  |  |  |  |  |

1 Ancho Efectivo:

|                                             | B<=               | L/4<br>12t+b<br>s |        | 5.5 m<br>2.56 m<br>2.3 m | B=             | 2.3  | m     |
|---------------------------------------------|-------------------|-------------------|--------|--------------------------|----------------|------|-------|
| 2 Peralte Mínimo:                           | hmin=<br>hmin ası | 1.51<br>1.51      | m<br>m |                          |                |      |       |
| 3 Análisis de carga muerta                  |                   |                   |        |                          |                |      |       |
| • Tablero:                                  | Wt=               | 0.994             | T/m    |                          |                |      |       |
| • Capa de rodadura:                         | Wcr=              | 0.276             | T/m    |                          |                |      |       |
|                                             | ∑W=               | 1.27              |        |                          |                |      |       |
| • Peso propio de la viga:                   | Wpp=              | 1.277             | ]T/m   |                          |                |      |       |
| <ul> <li>Peso de los diafragmas:</li> </ul> | Wd=               | 1.21              | T/m    |                          | -              |      |       |
|                                             | M=                | 6.66              | T_m    |                          |                | Asum | Calc  |
|                                             | q=                | 0.11              | T/m    |                          |                | 1.1  | 1.064 |
|                                             | ∑Wcm=             | 2.657             | ]T/m   | └ <br>  _ <b></b>   _    | <u>T_</u><br>= |      |       |
|                                             |                   |                   |        | 0.2                      |                |      |       |

4 Diagrama de carga muerta:



| <u>x</u> | <u>Mcm</u> | <u>Vcm</u> |
|----------|------------|------------|
| 0        | 0          | 29.227     |
| 2.75     | 70.327     | 21.92      |
| 5.5      | 120.561    | 14.614     |
| 8.25     | 150.702    | 7.307      |
| 11       | 160.749    | 0          |

#### 5 Análisis del momento de carga viva

• Factor de distribución transversal

| f= | 1.258 | Trabaja como viga rectangular |
|----|-------|-------------------------------|
|    |       |                               |

Impacto

| lm= | 0.25 |
|-----|------|
|     |      |

| <u>P</u> | <u>P/4</u>       |
|----------|------------------|
| 7.27     | 1.818            |
|          | <u>P</u><br>7.27 |

|          |           |            |              | -                   |           | -          | -            |        |
|----------|-----------|------------|--------------|---------------------|-----------|------------|--------------|--------|
| <u>x</u> | <u>ML</u> | <u>M D</u> | <u>M L+I</u> | Mu                  | <u>lv</u> | <u>V M</u> | <u>V L+I</u> | Vu     |
| 0        | 0         | 0          | 0            | 0                   | 1.254     | 29.227     | 22.466       | 75.849 |
| 2.75     | 33.54     | 70.327     | 53.406       | 181.369             | 1.266     | 21.92      | 19.424       | 61.392 |
| 5.5      | 55.835    | 120.561    | 89.845       | 307.93              | 1.279     | 14.614     | 16.334       | 46.852 |
| 8.25     | 66.883    | 150.702    | 108.869      | <del>378.89</del> 8 | 1.294     | 7.307      | 13.197       | 32.229 |
| 11       | 66.685    | 160.749    | 109.927      | 393.309             | 1.31      | 0          | 9.99         | 17.483 |

## 3.5.2. Resultados de la modelación en el software CSIBRIDGE V15.2

Se realizó la modelación del puente de hormigón calculado anteriormente de forma manual, como se muestra en la siguiente figura.



Figura 5. Modelado del puente de Hormigón

A continuación se presenta el diagrama de momentos de la viga interior con la combinación de resistencia 1, obteniendo un momento máximo de 363.69 Ton-m



Figura 6. Momento último de la viga interior

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

Luego se muestra el diagrama de cortante de la viga interior con la combinación de resistencia 1, obteniendo un cortante máximo de 70.39 Ton



Figura 7. Cortante último de la viga interior

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

Posteriormente se indica un resumen de los diagramas de cortante y momento de la tabla de resultados que nos proporciona el CSIBRIDGE V15.2 VERSION EVALUACION

| TABLA DE DATOS DEL PUENTE DE HORMIGON |           |                  |                  |       |        |        |        |  |  |  |
|---------------------------------------|-----------|------------------|------------------|-------|--------|--------|--------|--|--|--|
| VIGA                                  | DISTANCIA | CASO DE<br>CARGA | TIPO DE<br>CARGA | Р     | V2     | т      | М3     |  |  |  |
| Text                                  | m         | Text             | Text             | Tonf  | Tonf   | Tonf-m | Tonf-m |  |  |  |
| Left Exterior Girder                  | 0         | DEAD             | LinStatic        | 0.07  | -28.13 | -0.78  | -0.07  |  |  |  |
| Left Exterior Girder                  | 5         | DEAD             | LinStatic        | 1.76  | -15.62 | -0.25  | 108.64 |  |  |  |
| Left Exterior Girder                  | 11        | DEAD             | LinStatic        | 1.64  | -0.55  | 0.88   | 157.05 |  |  |  |
| Left Exterior Girder                  | 15        | DEAD             | LinStatic        | 2.12  | 10.55  | -0.06  | 134.65 |  |  |  |
| Left Exterior Girder                  | 22        | DEAD             | LinStatic        | 0.07  | 28.13  | 0.78   | -0.07  |  |  |  |
| Left Exterior Girder                  | 0         | StrlGroup1       | Combination      | -0.39 | -66.80 | -9.13  | -1.46  |  |  |  |
| Left Exterior Girder                  | 5         | StrlGroup1       | Combination      | -3.37 | -42.29 | -5.47  | 125.71 |  |  |  |
| Left Exterior Girder                  | 11        | StrlGroup1       | Combination      | 9.91  | 10.68  | 6.22   | 372.11 |  |  |  |

Tabla 18. Resultados del puente de Hormigón

| VIGA                  | DISTANCIA | CASO DE<br>CARGA | TIPO DE<br>CARGA | Р     | V2     | т      | М3     |
|-----------------------|-----------|------------------|------------------|-------|--------|--------|--------|
| Text                  | m         | Text             | Text             | Tonf  | Tonf   | Tonf-m | Tonf-m |
| Left Exterior Girder  | 15        | StrlGroup1       | Combination      | 9.97  | 29.73  | 3.75   | 320.07 |
| Left Exterior Girder  | 22        | StrlGroup1       | Combination      | 0.51  | 66.80  | 9.13   | 1.46   |
| Left Exterior Girder  | 0         | SerlGroup8       | Combination      | -0.18 | -47.39 | -6.02  | -0.92  |
| Left Exterior Girder  | 5         | SerlGroup8       | Combination      | 6.20  | -17.35 | 1.51   | 183.77 |
| Left Exterior Girder  | 11        | SerlGroup8       | Combination      | 6.72  | 6.25   | 3.98   | 261.32 |
| Left Exterior Girder  | 15        | SerlGroup8       | Combination      | 6.68  | 20.05  | 1.85   | 226.02 |
| Left Exterior Girder  | 22        | SerlGroup8       | Combination      | 0.31  | 47.39  | 6.02   | 0.92   |
| Interior Girder 1     | 0         | DEAD             | LinStatic        | -0.08 | -27.35 | -0.22  | 0.32   |
| Interior Girder 1     | 5         | DEAD             | LinStatic        | -1.76 | -15.20 | -0.19  | 107.36 |
| Interior Girder 1     | 11        | DEAD             | LinStatic        | -1.64 | -0.67  | 0.04   | 155.08 |
| Interior Girder 1     | 15        | DEAD             | LinStatic        | -2.12 | 10.41  | 0.12   | 133.12 |
| Interior Girder 1     | 22        | DEAD             | LinStatic        | -0.08 | 27.35  | 0.22   | 0.32   |
| Interior Girder 1     | 0         | StrlGroup1       | Combination      | -0.59 | -70.39 | -6.77  | -0.60  |
| Interior Girder 1     | 5         | StrlGroup1       | Combination      | 5.34  | -11.89 | 6.08   | 265.69 |
| Interior Girder 1     | 11        | StrlGroup1       | Combination      | 1.34  | 15.65  | 4.15   | 363.69 |
| Interior Girder 1     | 15        | StrlGroup1       | Combination      | 3.55  | 32.64  | 5.61   | 322.53 |
| Interior Girder 1     | 22        | StrlGroup1       | Combination      | 0.40  | 70.39  | 6.77   | 0.60   |
| Interior Girder 1     | 0         | SerlGroup8       | Combination      | -0.36 | -48.47 | -4.03  | -0.08  |
| Interior Girder 1     | 5         | SerlGroup8       | Combination      | 1.51  | -14.96 | 3.27   | 184.97 |
| Interior Girder 1     | 11        | SerlGroup8       | Combination      | -1.04 | 7.77   | 2.09   | 257.61 |
| Interior Girder 1     | 15        | SerlGroup8       | Combination      | 0.36  | 22.11  | 3.26   | 225.75 |
| Interior Girder 1     | 22        | SerlGroup8       | Combination      | 0.19  | 48.47  | 4.03   | 0.08   |
| Interior Girder 2     | 0         | DEAD             | LinStatic        | -0.08 | -27.35 | -0.22  | 0.32   |
| Interior Girder 2     | 5         | DEAD             | LinStatic        | -1.76 | -15.20 | -0.19  | 107.36 |
| Interior Girder 2     | 11        | DEAD             | LinStatic        | -1.64 | -0.67  | 0.04   | 155.08 |
| Interior Girder 2     | 15        | DEAD             | LinStatic        | -2.12 | 10.41  | 0.12   | 133.12 |
| Interior Girder 2     | 22        | DEAD             | LinStatic        | -0.08 | 27.35  | 0.22   | 0.32   |
| Interior Girder 2     | 0         | StrlGroup1       | Combination      | -0.59 | -70.39 | -6.77  | -0.60  |
| Interior Girder 2     | 5         | StrlGroup1       | Combination      | 5.34  | -11.89 | 6.08   | 265.69 |
| Interior Girder 2     | 11        | StrlGroup1       | Combination      | 1.34  | 15.65  | 4.15   | 363.69 |
| Interior Girder 2     | 15        | StrlGroup1       | Combination      | 3.55  | 32.64  | 5.61   | 322.53 |
| Interior Girder 2     | 22        | StrlGroup1       | Combination      | 0.40  | 70.39  | 6.77   | 0.60   |
| Interior Girder 2     | 0         | SerlGroup8       | Combination      | -0.36 | -48.47 | -4.03  | -0.08  |
| Interior Girder 2     | 5         | SerlGroup8       | Combination      | 1.51  | -14.96 | 3.27   | 184.97 |
| Interior Girder 2     | 11        | SerlGroup8       | Combination      | -1.04 | 7.77   | 2.09   | 257.61 |
| Interior Girder 2     | 15        | SerlGroup8       | Combination      | 0.36  | 22.11  | 3.26   | 225.75 |
| Interior Girder 2     | 22        | SerlGroup8       | Combination      | 0.19  | 48.47  | 4.03   | 0.08   |
| Right Exterior Girder | 0         | DEAD             | LinStatic        | 0.07  | -28.13 | -0.78  | -0.07  |

| VIGA                  | DISTANCIA | CASO DE<br>CARGA | TIPO DE<br>CARGA | Р     | V2     | т      | М3     |
|-----------------------|-----------|------------------|------------------|-------|--------|--------|--------|
| Text                  | m         | Text             | Text             | Tonf  | Tonf   | Tonf-m | Tonf-m |
| Right Exterior Girder | 5         | DEAD             | LinStatic        | 1.76  | -15.62 | -0.25  | 108.64 |
| Right Exterior Girder | 15        | DEAD             | LinStatic        | 2.12  | 10.55  | -0.06  | 134.65 |
| Right Exterior Girder | 22        | DEAD             | LinStatic        | 0.07  | 28.13  | 0.78   | -0.07  |
| Right Exterior Girder | 0         | StrlGroup1       | Combination      | -0.39 | -66.80 | -9.13  | -1.46  |
| Right Exterior Girder | 5         | StrlGroup1       | Combination      | -3.37 | -42.29 | -5.47  | 125.71 |
| Right Exterior Girder | 11        | StrlGroup1       | Combination      | 9.91  | 10.68  | 6.22   | 372.11 |
| Right Exterior Girder | 15        | StrlGroup1       | Combination      | 9.97  | 29.73  | 3.75   | 320.07 |
| Right Exterior Girder | 22        | StrlGroup1       | Combination      | 0.51  | 66.80  | 9.13   | 1.46   |
| Right Exterior Girder | 0         | SerlGroup8       | Combination      | -0.18 | -47.39 | -6.02  | -0.92  |
| Right Exterior Girder | 5         | SerlGroup8       | Combination      | 6.20  | -17.35 | 1.51   | 183.77 |
| Right Exterior Girder | 11        | SerlGroup8       | Combination      | 6.72  | 6.25   | 3.98   | 261.32 |
| Right Exterior Girder | 15        | SerlGroup8       | Combination      | 6.68  | 20.05  | 1.85   | 226.02 |
| Right Exterior Girder | 22        | SerlGroup8       | Combination      | 0.31  | 47.39  | 6.02   | 0.92   |

## Fuente: CSIBRIDGE V15.2 VERSION EVALUACION

# 3.5.3. Diseño de la súper estructura del puente de losa sobre vigas metálicas calculo manual

## 3.5.3.1. Diseño de tablero

Para el diseño de la losa de hormigón Armado se empleó el Método Elástico Aproximado (especificado en el artículo 4.6.2.1 de la Norma AASTHO LRFD).

El diseño del tablero se realizará en hormigón armado F'c=280 kg/cm<sup>2</sup>, con armadura perpendicular y transversal al tráfico

Dentro del diseño de las vigas metálicas se encuentran diseñadas de acuerdo a la norma AISC360-10 y la AASHTO LRFD.

Carga Viva (AASHTO, sección 3.4), se empleará el peso del Camión tipo HS 20-44, tiene un peso de 3,63(T) en el eje delantero y de 14,52(T) en cada uno de los ejes posteriores y es el que se ocupa en nuestro país, cuyo peso es 7,27 Ton/m2 por eje.

#### Calculo del tablero





## 3.5.3.2. Diseño de la viga interior

| DATOS                                                  |                |            |  |  |
|--------------------------------------------------------|----------------|------------|--|--|
| LONG. DEL PUENTE=                                      | 40.00 m        | 4000.00cm  |  |  |
| <i>f</i> ′ <i>c</i> =                                  | 280.00 kg/cm2  |            |  |  |
| Fy =                                                   | 3515.00 kg/cm2 | 351.50 MPa |  |  |
| ANCHO DEL PUENTE =                                     | 7.70 m         | 770.00cm   |  |  |
| ESPESOR DE LA LOSA t =                                 | 0.20 m         | 20.00cm    |  |  |
| NUM. DE VIGAS =                                        | 3              |            |  |  |
| SEPARACION ENTRE VIGAS (S)=                            | 2.75 m         | 275.00cm   |  |  |
| MODULO DE SECCION AL EJE<br>DELANTERO DEL VEHICULO Sx= | 45025.00 cm3   |            |  |  |
| L. ARRIOSTRADA Lb =                                    | 5.00 m         | 500.00cm   |  |  |
| E acero =                                              | 210000.00 MPa  |            |  |  |
| <i>a</i> =                                             | 1.40 m         | 1400.00mm  |  |  |
| tvc =                                                  | 0.07 m         | 7.00cm     |  |  |
| Econcreto=                                             | 24870.06 MPa   |            |  |  |

#### **DIMENSIONAMIENTO DE LA VIGA**



Propiedades geométricas de la viga.

#### ÁREA

 $\begin{aligned} & \text{Å}rea = \left(b_{fc} * t_{fc}\right) + \left(h * t_w\right) + \left(b_{ft} * t_{ft}\right) \\ & \text{Å}rea = (40.00 * 4.38) + (214.00 * 0.80) + (40.00 * 2.50) \\ & \text{\AA}rea = 446.20 \text{ cm}2 \end{aligned}$ 

Ycg

| FIG | A (cm2) | Y (cm) | S (cm)   | Iy (cm4)  | d (cm) | A.d <sup>2</sup> (cm3) |
|-----|---------|--------|----------|-----------|--------|------------------------|
| 1   | 175.00  | 2.19   | 382.81   | 279.13    | 90.62  | 1437239.86             |
| 2   | 171.20  | 111.38 | 19067.40 | 653356.27 | 18.56  | 58992.97               |
| 3   | 100.00  | 219.63 | 21962.50 | 52.08     | 126.81 | 1608153.80             |
|     | 446.20  |        | 41412.71 | 653687.48 |        | 3104386.64             |

$$Ycg = \frac{\sum A_i Y_i}{\sum A_i}$$
  $Ycg = 92.81$  cm

 $Csimple = t_{fc} + \frac{h}{2} + Ycg$ 

C simple = 202.31 cm

#### INERCIA EN X

$$Ixx = \sum \left(\frac{1}{12}base * altura^3 + A * d^2\right)$$
$$Ixx = 3758074.13 \text{ cm4}$$

**INERCIA EN Y**  
$$Iyy = \sum \left(\frac{1}{12}base * altura^{3} + A * d^{2}\right)$$

#### MÓDULO DE SECCION DEL PATIN A COMPRESION (Sxc)

 $Sxc = \frac{Ixx}{csimple}$  $Sxc = \frac{3758074.13}{202.31}$ Sxc = 18575.64 cm3

#### 56

MÓDULO DE SECCION DEL PATIN A TENSION (Sxt)

$$Sxt = \frac{Ixx}{t_{ft} + \frac{h}{2} + Ycg}$$

$$Sxt = \frac{3758074.13}{204.19}$$

$$Sxt = 18405.06 \text{ cm}3$$

CONSTANTE TORSIONAL (J)

$$J = \frac{ht_w^3}{3} + \frac{b_{fc}t_{fc}^3}{3} \left(1 - 0.63\frac{t_{fc}}{b_{fc}}\right) + \frac{b_{ft}t_{ft}^3}{3} \left(1 - 0.63\frac{t_{ft}}{b_{ft}}\right)$$

```
J = 1276.25 \text{ cm}4
```

#### RADIO EFECTIVO DE GIRO PARA PANDEO LATERAL TORSIONAL (rt)

 $rt = b_f c / \sqrt{(12(ho/D + 1/6 a_w h^2/(ho.D)))} \qquad a_w = (h.tw) / (b_f c.t_f c) \le 10 \qquad ho = D - (t_f c/2 + t_f t/2)$ 

aw = 1.71

rt = 10.30 cm

ho = 217.44 cm

PROFUNDIDAD DEL ALMA EN COMPRESION EN EL RANGO ELASTICO (Dc)

 $Dc = \frac{h}{2} + Ycg$ 

Dc = 199.81 cm

CUADRO DE RESUMEN DE LAS PROPIEDADES GEOMETRICAS DE LA VIGA

| AREA (cm <sup>2</sup> ) | 446.20     |
|-------------------------|------------|
| Ycg (cm)                | 92.81      |
| C simple (cm)           | 202.31     |
| Ix (cm4)                | 3758074.13 |
| Sxc (cm3)               | 18575.64   |
| Sxt (cm3)               | 18405.06   |
| J (cm4)                 | 1276.25    |
| rt (cm)                 | 10.30      |
| ho (cm)                 | 217.44     |
| Dc (cm)                 | 199.81     |

### CALCULO DE LA CARGA MUERTA

| 1 Ancho Efectivo:                           | B=         | 2.75         | m           |
|---------------------------------------------|------------|--------------|-------------|
| 3 Análisis de carga muerta                  |            |              |             |
| • Tablero:                                  | Wt=        | 1.32         | T/m         |
| • Capa de rodadura:                         | Wcr=       | 0.33         | T/m         |
|                                             | ΣW=<br>ΣW= | 1.65<br>1650 | T/m<br>kg/m |
| <ul> <li>Peso propio de la viga:</li> </ul> | Wpp=       | 0.410        | T/m         |
|                                             | WT=        | 2.060        | T/m         |

| PESO PROPIO DE LA VIGA | 350.267  | kg/m |
|------------------------|----------|------|
| PESO ARRIOSTRAMIENTOS  | 60       | kg/m |
| Σ                      | 0.410267 | T/m  |

## 4 Diagrama de carga muerta:

2.060 T/m

40 m

| x  | <u>Mcm</u> | <u>Vcm</u> |
|----|------------|------------|
| 0  | 0          | 41.20534   |
| 5  | 180.273    | 30.904005  |
| 10 | 309.04     | 20.60267   |
| 15 | 386.3      | 10.301335  |
| 20 | 412.053    | 0          |

#### 5 Análisis del momento de carga viva

• Factor de distribución transversal

f= 1.504

Impacto

| Long- | 0.7 |
|-------|-----|
| 1111- | 0.2 |

| P    | P    | P/4   |  |
|------|------|-------|--|
| 7.27 | 7.27 | 1.818 |  |

| ×  | ML      | MD      | ML+I    | Mu       | lv    | VM        | VL+I   | Vu      |
|----|---------|---------|---------|----------|-------|-----------|--------|---------|
| 0  | 0       | 0       | 0       | 0        | 1.195 | 41.20534  | 29.855 | 103.753 |
| 5  | 71.705  | 180.273 | 130.328 | 453.415  | 1.208 | 30.904005 | 26.055 | 84.226  |
| 10 | 120.711 | 309.04  | 222.177 | 775.11   | 1.224 | 20.60267  | 22.222 | 64.642  |
| 15 | 147.016 | 386.3   | 274.515 | 963.276  | 1.242 | 10.301335 | 18.308 | 44.916  |
| 20 | 150.621 | 412.053 | 285.956 | 1015.489 | 1.262 | 0         | 14.294 | 25.015  |

#### 1. Verificación por flexión.

2.1.Para fluencia en el patín de compresión

$$M_n = S_{xt} R_e F_{yt}$$

Re:Es un factor de las trabes híbridas dado en el apéndice G2 del manual LRFD. Se debe tomar igual a 1.0 para trabes no híbridas. 1.00 Re:

> Mn = 64693789.69 kg-cm Mn = 646.94 T-m

$$M_{u} = \phi_{b} M_{n}, \text{ Con } \phi_{b} = 0.9 \qquad \qquad M_{u} > Mservicio$$

$$M_{u} = 582.24 \text{ T-m} \qquad 582.24 \text{ T-m} > 428.46 \text{ T-m}$$

$$Ok$$

2.2. Por el pandeo del patín de compresión.

λ=

$$\lambda = \frac{Lb}{r_t} \qquad \lambda_p = 1,76 \sqrt{\frac{E}{F_{yf}}} \qquad \lambda_r = 4,44 \sqrt{\frac{E}{F_{yf}}} \qquad \lambda \le \lambda_p$$

$$= 48.54 \qquad \lambda_p = 43.02 \qquad \lambda_r = 108.53 \qquad \underbrace{Fcr=3366.92}_{Cb=1.00}$$

$$R_{PG} = 1 - \frac{a_r}{1200+300a_r} \left(\frac{h_c}{t_w} - 5,70\sqrt{\frac{E}{F_{cr}}}\right) \le 1.0 \qquad a_r = Aw/Ac$$

$$R_{PG} = 0.87 \qquad \le 1.00 \qquad ar = 1.71$$

$$Ok$$

| M <sub>n</sub> -S <sub>xc</sub> RpGR <sub>e</sub> r <sub>cr</sub> | $M_u = \psi_b M_n$ , Con $\psi_b = 0.9$ | $M_u > Mservici$  | 10    |
|-------------------------------------------------------------------|-----------------------------------------|-------------------|-------|
| Mn = 56849465.23 kg-cm                                            | Mu = 511.65 T-m                         | 511.65 T-m 428.46 | i T-m |
| Mn = 568.49  T-m                                                  |                                         | Ok                |       |

| <i>PPv=Ag.</i> (7850 <i>kg/m</i> ) |                |                  |  |
|------------------------------------|----------------|------------------|--|
| PESO PROPIO DE LA VIGA             | 350.27 kg/m    |                  |  |
| PESO ARRIOSTRAMIENTOS              | 60.00 kg/m     |                  |  |
| PESO DEL TABLERO                   | 1650.00 kg/m   | qu = 2.14 T/m    |  |
| TOTAL                              | = 2060.27 kg/m | Mu = 428.46  T-m |  |

## 2. Verificación por cortante.

do 1400.00

Cv

Vu = 67.89 T

AASHTO artículo 6.10.7.3.2 exige que se cumpla la siguiente condición para la distancia entre ati. 136.77

## 3. Cálculo del momento plástico.



#### CARGA EN EL PATIN DE TENSION

 $Pt = A_{ft} * F_{yt}$ Pt = 615125.00 kg Pt = 615.13 T

EJE NEUTRO PLASTICO

$$\bar{Y} = \frac{t_{fc}}{2} \left[ \frac{P_{W} + Pt - Ps}{Pc} + 1 \right] \leq t_{fc}$$
$$\tilde{\mathbf{Y}} = 0.92 \text{ cm} \leq 2.50$$
$$Ok$$

#### CARGA EN EL CONCRETO

 $Ps = 0,85f'_{c} * be * tlo$  Ps = 1309000.00 kgPs = 1309.00 T

be = 275.00 cm

#### CARGA EN EL ALMA

 $Pw = A_w * F_{yw}$ Pw = 601768.00 kg Pw = 601.77 T

#### CARGA EN EL PATIN DE COMPRESION

 $Pc = A_{fc} * F_{yc}$ Pc = 351500.00 kg Pc = 351.50 T

#### **Determinacion del momento Plastico**

 $ds = \frac{tlo}{2} + tvc + \overline{Y}$ ds = 17.92 cm

 $dw = \frac{h}{2} + t_{fc} - \overline{Y}$ dw = 108.58 cm

$$dt = \frac{t_{ft}}{2} + h + t_{fc} - \overline{Y}$$
  
dt = 217.77 cm

*Mp* ≥ *Mservicio* 2229.86 ≥ 1015.49 Ok

 $Mp = \frac{Pc}{2t_{fc}} \left[ \overline{Y}^2 + \left( t_{fc} - \overline{Y} \right)^2 \right] + Ps * ds + Pw * dw + Pt * dt$ Mp = 2229.86 T-m

# 4. Diseño de los Diafragmas

| CARGA DE VIENTO |        |      |  |
|-----------------|--------|------|--|
| Vo=             | 13.2   | Km/h |  |
| V10=            | 160    | Km/h |  |
| VB=             | 160    | Km/h |  |
| Z=              | 30000  | m    |  |
| Zo=             | 70     | mm   |  |
| VDZ=            | 200.00 | Km/h |  |

| PRESIONES DE VIENTO |                 |               |  |
|---------------------|-----------------|---------------|--|
| PB=                 | 0.0024          | Мра           |  |
| PD=                 | 0.003749816     | Мра           |  |
| PD=                 | 3.75            | KN            |  |
| H=                  | Altura de la su | perestructura |  |
| H=                  | 5.00            | m             |  |

$$w = P_D * H$$
  
W= 18.75 KN/m

Fuerza factorizada de viento actuante sobre el ala inferior

La norma AASHTO en la tabla 3.4.1 recomienda un factor para el viento Y=1.4

$$W_{bf} = \frac{\gamma * P_D * h}{2}$$

Wbf= 7.22 KN/m

Fuerza de viento actuante sobre el ala superior

$$W_{tf} = \gamma * P_D * \left(H - \frac{h}{2}\right)$$
  
Wtf= 19.03 KN/m

Fuerza actuante en el arrastramiento inferior

$$F_{bf} = W_{bf} * Lb$$
  
Fbf= 36.09 KN

Fuerza actuante en las diagonales

$$F_{d} = \frac{F_{tf}}{\cos \emptyset}$$

$$F_{tf} = W_{tf*Lb}$$
Ftf= 95.16
Fd= 134.57 KN

#### Diseño del difragma inferior

Se ensaya con dos de 90x90x8mm Acero A36 Fy=2530kg/cm2

| As=   | 2778.00 mm2 | Ix | 2088700.00 mm4 | rx= | 27.42 mm |
|-------|-------------|----|----------------|-----|----------|
| rmin= | 27.42 mm    | Iy | 2494500.00 mm4 | ry= | 29.97 mm |

Chequeo de la esbeltez y relacion ancho del angulo

$$\frac{KL}{r} < 140$$
100.29 < 140.00
Ok
$$\frac{b}{t} < 0.45 \sqrt{\frac{E}{Fy}}$$
11.25 < 12.96
Ok

#### Chequeo de la capcidad axial del angulo La norma AASHTO en el artículo 6.9.4.1 recomienda que se cumpla la siguiente condicion

$$\lambda = \left(\frac{k*S}{r*\pi}\right)^2 * \frac{F_y}{E} < 2,25$$

$$\lambda = 1.23 < 2.25$$

$$Ok$$

$$P_n = 0,66^{\lambda} * A_s * F_y$$

$$Pn = 42197.93 \text{ kg}$$

$$P_r = \emptyset_c * P_n$$

$$Pr = 37978.14 \text{ kg}$$

#### Diseño de las diagonales

Se ensaya con dos de75x75x6mm Acero A36 Fy=2530kg/cm2

| As=   | 1748.00 mm2 | Ix | 912100.00 mm4  | rx= | 22.84 mm |
|-------|-------------|----|----------------|-----|----------|
| rmin= | 22.84 mm    | Iy | 1131500.00 mm4 | ry= | 25.44 mm |

Chequeo de la esbeltez y relacion ancho del angulo

$$\frac{KL}{r} < 140$$
127.83 < 140.00
Ok
$$\frac{b}{t} < 0.45 \sqrt{\frac{B}{Fy}}$$
12.50 < 12.96
Ok

Chequeo de la capcidad axial del angulo La norma AASHTO en el artículo 6.9.4.1 recomienda que se cumpla la siguiente condicion

$$\lambda = \left(\frac{k*S}{r*\pi}\right)^2 * \frac{F_y}{E} < 2,25$$
1.99

κ=

< Ok

$$P_n = 0.66^{\lambda} * A_s * F_y$$

Pn= 19307.04 kg Pn= 189.21 KN

$$P_r = \emptyset_c * P_n$$

$$P_r > F_d$$

Diseño de la placa de soporte acero A36

| $A_g \leq \frac{F_d}{\emptyset * F_y}$ |                   |               |               |
|----------------------------------------|-------------------|---------------|---------------|
| Donde:                                 |                   |               |               |
| $A_g = $ Área total                    | de la secci       | ón requerida  | a.            |
| $F_d = Fuerza$ act                     | uante en la       | a diagonal ca | alculada en : |
| $\emptyset = Factor de re$             | esistencia e      | especificado  | en la tabla   |
| fy=<br>Fd=                             | 2530.00<br>134.57 | kg/cm2<br>KN  | 13731.76      |
| Ag=                                    | 6.03              | cm2           |               |
| se ensaya con una                      | placa de 1        | 00x100x10n    | ım            |
| PL 100x100x10 m                        | m                 |               |               |
| Apl=                                   | 1000.00           | mm2           |               |
| Apl=                                   | 10.00             | cm2           |               |
| $A_{P}$                                | $L > A_g$         |               |               |
| 10.00                                  | ><br>Ok           | 6.03          |               |

kg

## 3.5.4. Resultados de la modelación en el software CSIBRIDGE V15.2

Se realizó la modelación del puente losa sobre vigas metálicas calculado anteriormente de forma manual, como se muestra en la siguiente figura.



Figura 8. Modelado del puente Losa sobre vigas metálicas

A continuación se presenta el diagrama de momentos de la viga interior con la combinación de resistencia 1, obteniendo un momento máximo de 931.15Ton-m



Figura 9. Momento último de la viga interior

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

Luego se muestra el diagrama de cortante de la viga interior con la combinación de resistencia 1, obteniendo un cortante máximo de 99.17 Ton



Figura 10. Cortante ultimo de la viga interior

Posteriormente se indica un resumen de diagramas de cortante y momento de la tabla de resultados que nos proporciona el CSIBRIDGE V15.2 VERSION EVALUACION

| TABLA DE DAT         | TABLA DE DATOS DEL PUENTE DE HORMIGON SOBRE VIGAS METALICAS |               |        |        |        |        |
|----------------------|-------------------------------------------------------------|---------------|--------|--------|--------|--------|
| VIGA                 | DISTANCIA                                                   | CASO DE CARGA | Ρ      | V2     | т      | М3     |
| Text                 | m                                                           | Text          | Tonf   | Tonf   | Tonf-m | Tonf-m |
| Left Exterior Girder | 0                                                           | DEAD          | -1.03  | -31.36 | -0.84  | -2.09  |
| Left Exterior Girder | 10                                                          | DEAD          | 0.77   | -16.20 | -0.84  | 232.32 |
| Left Exterior Girder | 20                                                          | DEAD          | 0.76   | -0.16  | -0.07  | 310.53 |
| Left Exterior Girder | 40                                                          | DEAD          | -1.03  | 31.36  | 0.84   | -2.09  |
| Left Exterior Girder | 0                                                           | StrlGroup1    | 1.40   | -40.69 | 4.02   | 3.46   |
| Left Exterior Girder | 10                                                          | StrlGroup1    | 6.77   | -12.30 | 7.42   | 701.35 |
| Left Exterior Girder | 20                                                          | StrlGroup1    | 5.38   | 17.69  | 7.50   | 921.32 |
| Left Exterior Girder | 30                                                          | StrlGroup1    | 4.04   | 57.16  | 9.74   | 694.83 |
| Left Exterior Girder | 40                                                          | StrlGroup1    | 1.41   | 99.24  | 9.13   | 3.47   |
| Left Exterior Girder | 0                                                           | SerlGroup8    | 0.09   | -44.38 | 1.46   | 0.54   |
| Left Exterior Girder | 10                                                          | SerlGroup8    | 4.23   | -17.90 | 3.82   | 483.63 |
| Left Exterior Girder | 20                                                          | SerlGroup8    | 3.38   | 9.94   | 4.36   | 637.04 |
| Left Exterior Girder | 30                                                          | SerlGroup8    | 2.45   | 38.30  | 5.93   | 479.35 |
| Left Exterior Girder | 40                                                          | SerlGroup8    | 0.10   | 67.97  | 5.69   | 0.54   |
| Interior Girder 1    | 0                                                           | DEAD          | -2.03  | -31.97 | 0.00   | -3.31  |
| Interior Girder 1    | 10                                                          | DEAD          | -10.18 | -16.13 | 0.00   | 237.70 |
| Interior Girder 1    | 25                                                          | DEAD          | -13.34 | 8.17   | 0.00   | 297.23 |
| Interior Girder 1    | 30                                                          | DEAD          | -11.84 | 16.18  | 0.00   | 235.83 |
| Interior Girder 1    | 40                                                          | DEAD          | -2.03  | 31.97  | 0.00   | -3.31  |
| Interior Girder 1    | 0                                                           | StrlGroup1    | -5.931 | -99.17 | -7.98  | -3.59  |
| Interior Girder 1    | 10                                                          | StrlGroup1    | -13.55 | -79.33 | 9.29   | 704.96 |
| Interior Girder 1    | 20                                                          | StrlGroup1    | -18.04 | 19.83  | 7.35   | 931.15 |
| Interior Girder 1    | 30                                                          | StrlGroup1    | -15.80 | 59.29  | 8.43   | 699.75 |
| Interior Girder 1    | 40                                                          | StrlGroup1    | -2.19  | 99.17  | 7.98   | -3.59  |
| Interior Girder 1    | 0                                                           | SerlGroup8    | -2.54  | -67.79 | 4.56   | -4.12  |
| Interior Girder 1    | 10                                                          | SerlGroup8    | -14.73 | -17.08 | 5.31   | 487.46 |
| Interior Girder 1    | 20                                                          | SerlGroup8    | -19.55 | 11.06  | 4.20   | 645.36 |
| Interior Girder 1    | 30                                                          | SerlGroup8    | -17.09 | 39.51  | 4.82   | 483.86 |

| Tabla 19. Resultados | del puente Mixto |
|----------------------|------------------|
|----------------------|------------------|

| VIGA                         | DISTANCIA | CASO DE CARGA | Ρ     | V2     | Т      | M3     |
|------------------------------|-----------|---------------|-------|--------|--------|--------|
| Text                         | m         | Text          | Tonf  | Tonf   | Tonf-m | Tonf-m |
| Interior Girder 1            | 40        | SerlGroup8    | -2.54 | 67.79  | 4.56   | -4.12  |
| Right Exterior Girder        | 0         | DEAD          | -1.03 | -31.36 | 0.84   | -2.09  |
| <b>Right Exterior Girder</b> | 10        | DEAD          | 0.77  | -16.20 | 0.84   | 232.32 |
| <b>Right Exterior Girder</b> | 20        | DEAD          | 0.76  | -0.16  | 0.07   | 310.53 |
| <b>Right Exterior Girder</b> | 30        | DEAD          | 0.20  | 15.88  | -0.65  | 230.78 |
| <b>Right Exterior Girder</b> | 40        | DEAD          | -1.03 | 31.36  | -0.84  | -2.09  |
| <b>Right Exterior Girder</b> | 0         | StrlGroup1    | 1.41  | -99.24 | 9.13   | 3.47   |
| <b>Right Exterior Girder</b> | 10        | StrlGroup1    | 6.77  | -12.30 | 7.70   | 701.35 |
| Right Exterior Girder        | 20        | StrlGroup1    | 5.38  | 17.69  | 5.10   | 921.32 |
| <b>Right Exterior Girder</b> | 30        | StrlGroup1    | 4.04  | 57.16  | 5.20   | 694.83 |
| <b>Right Exterior Girder</b> | 40        | StrlGroup1    | 1.41  | 99.24  | 4.03   | 3.47   |
| <b>Right Exterior Girder</b> | 0         | SerlGroup8    | 0.10  | -67.97 | 5.69   | 0.54   |
| <b>Right Exterior Girder</b> | 10        | SerlGroup8    | 4.23  | -17.90 | 4.48   | 483.63 |
| Right Exterior Girder        | 20        | SerlGroup8    | 3.38  | 9.94   | 2.70   | 637.04 |
| Right Exterior Girder        | 30        | SerlGroup8    | 2.45  | 38.30  | 2.33   | 479.35 |
| Right Exterior Girder        | 40        | SerlGroup8    | 0.10  | 67.97  | 1.47   | 0.54   |

## **CAPITULO IV**

## 4. RESULTADOS

El presente capítulo tiene como objetivo la inclusión de una guía con procedimientos y recomendaciones para el diseño y el cálculo estructural de los puentes en Ecuador en el software CSI BRIDGE VERSIÓN EVALUACIÓN. Los puentes en Ecuador, se diseñarán de acuerdo a las disposiciones contenidas en AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, y el MTOP (NEVI 12) la que ha establecido a lo largo de los años, una serie de criterios y disposiciones complementarias que se acogen en el presente Capítulo. No obstante lo aquí señalado para el diseño de puentes y estructuras afines, podrán utilizarse análisis racionales alternativos basados en teorías y ensayos aceptados y probados por la práctica profesional.

Si bien el objetivo del capítulo es entregar un apoyo, a los profesionales afines al tema para desarrollar los proyectos estructurales de los puentes de carretera dentro de un estándar mínimo, en ningún caso el contenido de esta sección reemplaza el conocimiento de los principios básicos de la ingeniería y sus técnicas, tampoco el adecuado criterio profesional; por lo tanto, los usuarios de la presente guía de procedimientos y recomendaciones para el diseño y cálculo estructural no están eximidos de la responsabilidad que conlleva la interpretación de un texto a la luz del buen juicio, la experiencia y la responsabilidad profesional.

## 4.1.INTERPRETACIÓN DE INFORMACIÓN.

## 4.1.1. Nudos.

Luego de ingresar las características tanto del puente de hormigón Armado como del Mixto Tablero de hormigón sobre vigas metálicas el software CSIBRIDGE crea automáticamente los nudos en las intersecciones entre objetos estructurales y nudos interiores para garantizar la conectividad de los elementos finitos.



Figura 11. Nudos del Puente de Hormigón y Mixto

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

## 4.1.1.1. Secciones transversales.

Al momento de modelar el puente de Hormigon Armado de 22m de longitud con vigas tipo Te no se requiere definir las dimensiones de las vigas, se las incluyen directo en la seccion transversal, y adicional se ingresar las medidas generales del puente y el software calcula automaticamente el valor de "S" y "S\*" que representan los espaciamientos entre vigas, tambien genera una grafica en la parte superior derecha donde indica la seccion con los valores ingresados.



Figura 12. Sección transversal del puente de Hormigón Armado

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

Para ingresar la seccion transversal del puente Mixto de Hormigon sobre vigas Metalicas de 40m se debe ingresar previamente las secciones transversales de las vigas, si presentan variación en sus dimensiones se debe insertar por tramo los valores generales de la seccion transversal donde el software se encarga de ir enlazando cada tramo y analizarlo como continuo , tambien calcula automaticamente el valor de "S" que representan los espaciamientos al eje de las vigas, generando una grafica en la parte superior derecha donde indica la sección con los valores ingresados.

| e Range Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 12<br>14<br>14    |                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------|-----------------------------------------|
| Section Name V/G (0-5)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Let 21 Marin Marin                      | Fort Charles      | Y L L                                   |
| Section Notes Modily/Show Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Geler Geler 1 Geler 2                   | Geter             | lt⇒×                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Constant or Variable Ginder Specing     | 1                 | X Y Pos                                 |
| Section Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                   | Section is Legal Show Section Detail    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Section Data                            |                   | Girder Output                           |
| Intensions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lites                                   | Volum a           | Made Chan Cides From Outral contract    |
| Outside height (13) 2185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | General Data                            |                   | modely show and er nice output cocaron. |
| 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bridge Section Name                     | SECCION 1         | - Modilu/Show Properties - Units        |
| Top flange width (12) 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Slab Material Property                  | Fc=280 kg/cm2     | Prodept of Kent Tropenses               |
| Con Sarger thickness ( #) 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Number of Interior Girders              | 1                 | Materials Frame Sects Kgt.m.C           |
| for any second s | Total Width                             | 7.7               |                                         |
| Web thickness (tw) 8:000E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Girder Longitudinal Layout              | Along Layout Line |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Constant Girder Spacing                 | Yes               |                                         |
| botom nange width ( 62b ) 14-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Constant Girder Haunch Thickness (t2)   | Yes               |                                         |
| ation Banon Hickness ( th.) 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Constant Girder Frame Section           | Yeo               |                                         |
| Display Cokx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Slab Thickness                          |                   |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Top Slab Thickness (1)                  | 0.2               |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Concrete Haunch + Flange Thickness ((2) | 0.075             |                                         |
| the second secon | Gilber Section risperbes                | 110.000           |                                         |
| Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Circles Madeline In Aver Object Madels  | 10 (0.5)m         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Groen Modeling In Alea Object Models    | 6                 |                                         |
| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Effect Maximum of Operation Data        | riane             |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Files noicontai ciliteristen cata       |                   |                                         |

Figura 13. Sección transversal del puente Mixto

## 4.1.2. Discretización de los elementos

Se debe indicar la longitud en la que se quiere dividir cada elemento, en el caso del puente de Hormigón fue discretizado a cada metro y el CSIBRIDGE automáticamente lo divide y analiza a cada elemento

| Update Bridge Structural Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| -Select Bidgo Digot and Action Bidgo Digot and Action PUENTE HORMGDN PUENTE HORMGDN PUENTE HORMGDN PUENTE HORMGDN PUENTE HORMGDN PUENTE Discretization Infermation Discretization Infermation Discretization Infermation Discretization Infermation Discretization D | Stuctural Model Opines  Update as Spine Model Using Frame Objects  Update as Mere Object Model Preterred Maximum Submeth Size Preterred Maximum Submeth Size |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cancel                                                                                                                                                       |  |

Figura 14. Discretización de elementos

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

## 4.1.3. Objeto puente

El software CSIBRIDGE solicita primero la información y definición de todos los componentes del puente y en la opción Objeto puente constituye el modelo mediante la asignación de todos los parámetros pre-definidos, ubicados en la parte superior derecha, como se muestra a continuación del Puente Mixto de Hormigón sobre vigas metálicas

| infle online urguie         |                                | Layout Line Name                             | Coordinate System                                                   |
|-----------------------------|--------------------------------|----------------------------------------------|---------------------------------------------------------------------|
| PUENTE H. SOBRE VIG ME      | TA                             | LINEA BASE                                   | GLOBAL V Kgf, m, C                                                  |
| efine Bridge Object Referen | ce Line                        |                                              | Modily/Show Assignments                                             |
| Span<br>Label               | Station<br>m                   | Span<br>Type                                 | Spars<br>User Discretization Points                                 |
| Start Abutment              |                                | 0. Start Abutment                            | Abutments<br>Bents                                                  |
| Start Abulment              | 0.                             | Start Abutment                               | Add In-Span Hinges (Expansion Jt:     In-Span Finges (Expansion Jt: |
| Span1                       | 5.                             | Span Segment 1                               | Modily   Superelevation                                             |
| Span2                       | 13.                            | Span Segment 2                               | Prestress Tendons                                                   |
| Span3                       | 27.                            | Span Segment 3                               | Delete Girder Rebar                                                 |
| Span4                       | 35.                            | Span Segment 4                               | Staged Construction Groups                                          |
| Span To End Abutment        | 40.                            | Span Segment 5 to End Abutment               | Line Load Assign                                                    |
| idge Object Plan View (KY)  | n is based on t<br>Projection) | indge section insertion point tollowing spec | ched layout line.                                                   |
| Noth                        |                                |                                              |                                                                     |
|                             |                                |                                              |                                                                     |
|                             |                                |                                              |                                                                     |

Figura 15. Objeto de puente (Bridge Object Model).

## 4.1.4. Cargas de vehículos y Clases de vehículos

CSIBRIDGE posee una extensa biblioteca de vehículos tipo, donde se elige el/los vehículos tipo que representan la carga viva vehicular que soporta el puente, en caso de no existir con las características necesarias el software permite ingresar nuevas cargas, puntuales y uniformes tomando en cuenta que los valores puntuales que se ingresa son por los dos ejes del vehículo , adicional a esto el programa permite añadir una clase de vehículo, el cual abarca a todos los vehículos seleccionados anteriormente y trabaja con la envolvente de los mismos.

En los dos tipos de puentes modelados se utilizó las cargas del vehículo HS-20-44



Figura 16. Vehículo empleado en la modelación

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

## 4.1.5. Casos de carga.

Se india los patrones de carga que van actuar sobre la estructura que posteriormente son definidos, dentro del programa se encuentran los tipos de carga que pueden presentarse en una estructura, también se debe ingresar la carga muerta con un valor de 1, ya que esto permitirá que el software tome en cuenta el peso propio de la estructura dentro del diseño.

Dentro de las dos estructuras modeladas se tomó en cuenta los mismos patrones de carga.



Figura 17. Patrones de carga empleados en la modelación

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

## 4.1.6. Cargas puntuales, lineales y distribuidas

Las cargas exteriores definidas en los patrones de carga excepto la carga muerta se debe ingresar el valor individual, tomando en cuenta si son puntuales, lineales o distribuidas con su respectiva asignación en el Objeto puente para poder observar al aplicación sobre la estructura, a continuación se indica la aplicación de la carga de Asfalto empleada en el puente de Hormigón Armado.



Figura 18.Carga en Asfalto del Puente de Hormigón

#### 4.1.7. Estructuras metálicas

En el diseño del puente Mixto Tablero de Hormigón sobre Vigas Metálicas se obtenía arriostramientos horizontales los cuales deben ser incorporados en la estructura, estos elementos el software CSIBRIDGE no los toma en cuenta dentro del Objeto puente, por ello son incorporados de manera externa al final de toda la modelación mediante el menú "Advanced"



Figura 19. Estructuras metálicas

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

## 4.2. PARÁMETROS A UTILIZAR EN NUESTRO MEDIO.

## 4.2.1. Cargas (AASHTO LRFD-SECCIÓN 3).

Inicialmente la carga muerta que se asume actuará sobre un puente, se determinará en base a un diseño preliminar proveniente de la optimización de la geometría de los elementos de la superestructura y de la infraestructura.

Los demás tipos de cargas que actúan sobre la estructura se regirán por las normativas de AASHTO STANDARD HB-17 (AASHTO LRFD 2010). La filosofía de estas cargas se detalla a continuación.

## Carga Muerta (DC) (AASHTO LRFD-SECCIÓN 3).

Consistirá en el peso permanente de la estructura en su totalidad, incluidas las vigas, losa, barandas, diafragmas, pilas, cabezales, tuberías, luminarias y otros servicios públicos.

## Carga Viva (L) (AASHTO LRFD SECCIÓN 3)

La carga HS20-44, cuando predomine el camión Estándar, será incrementada por un factor de mayoración igual a 1.375. Si predomina la carga distribuida con la concentrada adicional, este factor será igual a 1.25. Esta carga modificada se denomina CAMION-MTOP (antes HS-MOP). La carga HL-93, consiste en la aplicación simultánea del camión estándar HS20-44 y la carga distribuida. Se utilizará solamente para el diseño con la especificación AASHTO-LRFD.



El diseño de los puentes se comprobará, además, con la carga militar alternativa consistente en un camión de dos ejes (Tándem) distanciados 1.20 m entre sí y de 10.8 Ton por eje, contiene estos detalles.



Figura 22. Carga Especial (Tándem).



Impacto (I). (AASHTO LRFD-SECCIÓN 3).

Las cargas vivas serán incrementadas al analizar los elementos estructurales para prevenir los efectos dinámicos, vibratorios y de impacto. Se aplicará el efecto del impacto a la superestructura

 $I = \frac{50}{(3.28 \cdot L + 125)}$ 

 $I = Factor \ de \ Impacto \le 0.30$ 

L=Longitudes de segmento de la luz libre que está sometido a la carga viva que produce los esfuerzos máximos en el elemento (m).

# Fuerza Centrífuga (CF).(AASHTO LRFD-SECCIÓN 3)

Las estructuras sobre curvas se diseñarán considerándolas sometidas a una fuerza horizontal radial igual a un porcentaje de la carga viva, sin impacto en todos los carriles de tránsito, de acuerdo con la siguiente ecuación

 $CF = 0.7863 \cdot V^2/R$ 

CF = La fuerza centrífuga en % de la carga viva sin impacto V = La velocidad de proyecto en Km/h R = El radio de la curva en metros

La fuerza centrífuga estará localizada a 1.80 m. sobre la superficie de rodadura.

## 4.2.2. Combinación de Cargas (AASHTO LRFD-SECCIÓN 3).

Los grupos de combinaciones de cargas, considerando el diseño por cargas de servicio (esfuerzos permisibles) y el diseño por factores de carga (resistencia última) serán obtenidos a través de la fórmula 3-10 y de acuerdo a la Tabla 3.22.1A de la Sección 3.22, AASHTO Standard HB-17, (AASHTO LRFD-SECCIÓN 3).

En el diseño de las estructuras de grandes luces por el método de resistencia última, los factores especificados para este método representan condiciones generales y podrían ser modificados si a juicio del Consultor y el Ingeniero, el caso lo amerite.

# 4.3.HERRAMIENTAS APLICADAS PARA LA MODEACION DE LOS PUENTES CALCULADOS DE FORMA MANUAL

## 4.3.1. Modelado

## 4.3.1.1.Plantillas.

Para la rápida modelación de los puentes de hormigón y Mixto se empleó las plantillas propias del software CSIBRIDGE. Esta opción es bastante útil para comenzar un modelo, eligiendo su longitud y el tipo de sección transversal se crea automáticamente todos los parámetros del puente y posteriormente adaptarlo a las medidas del prediseño

| ick Bridge Template                |                                                                                           |   |  |
|------------------------------------|-------------------------------------------------------------------------------------------|---|--|
| Bridge Data                        |                                                                                           |   |  |
| Span Lengths (Semicolon Separator) | 22. Kgf, m, C                                                                             | • |  |
| Bridge Deck Section Type           | Conc. Box Girder - Ext. Girders Vertical                                                  | • |  |
|                                    | Conc. Box Girder - Ext. Girders Vertical                                                  |   |  |
| (                                  | Conc. Box Girder - Ext. Girders Clipped                                                   | = |  |
|                                    | Conc. Box Girder - Ext. Girders with Hadius<br>Conc. Box Girder - Ext. Girders Sloped Max |   |  |
|                                    | Conc. Fee Beam<br>Conc. Flat Slab                                                         |   |  |
|                                    | Steel Girder                                                                              | * |  |

Figura 23. Diferentes tipos de plantillas que posee el CSI BRIDGE.

## 4.3.1.2. Asistente de creación y edición del modelo

Otra herramienta potente empleada en la modelación de los puentes de Hormigón y Mixto es el "Bridge Wizard" que ayuda a los usuarios en la creación de los modelos con instrucciones y orientación detallada en cada paso.



Figura 24. Asistente de creación y edición de modelos

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

## 4.3.1.3.Combinaciones de carga

El software tiene incorporado todas las combinaciones de carga que posee la norma AASHTO LRFD y además crea la envolvente de cada combinación, dentro de la modelación se empleó la envolvente de la combinación de resistencia1 y de servicio para el chequeo de las deflexiones

| Select Limit States                      | ser Defined Load Combinations  | are to be Generaled |                                                                |                                                                                                                                                   |
|------------------------------------------|--------------------------------|---------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 🔽 Strength I                             | 🖂 Strength II                  | 🗌 Strength III      | ∏ Strength                                                     | N □ Strength V                                                                                                                                    |
| Service I                                | Service II                     | C Service III       | ☐ Service                                                      | v                                                                                                                                                 |
| Extreme Event I                          | Extreme Event II               | Faligue             |                                                                |                                                                                                                                                   |
| Choose Load Cases to<br>Limit State Stre | Jse for Limit State<br>ngth I  |                     | - Load Cases for User De                                       | fined Load Combinations                                                                                                                           |
| Load Case Name                           | Load Case Type Design L        | oad Type            | Load Case Name                                                 | Load Case Type Design Load Type                                                                                                                   |
| MODAL                                    | LinModal                       | >>                  | ACEPA<br>ASFALTO<br>BAPANDA<br>CAPGA MOVIL<br>DEAD<br>PEATONAL | LinStatic DEAD MANUFAC<br>LinStatic DEAD MANUFAC<br>LinStatic DEAD MANUFAC<br>LinStatic DEAD MANUFAC<br>LinStatic DEAD<br>LinStatic PEDESTRIAN LL |
| E Show Only Loa                          | f Cases with Valid Design Load | Types               | Copy                                                           | to Service I 💌                                                                                                                                    |
|                                          |                                |                     | Definition                                                     |                                                                                                                                                   |
|                                          | -                              |                     |                                                                |                                                                                                                                                   |

Figura 25. Combinaciones de carga
#### 4.3.2. Resultados

#### 4.3.2.1.Control de la Deflexion

El software permite observar la deflexión para las distintas cargas aplicadas, y chequear con la combinación de servicio que se encentre dentro del margen permitido por la Norma AASHTO LRFD, para el puente de Hormigón Armado y Mixto Tablero de Hormigón sobre Vigas Metálicas.



Figura 26. Deflexiones máximas.

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

#### 4.3.2.2.Diagramas de Momentos, Cortantes, Fuerza Axial y torsión.

Es posible visualizar los diagramas de momentos flectores, le cortante las fuerzas axiales, torsión a lo largo de todo el puente, para cualquier caso de carga o combinación.



Figura 27. Diagramas de cortante y momento

#### 4.3.2.3. Superficies de influencia

El software permite observar las superficies de influencia de la estructura a acciones móviles para los dos tipos de puentes modelados



Figura 28. Superficies de influencia

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

#### 4.3.2.4. Edición interactiva de datos.

El software contiene tablas con los resultados obtenidos de la estructura los cuales pueden ser importados directamente a Microsoft Excel y Microsoft Access, esta herramienta fue utilizada tanto para el puente de Hormigón como para el puente Mixto Tablero de hormigón sobre vigas que se ven reflejados en los resultados de la modelación.



Figura 29. Edición interactiva de datos.

#### 4.4.LIMITACIONES DEL PROGRAMA.

Las limitaciones observadas durante el manejo del software CSI BRIDGE V15.2 VERSIÓN EVALUACIÓN en la aplicación de puentes de hormigón armado y mixto (Vigas metálicas con tableros de hormigón), se citan las siguientes:

- Cuando se realiza una modelación con vigas T el software no permite evaluar la demanda capacidad de las vigas, esto se logra si se las modela de forma independiente del tablero.
- Con respecto a las vigas metálicas el software evalúa solo a las vigas con alma llena ya que al ingresar vigas con plata-bandas nos indica que no soporta está sección.
- Cuando se modela una pila con apoyos discontinuos y se requiere dividir un tramo por consideraciones de diseño, se crea automáticamente otras pilas y de esta manera altera el comportamiento de la estructura.

# 4.5.METODOLOGÍA QUE UTILIZA EL SOFTWARE.

El software CSIBRIDGE, utiliza el método de elementos finitos (MEF) con la finalidad de calcular con suficiente grado de precisión los valores de las incógnitas de las ecuaciones diferenciales que gobiernan ciertos puntos del dominio de un sistema o estructura continua, creando un modelo matemático del sistema físico o estructura dividido en nudos y elementos finitos, se resuelve el sistema de ecuaciones hallando así los resultados para cada nudo. Los pasos que involucra el método de elementos finitos (MEF) son:

#### 1. El usuario crea el modelo de elementos finitos.

- a) Define la geometría, los nudos y elementos.
- b) Especifica las propiedades de los materiales, las condiciones de carga y las condiciones de contorno.

#### 2. El software o programa de elementos finitos ejecuta el análisis.

- a) Formula el sistema de ecuaciones.
- b) Resuelve el sistema de ecuaciones.

## 3. El programa de elementos finitos reporta los resultados.

- a) Calcula valores para los nudos y elementos (desplazamientos, fuerzas internas, reacciones, etc.)
- b) Procesa adicionalmente los resultados (gráficas, etc.)

# CSIBRIDGE contiene normativas pre cargadas en el software

| Puentes          | C'iBRiDGE | <b>∫</b> @ <b>P</b> 2000 <sup>°</sup> | J'AFE' |
|------------------|-----------|---------------------------------------|--------|
| AASHTO LRFD 2012 | ~         |                                       |        |
| AASHTO LRFD 2007 | ~         |                                       |        |
| AASHTO STD 2002  | ~         |                                       |        |
| CAN/CSA 56-2004  | ~         |                                       |        |
| Eurocode         | ~         |                                       |        |
| IRC 2011         | ~         |                                       |        |
| JTG-D62-2004     | ~         |                                       |        |
| SNiP 2.05.03-84  | ~         |                                       |        |

Figura 30. Normas de diseño para puentes.

Procedimiento de cálculo del software CSIBRIDGE



Figura 31. Flujograma análisis por el Método de Elementos finitos (MEF).

Fuente: Autor

#### 4.6. POTENCIALIZACION DEL PROGRAMA

#### 4.6.1. Información General.

#### 4.6.1.1. Variación de la línea de eje

El software posee plantillas con diferentes variaciones del eje en la dirección "X" y "Y". Cuando el eje se altera, la estructura del puente y su definición paramétrica se actualizan inmediatamente.

| Horizontal Layout Line Data - Quick Start |                                                                       |                                       | )                                         |
|-------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|-------------------------------------------|
| Select a Quick Start Option               |                                                                       |                                       |                                           |
| C Straight                                | Curve Right - Straight                                                |                                       |                                           |
| C Straight - Bend Right                   | Curve Left - Straight                                                 |                                       |                                           |
| C Straight - Bend Left                    | Straight - Curve Right - Straight                                     |                                       |                                           |
| C Straight - Bend Right - Bend Right      | C Straight - Curve Left - Straight                                    |                                       |                                           |
| C Straight - Bend Left - Bend Left        | C Straight - Curve Right - Straight<br>Curve Right - Straight         |                                       |                                           |
| C Curve Right                             | Curve Left - Straight - Curve Left - Straight - Curve Left - Straight |                                       |                                           |
| C Curve Left                              | Straight - Curve Right - Straight     Curve Left - Straight           |                                       |                                           |
| C Straight - Curve Right                  | Bridge Layout Line Data                                               |                                       |                                           |
| C Straight - Curve Left                   | Bridge Layout Line Name     [BLL1     [GL0]                           | nate System<br>BAL                    | Shift Layout Line Units Kip, in, F        |
|                                           |                                                                       |                                       | Coordinates of Initial Station            |
|                                           | Plan View (X-Y Projection)                                            | · · · · · · · · · · · · · · · · · · · | Global X 0.                               |
|                                           |                                                                       | Station                               | Global Y 0.                               |
|                                           |                                                                       | Bearing                               | Global Z 0.                               |
|                                           | North                                                                 | Radius                                |                                           |
|                                           | · · · · · · · · · · · · · · · · · · ·                                 | Grade                                 | Initial and End Station Data              |
|                                           | · · · · ·                                                             | × 509.5469                            | Initial Station (in) 0.                   |
|                                           |                                                                       | Y 585.0314                            | Initial Bearing INSCOULE                  |
|                                           | ΛY                                                                    | Z                                     | Initial Grade in Percent U.               |
|                                           | ×                                                                     |                                       | End Station (in) 1440.                    |
|                                           |                                                                       |                                       | Horizontal Layout Data                    |
|                                           | Developed Elevation View Along Layout Line                            |                                       | Define Horizontal Layout Data Quick Start |
|                                           | ↑ <sup>2</sup> s ••                                                   |                                       | Define Layout Data                        |
|                                           |                                                                       | Refresh Plot                          | Define Vertical Layout Data Quick Stat    |
|                                           |                                                                       | OK Cancel                             |                                           |

Figura 32. Línea de eje

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

#### 4.6.1.2. Secciones paramétricas del tablero.

CSIBRIDGE permite definir paramétricamente todo tipo de secciones de tableros, desde vigas cajón, vigas "T", vigas prefabricadas "I" y "U", vigas metálicas con tablero en hormigón y vigas de sección variable.

| ncrete Box Girders       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                               |                                                                   |                                                                                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
| Ext. Garders Vertical    | E.M. Lunders Sloped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ext. Geders Capped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ext. Geders with Hedus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ext. Geders 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sloped Max                                                      |                                                                   |                                                                                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
| 1                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
|                          | <b>T</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
|                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
| AASHTO - PCI - ASRI      | Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
| Standard                 | Paralogo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
| er Concrete Sections     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
| 1                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>TTTT</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
|                          | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
|                          | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
| l ee bean                | Flat Slab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Precast I Gilder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Precast U Garder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
| el and Concrete Sections | Define Bridge Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ection Data - Steel Girder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Viet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 |                                                                   |                                                                                  |
| IIII                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vian.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 |                                                                   |                                                                                  |
| IIII                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , <u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |                                                                   |                                                                                  |
| Steel Girders            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AND THE REF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 | T i                                                               | тт                                                                               |
| I I I I<br>Steel Girders |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Mage<br>)<br>제 :::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T                                                               | I +                                                               | ΙI                                                                               |
| I I I I<br>Steel Girders |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Math                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ţ                                                               | I '                                                               | ΙI                                                                               |
| I I I I<br>Steel Girders | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ľ<br>Ţ                                                          | I                                                                 | ΙI                                                                               |
| I I I I<br>Steel Girders | 100 miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 | I *                                                               | I I<br>F DoS                                                                     |
| I I I I I                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | All ST Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12<br>144<br>12<br>144<br>12<br>144<br>12<br>144<br>12<br>144<br>12<br>144<br>12<br>144<br>12<br>144<br>12<br>144<br>12<br>144<br>12<br>144<br>12<br>144<br>15<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 | I *                                                               | I I                                                                              |
| I I I I<br>Steel Girders | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Video                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L2<br>JA4<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>St |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y<br>+<br>×<br>Section is Le                                    | I<br>y<br>gal <u>Sh</u>                                           | I I<br>pr Do S<br>ow Section Detail                                              |
| I I I I<br>Steel Girders |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Viato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L2<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y<br>Y<br>Section is Le                                         | Y<br>sh                                                           | I I<br>I Do S<br>ow Section Detail                                               |
| Steel Giders             | Section Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | All and All an                                                                                                                                                                                                                                       | A Control of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N.t.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                 | Y<br>pal <u>Sh</u>                                                | I I<br>⊮ DoS                                                                     |
| I I I I<br>Steel Girders | Section Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vide<br>All times<br>States<br>Constant of Variable Co<br>Reen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12<br>14<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Velue -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Section is Le                                                   | I +<br>gal Sh<br>show Gieder Force O                              | I I<br>P Do S<br>ow Section Detail<br>httput Locations                           |
| I I I I<br>Steel Girders | Section Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vide<br>All st Performed<br>ST States<br>St States<br>Constant & Vanishing Of<br>Rem<br>ata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Value *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Section is Le                                                   | galShow Gidder Force O                                            | Do S<br>w Section Detail                                                         |
| I I I I<br>Steel Girders | Section Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VLB:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 122<br>144<br>122<br>124<br>122<br>124<br>122<br>124<br>124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Value -<br>BSEC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Section is Le<br>Giffet Output<br>Modify/Shore                  | gal                                                               | □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □                                            |
| I I I I<br>Steel Girders | Section Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VLBP:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12<br>14<br>15<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Velue =<br>858C2<br>4000 <sup>p</sup> si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Section is Le<br>Girder Output<br>Modily/Shore<br>Materials     | J<br>gal Shu<br>Show Gider Face 0<br>«Properties<br>Frame Sect]   | I I<br>vo Section Details<br>tutput Locations<br>Units<br>Kip, in, F             |
| I I I I<br>Steel Girders | - Section Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VLB:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Volue •<br>858C2<br>4009Pii<br>2<br>402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Section is Le<br>Girder Output<br>Modify/Shor<br>Materiat       | gal Show Ginder Force O<br>Phoperfies<br>Frame Sects              | I I<br>p Do S<br>ov Section Detail<br>tutput Locations<br>Units<br>[Kip. in, F   |
| I I I I<br>Steel Girders | Section Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Viela<br>All to the second secon                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Value =<br>858C2<br>4000Pii<br>22<br>432<br>9 Leoot Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Section is Le<br>Modify/<br>Modify/<br>Material                 | I *<br>gal Sh<br>Show Gider Force O<br>*Properties<br>Frame Sects | I I<br>Do S<br>ov Section Detail<br>Mput Locations.<br>Units<br>[Kip, in, F      |
| I I I I                  | Section Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Value •<br>858C2<br>4000Psi<br>2<br>432<br>gLepost Line<br>Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Section is Le<br>Gieder Outpu<br>Modity/Show<br>Materials       | gal<br>show Gider Face 0<br>Properties<br>Frame Sects             | I I<br>P DoS<br>ov Section Details<br>Units<br>[Kip, in, F                       |
| I I I I                  | Sector Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Video.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Value =<br>BSEC2<br>432<br>432<br>432<br>Vee<br>Vee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Section is Le<br>Modify/<br>Modify/<br>Modify/Shor<br>Materials | J *<br>gal                                                        | Do S<br>ov Section Detail<br>htput Location<br>Units<br>[Ep. in, F               |
| I I I I<br>Steel Gides   | Sector Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Volte<br>Arriteries<br>Constant to Vessel<br>Constant to Vessel<br>Constan                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Value         •           BSEC2         4000Pia           2         422           Stagod Line         Yes           Yes         Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Section is Le<br>Girde Output<br>Modify/Show<br>Material        | gal<br>show Gader Force 0<br>«Properies<br><br>Frame Sects        | I I<br>P Do S<br>av Section Detail<br>August Locations.<br>Units<br>[Exp. in, F  |
| I I I I                  | Sector Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Visite<br>Visite<br>Visite<br>Visite<br>Context & visite<br>Context & visite |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Value =<br>BSEC2<br>4000Psi<br>432<br>432<br>432<br>432<br>432<br>432<br>432<br>432<br>432<br>432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Section is La<br>Section is La<br>Modity/Shor<br>Materials      | J *                                                               | Do S<br>av Secion Detail<br>Mput Locations.                                      |
| I I I I                  | - Sector Data<br>General D<br>Biographic<br>San Materia<br>Transition<br>Content of<br>Content                                                           | Visite<br>And Source of Sour                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Value         -           4000°m         -           2         -           4020°m         -           2         -           422         -           Ves         Ves           12         -                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Secton is La<br>Gider Output<br>ModBy/Shor<br>Materials         | Y Show Goder Force O                                              | J Do S<br>ov Section Detail<br>Natural Locations.<br>Units<br>Exp. in, F         |
| Steel Godes              | Sector Data<br>Beneral E<br>Beneral E<br>Bene | View<br>And And And And And And And And And And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Value  SEC2 SEC2 QLayout Live Yes Yes 12 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sector is Le<br>Sector is Le<br>Modify/Shor<br>Material.        | Y<br>show Sider Face D<br>Properties<br>Fram Sects_               | I I<br>F Do S<br>av Section Detail<br>Mpdul Locations.<br>Units<br>Fip. in, F    |
| I I I I                  | Sector Data<br>Bildy Sec<br>Bildy Sector Data<br>Bildy Sec<br>Bildy Sector<br>Bildy Sector<br>Bildy Sector<br>Bildy Sector<br>Bildy Sector<br>Bildy Sector<br>Context of<br>Context of Context of Cont                                                                                                                                                                                                          | View<br>And an analysis of the second s                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Value -<br>BSIC2 -<br>BSIC2 -<br>d000Pis<br>2 Layou Line<br>Vice<br>Vice<br>Vice<br>12 -<br>3 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X<br>X<br>Section is Lis<br>Modity/Shor<br>Materials            | Y<br>Stow Eader Force C<br>Phopenies<br>Frame Sects               | I I<br>P Do S<br>ave Section Detail<br>Maput Locations<br>Units<br>[Ep. in, F    |
| Steed Geders             | Section Date<br>Section Date<br>Se                                                                                                                                                                                                                                                                                                                                 | All and a second                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Value         •           BSEC2         4000Pia           2         432           QLapot Line         Yee           Vee         Yee           12         3           FBIC2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sector is Le<br>Sector is Le<br>Modify/Sec<br>Material.         | y<br>andshow Sider Face D<br>Poperties<br>Frame Sect              | J J<br>J Do S<br>ov Section Detail<br>Maput Locations.<br>Units<br>Exp. in, F    |
| I I I I                  | Sectors D at<br>Sectors D at<br>Beneral D<br>Thinks Control of<br>Control                                                                                                                                                                                                                                                                                    | Content to Vietness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Value         =           BSIC2         -           600Pu         -           602         -           612         -           612         -           612         -           612         -           612         -           748         -           748         -           73         -           758C2         -                                                                                                                                                                                                                                                                                                                         | X<br>X<br>Section is Lis<br>Modity/Shor<br>Materialu            | Y Show Eader Force C                                              | I I<br>P Do S<br>av Section Detail<br>Mpd Locations<br>Units<br>[Ep. in, F       |
| I I I I                  | Sector Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | View                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Value         •           BSEC2         4000Pia           2         432           432         432           Vee         Vee           Vee         Vee           12         3           FBIC2         No                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sector is Le<br>Sector is Le<br>Modify/Shor<br>Material         | y<br>and<br>Show Sider Face D<br>Popelies<br><br>Frame Sects      | J J<br>J Do S<br>ov Section Detail<br>Maput Locations<br>Units<br>Exp. in, F     |
| I I I I                  | - Sector Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aller      Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller     Aller                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Value         =           BSIC2         -           600Pa         -           622         -           91         -           92         -           92         -           92         -           92         -           92         -           92         -           92         -           92         -           92         -           92         -           92         -           93         -           94         -           95         -           94         -           95         -           94         -           95         -           94         -           95         -           94         -           95         - | Section is La<br>Section is La<br>Modify/Stee<br>Materials      | gal<br>Show Bidler Force O<br>Properties<br>Frame Sects           | I I<br>J Do S<br>tor Section Details<br>http://Locations.<br>Units<br>[Ep. in, F |

Figura 33. Secciones paramétricas del tablero

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# 4.6.1.3. Variaciones paramétricas

Especificación de variaciones verticales u horizontales para el alineamiento e inclinación de la sección de los puentes. La definición paramétrica es bastante útil para reducir el tiempo y optimizar el proceso de modelado.



Figura 34. Variaciones Paramétricas

#### 4.6.1.4. Muelles (springs).

Los muelles consisten en elementos de conexión usados para conectar estáticamente nudos de la estructura al suelo, pueden ser de naturaleza lineal o no lineal. Las opciones de modelado avanzado permiten incluir las cimentaciones en la superestructura, incluyendo pilotes y zapatas.



Figura 35. Muelles

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# 4.6.1.5. Evaluación de la súper-estructura.

Permite diseñar y evaluar la demanda capacidad de las vigas, en el caso de la vigas de hormigón les evalúa a flexión y corte y en el caso de las vigas metálicas diseña y evalúa a resistencia y a fatiga de la estructura



Figura 36. Diseño y evaluación de la súper-estructura.

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# 4.6.1.6. Optimización de las vigas metálicas

Esta herramienta tiene como objetivo determinar la acción más adecuada para alcanzar la respuesta estructural deseada.



Figura 37. Optimización de las vigas metálicas

#### 4.6.1.7. Análisis estático no lineal (PUSHOVER).

Las características y funcionalidades de los análisis "PUSHOVER" en CSIBRIDGE incluyen la implementación de la FEMA 356 y la de las rótulas plásticas clásicas o de fibras, basadas en las relaciones de tensión-extensión de los materiales constituyentes. Los elementos de área no lineales permiten al usuario considerar en el análisis "PUSHOVER" el comportamiento plástico de los muros resistentes, losas, chapas de acero y otros elementos finitos de área. Se pueden definir relaciones fuerza-deformación para rótulas de acero y de hormigón armado.



Figura 38. Análisis no lineal (PUSHOVER).

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

#### 4.6.1.8. Análisis dinámico

Los análisis dinámicos de CSIBRIDGE incluyen el cálculo de modos de vibración a través de Ritz o Eigen vectors, análisis de espectros de respuesta y time-history, tanto para comportamiento lineal como no lineal.

# 4.6.1.8.1. Modal.



Figura 39. Análisis (MODAL).

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

El análisis modal por "eigen-vector" encuentra los modos de vibración natural de la estructura y puede utilizarse para una mejor percepción del comportamiento de la misma, y también para la superposición modal de los análisis de espectro de respuesta y "time-history modal". El análisis modal por "ritz-vectors" encuentra los mejores modos de vibración para captar el comportamiento estructural en los análisis de espectro de respuesta y "time-history modal", siendo más eficiente que el análisis por "eigen-vector".

#### 4.6.1.8.2. Análisis por espectro de respuesta

El análisis de espectro de respuesta determina la respuesta estadísticamente más probable de la estructura a un determinado sismo. Este tipo de análisis lineal utiliza los espectros de respuesta basados en los tipos de sismo y condiciones locales. Este método es extremadamente eficiente y considera el comportamiento dinámico de la estructura.

| Load Case Name                             | -Load Case Tune                                        |
|--------------------------------------------|--------------------------------------------------------|
| ACASE2 Set Def Name Modify/                | Show Response Spectrum v Design                        |
| Modal Combination                          | Directional Combination                                |
| © CQC GMC # 1                              | (* SRSS                                                |
| C SBSS                                     | C 09G3                                                 |
| C Absolute                                 | C Absolute                                             |
| C GMC Periodic + Rigid Type SRSS           | Scale Factor                                           |
| C NBC 10 Percent                           |                                                        |
| C Double Sum                               |                                                        |
| N. 10. 10.                                 |                                                        |
| Modal Load Lase Modal Load Case MODAL      |                                                        |
| Use modes itoli his modal coad case [modAL |                                                        |
|                                            |                                                        |
| Loads Applied                              | Response Spectrum AASHTO LRFD 2006 Function Definition |
| Load Type Load Name Function Scale         | Function Damping Ratio                                 |
| Accel U1 VIII I                            | Function Name FUNC1 0.05                               |
| Accel U1 FUNC2 1                           | - Define Exection                                      |
|                                            | Parameters Denne Function Residention                  |
|                                            | Acceleration Coefficient, A U.4 Period Acceleration    |
|                                            | Soil Profile Type III  Add Add                         |
|                                            | 0.8538 0.8 Modfy                                       |
| Show Advanced Load Parameters              | 1. = 0.72<br>1.2 0.6376 Delete                         |
| Other Parameters                           | 1.4 0.5753                                             |
| Model Damoing Constant at 0.05             | 1.8 0.4866                                             |
| Hoda Carping                               | Convert to User Defined                                |
|                                            | ju.v                                                   |
|                                            | Function Graph                                         |
|                                            |                                                        |
|                                            |                                                        |
|                                            |                                                        |
|                                            |                                                        |
|                                            |                                                        |
|                                            |                                                        |
|                                            |                                                        |
|                                            |                                                        |
|                                            |                                                        |
|                                            | Display Graph 0.0.0.0                                  |
|                                            |                                                        |
|                                            | Cancel                                                 |
|                                            |                                                        |

Figura 40.Espectro de repuesta

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# 4.6.1.8.3. Análisis temporal no lineal (TIME HISTORY ANALYSIS)

El análisis "time-history" capta detalladamente la respuesta de la estructura a movimientos basales debidos al sismo y a otros tipos de acciones como: explosiones, equipamientos, viento, olas, etc. Los análisis "time-history" no lineales se pueden encadenar a partir de otros tipos de casos no lineales (incluyendo secuencias constructivas), abordando una amplia gama de aplicaciones prácticas.



Figura 41. Análisis temporal no lineal (TIME HISTORY ANÁLYSIS).

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

#### 4.6.1.9. Análisis de pandeo (BUCKLING).

Los modos de pandeo lineal se pueden obtener para cualquier conjunto de acciones. Los modos de inestabilidad se pueden calcular a partir de la rigidez obtenida al final de análisis no lineales y secuencia constructiva. También es posible realizar análisis no lineales de pandeo considerando grandes deformaciones y no linealidades de los materiales. Se pueden utilizar análisis dinámicos para modelar situaciones de pandeo más complejas, como por ejemplo análisis de pos pandeo.



Figura 42. Análisis de Pandero (BUCKLING).

# **CAPITULO V**

# 5. DISCUSIÓN

Luego de haber desarrollado un cálculo manual con su respectiva modelación en el CSIBRIDGE V15.2 VERSION EVALUACION, de dos tipos de puentes, es decir: de Hormigón Armado y Mixtos Tablero de Hormigón sobre vigas Metálicas se pudo establecer las siguientes comparaciones.

# 5.1. PUENTE DE HORMIGÓN

#### 5.1.1. Comparación de resultados con los Momentos Flexionantes

| COMPARACION DE MOMENTOS FLEXIONANTES DE LA VIGA |                                   |                                    |                   |  |  |  |  |  |  |
|-------------------------------------------------|-----------------------------------|------------------------------------|-------------------|--|--|--|--|--|--|
| Distancia (m)                                   | Momento Calculo<br>manual (Ton-m) | Momento CSIBRIDGE<br>V15.2 (Ton-m) | Error<br>Relativo |  |  |  |  |  |  |
| 11.00                                           | 393.30                            | 363.69                             | 7.5%              |  |  |  |  |  |  |

Tabla 21. Comparación de momentos

## 5.1.2. Comparación de resultados de la fuerza Cortante

Tabla 22. Comparación de Cortante

| COMPARACION DE LA FUERZA CORTANTE VIGA INTERIOR |                                    |                                     |                   |  |  |  |  |  |
|-------------------------------------------------|------------------------------------|-------------------------------------|-------------------|--|--|--|--|--|
| Distancia (m)                                   | Cortante Calculo<br>manual (Ton-m) | Cortante CSIBRIDGE<br>V15.2 (Ton-m) | Error<br>Relativo |  |  |  |  |  |
| 0-22                                            | 75.85                              | 70.39                               | 7.2%              |  |  |  |  |  |

# 5.2.PUENTE MIXTO TABLERO DE HORMIGÓN SOBRE VIGAS METALICAS

#### 5.2.1. Comparación de resultados con los Momentos Flexionantes

| COMPARAC      | COMPARACION DE MOMENTOS FLEXIONANTES DE LA VIGA<br>INTERIOR |                                    |                   |  |  |  |  |  |  |
|---------------|-------------------------------------------------------------|------------------------------------|-------------------|--|--|--|--|--|--|
| Distancia (m) | Momento Calculo<br>manual (Ton-m)                           | Momento CSIBRIDGE<br>V15.2 (Ton-m) | Error<br>Relativo |  |  |  |  |  |  |
| 20.00         | 1015.49                                                     | 931.15                             | 8.3%              |  |  |  |  |  |  |

Tabla 23. Comparación de Momento

#### 5.2.2. Comparación de resultados de la fuerza Cortante

| Tabla | 24. | Comparació | n de | Cortante |
|-------|-----|------------|------|----------|
|-------|-----|------------|------|----------|

| COMPARAG      | CION DE LA FUERZ                   | LA CORTANTE VIGA IN                 | NTERIOR           |
|---------------|------------------------------------|-------------------------------------|-------------------|
| Distancia (m) | Cortante Calculo<br>manual (Ton-m) | Cortante CSIBRIDGE<br>V15.2 (Ton-m) | Error<br>Relativo |
| 0-40          | 103.75                             | 99.17                               | 4.4%              |

En el puente de Hormigón Armado se obtuvo un error relativo con respecto al momento flector de 7.5% y al cortante de 7.2%, mientras que en el puente Mixto (Tablero de Hormigón con Vigas Metálicas) se tiene un error con respecto al momento de 8.3% y al cortante de 4.4%, esto se debe a las consideraciones que se realizan en el cálculo manual, ya que este se analiza de forma general y en tramos con grandes longitudes, generando tal diferencia con respecto a la modelación en el software, que emplea el método de elementos finitos obteniendo resultados más precisos.

#### **CAPITULO VI**

#### 6. CONCLUSIONES Y RECOMENDACIONES

#### 6.1.CONCLUSIONES

- Para el diseño de puentes, el software CSIBRIDGE V15.2 VERSION EVALUACION y el Ecuador emplean los parámetros establecidos en las normas internacionales, AASHTO LRFD BRIDGE y la AISC quienes se encuentran acorde al lugar de origen, ocasionando que las consideraciones de diseño sean diferentes a la situación que se vive en el país.
- Al realizar el cálculo de forma manual y la modelación en el software CSIBRIDGE V15.2 VERSION EVALUACION de los dos tipos de puentes, se determinó que no existe mayor variación en cuanto a diseño, siendo el cálculo del software más preciso debido al uso de elementos finitos y a la discretización de cada elemento.
- Todos los parámetros antes mencionados han permitido obtener una idea general del software CSIBRIDGE V15.2.0 VERSIÓN EVALUACIÓN de manera clara y sencilla.

# **6.2. RECOMENDACIONES**

- Antes de realizar una modelación en el software realizar un pre diseño de la estructura tomando en cuenta los parámetros máximos y mínimos de las normas
- Se sigan creando guías de aprendizaje que sirvan en el manejo de los programas actualizados de la carrera de Ingeniería Civil, lo cual permitirá formar profesionales competitivos.
- Establecer normas específicas para el diseño de puentes en el Ecuador, ya que esto permitirá realizar un análisis, diseño con datos y coeficientes más acertados ya que estos estarán basados en las características propias de la zona.

#### **CAPITULO VII**

#### 7. PROPUESTA

#### 7.1.TITULO DE LA PROPUESTA

"MANUAL PARA MODELAR PUENTES DE HORMIGON ARMADO Y MIXTOS (TABLERO DE HORMIGON CON VIGAS METALICAS), EMPLEANDO EL SOFTWARE CSIBRIDGE V15.2 VERSION EVALUACIÓN"

#### 7.2. INTRODUCCION

CSI BRIDGE es lo último creado en herramientas informáticas para modelar, analizar y diseñar la estructura de un puente, El diseño AASHTO LRFD viene incluido en el programa con sus respectivas combinaciones de carga.

Es un programa versátil y productivo, además permite rapidez y facilidad en el diseño y adaptación del acero a las losas de hormigón, CSIBRIDGE ofrece una selección de plantillas para iniciar rápidamente un nuevo modelo. Esto es un buen punto de partida para la creación de un modelo que posteriormente se puede modificar, también permite a los usuarios editar los datos del modelo en una vista de tabla que simplifica la tarea de hacer cambios en el modelo. Las tablas son fácilmente exportables e importables desde Microsoft Excel y Microsoft Access.

Una vez analizada toda la información recopilada se procedió a poner en práctica estos conocimientos para obtener un manual para modelar puentes de hormigón armado y mixtos (tablero de hormigón con vigas metálicas), empleando el software CSIBRIDGE V15.2 VERSION EVALUACIÓN.

#### 7.3.OBJETIVOS

## 7.3.1. Objetivo General

Elaborar un manual para modelar puentes de hormigón armado y mixtos (tablero de hormigón con vigas metálicas), empleando el software CSIBRIDGE V15.2 VERSIÓN EVALUACIÓN "

# 7.3.2. Objetivos Específicos

- Indicar los comandos que se emplean para modelar puentes de hormigón armado y mixtos (tablero de hormigón con vigas metálicas)
- > Describir de forma clara el funcionamiento de cada uno de los comandos
- > Desarrollar un ejemplo de aplicación del manual

# 7.4. FUNDAMENTACION CIENTIFICA – TECNICA

# 7.4.1. Características del software CSIBRIDGE V15 VERSION EVALUACION .2<sup>23</sup>

**CSIBRIDGE**.- Software integrado para el análisis estructural, sísmico, diseño y evaluación de los puentes.

<sup>&</sup>lt;sup>23</sup>COMPUTERS & STRUCTURES. INC



Figura 43. Presentación del CSIBRIDGE

Fuente: COMPUTERS & STRUCTURES. INC

- Programa enfocado en puentes, emplea el método de elementos finitos con el motor de cálculo del SAP2000; es decir presenta gran flexibilidad para modelar cualquier estructura.
- Contiene las opciones utilizadas en el SAP2000, incluidos los comandos dedicados a puentes.
- Crea automáticamente las combinaciones de carga para el máximo, para el factor mínimo y por ultimo crea para la envolvente.
- Genera transparencia y seguridad al ingeniero diseñador, al poseer los modelos de análisis con recursos a todos los elementos de SAP2000
- Permite modificar de forma genérica los modelos paramétricos y ampliar cualquier elemento finito u otros elementos adicionales

- Presenta un único modelo para todos los análisis y elementos estructurales, es decir; (sub-estructura, súper-estructura, aparatos de apoyo y cimentaciones)
- Creación de modelos de barras, shell o sólidos a partir de las mismas definiciones paramétricas.
- > En la súper-estructura genera de forma automática las mallas.
- Posee plantillas para puentes de voladizos sucesivos y puentes colgantes dando mayor facilidad al modelar.
- En puentes modelados con elementos tipo Shell y sólidos al igual que en el proceso de dimensionamiento de la súper-estructura emplea gran variación en la determinación de los esfuerzos.
- Permite la entrada de cargas paramétricas independientes de los elementos finitos
- Contiene un sin número de vehículos basados en diferentes normativas internacionales para crear las cargas móviles.
- Realiza el cálculo de superficies de influencia en los carriles para obtener las respuestas más desfavorables
- Calcula de forma automática la fuerza centrífuga y de frenado o aceleración.
- Admite variaciones paramétricas en la geometría de la sección transversal del tablero a lo largo de los vanos.

Contiene Bridge Wizard para consulta y edición rápida de todas las propiedades paramétricas del puente.

#### 7.4.1.1. Fiabilidad del Programa

- Realiza un análisis geométrico no lineal
- Muestra elementos sólidos, barras, pretensados y elementos shell no lineales
- Contiene elementos específicos para modelar comportamientos de contacto, rigidez multi-lineal, fricción y aisladores de base
- Excelente en análisis dinámicos, secuencia constructiva, pretensado y secuencia de análisis
- Solvers de 32 y 64 bits con algoritmos de factorización de matrices rápidos y eficientes para modelos de grandes dimensiones

#### 7.4.1.2. Compatibilidad con otros programas y formatos

- > Edición interactiva del modelo a través del Excel y archivos de texto
- Exportación e importación de archivos AutoCAD
- Exportación e importación de archivos IFC
- Importación y cálculo de modelos elaborados en SAP2000
- > Exportación de reportes de cálculo para Word

#### 7.4.1.3. Dimensionamiento de la superestructura y subestructura

- Dimensionamiento de la súper-estructura y sub-estructura a través de las normativas
- Americanas, Europeas, Canadienses, Rusas, Indias, entre otras.
- Creación de combinaciones automáticas basadas en las normativas utilizadas para dimensionamiento

#### 7.4.1.4. Otras herramientas avanzadas

- Optimizador estructural para determinación de las acciones óptimas en la estructura en función de la respuesta deseada
- Acceso a través del API para creación de pre y pos-procesadores

#### 7.5. DESCRIPCION DE LA PROPUESTA

El manual consta de la descripción de los comandos más empleados en el software CSIBRIDGE V15.2 VERSIÓN EVALUACIÓN posteriormente a ello se procede a indicar los pasos a seguir para la modelación y evaluación de un puente de hormigón armado

Mediante el empleo de una plantilla predefinida del software se modela, evalúa y optimiza un puente mixto (tablero de hormigón con vigas metálicas)

Además se crea una animación con el vehículo en movimiento y se indica de forma secuencial el diseño a sismo, el cual es aplicable para todo tipo de puentes.

Finalmente para mayor entendimiento se realiza la modelación de la superestructura del puente Matus-Aulabug ubicado en el cantón Penipe, empleando el software CSIBRIDGE V15.2 VERSION EVALUACIÓN, el cual es un ejemplo representativo del uso del manual, ubicado en el **Anexo 9.1** 

#### 7.6. DESARROLLO DE LA PROPUESTA

#### 7.6.1. Comandos del CSIBRIDGE V15 VERSION EVALUACION

 El Menú "ORB" contiene: Nuevo, Abrir, Guardar, Guardar como, Importar, Exportar, Imprimir, Reportar, Animación, Configuraciones y Lenguaje.



Figura 44. Menú "ORB"



• El Menú **"HOME"** contiene El Asistente de Puentes "Bridge Wizard", Vista-Snap, Selección, Opciones rápidas de los resultados del análisis.

|                            | 19          | (e) 🗟 (e)                                       | ) ÷                            |         |          |               |          |                       |                  |      |
|----------------------------|-------------|-------------------------------------------------|--------------------------------|---------|----------|---------------|----------|-----------------------|------------------|------|
|                            | Home        | Layout                                          | Components                     | Loads B | ridge Ar | nalysis Desig | n/Rating | Advanced              |                  | _    |
| Bridge<br>Wizard<br>Wizard | Q<br>@<br>/ | Q Q Q<br>xy xz yz<br><sup>□ x</sup> ✓ xyz<br>Vi | Q (1) 63<br>(c) 63<br>↑ ↓ More |         | ALL R    | Select Desele | ct More  | • → ▲<br>→ → ▲<br>割 ◇ | Named<br>Display | More |

Figura 45. Menú "HOME"

• El Menú "LAYOUT" presenta opciones para definir la línea base y los carriles

|             | 20   | × 🔓 (6)  | ) ÷  |         |       |    |        |                |      |               |          |
|-------------|------|----------|------|---------|-------|----|--------|----------------|------|---------------|----------|
| Hom Hom     | ne   | Layout   | Comp | oonents | Loa   | ds | Bridge | Anal           | ysis | Design/Rating | Advanced |
| P           | 6    |          | 4    | 2×      | IЦ    | IЬ |        | II,            |      |               |          |
| Preferences | BLL1 |          |      | -       | LANE1 |    |        | -              |      |               |          |
| (           | Lay  | out Line |      | ۲¥      |       | La | ines   | F <sub>N</sub> |      |               |          |

Figura 46. Menú "LAYOUT"

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 El Menú "COMPONENTS" permite definir las Propiedades de los Materiales con la definición de la Súper-estructura "Deck Sections" (Tablero, vigas, diafragmas) y de la Sub-estructura "Bearings" (Estribos, Fundaciones Pilas, conexiones y tipos de apoyo)

|           | H 9      | P 6      | j (6)  | ) 🕈    |       |            |           |        |                   |                  |          |           |          |    |   |
|-----------|----------|----------|--------|--------|-------|------------|-----------|--------|-------------------|------------------|----------|-----------|----------|----|---|
|           | Home     | Layo     | ut     | Compor | nents | Loads      | Bridge    | A      | nalysis           | Design/          | (Rating  | Adv       | anced    |    |   |
| K ∐<br>∳V | G        | E.       |        | E,     |       | a R        | Ъ         | 2      | X                 | <b>国</b> 路<br>雄田 | 亳        | 5         | <u>.</u> | Ę  | ٦ |
| Туре      | 4000Ps   | i        |        | -      | Item  | BSEC1      |           |        | -                 | Item             | BEARIN   | IG        |          | -  |   |
|           | Properti | es - Mat | erials | ۲y     | SL    | perstructu | re - Deck | Sectio | ns r <sub>a</sub> | 1                | Substruc | ture - Be | arings   | ۲ş |   |

Figura 47. Menú "COMPONENTS"

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• El Menú "LOADS" comprende la definición de Vehículos, Patrones de Carga, Funciones de Espectros, Asignaciones de Cargas.

|   |      | 89     | 6 6            | (6) | •                |        |         |                     |           |          |           |           |      |          |                   |                |
|---|------|--------|----------------|-----|------------------|--------|---------|---------------------|-----------|----------|-----------|-----------|------|----------|-------------------|----------------|
|   | J    | Home   | Layo           | ut  | Compon           | ents   | Loads   | Bridge              | An        | alysis   | Desig     | gn/Rating | Adva | anced    |                   |                |
| ľ | H. H | 0°     | <sup>1</sup> C |     | ₽ <mark>×</mark> | D      | L       | <ul><li>✓</li></ul> | Ŀ         | L.       | 2         | K.        |      | -۴<br>۵  |                   | x              |
|   | Туре | HSn-44 | -1             |     | •                | Patte  | erns    | Туре                | UNIFRS    |          |           |           | Туре | None     |                   | *              |
|   |      | V      | ehicles        |     | Fa.              | Load P | atterns | Fund                | tions - R | lesponse | e Spectru | um 🕞      | Lo   | oad Dist | ributions - Point | F <sub>N</sub> |

Figura 48. Menú "LOADS"

• El Menú "BRIDGE" contiene los Objetos de los Puentes, Cargar datos definidos al puente

|             | ÷                   |                        | _                  |                      |                 |        |          |        |                |
|-------------|---------------------|------------------------|--------------------|----------------------|-----------------|--------|----------|--------|----------------|
| Home Layout | Components          | Loads                  | Bridge             | Analysis             | Design/I        | Rating | Advanced |        |                |
|             | Spans Span<br>Items | Supports<br>Bridge Obi | Super<br>Elevation | Prestress<br>Tendons | Girder<br>Rebar | Loads  | Groups   | Update | Auto<br>Update |

Figura 49. Menú "BRIDGE"

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• El Menú "ANALYSIS" presenta todos los Casos de Carga, el Análisis del modelo y Modifica la geometría no deformada.

|                    | 19   | (e) 🔒 (o) | ÷             |                                            |              |                    |               |                                           |             |                           |      |
|--------------------|------|-----------|---------------|--------------------------------------------|--------------|--------------------|---------------|-------------------------------------------|-------------|---------------------------|------|
|                    | Home | Layout    | Components    | Loads                                      | Bridge       | Analysis           | Design/Rati   | ing Advanced                              |             |                           |      |
| V D<br>V L<br>Type | DEAD | 治 🕌       | Schedu        | D+L<br>+E<br>NL<br>ule Convert<br>s Combos | Show<br>Tree | Bridge<br>Response | Model<br>Lock | DOF's<br>Analysis Run<br>Options Analysis | Last<br>Run | Modify Ri<br>Geometry Geo | eset |
|                    |      | Loa       | d Cases - All |                                            | E.           | Bridge             | Lock          | Analyze                                   |             | Shape Findir              | ng   |

Figura 50.Menú "ANALYSIS"

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• El Menú "DESIGN/RATING" contiene las Combinaciones de Carga, Diseño de la Súper estructura, Diseño Sísmico y la Capacidad de Carga.

|          | ₩ 9 0 <b>6</b> 0)                   | ÷                      |                           |                    |                        | -                       |             |                                  |                |        |             |                                |               |                 |
|----------|-------------------------------------|------------------------|---------------------------|--------------------|------------------------|-------------------------|-------------|----------------------------------|----------------|--------|-------------|--------------------------------|---------------|-----------------|
|          | Home Layout                         | Components             | s Loads                   | Bridge             | Analysi                | Desig                   | n/Rating    | Advanced                         |                |        |             |                                |               |                 |
| D+L<br>D | D+L D+L X<br>X<br>Load Combinations | D+L<br>Add<br>Defaults | CODE<br>Preferences<br>Su | Design<br>Requests | Run<br>Super<br>Design | <b>I</b> ⊾]<br>Optimize | Preferences | Design<br>Requests<br>Seismic De | Run<br>Seismic | Report | Preferences | Rating<br>Requests<br>Load Rat | Run<br>Rating | [v]<br>Optimize |

Figura 51. Menú "DESING/RATING"

• El Menú "ADVANCED" permite Editar, Definir, Dibujar, Asignar, Asignar Cargas, Analizar, Diseñar elementos y Herramientas.

|      | 89       | (a) 🔒 (a)     | ÷         |                  |        |             |               |               | _                     |                |            |                    |            |                               |           |                |
|------|----------|---------------|-----------|------------------|--------|-------------|---------------|---------------|-----------------------|----------------|------------|--------------------|------------|-------------------------------|-----------|----------------|
|      | Home     | Layout        | Component | s Loads          | Bridge | Analysis    | Design/Rating | Adv           | anced                 |                |            |                    |            |                               |           |                |
| Poin | ts Lines | Areas<br>Edit | More      | Define<br>Define |        | More<br>raw | Assign        | A L<br>Joints | A<br>Frames<br>Assign | Areas<br>Toads | A∠<br>More | Analyze<br>Analyze | D<br>Steel | D<br>Concrete<br>Frame Design | D<br>More | Tools<br>Tools |

Figura 52. Menú "ADVANCED"

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# 7.6.2. Pasos generales para la modelación de un puente de hormigón armado

• Selecciono las unidades a trabajar en la parte inferior derecha de la ventana de inicio.



Figura 53. Ventana de trabajo y elección de unidades

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

## Procedimiento de la ventana

1. En el icono indicado se elige las unidades de trabajo

 Ir al menú "ORB" dar clic en "New model" y elegir la plantilla más acorde del puente a modelar o dar clic en "Blank" e ingresar cada una de las características del puente a modelar, verificando siempre que se esté trabajando en las unidades requeridas.



Figura 54.Selección de la plantilla a trabajar

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

| Proje | ct Information List          |                               |            |
|-------|------------------------------|-------------------------------|------------|
|       | Item                         | Data                          |            |
| 1     | Company Name*                |                               |            |
| 2     | Client Name*                 |                               |            |
| 3     | Project Name*                |                               | Clear Data |
| 4     | Project Number*              |                               |            |
| 5     | Model Name*                  |                               | Clear All  |
| 6     | Model Description            |                               |            |
| 17    | Revision Number*             |                               |            |
| 8     | Frame Type                   |                               |            |
| 9     | Engineer                     |                               |            |
| 10    | Checker                      |                               |            |
| 11    | Supervisor                   |                               |            |
| 12    | Issue Lode                   |                               |            |
| 13    | Design Code                  |                               |            |
|       |                              |                               |            |
|       |                              | Add Row Insert Row Delete Row |            |
| Item  | is used on Report cover page | OK Cancel                     |            |

Figura 55.Información general del proyecto

## Procedimiento de la ventana

- 1. Permite crear un nuevo modelo
- 2. Al hacer clic en esta opción toda la modelación trabajara en las unidades indicadas
- 3. Parte la modelación con un archivo ya existente
- **4.** Al elegir esta opción se abrirá una ventana en la cual se puede ingresar información general del proyecto como se muestra en la figura 55

## 7.6.2.1. Modelación con la plantilla en Blanco (Blank)

 Se despliega esta ventana en donde se elige el camino deseado para ingresar los datos del puente ya sea por "Bridge Wizard" o por cada uno de los menús del CSIBRIDGE V15.2 VERSION EVALUACIÓN

| Home Layout Components Loads Bridge Analysis Design/Rating Advanced<br>Wigard Wizard Wi |                  | H 2 R B ·              |              |                |                      |      |         |                  |                  |                 |        |          |      |             |     |        |                  |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|--------------|----------------|----------------------|------|---------|------------------|------------------|-----------------|--------|----------|------|-------------|-----|--------|------------------|------|
| Image: Wizard Wizard     Image: Wizard Wizard <thimage: th="" wizard<="">     Image: Wizard Wizard     &lt;</thimage:>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | Home Layout Components |              |                | Loads Bridge         |      |         | Analysis Design  |                  | Rating Advanced |        | ed       |      |             |     |        |                  |      |
| Wizard <u>View Snap</u> Select Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bridge<br>Wizard |                        | Q Q<br>xy xz | €<br>YZ<br>xyz | Q 🕱<br>(4) 63<br>↑ ♣ | More | 14<br>X | - 4<br> 4<br> 13 | ALL<br>PS<br>CLR | × * •           | Select | Deselect | More | ●<br>歩<br>翻 | → ▲ | N = 23 | Named<br>Display | More |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Wizard           | Wizard View Snap       |              |                |                      |      |         |                  |                  | 1               | S      | elect    |      | Display     |     |        |                  |      |

Figura 56. Ventana donde se encuentra el "Bridge Wizard"

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

#### Procedimiento de la ventana

1. Esta opción permite ingresar los parámetros del puente de forma directa

• Al hacer clic en **"Bridge Wizard"** se abre la siguiente ventana en donde se puede ingresar cada uno de los datos tanto de la super-estructura como de la sub- estructura



Figura 57.Ventana del "Bridge Wizard"

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# Procedimiento de la ventana

- 1. Visualizar los ítems que contiene el "Bridge Wizard"
- 2. Seleccionar un parámetro del puente
- 3. Crear un parámetro del puente
- 4. Una vez seleccionado un parámetro del puente en esta opción de encuentra una descripción con sus respectivas características del ítem a definir.
- Luego de definir todos los elementos del puente cerrar el "Bridge Wizard"

#### Secuencia de "Bridge Wizard"

- > Definir la Alineación Horizontal y Vertical del Puente
- Definir las Propiedades Básicas de los Materiales y Secciones
- Definir las características específicas del Puente (Sección de la Losa, Diafragmas, Restricciones, Asientos, Fundaciones entre otras cosas)
- Desde los pasos 5 hasta el 7 definir los objetos del puente, esto después de haber definido la geometría en los pasos anteriores.
- Dibujar y asignar las propiedades a los objetos del puente.
- Desde los pasos 9 hasta el 13 definir los parámetros básicos del análisis (Líneas, vehículos, casos de carga y opciones de salida).

# 7.6.2.1.1. Utilizando los iconos que presenta el CSIBRIDGE V15.2 VERSION EVALUACIÓN

#### 7.6.2.1.1.1. Definición de la línea base (Layout)

• Se inicia dando clic en "Layout" + "New Layuot line" donde se ingresar la línea base del puente

| Home Layout Components | Loads Bridge Analysis Design/Rating Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 1 10 10 12 1× 1        | Bridge Layout Line Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |
| Liyout Line rs         | Bidge Layout Line Name Coordinate System Shift Layout Line Units BLL1 GLDBAL  Tort. m. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |
| 1Nuevo línea           | Plan View (XY Projection)         Coordinates of Initial Station           Image: Station in the station is station in the station in the station in the station is station in the station in the station is station in the station in the station is station in the station in the |                                                     |
|                        | X         30,4892         Initial Station (m)         0           Y         T4 5241         Initial Bearing         N 900000E           Initial Grade in Percent         0         0           X         Z         End Station (m)         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2Estación inicial                                   |
|                        | Developed Elevation Vew Along Layout Line<br>4Definir la linea<br>base horizontal<br>Befre Hoitcontal Layout Data<br>Define Hoitcontal Layout Data<br>Define Hoitcontal Layout Data<br>Define Hoitcontal Layout Data<br>Define Vertical Layout Data<br>Define Vertical Layout Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.1Elegir el tipo<br>de línea base en<br>horizontal |
|                        | OK _ Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.1Elegir el tipo<br>de línea base en<br>vertical   |
|                        | 5Definir la línea base vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |

Figura 58. Ventana para definir la línea base del puente

#### Procedimiento de la ventana

- 1. Crear la línea base
- 2. Especificar la estación inicial de la línea base
- 3. Ingresar la longitud del puente
- 4. Configurar la línea base horizontal

4.1.Seleccionar una plantilla de la línea base horizontal

5. Configurar la línea base vertical

5.1.Elegir la plantilla acorde a la forma vertical del puente

 Si la línea base horizontal o vertical no es recta dar clic en "Define Horizontal Layout Data" o "Quick start", se despliega esta ventana en donde se puede seleccionar el tipo de línea base tanto en horizontal como en vertical.

| Sele | ct a Quick Start Option            | <u>49</u> 3 |         |                                                               |            |
|------|------------------------------------|-------------|---------|---------------------------------------------------------------|------------|
| æ    | Straight                           | +           | c c     | Curve Right - Straight                                        |            |
| c    | Straight - Bend Right              | ·           | , c     | Curve Left - Straight                                         |            |
| с    | Straight - Bend Left               | · · · ·     | C       | Straight - Curve Right - Straight                             |            |
| c    | Straight - Bend Right - Bend Right | · · · · ·   | <u></u> | Straight - Curve Left - Straight                              |            |
| c    | Straight - Bend Left - Bend Left   |             | C       | Straight - Curve Right - Straight -<br>Curve Right - Straight | $\square$  |
| c    | Curve Right                        | F           | , r     | Straight - Curve Left - Straight -<br>Curve Left - Straight   | $\searrow$ |
| c    | Curve Left                         |             | Ċ.      | Straight - Curve Right - Straight -<br>Curve Left - Straight  | Ē,         |
| c    | Straight - Curve Right             | ·           | c.      | Straight - Curve Left - Straight -<br>Curve Right - Straight  |            |
| c    | Straight - Curve Left              |             |         |                                                               |            |
|      |                                    | -           |         |                                                               |            |

Figura 59.Selección de la línea base

 Una vez seleccionada la línea base dar clic en "Ok " y se activa los demás iconos



Figura 60. Ventana para modificar, copiar y eliminar la línea base

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

#### Procedimiento de la ventana

- 1. Se activa la opción de crear una copia de la línea base
- 2. Se puede modificar la línea base creada
- 3. Permite eliminar la línea base creada
- 4. Una vez definida la línea base se activa la definición de los carriles

# 7.6.2.1.1.2. Definición de los carriles (Lanes)

• Seleccionamos nuevo carril "New lanes" e ingresamos cada uno de los datos señalados en la siguiente imagen tanto para cero metros como para la longitud total del puente a modelar.

| i2.0 Advanced w/Rating - (Untitled) C C - Layout Components Loss | 2Nombre del cami<br>Is Bridge Analysis Design/Rating    | Advanced                                                                                                                                              | and the second sec |                                               |
|------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| La Co                        | Along Lane 13.048                                       | Additional Lane Load Discretization Pe<br>Discretization Length Not Greater<br>Discretization Length Not Greater<br>Discretization Length Not Greater | System Units<br>Torf, m, C Information Constant Constant<br>remeters Along Lane<br>Than 17 4. of Span Length<br>Than 17 10. of Lane Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |
|                                                                  | Lane Dala<br>Bridge<br>Layout Line<br>BLL1<br>3Estación | Certesine Ollizet<br>m 0 0 0 0 0 4<br>4,-Desfase 5,-An<br>al centro del ca                                                                            | h Move Lane.<br>Add 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Añadir                                        |
|                                                                  | Plan View (XY Projection)                               | Layout Line  Station Bearing Radus Grade X 3765.                                                                                                      | Objects Loaded By Lane<br>Program Determined<br>Gioup<br>Lane Edge Type<br>Left Edge Type<br>Right Edge (Interior )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 Condición izquierda<br>y derecha del carril |
|                                                                  |                                                         | Y 0.<br>Z Snap To Layout Line<br>C Snap To Lane                                                                                                       | Display Color<br>DK Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |

Figura 61. Ventana para ingresar las dimensiones de los carriles

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

#### Procedimiento de la ventana

- 1. Crear un nuevo carril
- 2. Escribir el nombre del carril
- **3.** Ingresar los datos del primer carril a cero y a la longitud total del puente.
- Insertar la distancia desde el eje del puente hasta el centro del carril a ingresar, este valor es positivo y negativo de acuerdo a la ubicación del carril.
- 5. Se debe ingresar el valor del ancho del carril
- 6. Luego se debe añadir todos estos datos
- 7. Condición del carril indica: que si elegimos la opción interior el vehículo circula a través de todo el ancho del carril mientras que si se elige exterior significa que el vehículo circulará a una distancia de 0.30 m del borde del carril ya sea en el lado izquierdo o derecho
- 8. Cambiar el color del carril

• Para poder visualizar los carriles ir a "Home" + "More" + "Show Lanes"



Figura 62. Ventana para ver los carriles

#### Fuente: CSIBRIDGE V15

#### Procedimiento de la ventana

- 1. Hacer clic en "More" para buscar la opción de visualizar los carriles
- 2. Seleccionar la opción de mostrar carriles
- Elegir los dos carriles y dar clic en "Show lane width" y seleccionar en "Ok"



Figura 63. Ventana para seleccionar los carriles

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

#### Procedimiento de la ventana

- 1. Elegir los carriles que se desee observar
- 2. Luego escoger la opción mostrar el ancho de los carriles

• Se puede observar los carriles



Figura 64. Ventana del diseño de los carriles

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

#### 7.6.2.1.1.3. Definición de las propiedades de los materiales

• Define en el menú "Components", las propiedades de los materiales y las dimensiones de la Super-estructura como de la Sub-estructura; se aconseja trabajar de izquierda a derecha



Figura 65. Ventana de las propiedades de los materiales
- **1.** Dar clic en **"Type"**, se abren las propiedades que se pueden seleccionar y modificar de acuerdo a los materiales que se empleen en el puente.
- 2. Al seleccionar esta opción, el programa crea automáticamente tres tipos de materiales: uno para el hormigón y dos para el acero en vigas metálicas, por ende se debe modificar las propiedades o crear un nuevo material a emplear.
- **3.** Se debe configurar las propiedades de las secciones a utilizar para la modelación, ya sea de los estribos, pilas, cimentaciones.
- 4. Establecer las propiedades de los cables.
- 5. Configurar las propiedades de los tensores
- 6. Definir las propiedades de las secciones
- 7. Definir el tamaño de las varillas a emplear en el hormigón
- Al dar clic en "Material Properties" se puede modificar las propiedades del hormigón a utilizar.



Figura 66. Propiedades de los materiales

- Seleccionar la plantilla creada automáticamente dar clic en modificar las propiedades.
- **2.** En la ventana como primer paso se procede a cambiar el nombre y el color del material.
- 3. Establecer el peso específico del hormigón.
- **4.** Escribir los valores del módulo de elasticidad, el coeficiente de poisson y el coeficiente térmico de expansión del hormigón a utilizar.
- 5. Editar el valor de la resistencia a la compresión del hormigón tomando en cuenta las unidades en las que se está trabajando.

#### 7.6.2.1.1.4. Definición de la Super-estructura

• Dimensionar la Super-estructura para lo cual se debe dar clic en "New Section" y se escoge el tipo de puente.



Figura 67. Ventana para seleccionar el tipo de puente

- 1. Definir una nueva sección del puente
- 2. Indica que se puede escoger las plantillas de puentes de concreto con vigas cajón
- 3. Elegir otro tipo de puentes de concreto.
- 4. Seleccionar puentes de concreto con vigas metálicas
- Luego de seleccionar la plantilla del puente llenar todas las dimensiones del tablero y sus vigas

| Define Bridge Section Data - Concrete Tee Beam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                 | Y<br>x<br>x y r r Do Smap<br>Section is Legal Show Section Detail.                                                                                                  |                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 1.         Section Uses           2.         Bidgs Saction Name           Bidgs Saction Name         Bidgs Saction Name           3.         Bidgs Material Property           3.         Total Width           4.         Bidgs Saction Name           5.         Bidgs Material Property           1.         Bidge Material Property           1.         Bidge Material Property           1.         Bidge Material Property           1.         Bidge Material Property           1.         Total Width           5.         Total Width           1.         Bidge Material Property           1.         Bidge Material Property           1.         Bidge Material Property           1.         Fide Material Property           1.         Hatocoral D Demation           1 | Value         ▲           BSEC1         BSEC1           I'o-c80         I'o           I'o-c80         I'o           10.59         1.525           No         0.305           0.46         0.46           0.46         0.46           0.46         0.46           0.15         ▼ | Under Uoput       Modity/Show Grider Force Dutput Locations       Modity/Show Properties       Units       Materials       Frame Sects       Units       Tord, m, C | 10Ver detalles<br>de la sección |

Figura 68. Dimensionamiento del puente

### Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

- 1. Nombre de la sección del puente
- 2. Propiedades del material de la losa
- 3. Propiedad del material de las vigas
- 4. Número de vigas interiores
- 5. Ancho total
- 6. Profundidad
- 7. Espesor de la losa

- 8. Dimensión horizontal del filete
- 9. Dimensión vertical del filete
- 10. Esta opción permite observar los detalles de la dimensiones ingresadas

| A992Fy50<br>Properties - Materials rs | Hefne Bridge Section Data - Concrete Tee Beam |         | Y<br>Y<br>X<br>X<br>Section is Legal Show Section Detail |                 |
|---------------------------------------|-----------------------------------------------|---------|----------------------------------------------------------|-----------------|
|                                       | Section Data                                  |         | Girder Output                                            | 4 -Ver detailes |
|                                       | Item                                          | Value 🔺 | Modify/Show Girder Force Output Locations                |                 |
|                                       | f2 Horizontal Dimension                       | 0.46    |                                                          | de la sección   |
|                                       | f3 Horizontal Dimension                       | 0.46    | - Modifu/Show Properties                                 |                 |
| 1Dimensión                            | f4 Horizontal Dimension                       | 0.46    |                                                          |                 |
| vertical del filete                   | Fillet Vertical Dimension Data                |         | Materials Frame Sects Tonf, m, C 💌                       |                 |
| vertical der mete                     | f1 Vertical Dimension                         | 0.15    |                                                          |                 |
|                                       | f2 Vertical Dimension                         | 0.15    |                                                          |                 |
|                                       | f3 Vertical Dimension                         | 0.15    |                                                          |                 |
|                                       | 14 Vertical Dimension                         | 0.15    |                                                          |                 |
| 2Datos viga                           | Exterior Girder Data                          |         |                                                          |                 |
| Exterior                              | Exterior Girder Depth Above Flare (L3)        | 0.71    |                                                          |                 |
| Enterior                              | Exterior Girder Flare Depth (L4)              | 0.305   |                                                          |                 |
|                                       | Exterior Girder Thickness Above Flare (t3)    | 0.305   |                                                          |                 |
|                                       | Exterior Girder Thickness Below Flare (t10)   | 0.46    |                                                          |                 |
|                                       | Interior Girder Data                          |         |                                                          |                 |
| 3Datos viga                           | Interior Girder Depth Above Flare (L5)        | 0.71    |                                                          |                 |
| interior                              | Interior Girder Flare Depth (L6)              | 0.305   |                                                          |                 |
|                                       | Interior Girder Thickness Above Flare (14)    | 0.305   |                                                          |                 |
|                                       | Interior Girder Thickness Below Flare (t11)   | 0.46    | OK Cancel                                                |                 |
|                                       | ,                                             |         |                                                          |                 |

Figura 69. Dimensionamiento de las vigas



|                                    |                                                     |                                           | 2               |
|------------------------------------|-----------------------------------------------------|-------------------------------------------|-----------------|
| A992Fy50<br>Properties - Materials | fine Bridge Section Data - Concrete Tee Beam        |                                           |                 |
|                                    | . t3t4t4t3                                          |                                           |                 |
| Lane                               | LI LI LI Equal LI Equal LI Equal LI Equal           |                                           |                 |
|                                    |                                                     | Section is Legal Show Section Details     | •               |
|                                    | Section Data                                        | Girder Output                             | 5 -Ver detailes |
|                                    | ltem Value                                          |                                           | de la constitu  |
|                                    | Interior Girder Danth Above Flare (15) 0.71         | Modily/Show Girder Force Uutput Locations | de la sección   |
| 1 -Datos del                       | Interior Girder Flare Depth (L6) 0.305              | Madia Chau Danastan Usha                  |                 |
| volado izquierdo                   | Interior Girder Thickness Above Flare (t4) 0.305    | Modity/Show Propercies Onics              |                 |
| volado izquierdo                   | Interior Girder Thickness Below Flare (t11) 0.46    | Materials Frame Sects Tonf, m, C 💌        |                 |
|                                    | Left Overhang Data                                  |                                           |                 |
|                                    | Left Overhang Length (L1) 0.915                     |                                           |                 |
| 2 Detec del sectodo                | Left Overhang Outer Thickness (t5) 0.205            |                                           |                 |
| 2Datos del volado                  | Right Overhang Data                                 |                                           |                 |
| derecho                            | Right Overhang Length (L2) 0.915                    |                                           |                 |
|                                    | Right Overhang Outer Thickness (16) 0.205           |                                           |                 |
|                                    | Live Load Curb Locations                            |                                           |                 |
| 3 - Locatización del               | Distance To Inside Edge of Left Live Load Curb 0.   |                                           |                 |
| based a la terrere                 | Distance To Inside Edge of Right Live Load Curb 0.  |                                           |                 |
| borde de la carga                  | Distance To Centerline of Median Live Load Curb 0.  |                                           |                 |
|                                    | Width of Median Live Load Curb 0.                   |                                           |                 |
|                                    | Insertion Point Location                            |                                           |                 |
| 4Introducir                        | Offset X From Reference Point To Insertion Point 0. |                                           |                 |
| muntos localizados                 | Ultset Y From Heterence Point To Insertion Point 0. | OK Cancel                                 |                 |
| puntos rocarizados                 |                                                     |                                           |                 |
|                                    |                                                     |                                           |                 |

Figura 70. Dimensionamiento de los volados

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Al hacer clic en **"Show section details"** se observa todas las características del puente las cuales pueden ser modificadas



Figura 71. Detalles del puente

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Continuar con la definición de los diafragmas hacer clic en "Items"+"Diaphragms" + "New diaphragms"



Figura 72. Ventana para definir los diafragmas

- 1. Hacer clic en "Items" elegir la opción a definir
- **2.** Seleccionar la opción diafragmas en la cual se crea la opción para definir los mismos.
- 3. Dar clic en nuevo diafragma que permita ingresar sus características
- Establecer las características del diafragma es decir su espesor y el tipo de material.



Figura 73. Características de los diafragmas

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 Si el puente posee una variación de forma longitudinal dar clic en "Parametric Variations" + "New Parametric Variations" de forma ordenada como se indica en la figura 74.



Figura 74. Ventana para definir la variación paramétrica

• La variación paramétrica parte del centro, es decir definir en la izquierda y derecha del puente.



Figura 75. Dimensionamiento de la variación paramétrica izquierda

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

- 1. Se inicia con dar clic la nueva variación paramétrica
- 2. Ir a la definición de la variación paramétrica
- **3.** Insertar el valor de la distancia horizontal en la cual cambia la forma del puente.
- **4.** Ingresar el valor de la distancia de cambio del margen izquierdo tomando en cuenta que parte desde el centro.
- **5.** Valor de la inclinación de acuerdo a la forma que se desee tenga el puente.
- **6.** Elegir a opciones de insertar arriba abajo, modificar y eliminar la variación.

• La variación parametrica derecha se la define siguiendo el mismo procedimiendo descrito en la figura 76.



Figura 76. Dimensionamiento de la variación paramétrica derecha

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# 7.6.2.1.1.5. Definición de la Sub-estructura

Definir los apoyos fijo o móvil dar clic en "Items" seleccionar la opción "Bearings" + "New bearings", en el orden indicado en la figura 77.



Figura 77. Crear los apoyos

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 Configuración del Apoyo fijo, se define fijo a todos los parámetros indicados en la figura 78, ya que restringe todas las traslaciones y rotaciones posibles.



Figura 78. Configuración del apoyo Fijo

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Configuración del apoyo móvil, en la cual se libera la traslación en **"X"** y todas las rotaciones.



Figura 79. Definición del apoyo móvil



 Para crear un tipo de resortes de fundación o cimentación elegir la opción "Foundation Springs"+ "New foundation springs" y definir como empotrada la cimentación, es decir restringido todas las traslaciones y rotaciones.



Figura 80. Definición de la cimentación

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 Definición de los Estribos dar clic en "Abunments" + "New Abunments" y se elige si la estructura se asienta sobre una cimentación o una vigueta para activar la última opción se debe añadir una sección.

| A 9 9 B -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Home Layout Components Loads Bridge Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Design/Rating Advanced                                                                  |
| L: I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I <th>Lem None 2Nuevo estribo</th> | Lem None 2Nuevo estribo                                                                 |
| Properties - Materials r, Superstructure - Deck Sections r,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bearings         hts.         fg           M         Restrainers                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ##         Foundation Springs           #         Abutments           III         Bents |

Figura 81. Elegir los estribos

#### Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN



Figura 82. Definición de las características de los estribos

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

- 1. Hacer clic en nuevo estribo
- 2. En la ventana que se abre ubicar el nombre del estribo
- 3. Elegir la condición de soporte de la viga

- **3.1.** Esta opción indica que el estribo se encuentra integrado a la viga
- **3.2.** En la siguiente opción se refiere a la presencia de una conexión al fondo de la viga
- **4.** Se debe seleccionar el tipo de sub-estructura con la cual se requiere modelar el puente, con resortes de fundación o con la opción siguiente.
- 5. Para que se active la opción de que la viga se asienta sobre un soporte continuo primero se debe añadir una sección con sus respectivas dimensiones
- **6.** Luego de creada la sección **5** se activa automáticamente la opción que la viga se asiente sobre un soporte continuo o vigueta.
- 7. Permite definir las propiedades de la cimentación del estribo
- Para añadir una sección hacer clic en el icono "+"ubicado en la opción 5 de la figura 83, y se abrirá la siguiente ventana en la cual se escoge añadir nueva propiedad.

| Properties     Find this property: | Click to:<br>Import New Property<br>Add New Property<br>Add Copy of Property<br>Modify/Show Property<br>Delete Property | 1 Añadir nueva<br>propiedad |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| OK                                 | Cancel                                                                                                                  |                             |

Figura 83. Añadir una nueva sección

• Elegir el tipo de material a emplear y escoger la forma de la sección que tiene la vigueta

| 2 Pactanc | ne Section Property                                                                                                   |         | ure - Adduttients | 1y                                                                                                                                                                   |
|-----------|-----------------------------------------------------------------------------------------------------------------------|---------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2Rectang  | sular<br>H Property Type<br>Exame Section Property Type<br>Ciscular Add a Concrete Section<br>Rectangular<br>Ciscular | Pipe Tu |                   | 1Seleccionar el<br>tipo de material         Impot New Propety         Add New Propety         Add Copy of Propety         Modify/Show Propety         Delete Propety |
|           | Precast I Precast U                                                                                                   | Cancel  |                   | Cancel                                                                                                                                                               |

Figura 84. Selección del material

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Al hacer clic en la sección se abre la ventana que se encuentra a continuación en la cual se introduce las dimensiones del elemento.



Figura 85. Dimensiones de la sección

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

- 1. Colocar el nombre de la sección rectangular escogida
- 2. Indicar las propiedades del material que va hacer usado en la sección
- 3. Ingresar el valor de la profundidad de la sección
- 4. Introducir la dimensión del ancho. de la sección
- 5. Hacer clic en refuerzo de concreto para elegir si es una viga o una columna
- Al elegir la opción tipo columna se debe configurar los siguientes parámetros



Figura 86. Características de una columna

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Al seleccionar la opción viga se debe configurar los siguientes parámetros que se muestran a continuación



Figura 87. Características de una viga

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 Una vez introducidos los datos de la sección se activa la opción "Continuous Beam (Continuously Supported)" y se actualizan los datos con la sección definida.



Figura 88. Configuración de los elementos del estribo

- Una vez activada la opción de soporte mediante una viga continua automáticamente aparecerá el nombre de la sección anteriormente definida
- 2. Se debe ingresar la longitud de la vigueta continua; es decir el ancho del estribo
- Para la definición de los pilares dar clic en "Bents" + "New bents"

| Home Layout Components Loads                                       | Bridge Analysis Design/Rating Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| () Lane                                                            | Restrainers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1                                                                  | - Pilas Foundation Springs<br>Abutments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Home Layout Components Loads                                       | Bridge Analysis Design/Rating dvar 2 Nuevapila                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V | Image: Substructure - Variations     Image: Substructure - Bents     7Condiciones de soporte en las vigas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3-D View                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 Nombre de la pila                                                | ge Bent Data Bidge Bent Name Units Gitter Support Condition Ford. m. C Correct to Gides Bottom Driv Cor |
| 4Largo de la vigueta                                               | al fondo de la viga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5Numero de columnas                                                | Cup Beam Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6Añadiruna sección                                                 | Modily/Show Column Data Bent Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                    | 8Modificar datos de<br>las columnas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Figura 89. Definición de los pilares

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# Procedimiento de la ventana

1. Ir al menú ítems de la sub-estructura y elegir pilas

- 2. Crear una nueva pila y aparecerá la ventana de la figura 89
- 3. Primero se inicia modificando en nombre de la pila
- 4. Insertar la longitud de la vigueta
- 5. Colocar el número de columnas que posee la pila
- **6.** Añadir una sección para la vigueta de la pila siguiendo el mismo proceso de las figuras 83-84-85-86-87.
- 7. Elegir las condiciones de soporte en las vigas
  - 7.1. Trabajar de forma integral la viga con la pila
  - 7.2. Encontrarse conectada la pila solo al fondo de la viga
- 8. Modificar los datos de las columnas
- Para modificar los datos de las columnas hacer clic sobre tal opción y aparecerá la ventana que se muestra en la figura 90.



Figura 90. Modificar las pilas

```
Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN
```

- 1. Se elige la columna a modificar
- 2. Ubicar la sección creada para las columnas
- **3.** Ingresar la distancia a la que se encuentra cada una de las columnas en todo el ancho del puente.
- 4. Insertar la altura de las columnas que conforman la pila
- 5. Ingresar el valor del ángulo de la columna seleccionada
- **6.** Definir la condición en la que se encuentra el soporte de la base ya sea fijo o libre
- 7. Ubicar las condiciones en la que se encuentra cada una de las reacciones

### 7.6.2.1.1.6. Definir el patrón de cargas

• Ir al menú "Loads" elegir el icono de "Load Patterns" y añadir las cargas a emplear en el puente.



Figura 91. Crear los patrones de carga

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

- 1. Hacer clic en añadir un nuevo patrón de carga
- 2. Colocar el nombre del patrón de carga

- Elegir el tipo de carga que va a ser aplicada, por ejemplo la carga muerta (DEAD), viva peatonal (PEDESTRIAN LL), carpeta asfáltica (WEARING SURFACE), etc.
- 4. Permite definir si la carga es multiplicada por sí mismo, con un valor de
  1 y 0 para las cargas que no se aplique el peso propio
- 5. Este patrón de carga se emplea cuando se aplica cargas laterales o de sismo.
- 6. Permite añadir un nuevo patrón de carga
- 7. Concede modificar los patrones de carga creados

# 7.6.2.1.1.7. Definir el vehículo de diseño

 Para definir un vehículo de diseño dar clic en "Type" + "Vehicles" + "New Vehicle" y aparecerán las siguientes ventanas en las cuales se elige el vehículo tipo que transitará por el puente.



Figura 92. Selección del vehículo de diseño

- **1.** Ir al menú tipo
- 2. Hacer clic en la opción vehículos
- 3. Se activa la opción de nuevo vehículo
- 4. Elegir el tipo de vehículo que circulará sobre el puente
- **5.** Se crea automáticamente el factor de escala el cual también se le puede modificar
- 6. También permite ingresar el valor de la carga dinámica
- 7. Esta opción permite observar las características del vehículo tipo
- **8.** Permite modificar, añadir, insertar y eliminar las características del vehículo elegido
- Al selecciona la opción de convertir al vehículo en general se abre la siguiente ventana en la cual se puede visualizar y modificar las características del vehículo tipo.



Figura 93. Selección del vehículo de diseño

• Luego vamos a crear la clase de vehículos y seleccionamos los vehículos anteriormente ingresados dando clic en "Vehicle Classes".



Figura 94. Crear la clase de vehículos

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# Procedimiento de la ventana

- 1. Ir al menú tipo y elegir la opción de clase de vehículo
- 2. Hacer clic en nueva de clase de vehículo
- **3.** Es crear una clase de vehículos que abarca a todos aquellos que circularan a través del puente y que han sido definidos anteriormente.

# 7.6.2.1.1.8. Definición de las cargas aplicadas sobre el puente

• Hacer clic en "Type" seleccionar la carga que será aplicada sobre el puente



Figura 95. Seleccionar las cargas del puente

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Ejemplo definición de una carga lineal seleccionar "Line Load" en la figura 59 y elegir "New Line Load", en donde se abre la siguiente ventana que permite configurar los parámetros de la carga lineal



Figura 96. Configuración de la carga lineal

- **1.** Dar clic en la nueva carga lineal
- 2. Escribir el nombre con el que se identifica la carga lineal
- 3. Ingresar el valor de la carga de acuerdo a las unidades que se emplean
- 4. Elegir la localización transversal de la carga
  - **4.1.** Identificar el sitio de referencia de la carga ya sea el margen derecho o izquierdo del puente
  - 4.2. Ingresar la distancia de la carga desde el sitio de referencia.
- Definición de una carga distribuida que genere esfuerzos sobre el puente; dar clic en "Area Load" + "New Area Load" y se llena los valores en la ventana que aparece a continuación.



Figura 97. Configuración de la carga en área

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

- 1. Hacer clic en nueva carga en área
- 2. Colocar le nombre de la carga

- 3. Ingresar el valor de la carga en el borde izquierdo
- 4. Ingresar el valor de la carga en el margen derecho
- 5. Ingresar el valor de la distancia izquierda que tiene la carga en área
- 6. Ingresar el valor de la distancia a la que se encuentra ubicada la carga en aérea a la derecha

# 7.6.2.1.1.9. Definición del Objeto Puente

• Definir todos los parámetros del puente en el icono "New Bridge Object" donde se puede configurar las propiedades de los elementos, soportes, refuerzo de las vigas, entre otros.

| Home Layout Components               | Loads Bridge Analysis Design/Rating Advanced                                                   |                                                                                    |
|--------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| ************************************ | Bridge Object Data                                                                             | Coordinate Susteen                                                                 |
| 1Nuevo                               | BOBJ1                                                                                          | GLOBAL Tord, m. C TEspacios                                                        |
| Une Objeto puente                    | Define Bridge Object Reference Line                                                            | Modfy/Show Assignments                                                             |
|                                      | Span Station Span<br>Label m Type                                                              | User Discretization Points Estribos                                                |
|                                      | Start Abutment 0. Start Abutment                                                               | Bents Bents Diaman Diaman                                                          |
|                                      | Start Abutment 0. Start Abutment Span To End Abutment 40. Full Span to End Abutment            | Add In Span Prices Diaphragms                                                      |
|                                      | Elevación del pue                                                                              | ente Bioge Construction Group Prestess Tendons<br>Grote Heber<br>Port Load Assigns |
|                                      | Cables pre-esforza                                                                             | dos                                                                                |
|                                      | Note: 1. Bridge object location is based on bridge section insertion point following specified | layout line. Modify/Show                                                           |
|                                      | Bridge Object Plan View (X-Y Projection)                                                       | Refuerzo en vigas                                                                  |
|                                      | Noth                                                                                           |                                                                                    |
|                                      |                                                                                                |                                                                                    |
|                                      | Show Erilaged Sketch                                                                           | Cancel                                                                             |

Figura 98. Ventana inicial del objeto puente

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 a. Hacer clic en "Span" permite definir si hay un cambio de sección entre dos o más tramos o una variación paramétrica

|                           | Layout                    | Line Name                     | Coordinate System | Units                        |
|---------------------------|---------------------------|-------------------------------|-------------------|------------------------------|
| BOBJ4                     | BLL1                      | -                             | GLOBAL            | ▼ Kip, ft, F                 |
| Define Bridge Object Refe | ence Line                 |                               |                   | Modify/Show Assignments      |
| Span                      | Station                   | Span                          |                   | Spans                        |
| Label                     | R                         | Туре                          |                   | User Discretization Points   |
| Start Abutment            | 0.  Start Al              | butment                       |                   | Bents                        |
| Start Abutment            | 0. Start A                | butment                       | Add               | In-Span Hinges (Expansion Jt |
| Span To End Abutmer       | tridge Object Span Assign | ments                         |                   | Superelevation               |
|                           | noge object span Assign   | inents                        |                   | Prestress Tendons            |
|                           | ·                         |                               |                   | Staged Construction Groups   |
|                           | Prides Object             | ROB14                         |                   | Point Load Assigns           |
|                           | Bridge Ubject M           | ame publa                     | Saccionas         | Line Load Assigns            |
|                           | - Span Definition         |                               | Secciones         |                              |
| Note: 1 Bridge object     |                           |                               |                   | Modify/Show                  |
|                           | To End Abu                | Section Sect                  | ion Varies        |                              |
| Bridge Object Plan View   | TOEndAbu                  | BSEUI                         | NO                |                              |
|                           |                           |                               |                   |                              |
|                           |                           |                               |                   |                              |
|                           |                           |                               |                   |                              |
| Noth                      |                           |                               |                   |                              |
| North                     |                           |                               |                   |                              |
| North                     |                           |                               |                   |                              |
| North                     | 1 - 16 - 10 -             | 6                             |                   |                              |
| North                     | Modify/Show               | Section Variation Along Selec | ted Span          |                              |
| North                     | Modify/Show               | Section Variation Along Selec | ted Span          |                              |
| North                     | Modify/Show               | Section Variation Along Selec | ted Span          |                              |

Figura 99. Definición de los tramos del puente

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

b. Dar clic en "Abunments" define las propiedades de los estribos del inicio y del final

| None Vore Iter                                                                                     | Bridge Object Abutment Assignments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1Inicio del estribo                                                                                | Bridge Object Name         7Fin del estribo           Stat Abutment         5Propiedades<br>del apoyo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2Propiedades<br>del diafragna<br>3Propiedades<br>del estribo<br>4Elevación de la<br>sub estructura | Start Abutment         Superstructure Assignment         Abutment Direction (Bearing Angle)         Disptragm Propety         Substructure Assignment         Substructure Assignment         Substructure Assignment         Substructure Assignment         Substructure Assignment         Substructure Assignment         None         Substructure Assignment         None         Substructure Assignment         Substructure Assignment         None         Substructure Assignment         None         Bearing Propety         Bearing Propety <td< td=""></td<> |
|                                                                                                    | OK Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Figura 100. Definir las características de los estribos

- **1.** Ir al estribo del inicio del puente
- 2. Definir si en el estribo del inicio se encuentra un diafragma
- 3. Elegir la sección que se a creado del estribo
- 4. Ingresar la altura descendente desde la línea base hasta la ubicación del estribo por lo general se adopta la altura total de la viga más el espesor de la losa y más cinco centímetros adicionales por el apoyo.
- 5. Determinar las propiedades del apoyo
- 6. Elevación descendente desde la línea base hasta la ubicación del apoyo
- En esta opción se configura el estribo ubicado al fin del puente con los mismos cambios anteriormente descritos
- c. Dar clic en "Bents" define las propiedades y secciones de la pila

| None Spars Spars                                            | Bridge Object Bank Assignments Bridge Object Name Bridge Object Name Bridge Object Name BoBuil Specify Bert Considered Berting Property Field Tord, m, C Berting Property Field Berting |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2Posición de la pila                                        | Bent Is At The Station         Jour         6Elevación           Superstructure Assignment         Girder 89-Girder Bearing Overwrites         6Elevación           Superstructure Continuity Condition         Continuous         Modity/Show Overwrites         No Overwrites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3Propiedades<br>del diafragma<br>4propiedades<br>de la pila | Meth Superstructure to Match Bent Bearing TYes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                             | Bent Direction (Bearing Angle)     Default       Bent Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Figura 101. Definir las características de la pila

- Ingresar la ubicación de la pila esta puede ser después del tramo uno o dos, etc.
- 2. Indicar la posición a la que se encuentra la pila
- 3. Determinar si se encuentra un diafragma en el recto de la pila
- 4. Elegir la sección creada para la pila con sus respectivas propiedades
- 5. Definir las propiedades del apoyo
- **6.** Indicar la ubicación descendente a la que se encuentra el apoyo de la pila desde la línea base del puente.
- d. Dar clic en "In Span Cross-Diphragm" definir la separación de los diafragmas y hacer clic en "Add" o añadir tomado en cuenta que deben ser colocados a una distancia con respecto al inicio de cada tramo estos pueden ser de hormigón o metálicos.

| Bridg                     | e Object Name        | BOBJ1    |         |            |   | nits<br>Tonf, m, C 🗨 |
|---------------------------|----------------------|----------|---------|------------|---|----------------------|
| n-Span Cross-Diaphragm De | finition             |          |         |            |   |                      |
| Span                      | Diaphragm Property + | Distance | Bearing | Location   |   |                      |
| Span1 💌                   | DIAFRAGMA 0.25       | 5.       | Default | All Spaces | • |                      |
| Span1                     | DIAFRAGMA 0.25       | 5.       | Default | All Spaces | - | Add                  |
| Span1                     | DIAFRAGMA 0.25       | 10.      | Default | All Spaces |   |                      |
| Span1                     | DIAFRAGMA 0.25       | 15.      | Default | All Spaces |   | Modifu               |
| Span To End Abutment      | DIAFRAGMA 0.25       | 5.       | Default | All Spaces |   | modify               |
| Span To End Abutment      | DIAFRAGMA 0.25       | 10.      | Default | All Spaces |   |                      |
| Span To End Abutment      | DIAFRAGMA 0.25       | 15.      | Default | All Spaces |   | Delete               |
|                           |                      |          |         |            |   |                      |
|                           |                      |          |         |            |   |                      |

Figura 102. Espaciamiento de los diafragmas

e. Dar clic en **"Superelevation"** para ingresar la elevación constante en porcentaje del Puente con respecto a su eje transversal

| Bridge Object Name<br>BOBJ8                         |                                      | Jnits<br>Kip, ft, F     |                         | Spans<br>User Discretization Points<br>Abutments<br>Bents                                               |
|-----------------------------------------------------|--------------------------------------|-------------------------|-------------------------|---------------------------------------------------------------------------------------------------------|
| Constant     User Definition                        | 0.                                   | Percent                 | Add<br>Modify<br>Peleto | In-Span Hinges (Expans<br>In-Span Cross Diaphrag<br>Superelevation<br>Prestress Tendons<br>Girder Rebar |
| User Defined Superelevation Station Station Station | on Data<br>SuperElevation<br>Percent | Add<br>Modify<br>Delete | Elev<br>en Pe           | ación constante<br>orcentaje                                                                            |

Figura 103. Elevación del puente

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

f. Dar clic en "Girder Rebar" permite definir el refuerzo longitudinal y transversal por cada viga.

| Home Layout Components | Bridge Girders Reinforcement Layout                                                              |
|------------------------|--------------------------------------------------------------------------------------------------|
| BOBJI                  | Select Bridge Object Solor7  Select Bridge Girder Copy to Interior Girder 1  Kp. R. F            |
| Joint Restraints       | Congludnal Reinforcement Transverse Reinforcement CRefuerzolongitudinal                          |
| 1Refuerzolongitudinal  | Material A615Gr60  Bar Size N. of Bars Reference Line Dist. Left Dist. Right Dist. Vertical From |
|                        |                                                                                                  |
|                        | -<br>•                                                                                           |
|                        | Add Modify Delete                                                                                |
|                        | Gitder Reinforcement Layout Plot                                                                 |
|                        |                                                                                                  |
|                        | 220.                                                                                             |
|                        | Span To End Abutment                                                                             |
|                        | OKCancel                                                                                         |

Figura 104. Configuración del refuerzo longitudinal y transversal

# 7.6.2.1.1.10. Actualizar el modelo estructural

Una vez definido los parámetros del puente seleccionar la siguiente opción "Update" y seleccionar "Update as Area Object Model".

| Home Layout Components | Loads Bridge Analysis Design/Rating Advanced                                                                                                                                                                                                                                                                                                                                         |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 Lane                 | Update Bridge Structural Model  Select a Bridge Object and Action Bridge Dbject Action Update Linked Model  C Update as Spire Model Using Frame Objects BOBJ1 Update Linked Model  C Update as Area Object Model Preferred Maximum Submesh Size  A.  C Update as Solid Object Model Preferred Maximum Submesh Size  Maximum Submesh Size  Maximum Submesh Size  Maximum Submesh Size |
|                        | OK Cancel                                                                                                                                                                                                                                                                                                                                                                            |

Figura 105. Definir las opciones del modelo estructural

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# 7.6.2.1.1.11. Designación de la variación paramétrica

• Si anteriormente se estableció una variación parametrica es necesario designarlas en cada uno de los espacios del puente, para ello dar clic en el icono "Spans" y dar doble clic en "Section Varies".



Figura 106. Configuración en los tramos del puente

 En la ventana que se muestra a continuación seleccionar la opción "Total Depth" y elegir las variaciones creadas de acuerdo a los tramos del puente.



Figura 107. Definición de la variación parametrica en toda la profundidad

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# 7.6.2.1.1.12. Visualizar las características del puente

Para poder visualizar las características del puente ir al menú "Home" +
 "View" y seleccionar la opción "Extrude View"+ "Apply all Windows"
 + "Ok", según el orden mostrado en la figura 108.



Figura 108. Ver las secciones definidas en el puente

## 7.6.2.1.1.13. Asignación carga móvil

• Asignar una carga vehicular al puente, ir al menú "Analysis" dar clic en la opción "Type" y elegir la carga "Moving Load"



Figura 109. Ubicación de la carga móvil

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• En la siguiente vetana configurar la carga de los vehiculos tipo de acuerdo al orden indicado.



Figura 110. Asignación de la carga móvil

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

- 1. Dar clic en nuevo caso de carga
- 2. Darle un nombre al caso de carga
- 3. Elegir la clase de vehículo creado
- 4. Añadir la clase de vehículo
- Ingresar el factor de reducción de acuerdo con el número de carriles que se encuentra especificado en la tabla 4 Factores por presencia múltiple de sobrecargas.
- **6.** Seleccionar todos los carriles definidos ya que sobre ellos se aplicaran los vehículos tipo creados anteriormente.

#### 7.6.2.1.1.14. Definición de las combinaciones de carga

• Definir las combinaciones de carga, dar clic en "Desing/Rating" y hacer clic en el icono señalado para añadir un combo + "Add New Combo", añadir los casos de carga con sus respectivos factores.



Figura 111. Asignación de las combinaciones de carga

- 1. Hacer clic en nueva combinación de carga
- 2. Añadir un nuevo combo de diseño
- 3. Elegir todos los casos de carga que intervienen en el combo de carga
- 4. Indicar el tipo de caso de carga
- **5.** Colocar el factor de escala por cada caso de carga a emplear en la combinación, una vez creados todos los parámetros añadir al combo
- Crear automáticamente los combos de carga dar clic en "Add Defaults" y aparecerá la siguiente ventana donde se debe seleccionar "Bridge Desing", se pueden observar los combos establecidos por el programa los cuales pueden ser modificados copiados y borrados.



Figura 112. Crear combos automáticamente

### 7.6.2.1.1.15. Llenar los objetos del puente

 Para llenar los objetos ir al menú "Home", dar clic en "Display Options" y elegir la opción "Fill Objects".

| Home Layout Components<br>Reg Q Q Q Q Q Q<br>Bridge<br>Wizard<br>Wizard | Loads Bridge Analy<br>14 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                      | sis Design/Rating Advance                                                                                          | ed<br>A R Anne<br>A R Anne<br>A R Anne<br>Display                                                                | je<br>re                                                                                              |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 1 Lane                                                                  | Directory Orations For Action V                                                     | Vinder                                                                                                             |                                                                                                                  |                                                                                                       |
|                                                                         | Joints<br>Labels<br>Restraints<br>Springs<br>Local Axes<br>Invisible<br>Not in View | Frames/Cables/Tendons Frames/Cables/Tendons Sections Falebases Found Aves Frames Not in View Foundation Notin View | General<br>Shink Objects<br>Extrude View<br>Fill Objects<br>Show Edges<br>Show Ref. Lines<br>Show Bounding Boxes | View by Colors of<br>C Dejects<br>C Sections<br>Llenar objectos<br>C Selected Groups<br>Select Groups |
|                                                                         | Areas<br>Labels<br>Sections<br>Local Axes<br>Not in View                            | Solds<br>Labels<br>Sections<br>Local Axees<br>Not in View                                                          | Links<br>Labels<br>Properties<br>Local Axes<br>Not in View                                                       | Miscellaneous<br>F Show Analysis Model (If Available)<br>Show Jaints Only For Objects In View         |
|                                                                         |                                                                                     |                                                                                                                    | DK Cancel                                                                                                        | C Apply to All Windows                                                                                |

Figura 113. Ventana para llenar los objetos del puente

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# 7.6.2.1.1.16. Observar las cargas que se aplican sobre el puente

• Visualizar las cargas que se aplican sobre el puente, ir al menú "Bridge" dar clic en "Loads" y elegir los tipos de carga designadas anteriormente, estas deben ser aplicadas en toda la longitud del puente.



Figura 114. Seleccionar la carga asignada

• Escogemos las cargas antes definidas como ejemplo elegir la carga lineal y añadir al puente.



Figura 115. Selección de las cargas lineales

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

- 1. En la siguiente ventana se debe elegir el patrón de carga definido anteriormente
- 2. Elegir la distribución de la carga
- 3. Ingresar el valor donde inicia la carga
- 4. Insertar el valor donde finaliza la carga
- 5. Indicar si existe una variación transversal
- **6.** Añadir cada una de las cargas mediante las opciones de añadir nuevo, una nueva copia o eliminar y existe un error.
- Luego ir al menú "Home" + "Display" escoger la opción "Show Bridge Loads", elegir el patrón de carga que se desea visualizar dar "Ok".



Figura 116. Ventana para elegir la carga a observar

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Luego de haber elegido el patrón de carga al hacer clic en "ok" se abre esta ventana en la cual se puede visualizar en donde aplicara la carga en el puente



Figura 117. Visualización de la carga seleccionada
## 7.6.2.1.1.17. Vista en 3D

 Para tener una vista en 3D ir al menú "Home", seleccionar el icono "More" y elegir la vista en 3D



Figura 118. Vista en 3D

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

## 7.6.2.1.1.18. Análisis del puente

 Realizar el análisis del puente; ir al menú "Analysis" dar clic en "Run Analysis" + "Run Now", para analizar el modelo con todas las cargas que debe soportar el puente.

| Bridge Analysis De<br>*L The Bridge I<br>nvert Show Bridge I<br>Bridge I<br>Bridge I<br>Bridge I<br>Bridge I    | esign/Rating Advanced                                                                       | sis                                                                                    | Modify R<br>Geometry Geo<br>Shape Findir                | eset<br>metry<br>19                                                                                                                         |               |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Set Load Cases to Run Case Name Type DEAD Linear DV Linear DW1 Linear PL BARANDA Linear VEREDA Linear LL Moving | Static N<br>Static N<br>Static N<br>Static N<br>Static N<br>Static N<br>Static N<br>gLoad N | Status<br>ol Run<br>ol Run<br>ol Run<br>ol Run<br>ol Run<br>ol Run<br>ol Run<br>ol Run | Action<br>Run<br>Run<br>Run<br>Run<br>Run<br>Run<br>Run | Click to:<br>Run/Do Not Run Case<br>Show Case<br>Delete Results for Case<br>Run/Do Not Run All<br>Delete All Results<br>Show Load Case Tree | 2Correr ahora |
| Analysis Monitor Options<br>C Always Show<br>C Never Show<br>Show After 4 sec                                   | conds                                                                                       |                                                                                        |                                                         | Model-Alive           Run Now           OK         Cancel                                                                                   |               |

Figura 119.Correr el programa



# 7.6.2.1.1.19. Deformada del puente, control de deflexión y cálculo del acero de refuerzo.

• Luego de completarse el análisis aparecerá la deformada del puente: dar clic en **"Start Animation"** se observa una animación del comportamiento del tablero frente a las solicitaciones de carga.



Figura 120. Ver deformada de la estructura

## Procedimiento de la ventana

- 1. Si se desea ver la animación se debe hacer clic en iniciar animación
- Seleccionar un punto donde se desee ver la deflexión y dar clic derecho para ver más detallado todos los datos.
- **3.** La deflexión longitudinal se la observa en la opción 3 indicada en la figura 120 la cual permite comparar con los parámetros máximos y mínimos de deflexión establecidos por la AASHTO LRFD
- Para observar la deformación de cada una de las cargas ir al menú "Home" dar clic en el icono "Show Deformed Shape"



Figura 121. Deformada por carga

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

## Procedimiento de la ventana

1. Dar clic en ver la forma de la deformada

- **2.** Elegir el nombre del combo creado y aparecerá la deformada con respecto al combo seleccionado.
- **3.** Seleccionar esta opción si se desea dibujar el contorno con respecto al eje Z como se muestra en la figura 122 y elegir la opción eje vertical



Figura 122. Deformada con respecto al eje Z



#### 7.6.2.1.1.20. Influencia de las cargas vivas

• Ver la influencia de las cargas vivas en el puente ir al menú "Home" dar clic en icono "Show Influence Line/Surface" configurar la ventana de acuerdo a los valores que se requiera y hacer clic en "Ok".

| Home Layout Comp                                                   | Show Influence Line/Surface                                                                                                                                        | Juntas                                                                              |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Bridge<br>Wizard<br>Wizard<br>Wizard                               | Select One Or More Lanes LANE1 LANE2 Select All Lanes                                                                                                              | Plot in Joint                                                                       |
| 1Dibujar sobre el<br>ancho del carril con<br>estructura de alambre | Clear All Lanes                                                                                                                                                    | Plot Influence Line/Surface For This Object                                         |
|                                                                    | Noving Load Load Case Load Case ML Plot Parameters                                                                                                                 | Frame Label  11<br>Relative Distance Along Frame Object  <br>Relative Distance  0.5 |
|                                                                    | Plot Along Lane Denter (ine Show 1 able      Plot Over Lane Width As Wire France      Show Wire France Dente     Show Wire France Dente     Show Wire France Dente | Set Relative Distance to Fall on Lane Load Point                                    |
| 2 Dibuiar el contemo                                               | Flot Over Lane Width As Contour      Show Wire Frame on Contours      Show Wire Frame Deck      Show Wire Frame Jesticiale                                         | Cortantes                                                                           |
| sobre el ancho del carril                                          | Contour Range and Transparency<br>Min 0. Max 0.                                                                                                                    | C Torsión<br>C Moment 2:2<br>Moment 3:3                                             |
|                                                                    | Scaling<br>C Auto C Scale Factor                                                                                                                                   | Momentos                                                                            |
|                                                                    | ОК                                                                                                                                                                 | Cancel                                                                              |

Figura 123. Influencia de las cargas vivas

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Una vez configurada la ventana se puede observar los valores de influencia de las cargas vivas en los carriles.



Figura 124. Ver la influencia de cargas en el puente

• Para determinar el Acero de refuerzo seguir los pasos que se describen en la figura 125

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of sole                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| A HORD A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1Ver las los resultados de las                 |
| Home         Layout         Components         Loads         Bridge           ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ●         ● | Analysis Design/Rating Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | de concreto                                    |
| Vizard View Snap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Case/Combo Component Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |
| 3-D View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Case/Combo Name StdGroup1  C Resultant For<br>C Shell Stress<br>C | sees<br>se 2Diseño de concreto                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Multivalued Options     Output Type     C Envelope Max     C Envelope Min     C Step     T     T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C Maximum<br>C Minimum<br>e C Absolute Maximum |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Contour Range         Component           Min.         0.         Max.         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C NDes1 C Fc 3Acero de refuerzo                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Miselaneou Optons Show Continuous Centeurs (Enhanced Graphics)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |

Figura 125.Configurar la ventana para el diseño del acero de refuerzo

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Luego de configurar la ventana acercar el cursor a las vigas que se desee conocer el Acero de Refuerzo como se muestra a continuación.



Figura 126. Ver el acero de refuerzo

#### 7.6.2.1.1.21. Momentos, cortantes y axiales

 Visualizar los momentos dar clic "Show Bridge Superstructure Forces/Stresses" se abrirá la ventana que aparece en la figura 127 la cual debe ser configurada de acuerdo a los valores que se requiera.

#### 1. Momentos



Figura 127. Diagrama de Momentos

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

#### Procedimiento de la ventana

- 1. Hacer clic en ver las fuerzas de la superestructura del puente
- **2.** Seleccionar la opción de ver los resultados y elegir el elemento estructural del que se desee ver los resultados
- **2.1.** Elegir el literal de fuerzas y se podrá ver los resultados de fuerzas en la pantalla inferior la cual proporciona valores máximos y mínimos
- **2.2.** De la misma forma al elegir los esfuerzos sus valores se graficarán en la parte inferior de la ventana
- **3.** También permite indicar el combo de caga que se desee aplicar al puente y obtener los valores tanto de fuerzas como de esfuerzos

#### 2. Cortantes

Se los puede observar al hacer clic en la opción que se muestra en la figura 139 donde permite elegir la grafica de momentos **"moment"**, cortantes **"shear"**, axiales **"axial"** y torsión **"torsión"**.



Figura 128. Diagrama de cortante

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

## 7.6.2.1.1.22. Diseño y Evaluación del puente

• Elegir las combinaciones de carga con las cuales se trabajara dentro del diseño y evaluación

| 1Añadir<br>combinaciones       Code-Geerrated Lad Combinations for Bindge Design - User Defined: AdSHTO LRFD 2007         1Añadir<br>combinaciones       Superstructure of<br>Superstructure of<br>Superstructure of<br>Superstructure of<br>Select Link States<br>Select Link States       Code-Geerrated Lad Combinations are to be Gererated<br>Superstructure of<br>Select Link States       Steergh III IF Steergh IV IF Steergh IV<br>Steergh IV IF Steergh IV<br>Steergh III IF Steergh IV IF Steergh IV<br>Steer Steergh IV<br>Steergh IV<br>Steergh IV<br>Steer Steergh IV<br>Steer Steergh IV<br>Steergh IV<br>Steergh IV<br>Steergh IV<br>Steergh IV<br>Steergh IV<br>S |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OK Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Figura 129. Combinaciones de carga

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

## Procedimiento de la ventana

- Hacer clic en "Añadir combinaciones" y elegir la opción "Diseño del Puente"
- Seleccionar la opción "Datos de las combinaciones de carga" en la cual se puede elegir las combinaciones de carga a emplear en el diseño de puentes.
- **3.** Elegir cualquiera de las 5 combinaciones de resistencia, su descripción se encuentra especificada en la norma AASHTO LRFD
- **4.** Se puede también elegir una combinación de servicio la cual este más acorde al diseño
- Seleccionar las combinaciones de carga del evento extremo si el diseño se lo realiza a sismo
- **6.** Elegir la combinación de cargas por fatiga por lo general se lo aplica a los puentes con vigas metálicas.

• Elegir el código con el que se está trabajando en el programa de acuerdo a lo especificado en la figura 130.

| ) (* 🔓 (*) =                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Layout Components Loads     | Bridge Analysis Design/Rating Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                             |
| D+L D+L D+L Add Defaults    | Ran         Optimize         Ran         Optimize         Ran         Preferences         Design         Run         Report         Preferences         Report         Preferences         Report         Run         Run | Requests Rating                                                                                             |
|                             | Bridge Design Preferences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                             |
| 1Preferencias<br>del código | Item         Value           Design Code         AASHT0 LRFD 2007           2 Plastic-Hinge Type for Sestinic Design         Auto: AASHT0/Caltians Hinge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Item Description                                                                                          |
| 2 Código de diseño          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             |
| 1                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Explanation of Color Coding for Values<br>Blue: All selected items are program<br>determined                |
|                             | Set To Prog Determined (Default) Values All Items Selected Items All Items Selected Items                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Black: Some selected items are user<br>defined<br>Red: Value that has changed during<br>the current session |
|                             | OK Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                             |
|                             | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l                                                                                                           |

Figura 130. Código de diseño

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 Realizar una solicitud de diseño al puente; en donde se evalúa la demanda/capacidad del mismo

#### Flexión



Figura 131. Solicitud de diseño a flexión

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

## Procedimiento de la ventana

- 1. Dar clic en solicitud de diseño demanda/capacidad
- 2. Elegir añadir una solicitud de diseño
- 3. Indicar el nombre de la solicitud
- 4. Luego seleccionar el chequeo a flexión de las vigas
- 5. Seleccionar el tramo del puente a evaluar en este caso es desde el inicio
- 6. Decir donde finaliza el diseño y evaluación del puente
- Escoger la envolvente de las combinaciones de carga que se desee enviar a evaluar
- 8. Por último indicar la distribución de la carga viva, esto se lo realiza seleccionando el método a emplear en este caso es utilizando los factores del código de diseño dentro del cual se ingresa: el ancho del vehículo, el ancho del carril, la separación entre los vehículos.

## Corte

• El proceso de la solicitud de diseño es igual a la anterior a diferencia del paso 4 en la cual se elige la opción del chequeo por corte.

| Home Layout Components Loads Bridge Analysis Design/Rati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bridge Design Request - Superstructure - AASHTO LRFD 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Det         Det <thde< th=""> <thde< th=""> <thde< th=""></thde<></thde<></thde<> | Name Notes  S Nombre  CORTE  Modily/Show                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Bridge Design Requests - AASHTO LRFD 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bidge Object BOBJT - 4Chequeo a corte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Bridge Design Requests - AASHTO LIKED 2007<br>Requests<br>Find this request<br>2 Afia dir la solicitud<br>de diseño<br>OK Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Diekk Type     Precent Comp Sheer       Station Ranges     Stati Station       Licocation Type Statt. June     Stati Station       Bindon Ranges     End Station       Add     Reduct Parameters       Design Request Parameters     Add       Medity/Show     Delete       Design Request Parameters     Add       Medity/Show     Delete       The Load Distribution (LLD) to Girdes:     Image: Comp Station Specified by Design Code |
| 8 Distribución de la carga viva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lane Width 1365 Diaphragmi/DossFramesPierent Yes  Hultiple-presence Factor 1.2 1. 0.85 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Figura 132. Solicitud de diseño a corte



• Luego se envía a diseñar la superestructura tanto a corte como a flexión como se especifica en la figura 133.



Figura 133. Enviar a diseñar

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Luego de correr el diseño aparece la siguiente ventana en la cual se debe chequear si el acero de refuerzo colocado en las vigas es el suficiente para resistir el momento.



Figura 134. Ventana después de enviar a diseñar

• Se puede observar que al seleccionar la resistencia positiva, se grafica una línea de color tomate; la cual nos indicara si la viga resiste a flexión, es decir si esta línea se encuentra más arriba del diagrama de momento indica que el acero en la viga es suficiente, el mismo análisis se realiza para la resistencia negativa



Figura 135. Evaluación de la resistencia positiva a flexión

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

## Procedimiento de la ventana

- 1. Se inicia al escoger ver los resultados de la viga interior 1
- 2. Seleccionamos la resistencia positiva
- **3.** Se grafica la capacidad de la resistencia positiva de la viga, en este caso se grafica en cero; porque no contiene ningún acero de refuerzo longitudinal que resista la flexión, por lo cual para poder chequear se debe ingresar las varillas y volver analizar el modelo.

• Desbloquear el candado para poder añadir las varillas de las vigas



Figura 136. Desbloquear el modelo

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Ingresar las varillas de forma longitudinal como se observa en la figura 137

| Loads Bridge Analysis Design/Ratin                              | Bridge Girders Reinforcement Layo                                                                                                                                                                                                       | out                                                                                                                                    | · · ·                                           |                                      |                                          |   |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------|------------------------------------------|---|
| Supports Super Prestress<br>Elevation Tendons<br>Bridge Objects | Select Bridge Object                                                                                                                                                                                                                    | Select Bridge Girder                                                                                                                   | Copy to Left Exterior Gi                        | rder 💌                               | Units<br>Tonf, m, C                      | • |
|                                                                 | <ul> <li>Longitudinal Reinforcement</li> <li>Longitudinal Rebar</li> <li>Material</li> <li>A615Gr60</li> </ul>                                                                                                                          | C Transverse Reinforceme                                                                                                               | ant <b>3.</b> - Cop                             | piar a                               |                                          |   |
| 1 Varilla de<br>refuerzo en las vigas                           | Bar Size N. of Bars                                                                                                                                                                                                                     | Reference Line D                                                                                                                       | Dist. Left Dist. Right                          | Dist. Vertical                       | From<br>Top                              |   |
| 2 Ingresar el numero<br>de varillas requeridas                  | N32         15           N32         5           N32         10 | Center of span 2 1<br>Center of span 1 5<br>Center of span 1 5<br>End of span 1 5<br>Center of span 2 1<br>Center of span 2 1<br>Add N | 10 10<br>5 5 5<br>5 5<br>10 10<br>Modity Delete | 0.10<br>0.12<br>0.12<br>0.37<br>0.35 | Bottom<br>Bottom<br>Bottom<br>Top<br>Top | • |
|                                                                 | 40. 1.18<br><                                                                                                                                                                                                                           | 20.<br>span 1<br>OK                                                                                                                    | Cancel                                          | 20.<br>span 2                        |                                          | + |

Figura 137. Añadir refuerzo longitudinal en las vigas

• Se vuelve a analizar el modelo y a diseñar la superestructura



Figura 138. Analizar y Diseñar el modelo

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Luego del diseño se abre la siguiente imagen en la cual, se puede observar que el acero de refuerzo colocado en las vigas en la parte inferior cubre el momento positivo en la viga exterior izquierda.



Figura 139. Evaluación a flexión de la viga con la resistencia positiva

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Ahora se observa con respecto al momento negativo que el acero de refuerzo colocado en la viga es insuficiente por lo cual se debe agregar más acero de refuerzo en los costados y en el centro de la viga



Figura 140. Evaluación a flexión de la viga con la resistencia negativa

• Con respecto a corte se realiza el mismo análisis tomando en cuenta en esta ocasión debe variar la altura de la viga o se debe aumentar los estribos.



Figura 141. Evaluación del cortante en la viga

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

#### 7.6.2.1.1.23. Animación con el vehículo en movimiento

• Para poder modificar los datos y crear la animación se debe primero desbloquear el modelo para lo cual ir al menú "Analysis" dar clic en el candado "Model Lock", elegir "Aceptar"



Figura 142. Abrir el candado



• En el menú "Loads" añadir un nuevo patrón de carga en "Loads Patterns" agregamos una nueva carga móvil llamada camión o "Trucks", y hacer clic en la opción de modificar la carga viva del puente para poder configurar el camión de diseño.



Figura 143. Añadir un nuevo patrón de carga

• Al hacer clic **"Modify Bridge Live Load"**, se abre la siguiente ventana en la cual se establece el carril, la distancia inicial del camión con respecto a la longitud del puente, el tiempo de partida, la dirección de viaje del vehículo; es decir hacia adelante o hacia atrás y el valor de la velocidad se debe ingresar en base a las unidades de trabajo, de acuerdo a la figura 144.

| 3-D View 2D<br>ir                                                                                  | istancia<br>iicial                                                                 | 3Tiempo<br>inicial                                                                       | 4Dirección                                                                | 5Velocidad                | ]   |                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1Carriles                                                                                          | Start Dist     220     220     220     a uniform load will     a list of webicites | Start Time Dire<br>0. Backw<br>0. Forwar<br>0. Backw<br>0. Backw<br>0. Backw<br>0. Backw | ction Speed<br>and 1 40.<br>d 40.<br>and 40.<br>gram generated multi-step | Add n<br>Modify<br>Delete | 6Ai | Tadir         Click To:         Add New Load Pattern         Modify Load Pattern         Modify Bridge Live Load         Delete Load Pattern         Show Load Pattern Notes |
| Load Pattern Discretization Information<br>Duration of Loading is 10.<br>Discretize Load every 0.1 | seconds<br>seconds                                                                 | Units                                                                                    | ОК                                                                        | Cancel                    |     | OK<br>Cancel                                                                                                                                                                 |

Figura 144. Modificar la carga viva

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Luego ir al menú "Analysis" y correr solo la carga camión o "Trucks", dar clic en "Run Now".

| Home Layout Components Loads | Bridge Analysis Design/Rating Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ]                                                                                                               |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                              | Set Load Cases to Run     2No correr       Case Name     Type     Status     Action       DEAD     Model     Model     Not Flam       DDALL     Model     Not Flam     Do not Flam       ML     Moving Loads Static     Not Flam     Do not Flam       ML     Moving Loads Static     Not Flam     Do not Flam       ML     Moving Loads Static     Not Flam     Do not Flam       ML     Moving Loads Multi-step Static     Not Flam     Not Flam       Analysis Monitor Options     C     Never Show     Model A       © Show After     is seconds     Dot | Not Run Case<br>w Case<br>exuBs for Case<br>o Not Run All<br>ad Case Tree<br>kve<br>un Now<br>Cancel<br>3Correr |

Figura 145. Analizar la carga agregada



Figura 146. Ventana de animación

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Una vez analizada la carga del vehículo ir al menú "ORB" seleccionar la opción "Picture" + "Create Multi-step Animation Video"



Figura 147. Crear animación del puente

• Luego guardar el archivo y establecer los parametros que se especifican en la figura 148 y se puede apreciar el efecto en la figura 149.



Figura 148. Establecer propiedades del vehículo

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN



Figura 149. Animación de los vehículos

## 7.6.2.2. Modelación del Puente empleando una plantilla

#### 7.6.2.2.1. Selección de la plantilla y sus dimensiones

En la siguiente ventana elegimos la plantilla del puente listo o hacer clic en "Quick Bridge".

|             | H 10<br>Home | Co Es (c)<br>Layout | Compone | nts Lo                  | oads                                  | Bridge | Analysis          | Design/R                            | iting Ad                    | lvanced         |             |                     |                         |                      |   |   |              |
|-------------|--------------|---------------------|---------|-------------------------|---------------------------------------|--------|-------------------|-------------------------------------|-----------------------------|-----------------|-------------|---------------------|-------------------------|----------------------|---|---|--------------|
| No. IS      | DEAD         | <i>°</i> 4 ⅔        | 2×,     | in.<br>chenule<br>Mapes | O + L<br>*E<br>NL<br>Combai<br>Combai |        | Inder<br>Response | Moder<br>Loo                        | bors<br>Anitysin<br>Options | Pun<br>Analysis | ANDS        | V Marcely<br>George | htim<br>Neim<br>Geometr |                      |   |   |              |
| <b>O</b> la | ne           |                     |         |                         |                                       |        | New Mo            | del                                 |                             |                 |             |                     |                         | -                    | × |   |              |
|             |              |                     |         |                         |                                       |        | New Mo            | del Initializatio<br>Salize Model I | on<br>from Diefaults v      | with Units      | Tonit, m. C | •                   | Project Infor           | mation<br>/Show Info |   |   |              |
|             |              |                     |         |                         |                                       |        | C Ini             | iakze Model<br>emplate              | hom an Existin              | ng File         | 177. Soon   |                     |                         |                      |   |   |              |
|             |              |                     |         |                         |                                       |        |                   | -                                   |                             |                 | 4           | 4                   | A                       |                      |   | 1 | 8            |
|             |              |                     |         |                         |                                       |        |                   | ank.                                | Beam                        | 20 Frames       | Cable       | Bridges Ca          | itans-BAG               | Quick Bridg          | 2 | Ч | Puente listo |
|             |              |                     |         |                         |                                       |        | <u> </u>          |                                     |                             |                 |             |                     |                         |                      |   |   |              |

Figura 150. Selección de una plantilla

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Ingresar la longitud de los espacios del puente si se encuentra apoyado sobre las pilas (**Bents**) dar clic en "**Span Lengths**" y elegir el tipo de sección del puente en "**Bridge Deck Section type**"+ "**Ok**".



Figura 151. Características del puente

#### 7.6.2.2.2. Revisión de los parámetros creados del puente

• Una vez creada la plantilla se define automáticamente todos los parámetros del puente, es decir: las secciones y características de la super-estructura y sub-estructura las cuales pueden ser modificadas.



Figura 152. Ventana del puente creado automáticamente

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

## 7.6.3. Diseño de un puente sobre vigas metálicas

Todos los pasos a seguir para modelar un puente de hormigón son similares a un puente sobre vigas metálicas, se diferencian en la definición del material y en el diseño de las vigas metálicas.

Dentro del diseño de las vigas metálicas se realiza un ciclo repetitivo el cual es "Análisis-Diseño-Optimización y Análisis" hasta obtener los resultados requeridos.

#### 7.6.3.1. Diseño de las vigas metálicas.

#### 7.6.3.1.1. Crear un nuevo material

• Ir al menu "Components"+ "New Material Property", seleccionar el tipo de material y la norma, ya que de acuerdo a eso se crea automáticamente las propiedades del mismo



Figura 153. Ventana crear un nuevo material

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

#### 7.6.3.1.2. Crear nueva sección

Definición de las vigas metálicas ir al menú "Components"+ "New Frame Section" y elegir la sección de acero "Steel" a emplear en el puente, las secciones más empleadas son las tipo I que a continuación se muestra en la figura 154

| Home Layout Components Loads Bridge | Analysis Design/Rating Advanced                                                                          |        |
|-------------------------------------|----------------------------------------------------------------------------------------------------------|--------|
| Propries - frames<br>1Nueva sección | Add Frame Section Property Select Property Type Frame Section Property Type Click to Add a Steel Section | 2Acero |
|                                     |                                                                                                          |        |
|                                     | Double Angle Double Charmel Pipe Tube           Auto Select List         Steel Joint                     |        |

Figura 154. Crear una sección

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Ingresar las dimensiones de la sección tipo I



Figura 155. Ventana para ingresar los valores de la viga

## 7.6.3.1.3. Crear una viga de acero con platabandas

Para emplear una viga de acero con platabandas o una viga hibrida elegir "Built-Up Steel"



Figura 156. Ventana del refuerzo en el acero

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Ingresar las dimensiones de las platabandas tanto superior e inferior



Figura 157. Dimensionamiento de las platabandas

# 7.6.3.1.4. Definición el tipo de sección

• Elegir el tipo de seccion del puente dar clic en "New Deck Section", elegir el puente de concreto sobre vigas metálicas.

| Home Layout Components Loads E        | Bridge Analysis Design/Rating Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Properties - Frames rs, Superstructur | Ext. Girders Vertical         Ext. Girders Sloped         Ext. Girders Clipped         Ext. Girders with Radius         Ext. Girders Sloped Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | AASHTO-PCI-ASBI Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                       | Other Concrete Sections       Image: Conconcrete Sections       Image: Concre |
| 2Vigas metálicas                      | Steel and Concrete Sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Figura 158. Elección del tipo de puente

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Establecer las dimensiones del puente sobre vigas metálicas.

| ne Bridge Section Data - Steel Girder                                                                              |                            |                                                               |
|--------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------|
| Vidith<br>Vidith<br>Vidith<br>Vidith<br>Contern<br>General<br>States<br>Constant or Variable Girder Spacing        | 12<br>Rold Arrow<br>Garder | X<br>X<br>Section is Legal<br>Show Section Details.           |
| Section Data                                                                                                       |                            | Girder Output                                                 |
| Item                                                                                                               | Value                      | <ul> <li>Modify/Show Girder Force Output Locations</li> </ul> |
| General Data                                                                                                       |                            |                                                               |
| Bridge Section Name                                                                                                | BSEC1                      | Modify/Show Properties Units                                  |
| Slab Material Property                                                                                             | 4000Psi                    | Materiale Frame Sector                                        |
| Number of Interior Girders                                                                                         | 2                          | Materials Fraine Sects                                        |
| Total Width                                                                                                        | 432.                       |                                                               |
| Girder Longitudinal Layout                                                                                         | Along Layout Line          |                                                               |
| Constant Girder Spacing                                                                                            | Yes                        |                                                               |
| Constant Girder Haunch Thickness (t2)                                                                              | Yes                        |                                                               |
| Constant Girder Frame Section                                                                                      | Yes                        |                                                               |
| Slab Thickness                                                                                                     |                            |                                                               |
| Top Slab Thickness (t1)                                                                                            | 12.                        |                                                               |
| Concrete Haunch + Flange Thickness (t2)                                                                            | 3.                         |                                                               |
| Girder Section Properties                                                                                          |                            |                                                               |
|                                                                                                                    |                            |                                                               |
| Girder Section                                                                                                     | STEEL GIRDER               |                                                               |
| Girder Section Girder Modeling In Area Object Models                                                               | STEEL GIRDER               |                                                               |
| Girder Section Girder Modeling In Area Object Models Girders Modeling Object Type                                  | STEEL GIRDER               |                                                               |
| Girder Section Girder Modeling In Area Object Models Girders Modeling Object Type Fillet Horizontal Dimension Data | STEEL GIRDER               |                                                               |



## 7.6.3.1.5. Definición de los diafragmas metálicos

• Definir los diafragmas dar clic en "New Diaphragm", elegir el diafragma con diagonales en "V" o "X"



Figura 160. Características de los diafragmas diagonales

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Definir los diafragmas dar clic en "New Diaphragm", elegir el diafragma solo vigueta y definir una sección con las dimensiones de la misma.



Figura 161. Características de los diafragmas tipo vigas

## 7.6.3.1.6. Correr el análisis del puente

 Una vez definidas las cargas y los objetos del puente correr el análisis: dar clic en "Run Analysis" + "Run Now" dentro de este análisis no se corre el modal debido a que no se realiza un análisis sísmico.

| Home Layout Components Loads<br>Layout Components Loads<br>Layout Components Loads<br>Layout Components Loads<br>Schedule Conver-<br>Stages Combo<br>Load Cases - All | Bridge Analysis Design/Rating Advanced                                                                                                                                                                                                                                                                                                                                                                                                           |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| ,                                                                                                                                                                     | Set Load Cases to Run           Case Name         Type         Status         Action           DEAD         Linear Static         Not Run         Run Down           MOVE1         Moving Load         Not Run         Run           Analysis Monitor Options         C Analysis Monitor Options         Model Alive           C Analysis Monitor Options         Moved Show         Moved Show           C Show Alter         4         seconds | 2Correr ahora |

Figura 162. Ventana para correr el análisis

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN



Figura 163. Deformada del puente

## 7.6.3.1.7. Combos de diseño

• Añadir los combos de diseño automáticamente dar clic en "Add Defaults", elegir "Bridge Desing" y "OK"

| Home Layout Compone   | ents Loads Bridge Analysis<br>CODE CODE<br>Preferences Design<br>Requests Super<br>Superstructure Design | Design/Rating Advanced                                                                                                                                                                              | Preferences<br>Rating<br>Load Rating |
|-----------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Deformed Shape (DEAD) | ombos                                                                                                    | Add Code-Generated User Load Combinations<br>Select Design Type for Load Combinations<br>G Bridge Design<br>C Steel Frame Design<br>Concrete Frame Design<br>Set Load Combination Data<br>DK Cancel |                                      |

Figura 164. Ventana para crear las combinaciones de carga

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

Luego chequear el código con el que se está trabajando ir al menú
 "Desing/Rating" + "Code Preferences"

| Defaults<br>Load Combinations | angui form opinities releases opinities consist form relations relations from opinities and presented and presente |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| formed Shape (DEAD)           | Item         Value           1         Design Code         AASHTO LIFED 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1Preferencias del código      | 2 Plastic-Hinge Type for Seismic Design     Auto AASHTO/Caltana Hinge     2Codigo de diseño                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                               | Explanation of Color Coding for Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                               | Set To Prog Determined (Default) Values All Items Selected Items All Items Selected Items All Items Selected Items All Items Selected Items                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Figura 165. Verificar el código con el que se está trabajando

## 7.6.3.1.8. Diseño de las vigas metálicas

• Dentro del menú "Desing/Rating" ir a la opción "Design Request" para solicitar un diseño del puente sobre vigas metálicas por resistencia.

| 9         | Home Layout Components Loads Bridge Analysis Design/                                                                                                                | B | ridge Design Request - Superstructure - AASHTO LRFD 2007                                                                                                                                                                                                                                                                                                                  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D<br>Stri | Broup1                                                                                                                                                              |   | Name DReq2<br>Notes Modity/Show                                                                                                                                                                                                                                                                                                                                           |
| ſ         | 1Solicitud de diseño                                                                                                                                                |   | Bidge Object OBJETO PUENTE                                                                                                                                                                                                                                                                                                                                                |
|           | Bridge Design Requests - AASHTO LRFD 2007                                                                                                                           |   | Check Type Steel Comp Strength                                                                                                                                                                                                                                                                                                                                            |
| 1         | Request:     Click to       Find this request:     Add New Request       Drivent     Add Copy of Request       2Añadir nueva solicitud de diseño     Delete Request |   | Station Ranges           Station Ranges           Add           Design Request Parameters         Add           Design Request Parameters         Modity/Show         Delete           Mane         Combos         Parameters         Add           Mane         Combos         Parameters         Add           Modity/Show         Delete         Delete         Delete |
|           | OK Cancel<br>4.1Método: Usar<br>directamente las<br>fuerzas de las vigas<br>en el análisis.                                                                         |   | A-Distribución de la carga viva a las vigas                                                                                                                                                                                                                                                                                                                               |

Figura 166. Solicitud para el diseño de puente

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

## Procedimiento de la ventana

- 1. Crear una solicitud de diseño
- 2. Añadir una nueva solicitud de diseño
- 3. Verificar los combos de diseño
- 4. Indicar la distribución de la carga viva a las vigas
- **5.** Elegir el método para la distribución de la carga viva revisando cuidadosamente cada uno de los parámetros, por lo general se recomienda usar directamente las fuerzas de las vigas en el análisis.

• Enviar a correr dar clic en "**Run Super**" y se abrirá la siguiente ventana en la cual se debe hacer clic en "**Desing Now**" para diseñar la superestructura.



Figura 167. Ventana para enviar a diseñar el puente

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

## 7.6.3.1.9. Diagramas de momentos positivos y negativos

• Posterior al análisis se abre la ventana que se presenta a continuación, en la cual se puede observar el momento positivo o negativo.



Figura 168. Diagrama de momentos

# 7.6.3.1.10. Optimización del diseño

Se continua con la optimización del diseño para lo cual ir al menú "Design/Rating" dar clic en "Optimize"

|                   | H 10 10 A 14                          | )÷                     |                     |                    |   |                         |                    |                           |                |             |             |                    |     |                 |
|-------------------|---------------------------------------|------------------------|---------------------|--------------------|---|-------------------------|--------------------|---------------------------|----------------|-------------|-------------|--------------------|-----|-----------------|
| D+1<br>D<br>EE-11 |                                       | D+L<br>Add<br>Defaults | CODE<br>Preferences | Design<br>Requests |   | INI<br>Optimize         | AAA<br>Preferences | AAA<br>Design<br>Requests | Run<br>Seismic | Report      | Preferences | Rating<br>Requests | Ran | [N]<br>Optimize |
|                   | Load Combinations 15 Superstructure D |                        | lesign              | (                  | 1 | Seismic De              | esign              |                           |                | Load Rating |             |                    |     |                 |
|                   | Deformed Shape (DEAD)                 | ,                      | Optim               | izar 🗕             | - | Interactivel<br>design. | y optimize steel g | rder                      |                |             |             |                    |     |                 |

Figura 169. Seleccionar la optimización

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN



Figura 170. Ventana del diseño optimizado

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

## Procedimiento de la ventana

- 1. Elegir la viga que se desea observar los diagramas de momento en toda la longitud del puente o por tramos
- **2.** Seleccionar los resultados que se requiere obtener y se graficaran automáticamente los resultados.
- 3. En esta ventana también permite modificar los resultados de las secciones
- **4.** Esta opción permite volver a calcular los momentos con las nuevas dimensiones de las vigas modificadas anteriormente.
- Permite mostrar una tabla completa de análisis de todas las vigas con sus respectivos resultados
- 6. Muestra una tabla completa del diseño que ha realizado el programa
- Para obtener más resultados de los momentos o cortantes dar clic en "Select Series To Plot" y se elige como ejemplo la opción "Negative Flexure"



Figura 171. Configuración de los momentos

• Ventana con el momento negativo de la viga interior 1; la cual se requiere cambiar sus dimensiones hacer clic en "Modify Section" como se muestra en la figura 172.



Figura 172. Ventana para modificar las dimensiones

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Se abre esta ventana en donde se puede modificar las dimensiones de las vigas ubicado en la parte inferior de la imagen
| er L | Left Exterior G                                  | ärder                            |                                       | <ul> <li>Span</li> </ul> | 1       | <ul> <li>Span</li> </ul>     | Length = 720.00      | 0 Units kip.                              | in, F • Co                      | py/Reset/Recall | 4 <u>a</u>                                                          |
|------|--------------------------------------------------|----------------------------------|---------------------------------------|--------------------------|---------|------------------------------|----------------------|-------------------------------------------|---------------------------------|-----------------|---------------------------------------------------------------------|
| ss S | ection Stiffe                                    | eners                            |                                       |                          |         |                              |                      |                                           |                                 |                 |                                                                     |
| opl  | Flange Plan                                      |                                  |                                       |                          |         |                              |                      |                                           |                                 |                 |                                                                     |
|      |                                                  |                                  |                                       |                          |         |                              |                      |                                           |                                 |                 |                                                                     |
| ĺ    |                                                  |                                  |                                       |                          |         |                              |                      |                                           |                                 |                 |                                                                     |
|      |                                                  |                                  |                                       |                          |         |                              |                      |                                           |                                 |                 |                                                                     |
| 1    |                                                  |                                  | ••••                                  |                          |         | •••                          |                      | ••••••                                    | ••••                            |                 | ••••                                                                |
|      |                                                  |                                  |                                       |                          |         |                              |                      |                                           |                                 |                 |                                                                     |
| _    |                                                  |                                  |                                       |                          |         |                              |                      |                                           |                                 |                 |                                                                     |
| 00   | Elance Eleva                                     | tion                             |                                       |                          |         |                              |                      |                                           |                                 |                 |                                                                     |
| op 1 | r lange cherre                                   | 20011                            |                                       |                          |         |                              |                      |                                           |                                 |                 |                                                                     |
|      |                                                  |                                  |                                       |                          |         |                              |                      |                                           |                                 |                 |                                                                     |
|      |                                                  |                                  |                                       |                          |         |                              |                      |                                           |                                 |                 |                                                                     |
|      |                                                  |                                  |                                       |                          |         |                              |                      |                                           |                                 |                 |                                                                     |
| ţ    |                                                  |                                  | +                                     |                          |         | +                            |                      | +                                         | +                               |                 | +                                                                   |
| ţ    |                                                  |                                  | +                                     |                          |         | •                            |                      | +                                         | +                               |                 | •                                                                   |
| ţ    |                                                  |                                  | +                                     |                          |         | +                            |                      | +                                         | +                               |                 | •                                                                   |
| •    | Indicates lo                                     | cation of                        | +<br>bridge obj                       | ject sectio              | n cuts. | •                            |                      | +                                         | +                               |                 | • •                                                                 |
| op l | Indicates lo                                     | cation of                        | ¢<br>bridge obj                       | ject sectio              | n cuts. | •                            |                      | +                                         | +                               |                 | Show Table                                                          |
| ¢    | Indicates lo<br>Flange<br>Start                  | cation of<br>Start               | +<br>bridge obj                       | ject sectio              | n cuts. | +<br>Length                  | Material             | + Segment                                 | +<br>Segment                    |                 | Show Table                                                          |
| +    | Flange<br>Start<br>Width                         | Cation of<br>Start<br>Thick      | bridge obj<br>End<br>Width            | End<br>Thick             | Length  | ¢<br>Length<br>Type          | Material             | Segment End Statio                        | Segment     True Length     Z20 |                 | Show Table<br>(* Top Flange<br>(* Web                               |
| ¢    | Flange<br>Start<br>Width<br>15                   | cation of<br>Start<br>Thick<br>2 | +<br>bridge obj<br>End<br>Width<br>15 | End<br>Thick<br>2        | Length  | Length     Type     Absolute | Material             | Segment<br>End Station<br>720             | Segment     True Length     720 |                 | Show Table<br>(* Top Flange<br>(* Web<br>(* Bottom Flange           |
| •    | Findicates lo<br>Filange<br>Start<br>Width<br>15 | cation of<br>Start<br>Thick<br>2 | bridge obj<br>End<br>Width<br>15      | End<br>Thick<br>2        | Length  | Length     Type     Absolute | Material<br>         | Segment<br>End Station<br>V 720           | Segment<br>True Length<br>720   |                 | Show Table<br>(* Top Flange<br>(* Web<br>(* Gottom Flange<br>(* All |
| •    | Indicates lo<br>Flange<br>Start<br>Width<br>15   | cation of<br>Start<br>Thick<br>2 | bridge obj<br>End<br>Width<br>15      | End<br>Thick<br>2        | Length  | Length<br>Type<br>Absolute   | Material<br>A992Fy50 | Segment<br>End Station                    | h Segment<br>True Length<br>720 |                 | Show Table     Top Flange     Web     Bottom Flange     All         |
| op   | Indicates lo<br>Flange<br>Start<br>Width<br>15   | Start<br>Thick<br>2              | bridge obj<br>End<br>Width<br>15      | End<br>Thick<br>2        | Length  | Length     Type     Absolute | Material<br>A992Fy50 | ♦<br>Segment<br>End Station<br>▼ 720<br>▼ | n Segment<br>True Length<br>720 |                 | Show Table<br>© Top Flange<br>C Web<br>C Bottom Flange<br>C All     |

Figura 173. Valores a modificar

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Una vez que se cambie las dimensiones es necesario volver a calcular los valores de cortantes y momentos, por ello dar clic en "Recalculate Resistance" y en "Aceptar".



Figura 174. Ventana para recalcular los valores modificados

• Luego se abre la siguiente ventana con los diagramas de momentos y cortantes, para poder observar los valores del momento a una cierta distancia seguir los pasos indicados en la figura 175.



Figura 175. Determinar los valores de momento en un cierto punto

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 Luego hacer clic en "Ok", se abrirá la siguiente ventana dar clic en "Unlock" para aplicar los cambios realizados al objeto puente y "Aceptar" y se encuentra completado la optimización de las vigas.



Figura 176. Completar la optimización



# 7.6.3.1.11. Análisis del diseño

• Al estar ya optimizado el diseño se debe volver analizarlo para visualizar su comportamiento, dar clic en "**Run Analysis**".

| Home Layout Components Loads | Bridge Analysis Design/Rating Advanced                                                                                                                                                    |      |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 3-D View                     | Analyzing SEXTO ENSAYO                                                                                                                                                                    |      |
|                              | File Name: C:\Users\Teress\Desktop\EJERCICID DE CSIBRIDGE\SEXT0 ENSAY0 bdb<br>Start Time: 14/01/2016 20:57:44 Elupred Time: 00:00:05<br>Finish Time: Not Applicable Run Status: Analyzing | Less |
|                              | NUMBER OF LANES = 2<br>NUMBER OF VERICLES = 3<br>NUMBER OF VERICLE CLASSES = 4<br>NUMBER OF LOAD POINTS = 258                                                                             | •    |
|                              | CALCULATION METHOD (UTCR OR "ENACT") = "EXACT"<br>DESREE OF REFINEMENT FOR QUICK METHOD = 0<br>CORREPONDENCE FOR FAME LIMENTS = NO                                                        |      |
|                              | NUMBER OF DISILATION TARE ALMANING - NO<br>NUMBER OF DISILATIONS FOLMES FOLMES = 01<br>NUMBER OF SECTION FERSIONS FOLMES = 821<br>NUMBER OF SECTION FERSIONS FOLMES = 9                   |      |
|                              | NUMBER OF FRAME RESPONSE POINTS - 459<br>NUMBER OF FREE RESPONSE POINTS - 0<br>NUMBER OF SHELL RESPONSE POINTS - 2688                                                                     | _    |
|                              | NUMBER OF PLANE/ABOLID REFORME POINTS = 0<br>NUMBER OF SOLID REFORME POINTS = 0<br>NUMBER OF LINK RESPONSE POINTS = 64                                                                    | 8    |
|                              | ALLOW LOADS TO REDUCE RESPONSE SEVERITY = NO                                                                                                                                              |      |

Figura 177. Análisis del Diseño

# 7.6.3.2. Diseño y evaluación de los diafragmas y arriostramientos horizontales

# 7.6.3.2.1. Añadir de forma externa los arriostramientos horizontales

Añadir en la parte inferior de las vigas metálicas, para dibujar estos elementos ir al menú "Advance" hacer clic en el icono dibujar, y se abrirá una ventana en la cual se debe seleccionar el ángulo que se ha empleado y en la opción "Moment Releases" especificar como "Continuous" para simular el efecto de soldadura.

| (a) [] 2 (a) []            | ÷                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                        |
|----------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------|
| Home Layout                | Components Loads   | Bridge Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Design/Rating Advanced                |                        |
| Points Lines Areas<br>Edit | More Define Define | Image: Constraint of the second se | A A A A A A A A A A A A A A A A A A A | A<br>More<br>Joints Fi |
|                            |                    | Properties of Object                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>X</b>                              |                        |
|                            |                    | Line Object Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Straight Frame                        |                        |
|                            |                    | Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L (100x100x8)                         |                        |
|                            |                    | Moment Releases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Continuous                            |                        |
|                            |                    | XY Plane Offset Normal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.                                    |                        |
|                            |                    | Drawing Control Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None <space bar=""></space>           |                        |
|                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | J                      |
|                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                        |
|                            | ľ×                 | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                        |
|                            |                    | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                        |



• Luego se procede a dibujar como se muestra en la figura.



Figura 179. Dibujo de los arriostramientos horizontales

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

- 🗄 🕫 🖓 😭 🕼 Advanced Components Design/Rating Lavout Bridge Analysis ₹ √ /
  × ∑ √ /
  × ∑ × ∅ A<sub>+</sub> \* + A / More Define More More Define Assig Edit Assig 🔇 X-Y Plane @ Z=-1.34
- Al terminar de dibujar se encuentra de la siguiente forma

Figura 180. Vista de los arriostramientos horizontales

#### 7.6.3.2.2. Evaluar los Arriostramiento horizontales

 Dirigirse al menú "Advance", seleccionar el icono "Steel" elegir la opción "View/Revise preferences" se abrirá una nueva ventana en la cual se indica el código de diseño empleado



Figura 181. Preferencias a emplear en el diseño

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 En la siguiente ventana se verifica que se esté trabajando con la norma AISC360 como se muestra a continuación luego dar clic en "Ok"



Figura 182.Normas y parámetros de diseño

 Inmediatamente dirigirse al icono "Steel" y elegir la opción "Select Design Combos"



Figura 183. Opción para agregar los combos de diseño

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

Se despliega la siguiente ventana en la cual se ingresa la combinación de carga "SrtIGroup 1"al elegirla en la parte izquierda y dar clic en "Add" se colocara en la parte derecha como se muestra en la figura, también se debe elegir "Deflection" en la opción "Load Combination Type" y dar clic en "Ok"

| Load Combinations for Design —<br>Select Type of Design Load C<br>Load Combination Type                                                                            | ombination                                             |                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------|
| Select Load Combinations<br>List of Load Combinations<br>EE-11<br>EE-110<br>EE-111<br>EE-111<br>EE-112<br>EE-113<br>EE-114<br>EE-115<br>EE-116<br>EE-117<br>EE-118 | Add -><br><• Remove<br>Show                            | Design Load Combinations<br>StrVGroup1 |
| Automatic Design Load Combina                                                                                                                                      | tions<br>: Code-Based Desig<br>Design Load Combi<br>KC | gn Load Combinations<br>nation Data    |

Figura 184. Combinaciones de carga incluidas en el diseño

 Nuevamente dirigirse al icono "Steel", elegir la opción "Start Design/Check of Structure" en donde iniciara el diseño y chequeo de la estructura metálica



Figura 185. Enviar a diseñar la estructura metálica

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Para poder visualizar de mejor manera el diseño ir al menú "Home" elegir el icono "Select" y seleccionar la opción "Properties" y posteriormente escoger "Frame Section"



Figura 186. Elegir las propiedades

• Aparecerá la siguiente ventana en la cual se elige la sección de los diafragmas y arriostramientos antes dimensionados.



Figura 187. Eleccion del ángulo de (100x100x8) mm

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Como se muestra en la imagen se encuentran seleccionados los diafragmas y arriostramientos horizontales.



Figura 188. Ubicación de los diafragmas y arriostramientos horizontales

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 Después dirigirse hacia el icono "More", seleccionar la opción "Show Selection Only"



Figura 189. Selección de los diafragmas y arriostramientos horizontales

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• En la siguiente ventana se puede observar que el diseño de los diafragmas verticales, se encuentra de un color verdoso lo cual indica que están trabajando de 0 hasta 50% de lo requerido, mientras que los arriostramientos horizontales se encuentran en rojo por lo tanto se realizará un análisis en valores para poder determinar la falla.



Figura 190. Diseño de la estructura metálica

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 Nuevamente dirigirse al icono "Steel", elegir la opción "Display Design Information" y en la ventana que se despliega dar clic en "Ok"

| A A A A A A A A A A A A A A A A A A A                               | A & A A A A A A A A A A A A A A A A A A                                   | Analyze | Leel Concrete More Tools                                                                                                                                                                                                                                                                                                                                              |     |
|---------------------------------------------------------------------|---------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Assign                                                              | Assign Loads                                                              | Analyze | View/Revise Preferences                                                                                                                                                                                                                                                                                                                                               |     |
|                                                                     |                                                                           |         | Select Design Groups<br>Select Design Combos                                                                                                                                                                                                                                                                                                                          |     |
|                                                                     |                                                                           |         | Set Displacement Targets                                                                                                                                                                                                                                                                                                                                              |     |
|                                                                     |                                                                           |         | Set time renou targets                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                     | 1 100 100                                                                 |         | Start Design/Check of Structure<br>Interactive Steel Frame Design                                                                                                                                                                                                                                                                                                     |     |
| Display Steel Design Results (                                      | AISC360-05/IBC2006)                                                       |         | Start Design/Check of Structure<br>Interactive Steel Frame Design<br>Display Design Information                                                                                                                                                                                                                                                                       | 1.0 |
| Display Steel Design Results (                                      | AJSC360-05/JBC2006)<br>PM Ratio Colors & Values                           | K       | Start Design/Check of Structure<br>Interactive Steel Frame Design<br>Display Design Information<br>Make Auto Select Section Null<br>Change Design Section to Last Analysis                                                                                                                                                                                            | 0.5 |
| Display Steel Design Results (                                      | AISC 360-05//BC 2006) PM Ratio Colors & Values Design Sections            | K       | Start Design/Check of Structure<br>Interactive Steel Frame Design<br>Display Design Information<br>Malar Auto Select Section Null<br>Change Design Section<br>Reset Design Section to Last Analysis<br>Verify Analysis vs Design Section<br>Verify Analysis vs Design Section                                                                                         | 0.5 |
| Display Steel Design Results (<br>© Design Output<br>© Design Input | AJSC360-05/BC2006) PM Ratio Colors & Values Design Sections Cancel Cancel | K       | Start Design/Check of Structure<br>Interactive Steel Frame Design<br>Display Design Information<br>Make Auto Select Section Null<br>Change Design Section<br>Reset Design Section to Last Analysis<br>Verify Analysis vs Design Section<br>Verify Analysis vs Design Section<br>Verify All Members Passed<br>Reset All Seel Overwrites<br>Delete Steel Design Results | 0.9 |

Figura 191. Pasos a seguir para mostrar los valores de diseño

• Una vez realizado este cambio se indican los valores en porcentaje, en donde se pudo analizar que los diafragmas del inicio del puente requieren de una mayor sección ya que se encuentran trabajando 1.85 es decir más de lo que resisten mientras que en los arriostramientos horizontales los que se encuentran trabajando más de lo que resisten son los seleccionados de la parte derecha con un valor de 4.18.



Figura 192. Chequeo de la estructura metálica

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• En los demás ariostramientos se verificaran los detalles de diseño para encontrar la falla, para ello dirigirse hacia el elemento, dar clic derecho y se abrirá la siguiente ventana, donde se elige la opción "Details"



Figura 193. Selección del ángulo a chequear

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• En la siguiente ventana se observa todos los detalles de diseño del elemento y los problemas que enfrentan los arriostramientos horizontales

| Steel Stress Check Data | AISC360-05/IBC2006 |                        |                                    |                   |
|-------------------------|--------------------|------------------------|------------------------------------|-------------------|
| e                       |                    |                        |                                    |                   |
|                         |                    |                        |                                    | Units Kgf, m, C 💌 |
| ISC360-05/IBC20         | 06 STEEL SECTION C | HECK (Summary For Cor  | nbo and Station)                   |                   |
| mits : kyf, m,          | 6                  |                        |                                    |                   |
| rame : 1221             | X Mid: 12.500      | Combo: DSTL5           | Design Type: Beam                  |                   |
| ength: 5.529            | Y Mid: 1.300       | Shape: L (100x100x8)   | ) Frame Type: Special Moment Frame |                   |
| .oc : 5.529             | Z Mid: -1.340      | Class: Compact         | Princpl Rot: 0.000 degrees         |                   |
| rouision. LRED          | Analusis: Direct   | Analucic               |                                    |                   |
| /C Limit=0.950          | 2nd Order: Gener   | al 2nd Order Re        | eduction: Tau-b Fixed              |                   |
| 1phaPr/Py=0.022         | AlphaPr/Pe=0.212   | Tau b=1.000 Ef         | A factor=0.800 EI factor=0.800     |                   |
| gnore Seismic C         | ode? No            | Ignore Special EQ Lo   | oad? No D/P Plug Welded? Yes       |                   |
|                         |                    |                        |                                    |                   |
| DC: D                   | I=1.000            | Rho=1.000 Sc           | 15=0.500                           |                   |
| -8.000<br>5.0-0.000     | unegau=3.000       | 50=5.500<br>DETU-8.088 | STE-8 7E8                          |                   |
| his=8.980               | PhiS-RI=1 000      | PhiST=0.900 Pl         | 1116-0-120                         |                   |
| 1113-0.700              | 1113 11-1.000      | 111131-0.700           |                                    |                   |
| =0.002                  | I33=1.482E-06      | r33=0.031 S            | 33=2.057E-05 Av3=8.000E-04         |                   |
| -0.000                  | I22=1.482E-06      | r22=0.031 S2           | 22=2.057E-05 Av2=8.000E-04         |                   |
| 1pha=45.000             |                    |                        |                                    |                   |
| =2.039E+10              | fy=25310506.54     | Ry=1.500 z             | 33=3.705E-05                       |                   |
| LLF=1.000               | Fu=40778038.3      | Z                      | 22=3.705E-05                       |                   |
|                         |                    |                        |                                    |                   |
| ESTER HESSAGES          |                    |                        |                                    |                   |
| Error: Lb/ry            | > 0.086*E/Fy (AIS  | C 341-PartI 9.8)       |                                    |                   |
| Error: Secti            | on is not seismica | 11y compact            |                                    |                   |
|                         |                    |                        |                                    |                   |
| Location                | CES & MUMENTS (COM |                        | 11u2 11u2 Tu                       |                   |
| 5.529                   | 836.185 -          | 24.880 -0.035          | 26.341 -1.656 6.611                |                   |
|                         |                    |                        |                                    |                   |
| MM DEMAND/CAPAC         | ITY RATIO (H2-1)   |                        |                                    |                   |
| D/C Ratio:              | 0.084 = 0.024 + 0  | .027 + 0.033           |                                    |                   |
|                         | = fa/Fa + f        | bw/Fbw + fbz/Fbz       |                                    |                   |
|                         |                    | 4 (10 4)               |                                    |                   |
| Factor                  | HATHE NUMERI DESIG | n (n2=1)<br>K1 K2      | R1 R2 Cm                           |                   |
| Hadeo Deadle            | 4 4 9 9 9          | 1 000 1 000            |                                    |                   |

Figura 194.Detalles del ángulo de 100x100x8

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# 7.6.4. Diseño a sismo de puentes en el CSIBRIDGE V15.2 VERSION EVALUACIÓN

# 7.6.4.1. Análisis dinámico por espectro de respuesta

Ir al menú "Loads" hacer clic en "New Spectrum" y elegir la opción "From File" para ingresar desde un archivo txt.



Figura 195.Crear el espectro desde un archivo

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Se abre el siguiente cuadro de dialogo en el cual se elige el icono "Browse"

| Function Name                                                                       | Espectro                 |             | Function Damping Ratio |
|-------------------------------------------------------------------------------------|--------------------------|-------------|------------------------|
| Function File File Name Header Lines to Skip Convert to User Defined Function Graph | Browse<br>0<br>View File | Values are: |                        |
|                                                                                     |                          |             |                        |
|                                                                                     | Display Graph            | 0.0,0.0     |                        |
|                                                                                     |                          |             |                        |

Figura 196. Opciones para añadir el espectro



• Luego ubicamos el archivo del espectro inelástico en la carpeta que hemos guardado con la terminación txt al encontrarlo presionamos abrir.



Figura 197. Busqueda del archivo en txt.

Fuente: Autor

A continuación se puede observar que ya se encuentra cargado el archivo, seleccionar "Period vs Value" y posteriormente presionar el botón "Display Graph" para visualizar la gráfica del espectro.

| Response Spectrum Funct                    | tion Definition |                      |                        |
|--------------------------------------------|-----------------|----------------------|------------------------|
|                                            |                 |                      | Function Damping Ratio |
| Function I                                 | lame Espectro   |                      | 0.05                   |
| - Function File                            |                 | Values are:          |                        |
| File Name                                  | Browse          | C Frequency vs Value |                        |
| d:\respaldos 2765\m<br>puente\espectro.txt | odelacion del   | Period vs Value      |                        |
| Header Lines to Skip                       | 0               |                      |                        |
|                                            |                 |                      |                        |
|                                            |                 |                      |                        |
| Convert to User Def                        | ined View File  |                      |                        |
| - Function Graph                           |                 |                      |                        |
|                                            |                 |                      |                        |
|                                            |                 |                      |                        |
|                                            |                 |                      |                        |
|                                            |                 |                      |                        |
|                                            |                 |                      |                        |
|                                            |                 |                      |                        |
|                                            |                 |                      |                        |
|                                            |                 |                      |                        |
|                                            | Display Graph   | 0.0,0.0              |                        |
|                                            | ОК              | Cancel               |                        |

Figura 198.Ingreso de los datos del espectro

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Por último se observa la gráfica del espectro como se muestra en la siguiente figura una vez finalizado dar clic en "Ok"



Figura 199. Configuración del espectro

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

## 7.6.4.2. Definición de los casos para el análisis dinámico a sismo

El espectro que se definió en el paso anterior nos sirve para generar unos casos de cargas para un análisis dinámico del puente, para cada una de las direcciones.

• El primer paso a seguir es ir al menú "Analysis" seleccionar el icono "Type", y elegir el literal "Responce Spectrum"

| 1         |                   | 1 H 19 (2 🗄 (4)                                         | ) ₹        |                                                 |                |                    |               |                                           |             |                                   |
|-----------|-------------------|---------------------------------------------------------|------------|-------------------------------------------------|----------------|--------------------|---------------|-------------------------------------------|-------------|-----------------------------------|
|           |                   | Home Layout                                             | Components | Loads                                           | Bridge         | Analysis           | Design/Rati   | ng Advanced                               |             |                                   |
|           | Typ               |                                                         | Sch<br>Sta | D + L<br>+E<br>NL<br>edule Conver<br>ages Combo | t Show<br>Tree | Bridge<br>Response | Model<br>Lock | DOF's<br>Analysis Run<br>Options Analysis | Last<br>Run | Modify Reset<br>Geometry Geometry |
| l         | Ŀ                 | All                                                     | Spe        | ctrum                                           | Fa             | Bridge             | Lock          | Analyze                                   |             | Shape Finding                     |
|           | Ŀ                 | Static                                                  |            |                                                 |                |                    |               |                                           |             |                                   |
|           | Ŀ                 | Nonlinear Staged Construct                              | tion       |                                                 |                |                    |               |                                           |             |                                   |
|           | Ŀ                 | Multistep Static                                        |            |                                                 |                |                    |               |                                           |             |                                   |
|           | Ŀ                 | Modal                                                   |            |                                                 |                |                    |               |                                           |             |                                   |
| $\langle$ | Ŀ                 | Response Spectrum                                       |            |                                                 |                |                    |               |                                           |             |                                   |
|           | Ŀ                 | Time History                                            |            |                                                 |                |                    |               |                                           |             |                                   |
|           | Ŀ                 | Moving Load                                             |            |                                                 |                |                    |               |                                           |             |                                   |
|           | Ŀ                 | Buckling                                                |            |                                                 |                |                    |               |                                           |             | /                                 |
|           | Ŀ                 | Steady State                                            |            |                                                 |                |                    |               |                                           |             |                                   |
|           | Ŀ                 | Power Spectral Density                                  |            |                                                 |                |                    |               |                                           |             |                                   |
|           |                   | Hyperstatic                                             |            |                                                 |                |                    |               |                                           |             | /                                 |
|           | Res<br>Sho<br>the | ponse Spectrum<br>w response spectrumioad ca:<br>panel. | ses in     |                                                 |                |                    |               |                                           |             |                                   |

Figura 200. Añadir las cargas de espectro

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• El primer caso creado será para la dirección "X"

1.-Hacer clic en "New Reponse Spectrum" y se abrirá la siguiente ventana

2- Luego dirigirse a "Modal Combination" y elegir la opción "CQC" que significa la ecuación cuadrática completa, este método fue descrito por Wilson, Der Kiureghian, y Bayo (1981)

**3.-** Dirigirse hacia el enunciado **"Directional Combination**" y elegir el método **"SRSS"** que significa la Raíz Cuadrada de la Suma de los Cuadrados los demás valores se crean por defecto del programa

**4.-**Después ir al literal **"Loads Applied"**, en el enunciado de **"Load Name"** colocar la dirección del espectro "U1" con la función del espectro ingresada anteriormente y en la opción **"Scale Factor"** se inserta el valor de la gravedad, ya que nuestro espectro tiene valores adimensionales por lo que se debe introducir el valor de 9.81 m/s<sup>2</sup>; si nuestros valores de espectro

inelástico ya estarían multiplicados por la gravedad el valor seria "Uno", y para finalizar hacer clic en **"Ok"** 

|                                                                                                                                              | ÷                                                                                             |                      |                                                                                                                 |              |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|--------------|
| Home Layout                                                                                                                                  | Components Loads                                                                              | Bridge Analysis      | Design/Rating                                                                                                   | Advanced     |
| Type                                                                                                                                         | sponse Spectrum                                                                               | NL E Bridge          | Model Ap                                                                                                        | OF's 🕨 🔚     |
| ▲ X-<br>Load Case Name<br>SX<br>Modal Combinatio<br>C CQC<br>C SRSS<br>C Absolute<br>C GMC<br>C NRC 10 Pe<br>C Double Sum<br>Modal Load Case | Set Def Name<br>on<br>GMC<br>GMC<br>Periodic + Rigid Ty<br>ccent<br>h<br>this Modal Load Case | Notes<br>Modify/Show | Load Case Tupe<br>Response Spectrum<br>Directional Combinatio<br>© SRSS<br>© CQC3<br>© Absolute<br>Scale Factor | Design       |
| Loads Applied<br>Load Type<br>Accel<br>Accel<br>Show Adv.<br>Other Parameters<br>Modal Dan                                                   | Load Name Functio                                                                             | n Scale Factor<br>0  | Add<br>Modify<br>Delete                                                                                         | OK<br>Cancel |
| X-Y Plan                                                                                                                                     |                                                                                               |                      |                                                                                                                 |              |

Figura 201. Definición del sismo en "X"

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

El mismo procedimiento se realiza para el segundo caso en la dirección "Y", solo se debe cambiar en la opción "Load Name" la dirección "U2"

|                    | Home Layout Components Loads Bridge Analysis Design/Rating Advanced                                                                                                                 |      |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ✓ D<br>✓ L<br>Type | Image: Schedule     D+L     Image: Schedule     D+L     Image: Schedule     DOF's     Image: Schedule       Schedule     Convert     Show     Bridge     Model     Analysis     Run | Last |
|                    | Load Case Data - Response Spectrum                                                                                                                                                  |      |
|                    | Load Case Name     Notes     Load Case Type       SY     Set Def Name     Modify/Show     Load Case Type       Modal Combination     Image: Cape Cape Cape Cape Cape Cape Cape Cape | _    |
|                    | NRC 10 Percent     Double Sum      Modal Load Case Use Modes from this Modal Load Case                                                                                              |      |
|                    | Load Applied<br>Load Type Load Name Function Scale Factor<br>Accel U2 ESPECTRO 9.81<br>Accel U2 ESPECTRO 9.81<br>Add<br>Modify<br>Delete<br>Show Advanced Load Parameters           |      |
|                    | Other Parameters                                                                                                                                                                    |      |
| X-Y PI             | Modal Damping Constant at U.U5 Modify/Show Cancel                                                                                                                                   |      |

Figura 202. Definición del sismo en "Y"

# 7.7.DISEÑO ORGANIZACIONAL

El análisis del desempeño estructural de puentes a través del programa CSIBRIDGE, desarrollado en esta investigación se podrá llevar a cabo con la colaboración de la Universidad Nacional de Chimborazo, quien tendrá la responsabilidad de socializar este manual como guía de aprendizaje hacia los profesionales interesados en el tema.



# 7.8. MONITOREO Y EVALUACIÓN DE LA PROPUESTA

Conocer el manejo de un software es de mucha importancia, sobre todo cuando el cálculo es extenso como en el caso de puentes, una herramienta informática genera mayor eficiencia y por ende mayor productividad en el diseño, análisis y evaluación estructural de un puente.

Por este motivo se planteó el manual para puentes de hormigón y mixtos (tablero de hormigón sobre vigas metálicas) en el software CSIBRIDGE V15.2 VERSION EVALUACION, con su respectiva evaluación y optimización.

Con ayuda de la Universidad Nacional de Chimborazo y la escuela de Ingeniería Civil se pretende socializar esta guía de aprendizaje, con la finalidad que la sociedad realice un trabajo eficiente con la optimización de tiempo y recursos.

# **CAPITULO VIII**

# 8. BIBLIOGRAFIA

- 1) AASHTO LRFD BRIDGE (2012), American Association of State Highway and Transportation Officials
- AASHTO LRFD BRIDGE (2007), American Association of State Highway and Transportation Officials
- PUENTES-AASHTO LRFD (2010), Por el Ing. Arturo Rodríguez Serquén (Peru,2012)
- NORMA ECUATORIANA DE LA CONSTRUCCIÓN -NEC-SE-DS, cargas sísmicas diseño sismo resistente.
- 5) ANCI/AISC 360-10 American Institute of Steel Construction
- NORMA ECUATORIANA VIAL NEVI-12-MTOP, Volumen N°2-LIBRO B NORMA PARA ESTUDIOS Y DISEÑO VIAL.
- 7) CONGRESO LATINOAMERICANO EN INGENIERIA CIVIL (JULIACA 2012)
- 8) COMPUTERS Y STRUCTURES INC.
- TESIS "Métodos de Análisis Sísmico de Puentes Simplemente Apoyados" AUTORES: CAPT. DE E. Gudiño Auz Edison Fernando y CAPT. DE E. Ayala Salcedo Fredy Gustavo

# **CAPITULO IX**

# 9. ANEXOS

9.1.ANEXO.- Ejemplo de aplicación del manual mediante la modelación de la superestructura del puente Matus-Aulabug ubicado en el cantón Penipe, empleando el software CSIBRIDGE V15.2 VERSION EVALUACIÓN.

#### 9.1.1. Datos del Puente



Figura 203. Puente Matus-Aulabug

Fuente: Detalles puente Matus-Aulabug

# **Consideraciones Generales**

Peso de la carpeta de rodadura= 0.12T/m2
Peso de barandas= 0.15T/m2
Postes=0.1T
5 Postes a cada lado en la sección de vigas de hormigón (tramo 21m).
7 Postes a cada lado en la sección de vigas de acero (tramo 25m).
Camión de diseño HS 15-44

# 9.1.1.1. Detalles de la sección transversal de concreto



Figura 204. Sección transversal del tramo de concreto

Fuente: Detalles puente Matus-Aulabug

# Tipo de superestructura:

- Simplemente apoyado
- Vigas y tablero de hormigón
- Longitud del puente 21 m
- Número de vigas 3

#### Sección transversal:

- Ancho total 7.00 m
- Ancho de calzada 5.00 m
- Número de vías 2

# Parámetros utilizados

- Hormigón F'c = 280 Kg/cm2
- Acero de refuerzo  $Fy = 4200 \text{ Kg/cm}^2$

#### 9.1.1.2. Detalles de la sección transversal de acero



Figura 205. Sección transversal del tramo metálico

Fuente: Detalles puente Matus-Aulabug

#### Tipo de superestructura:

- Simplemente apoyado
- Vigas metálicas y tablero de hormigón
- Longitud del puente 25 m
- Número de vigas 3

### Sección transversal:

- Ancho total 7.00 m
- Ancho de calzada 5.00 m
- Número de vías 2

# Parámetros utilizados

- Hormigón F'c =  $280 \text{ Kg/cm}^2$
- Acero de refuerzo Fy = 4200 Kg/cm2
- Vigas de Acero Estructural (A 588; AASHTO Standard): con un Fy = 345 MPa = 3500 Kg/cm2
- Peso específico del Hormigón (2.4Tn/m3)
- Peso específico del Acero (3.5 Tn/m3)
- Arriostramientos y Conectores Acero ASTM A-36

# 9.1.2. Modelación con la plantilla en blanco del puente Matus-Aulabug

• Abrir en programa CSIBRIDGE V15.2 VERSION EVALUACIÓN

| C) Cséndge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| M HOODN -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| Mome Layout Components Loads Bridge Analysis Design/Rating Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| The second secon |             |
| Wated V AL V VL V VL V VL V VL V VL VL VL VL VL V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| Window1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Use File Menu to Create or Open Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Kp. in. F 💌 |

#### Figura 206. Ventana de trabajo

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• En la parte inferior derecha, escogemos las unidades en las que vamos a trabajar, en este caso serán kg/m



Figura 207.Selección de unidades

• Ir al menú "ORB" que se encuentra en la parte superior izquierda y seleccionar "New"

|    |          | 998        | <b>⊡</b> (c) ÷                                          | _              |
|----|----------|------------|---------------------------------------------------------|----------------|
|    |          |            | Recent Models                                           | ating Advanced |
|    |          | New        | 1 D:\Respaldos 2\PUENTE MIXTO 46-10-05-2016m (1).bdb    |                |
|    | 0        |            | 2 C:\Users\Teres\Puente 1-A(VI2500)Listo-09-02-2012.bdb | More A Named   |
| ١V |          | Open       | 3 D:\Respaldos 2765\Mis Docume\ultima modelacion.bdb    | Display        |
|    |          | Save       | 4 D:\Respaldos 2765\Mis Docum\puente de hormigon.bdb    |                |
|    |          | Save As    |                                                         |                |
| V  | <b>*</b> | Import     | •                                                       |                |
| V  |          | Export     | •                                                       |                |
| -  |          | Batch File |                                                         |                |

Figura 208.Crear un nuevo modelo

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• A continuación nos saldrá un cuadro de dialogo en el cual se elige la plantilla en blanco

|                  | Home          | Lay          | out            | Com | nponents | Loads | Bridge                      |       | Analysis | Design/R                                                                     | ating                                  | Advanced                                                                                                                                   |
|------------------|---------------|--------------|----------------|-----|----------|-------|-----------------------------|-------|----------|------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Bridge<br>Wizard | Q<br>(2)<br>/ | ® €<br>xy xz | €<br>YZ<br>xyz |     | Mor      |       | -I ALL<br>I I PS<br>III CLR | 1 1 N | Select   | Deselect                                                                     | More                                   |                                                                                                                                            |
| Wizard           | 1             |              |                |     |          |       |                             |       | New M    | lodel                                                                        |                                        |                                                                                                                                            |
|                  |               |              |                |     |          |       |                             |       | New M    | lodel Initializat<br>nitialize Model<br>nitialize Model<br>Template<br>Blank | on<br>from Defau<br>from an Ex<br>Beam | ults with Units<br>Kgf. m. C<br>Modify/Show Info Project Information Modify/Show Info<br>2D Frames Cable Bridges Caltrans-BAG Quick Bridge |

Figura 209. Selección de la plantilla del puente

• Luego se activaran todas las opciones para poder configurar de acuerdo a las características del puente



Figura 210.Ventana lista para crear el modelo

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# 9.1.2.1. Definición de la línea base

Se inicia la modelación con la definición de la línea base, ir al menú "Layout" y posteriormente a la opción "New Layout" e ingresar la longitud del puente igual a 46m.

| Home Layout                  | Components Loads Bridge Analysis Design/Rating Advanced |                                           |
|------------------------------|---------------------------------------------------------|-------------------------------------------|
| CP CD CD                     | Bridge Layout Line Data                                 |                                           |
| Preferences<br>Eje Principal | Bridge Layout Line Name Coordinate System               | Shift Layout Line Units                   |
| Layout Line                  | Eje Principal GLOBAL 💌                                  | Modify Layout Line Stations Kgf, m, C 💌   |
| Lane                         |                                                         | Coordinates of Initial Station            |
|                              | Plan View (X-Y Projection)                              | Global X 0.                               |
|                              | Station                                                 | Global Y 0.                               |
|                              | Bearing Bearing                                         | Global Z 0.                               |
|                              | Radius                                                  | Initial and End Station Data              |
|                              | • • • • • • • • • • • • • • • • • • •                   | Initial Station (m) 0.                    |
|                              | Y 9.3088                                                | Initial Bearing N90000E                   |
|                              | X Z                                                     | Initial Grade in Percent 0.               |
|                              |                                                         | End Station (m) 46.                       |
|                              |                                                         | Horizontal Layout Data                    |
|                              | Developed Elevation View Along Layout Line              | Define Horizontal Lavout Data Quick Start |
|                              | Az .                                                    |                                           |
|                              | s · · · · · · · · · · · · · · · · · · ·                 | Define Layout Data                        |
|                              | Refresh Plot                                            | Define Vertical Layout Data Quick Start   |
|                              |                                                         |                                           |
|                              | OK Cancel                                               |                                           |
|                              |                                                         |                                           |

Figura 211. Definición de la línea base

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

#### 9.1.2.2. Definición de los carriles

• El siguiente paso es: la definición del carril derecho con un ancho de 2.5m y un desfase al centro de 1.25m tal y como se muestra en la sección transversal del puente, y debido a que el carril se encuentra con una berma de 1 m en el borde derecho se tomara como interior tanto a la izquierda como a la derecha en la opción "Lane Edge Type".



Figura 212. Detalle de la sección transversal del puente

Fuente: Diseño del Puente Mixto sobre el rio Calshi

| Home Layout Components Loads Bridge | Bridge Lane Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preferences                         | Lane Name         Cami Derecho         Coordinate System         Units           Kgr. m, C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Layout Line 🕞 Lanes                 | Maximum Lane Load Discretization Length         Additional Lane Load Discretization Parameters Along Lane           Along Lane         3048         Image: Concretization Length Not Greater Than 1/         Image: Concretization Length Not Greater Than 1/           Across Lane         3048         Image: Concretization Length Not Greater Than 1/         Image: Concretization Length Not Gre                                                                                                                                                                                                                                                                                                                                                          |
|                                     | Bidge     Station     Centerine Offset     Lane Wdth     Move Lane       Explored in     46.     1.25     2.5     Add       Explored in     0.     1.25     2.5     Inset       Separated in     46.     1.25     2.5     Model       Model     1.25     2.5     Inset     Model       Debete     0.     1.25     2.5     Inset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     | Plan View (X-Y Projection)  Plan View (X-Y Projection)  Layout Line  Program Determined  George  George  Fadius  Fadius  Fadius  Content of the Type o |
| r.                                  | Grade<br>X<br>Y<br>X<br>C Snap To Layout Line<br>C Snap To Layout Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Figura 213. Definición del carril derecho

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Después se realiza la definición del carril izquierdo con las mismas características del carril anterior pero con signo negativo como se muestra en la siguiente figura.

| Home Layout Components Load          | Bridge Analysis Design/Rating Advanced                                                                                                                                                                                                                                  |                                                           |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| A R R R R R                          | Bridge Lane Data                                                                                                                                                                                                                                                        |                                                           |
| Preferences Eje principal Carril Izo | Lane Name Carril Izquierdo GLOBAL                                                                                                                                                                                                                                       | m Units Kgf, m, C                                         |
| (1) Lane                             | Maximum Lane Load Discretization Lengths         Additional Lane Load Discretization Paramet           Along Lane         3 048         If Discretization Length Not Greater Than           Across Lane         3 048         If Discretization Length Not Greater Than | ers Along Lane 1/ 4. of Span Length 1/ 10. of Lane Length |
|                                      | Lane Data<br>Bridge Station Centerline Offset Lane Width<br>Layout Line m m m                                                                                                                                                                                           | Move Lane                                                 |
|                                      | Eie principal         ▲         1.25         2.5           Eie principal         0.         1.25         2.5           Be principal         46         3.25         2.5                                                                                                 | Add<br>Insert<br>Modify<br>Delete                         |
|                                      | Plan View (X-Y Projection)  Plan View (X-Y Projection)  Layout Line Station Bearing                                                                                                                                                                                     | Objects Loaded By Lane    Program Determined  Group       |
|                                      | Radus<br>Grade<br>X<br>Y                                                                                                                                                                                                                                                | Lane Edge Type<br>Left Edge Interior                      |
|                                      | C Snap To Lane                                                                                                                                                                                                                                                          | Display Lotor                                             |

Figura 214. Definición del carril izquierdo

• Después se puede visualizar los carriles en el menú "Home", haciendo clic en "More" y elegir la opción "Show Lane"



Figura 215. Configuración para visualizar los carriles

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• A continuación se muestra los carriles definidos anteriormente con sus respectivos anchos.



Figura 216.Observar los carriles

#### 9.1.2.3. Definición de las propiedades de los materiales

# 9.1.2.3.1. Tramo de hormigón

f'c(vigas y tablero)=280 kg/cm<sup>2</sup>

fy=4200 kg/cm<sup>2</sup>

E=4700  $\overline{f'c}$  en Mpa = 2487006.2 Ton/m<sup>2</sup>

Coeficiente de Poisson (u)= 0.2

Peso especifico (Y) = $2.4 \text{ T/m}^3$ 

Coeficiente de expansión térmica =  $9.9 \times 10^{-6}$ 

 Definición en el CSIBRIDGE V15.2 VERSION EVALUACIÓN los materiales empleados en el tramo de hormigón ir al menú "Components" y elegir la opción "Material Properties"



Figura 217.Crear un nuevo material

 Luego se crea automáticamente un tipo de material del hormigón el cual se debe modificar las características anteriormente mencionadas para f´c=280 kg/cm<sup>2</sup>, dar clic en "Modify Property"



Figura 218. Definición de las características del hormigón

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 El siguiente material a definir es el acero de refuerzo en las vigas de hormigón se designa al hacer clic en "New Material", seleccionar "Rebar" en tipo de material y se activa automáticamente las propiedades y hacer clic en "Ok".

| Home        | Layout Compone        | ents Loads Bridge | Analysis Design/Ratir |
|-------------|-----------------------|-------------------|-----------------------|
| E I         | r 🖸 🕻                 |                   |                       |
| Type CON280 | Quick Material Defini | ition             |                       |
| Properties  |                       |                   |                       |
|             | Region                | United States     | <b>_</b>              |
|             | Material Type         | Rebar             | <b></b>               |
|             | Standard              | ASTM A615         |                       |
|             | Grade                 | Grade 60          | <b>_</b>              |
|             |                       | OK Cance          |                       |
|             |                       |                   | ]                     |

Figura 219. Definición del acero de refuerzo

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Verificar las características del material dar clic en **"Modify Properties"** se puede observar las características del material.

| J          | Home                 | Layout          | Components | Loads                                                                                                                                                                                                                                                            | Bridge                                                                                                                                                                                                                                                                                                     | Analysis                                                                                           | Design/f                                   | Rating                                                        | Adva                                                         | anced |
|------------|----------------------|-----------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-------|
| ≦ 1<br>€ V | R                    |                 |            | aterial Prope                                                                                                                                                                                                                                                    | rty Data                                                                                                                                                                                                                                                                                                   | 2 7                                                                                                |                                            | Χ.                                                            | ж,                                                           | 3. 3  |
|            | fy=4200<br>Propertie | iss - Materials |            | aterial Prope<br>General Da<br>Material Na<br>Material Na<br>Material Na<br>Material Na<br>Weight and<br>Weight per<br>Mass per L<br>Uniaxial Pro<br>Modulus of<br>Poisson's F<br>Coefficient<br>Shear Mod<br>Minimum Y<br>Minimum T<br>Expected 1<br>Expected 1 | rty Data<br>ta<br>ame and Displa<br>uppe<br>otes<br>I Mass<br>r Unit Volume<br>Jnit Volume<br>Jnit Volume<br>Jnit Volume<br>Jnit Volume<br>Jnit Volume<br>f Elasticity, E<br>Ratio, U<br>of Thermal Exp<br>felasticity, G<br>atties for Rebar<br>field Stress, Fy<br>rensile Stress, Fy<br>rensile Stress, | y Color<br>7.849E<br>8.004E<br>pansion, A<br>Materials<br>Fu<br>Fue<br>Fue<br>Operty Display<br>OK | [fy=4200<br> Rebar<br> Moc<br>03<br>06<br> | iliy/Show<br>20<br>0.<br>1.1.1.<br>0.<br>42<br>53<br>46<br>59 | Notes<br>38901.9<br>170E-05<br>18.4178<br>27.6266<br>60.3893 |       |
|            |                      |                 |            |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                            |                                                                                                    |                                            |                                                               |                                                              |       |

Figura 220.Propiedades del acero de refuerzo

#### 9.1.2.3.2. .Tramo Metálico

A continuación se define las características del acero en el tramo Metálico

ASTM A36  $Fy = 2531 \frac{kg}{cm^2}$  $Fu = 4077 \frac{kg}{cm^2}$ Peso específico  $Y = 7850 \text{ kg/cm}^3$ Módulo de elasticidad longitudinal o (Young) E= 2.1 x106 kg/cm<sup>2</sup>

Coeficiente de Poisson u=0.3 (0.25 a 0.33)

Coeficiente de dilatación térmica α= 1.17 x10-5 / C

Módulo de elasticidad transversal (Modulo de Corte)  $G = \frac{E}{2(1+u)}$ 

• Definición en el CSIBRIDGE V15.2 VERSION EVALUACIÓN el acero ASTM A36 hacer clic en "New Material", elegir "Steel" en el tipo de material y seleccionar la especificación ASTM A36 creándose automáticamente las características del material



Figura 221. Definición del acero A36
- Home Layout Components Loads Bridge Analysis Design/Rating Advanced 🗠 I T R R E T ¢ν PMU Item Material Property Data Туре A36 ÷ Properties - Materials F<sub>N</sub> General Data A36 Lane Material Name and Display Color Steel Material Type Modify/Show Notes. Material Notes Weight and Mass-Units 7.849 Tonf Weight per Unit Volume • 0.8004 Mass per Unit Volume Isotropic Property Data-20389019 Modulus of Elasticity, E 0.3 Poisson's Ratio, U 1.170E-05 Coefficient of Thermal Expansion, A 7841930. Shear Modulus, G Other Properties for Steel Materials Minimum Yield Stress, Fy 25310.507 Minimum Tensile Stress, Fu 40778.04 Effective Yield Stress, Fye 37965.76 Effective Tensile Stress, Fue 44855.84 🔲 Switch To Advanced Property Display OK Cancel
- Verificar las propiedades del acero A36 dar clic en "Modify Property"

Figura 222. Propiedades del acero A36

• Definición del acero ASTM A588 con las siguientes propiedades

$$Fy = 3515 \frac{kg}{cm^2}$$

$$Fu = 4500 \frac{kg}{cm^2}$$

Peso específico Y = 7850 kg/cm<sup>3</sup>

Módulo de elasticidad longitudinal o (Young) E= 2.1 x106 kg/cm<sup>2</sup>

Coeficiente de Poisson u=0.3(0.25 a 0.33)

Coeficiente de dilatación térmica α= 1.17 x10-5 / C

Módulo de elasticidad transversal (Modulo de Corte)  $G = \frac{E}{2(1+u)}$ 

 Para la definición del acero ASTM A588 dar clic en "New Material", elegir la opción "Steel" con la especificación de ASTM A992 el cual presenta las mismas propiedades del acero A588

|                        | ) <del>.</del>         |                       | A 1 1     | D : (0.)      |
|------------------------|------------------------|-----------------------|-----------|---------------|
| Home Layout            | Components             | Loads Bridge          | Analysis  | Design/Rating |
| 🖧 (F) F. 😰             |                        | TT                    |           |               |
| Type CON280            | ▼ Item                 | S. MET 4              | -         | Item FIJO     |
| Properties - Materials | r <u>a</u> Sup         | erstructure - Deck Se | ections 🕞 | Substructur   |
| Qui                    | ck Material Definition | on                    |           |               |
|                        |                        |                       |           | ]             |
|                        | Region                 | United States         |           | •             |
|                        | Material Type          | Steel                 |           | •             |
|                        | Standard               | ASTM A992             |           | <b>_</b>      |
|                        | Grade                  | Grade 50              |           | •             |
|                        |                        | ОК                    | Cancel    |               |
|                        |                        |                       |           |               |

Figura 223.Definición del acero A588

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Luego se verifica las propiedades del material hacer clic en **"Modify"**, en este caso solo se cambia el nombre debido a que todas las características del material coinciden.

|          | 19 (N 🔒 (N)           | , ⇒      |                   |                |             |                 |          |
|----------|-----------------------|----------|-------------------|----------------|-------------|-----------------|----------|
| 🔍 н      | ome Layout            | Componen | ts Loads          | Bridge         | Analysis    | Design/Rating   | Advanced |
| LI<br>NV | r r (c                | Ma       | erial Property D  | )ata           |             | MI N            |          |
| Type 7   | A992Fy50              |          | General Data      |                |             |                 |          |
| P        | roperties - Materials |          | Material Name a   | and Display Co | olor A      | 588             |          |
| 3-D 🕄    | View                  |          | Material Type     |                | St          | eel             | <b>T</b> |
|          |                       |          | Material Notes    |                |             | Modify/Show Not | ies      |
|          |                       |          | Weight and Mas    | 8              |             | Units           |          |
|          |                       |          | Weight per Unit   | Volume         | 7.849E-03   | Kgf, cr         | n, C 🔻   |
|          |                       |          | Mass per Unit V   | olume          | 8.004E-06   |                 |          |
|          |                       |          | Isotropic Propert | y Data         |             | ,               |          |
|          |                       |          | Modulus of Elas   | ticity, E      |             | 20389           | 01.9     |
|          |                       |          | Poisson's Ratio   | . U            |             | 0.3             |          |
|          |                       |          | Coefficient of T  | hermal Expans  | ion, A      | 1.170E          | -05      |
|          |                       |          | Shear Modulus,    | G              |             | 784193          | 3.       |
|          |                       |          | Other Properties  | for Steel Mate | erials      |                 |          |
|          |                       |          | Minimum Yield 9   | Stress, Fy     |             | 3515.3          | 481      |
|          |                       |          | Minimum Tensil    | e Stress, Fu   |             | 4569.9          | 526      |
|          |                       |          | Effective Yield 9 | Stress, Fye    |             | 3866.8          | 829      |
|          |                       |          | Effective Tensil  | e Stress, Fue  |             | 5026.9          | 478      |
|          |                       |          |                   |                |             |                 |          |
|          |                       |          |                   |                |             |                 |          |
|          |                       |          | Current Tar Arts  |                | hu Diazlari |                 |          |
|          |                       |          | Switch TO Adv     | ranceo Proper  | (y Display  | Cancel          |          |
|          |                       |          |                   |                | <u>`</u>    | Ganoor          |          |
|          |                       |          |                   |                |             |                 |          |

Figura 224.Propiedades del acero A588

# 9.1.2.3.3. Definición de las propiedades de las secciones

# 9.1.2.3.4. Definición de las secciones de hormigón

• El primer paso para añadir nuevas secciones es ir al menú "**Components**" y elegir la opción "**Frame Properties**".



Figura 225.Crear las secciones

 Como primera sección para añadir es la columna de la pila de 100x80 cm para lo cual se debe hacer clic en "New Frame" y se abrirá la ventana en donde se puede elegir el material y la forma de la sección, en este caso seleccionar "Concrete" de forma "Rectangular"

| Home       Layout       Components       Loads       Bridge       Analysis       Design/Rating       Advanced         Image: Section Property       Image: Section Property       Image: Section Property Type       Image: Section Property Type       Image: Section Property Type         Circular       Pipe       Tube       Image: Section Property       Image: Section Property         Rectangular       Circular       Pipe       Tube         Precast I       Precast U       Image: Section U       Image: Section U         Image: Section Property       Pipe       Tube       Image: Section U         Image: Section Property       Image: Section Property       Image: Section Property       Image: Section Property         Image: Section Property       Image: Section Property       Image: Section Property       Image: Section Property         Image: Section Property       Image: Section Property       Image: Section Property       Image: Section Property         Image: Section Property       Image: Section Property       Image: Section Property       Image: Section Property         Image: Section Property       Image: Section Property       Image: Section Property       Image: Section Property         Image: Section Property       Image: Section Property       Image: Section Property       Image: Section Property |                             | Ŧ                                                                                                                                                                            |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| None     Properties - Frames     Add Frame Section Property     Select Property Type     Frame Section Property Type     Click to Add a Concrete Section     Rectangular     Precast U     Precast U     Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Home Layout                 | Components Loads Bridge Analysis Design/Rating Advanced                                                                                                                      |   |
| Select Property Type<br>Frame Section Property Type<br>Click to Add a Concrete Section<br>Rectangular<br>Precast I<br>Precast U<br>Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Type<br>Properties - Frames | Image: Weight of the section Property         Image: Weight of the section Property                                                                                          | 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3-D View                    | Select Property Type<br>Frame Section Property Type<br>Click to Add a Concrete Section<br>Rectangular<br>Circular<br>Pipe<br>Tube<br>Tube<br>Circular<br>Precast U<br>Cancel |   |

Figura 226. Designación de la sección

• A continuación se despliega la siguiente ventana en la cual se ingresa las dimensiones de t3=0.80 y t2=1m con su respectivo material de acuerdo a lo especificado en el plano y hacer clic en "OK"

### Detalle de las dimensiones de la columna



Figura 227.Detalle transversal de la columna de la pila

Fuente: Diseño del Puente Mixto sobre el rio Calshi

| Section Name                     | Colum              | na Pila (100×80)  |
|----------------------------------|--------------------|-------------------|
| Section Notes                    |                    | Modify/Show Notes |
| Properties<br>Section Properties | Property Modifiers | + CONCR=280       |
| Dimensions                       | 0.0                | 1                 |
| Depth (t3)<br>Width (t2)         | 1.                 |                   |
|                                  |                    | Display Color     |
| Concrete Reinforceme             | nt                 |                   |

Figura 228. Definición de la columna de la pila

 La segunda sección a definir es la viga de la pila con las dimensiones de 100x50 cm, hacer clic en "New Frame" y se abrirá la ventana en donde se puede elegir el material y la forma de la sección, en este caso seleccionar "Concrete" de forma "Rectangular"



Figura 229. Elección del material y forma de la viga

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 En la siguiente ventana ingresar las dimensiones de t3=0.50m y t2=1mcon su respectivo material, en este caso también se debe configurar la sección como viga para lo cual ir a la opción "Concrete Reinforcement" y elegir "Beam"



Figura 230.Detalle de la viga

Fuente: Diseño del Puente Mixto sobre el rio Calshi

| Section Name       Viga Pila (100x50)         Section Notes       Modify/Show Notes         Properties       Set Modifiers         Section Properties       Set Modifiers         Dimensions       + CONCR=280         Dimensions       - Continement Data         Width (12)       1         Depth (13)       0.50         Vidth (12)       1         Design Type         Concrete Reinforcement         Display Color         DK       Cancel         East       Reinforcement Overrides for Ductile Beams         Left       Right         Top       0.         Battom       0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ctangular Section                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Section Properties       Set Modifiers       + CDNCR=280       Rehar Material         Dimensions       0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Section Name<br>Section Notes                                    | Viga Pila (100x50)<br>Modify/Show Notes |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Dimensions         Depth (13)       0.50         Width (12)       1         Image: State of the sta | Section Properties Set M                                         | odifiers + CONCR=280                    | Reinforcement Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dimensions Depth (13) U.50 Width (12)  Concrete Reinforcement OK | Display Color                           | Rebar Material         Longitudinal Bars       +       Fy=4200 kg/cm2          Confinement Bars (Ties)       +       Fy=4200 kg/cm2          Design Type       Column (P:M2:M3 Design)       •         © Beam (M3 Design Only)       •       •         Concrete Cover to Longitudinal Rebar Center       •       •         Top       0.06       •         Bottom       0.06       •         Design Type       •       •         Concrete Cover to Longitudinal Rebar Center       •       •         Top       0.06       •       •         Bottom       0.06       •       •         Bottom       0.       •       •         Bottom       0.       •       • |

Figura 231. Definición de la viga de la pila

• Una vez configurada la sección como viga se obtiene la siguiente ventana en la cual hacer clic en "Ok"

| Rectangular Section                    |                                     | -                               |  |  |
|----------------------------------------|-------------------------------------|---------------------------------|--|--|
| Section Name<br>Section Notes          | Viga Pil                            | a (100x50)<br>Modify/Show Notes |  |  |
| Properties<br>Section Properties       | Property Modifiers<br>Set Modifiers | Material<br>+ CONCR=280         |  |  |
| Dimensions<br>Depth (t3)<br>Width (t2) | 0.50                                |                                 |  |  |
| Display Color                          |                                     |                                 |  |  |
|                                        |                                     |                                 |  |  |

Figura 232. Vista de la viga

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 La tercera sección es la viga del estribo de 70x30cm para añadirla, hacer clic en "New Frame" y se abrirá la ventana en donde se puede elegir el material y la forma de la sección, en este caso seleccionar "Concrete" de forma "Rectangular"

| Home Layout     | Components Loads Bridge Analysis Design/Rating Advanced                                          |
|-----------------|--------------------------------------------------------------------------------------------------|
| C I             | Item     Item     Item       Add Frame Section Property                                          |
| X-Y Plane @ Z=0 | Select Property Type                                                                             |
|                 | Frame Section Property Type                                                                      |
|                 | Click to Add a Concrete Section<br>Rectangular Circular Pipe Tube<br>Tube<br>Precast I Precast U |
|                 | Cancel                                                                                           |

Figura 233. Elección del material y forma de la viga ubicada en el estribo

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Luego ingresar las dimensiones de la viga del estribo t3=0.30 y t2=0.70 con su respectivo material, dar clic en "Concrete Reinforcement" para configurarle como viga, dar clic en "Ok"

|                                                                                                                                    |                                                               |                                                                                 | Re | inforcement Da                                                                                                                                                 | - Bearings<br>ta                                                                                       | - Fy                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Section Name<br>Section Notes<br>Properties<br>Section Properties<br>Dimensions<br>Depth (13)<br>Width (12)<br>Concrete Reinforcen | Viga Estri<br>Set Modifiers<br>0.3<br>0.7<br>ent<br>DK<br>Can | i (70x30)<br>Modify/Show Notes<br>+ CONCR=280<br>2 + CONCR=280<br>Display Color |    | Rebar Material<br>Longitudinal B<br>Confinement E<br>Oesign Type<br>Column IF<br>Column IF<br>Concrete Cove<br>Top<br>Bottom<br>Reinforcement<br>Top<br>Bottom | ars<br>Bars (Ties)<br>P-M2-M3 Design<br>Design Only)<br>r to Longitudin<br>Overrides for D<br>0.<br>0. | + Fy=42<br>+ Fy=42<br>n)<br>Ductile Beams<br>Left | 100 kg/cm2   100 k |

Figura 234. Definición de la viga del estribo

 A continuación aparecerá la siguiente ventana en la cual se hace clic en "Ok"

| Rectangular Section                    | -                  |                                  |
|----------------------------------------|--------------------|----------------------------------|
| Section Name<br>Section Notes          | Viga Es            | tri (70x30)<br>Modify/Show Notes |
| Properties<br>Section Properties       | Property Modifiers | Material<br>+ CONCR=280          |
| Dimensions<br>Depth (t3)<br>Width (t2) | 0.3                | 9                                |
| Concrete Reinforcem                    | ent                | Display Color                    |

Figura 235.Ventana de la viga del estribo

La cuarta sección es la viga principal de 40x126 cm para añadirla, hacer clic en "New Frame" y se abrirá la ventana en donde se puede elegir el material y la forma de la sección, en este caso seleccionar "Concrete" de forma "Precast I" para poder analizarle a la viga de forma independiente al tablero.



Figura 236. Elección del material y la forma de la viga principal

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

En la siguiente ventana que se abre ingresar las dimensiones de la viga en este caso como es de sección constante B1-B2-B3 sería igual a 0.40m, B4=0 y solo se inserta el valor D1=1.26m que es la altura total de la viga y el resto de las dimensiones se crean automáticamente, también se debe chequea el material con el cual se está trabajando.



Figura 237.Detalle de la sección transversal de concreto

Fuente: Diseño del Puente Mixto sobre el rio Calshi

| Section Name                                                                                                                                                                           | a Principal (40x126)                                                                            | Display Color 📃                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Set Section Dimensions Based on a                                                                                                                                                      | Standard Section           B1           0.40           B2           0.40           B3           | Section                                                  |
|                                                                                                                                                                                        | B4 0.<br>D1 1.26<br>D2 0.1016                                                                   | - Material                                               |
| $ \begin{array}{ c c c c c } \hline & & B1 & I & Beam \\ \hline & & & \\ D2 & & & \\ D3 & & & \\ B3 & & & \\ B3 & & & \\ B3 & & & \\ \hline & & & \\ D1 & & \\ D1 & & \\ \end{array} $ | D3         0.0762           D4         0.           D5         0.127           D6         0.127 | Properties     Section Properties     Property Modifiers |
|                                                                                                                                                                                        |                                                                                                 | Set Modifiers<br>Section Notes<br>Modify/Show Notes      |

Figura 238.Definición de la viga de concreto

# 9.1.2.3.5. Definición de las secciones de acero

 La primera sección que se añade son los ángulos de 100x100x8 mm con un acero A36, para lo cual dar clic en "New Frame", además elegir el tipo de material en este caso seria "Steel" y su forma "Angle"

| 🕥 🗄 🕫 🛯 🗧 🕥 =              |                                                                                                                                      |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Home Layout Compon         | ents Loads Bridge Analysis Design/Rating Advanced                                                                                    |
| ьт<br>Ф. Б. Б. Г.          |                                                                                                                                      |
| lype Columna Pila (100X80) | Add Frame Section Property                                                                                                           |
| Properties - Frames        | Select Property Type                                                                                                                 |
|                            | Frame Section Property Type                                                                                                          |
|                            | Click to Add a Steel Section                                                                                                         |
|                            | Image: Image     Image: Image     Image: Image     Image: Image     Image       Image: Image     Image     Image     Image     Image |
|                            | JL     JL     O       Double Angle     Double Channel     Pipe                                                                       |
|                            | Steel Joist                                                                                                                          |
|                            | Cancel                                                                                                                               |

Figura 239. Elección del material y forma del ángulo de 100x100x8

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Luego aparecerá la siguiente ventana en la cual se ingresan las dimensiones del ángulo con su respectivo material, hacer clic en "Ok"

# **Donde:**

Longitud vertical (t3)=100mm

Longitud horizontal (t2)=100mm

Espesor horizontal (tf)=8mm

Espesor vertical (tw)=8mm

| Angle Section                                                                                                                                                                    | - 100 C                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Section Name                                                                                                                                                                     | 100x100x8)<br>Modify/Show Notes |
| Properties Property Modifier<br>Section Properties Set Modifiers.                                                                                                                | s Material                      |
| Dimensions       Outside vertical leg (t3)     100       Outside horizontal leg (t2)     100       Horizontal leg thickness (tf)     100       Vertical leg thickness (tw)     8 |                                 |
|                                                                                                                                                                                  | Display Color                   |
| ОК                                                                                                                                                                               | Cancel                          |

Figura 240.Configuración del ángulo de 100x100x8

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• La segunda sección que se añade es la viga principal de 1165x450mm con un acero A588, para lo cual dar clic en "New Frame", además elegir el tipo de material en este caso seria "Steel" y su forma es tipo "I/Wide Flange"

| (A) H 9 R & (A)                             | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Home Layout                                 | Components Loads Bridge Analysis Design/Rating Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ¢v 🔁 🖥 🚣                                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Columna Pila (100X80<br>Properties - Frames | Add Frame Section Property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3-D View                                    | Select Property Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                             | Image     Channel     Tee     Angle       Image     Image     Image     Image     Image       Image     Image     Image     Image |
|                                             | Auto Select List Steel Joist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                             | Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Figura 241.Elección de la forma de la viga de acero

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• En la ventana que se muestra a continuación se ingresan las dimensiones de la viga, la cual por ser de alma llena se añadió la sección de la platabanda en la parte inferior del ala, realizando el cálculo respectivo.



Figura 242.Detalles de la viga de acero

Fuente: Diseño del Puente Mixto sobre el rio Calshi

Valores de las dimensiones de la viga

Altura total (t3)=1165.5mm

Ancho del ala superior (t2)=450mm

Espesor del ala superior (tf)=25mm

Espesor del alma (tw)=12mm

Ancho del ala inferior (t2b)=450mm

Espesor del ala inferior (tfb)=40.5mm

| Section Name                     | Vig (11                             | 65x450)             |
|----------------------------------|-------------------------------------|---------------------|
| Section Notes                    |                                     | Modify/Show Notes   |
| Properties<br>Section Properties | Property Modifiers<br>Set Modifiers | Haterial<br>+ A 588 |
| Dimensions                       |                                     |                     |
| Outside height(t3)               | 1.165                               |                     |
| Top flange width (t2)            | 0.45                                |                     |
| Top flange thickness (tf)        | 0.025                               | 3                   |
| Web thickness ( tw )             | 0.012                               |                     |
| Bottom flange width(t2b)         | 0.45                                |                     |
| Bottom flange thickness(tfb)     | 0.0405                              | Display Color       |

Figura 243. Definición de las características de la viga de acero

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# 9.1.2.4. Acero de refuerzo

• Para ingresar las características de las varillas, ir al menú "Components" elegir la opción "Rebar Sizes"



Figura 244.Crear el acero de refuerzo

• A continuación se muestra la siguiente ventana en la cual se ingresa solo las varillas que se van a emplear con su respectiva área y diámetro, en este caso se tiene varillas de 18-32-12 mm

| Rein | Reinforcing Bar Sizes |          |              |                   |  |  |  |
|------|-----------------------|----------|--------------|-------------------|--|--|--|
|      | BarlD                 | Bar Area | Bar Diameter |                   |  |  |  |
|      | N18                   | 2.54     | 1.8          |                   |  |  |  |
|      | N18<br>N12            | 2.54     | 1.8          | Add               |  |  |  |
|      | N32                   | 8.04     | 3.2          | Modify            |  |  |  |
|      | 1414                  | 1.34     | 1.4          |                   |  |  |  |
|      |                       |          |              | Delete            |  |  |  |
|      |                       |          |              | Reset to Defaults |  |  |  |
|      | ,,                    |          |              |                   |  |  |  |
|      | Cancel                |          |              |                   |  |  |  |

Figura 245. Añadir el acero de refuerzo

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

#### 9.1.2.5. Definición de la sección transversal del tablero

• Se inicia con la definición de la sección transversal de concreto; ir al menú "Components", dar clic en "Items" y elegir la opción "Deck Sections"



Figura 246. Ventana para crear una sección transversal del puente

#### 9.1.2.5.1. Sección del tramo de concreto

• Luego hacer clic en "New Section" y se desplegara la siguiente ventana en la cual se elige un puente tipo "Precast I Girder", esta sección se la utiliza para poder evaluar las vigas de forma independiente del tablero

| Home Layout Components Loads Brid         | ge Analysis Design/Rating Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | Select Bridge Deck Section Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Properties - Frames rs Superstructure - D |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                           | Ext. Girders Vertical Ext. Girders Sloped Ext. Girders Clipped Ext. Girders with Radius Ext. Girders Sloped Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                           | AASHTO - PCI - ASBI Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                           | Other Concrete Sectors       Image: Concrete Sectors       Im |
|                                           | Steel and Concrete Sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                           | Steel Girders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Figura 247. Elegir la sección transversal de concreto

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 A continuación se ingresan los valores de la sección transversal del puente de acuerdo a las medidas que se encuentran en el plano del tramo de concreto, y aparecerá automáticamente la sección de la viga principal de (40x126)cm en la opción "Girder Section"



Figura 248.Sección transversal de concreto

Fuente: Diseño del Puente Mixto sobre el rio Calshi

| Width<br>L1<br>L1<br>L1<br>L4<br>Exterior<br>Girder or<br>S1<br>Constant or Variable Girder Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L2<br>L2<br>Kight<br>Exterior | Y<br>Y<br>X<br>X<br>Section is Legal Show Section Details |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------|
| Section Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | Girder Output                                             |
| Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Value 🔺                       | Modify/Show Girder Force Output Locations                 |
| General Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                                                           |
| Bridge Section Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S. Concreto                   | Modify/Show Properties Units                              |
| Slab Material Property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CONCR=280                     | Materiale Frame Secto                                     |
| Number of Interior Girders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                             |                                                           |
| Total Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.                            |                                                           |
| Girder Longitudinal Layout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Along Layout Line             |                                                           |
| Constant Girder Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                           |                                                           |
| Constant Girder Haunch Thickness (t2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                           |                                                           |
| Constant Girder Frame Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes                           |                                                           |
| Slab Thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                                                           |
| Top Slab Thickness (t1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.19                          |                                                           |
| Concrete Haunch Thickness (t2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.                            |                                                           |
| Girder Section Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                                                           |
| Circle and Control of the Control of | ga Principal (40v12           |                                                           |
| Girder Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gar mopar (Honre)             |                                                           |
| Girder Section Fillet Horizontal Dimension Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ga miloipar (Home             |                                                           |
| Girder Section Filet Horizontal Dimension Data 11 Horizontal Dimension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.                            |                                                           |
| Girder Section<br>Fillet Horizontal Dimension Data<br>f1 Horizontal Dimension<br>f2 Horizontal Dimension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.<br>0.                      |                                                           |

Figura 249. Configuración de la sección transversal de concreto

 Al deslizar hacia la parte de abajo se continúa llenando los datos del volado izquierdo y derecho



Figura 250.Configuración de la sección transversal de concreto

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

## 9.1.2.5.2. Sección transversal metálica

• Hacer clic en "New Section" y se desplegara la siguiente ventana en la cual se elige el tipo de puente "Steel Girders", es decir se define un tablero de hormigón con vigas metálicas.

| Home Lavout Components Loads Bridge                       | Analyric Derion/Batino Advanced                                                                                                                                            |        |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| LE L L L L L L L L L L L L L L L L L L                    | Select Bridge Deck Section Type                                                                                                                                            | ×      |
| Properties - Frames r <sub>2</sub> Superstructure - Decks | Concrete Box Girders         Ext. Girders Vertical         Ext. Girders Vertical         Ext. Girders Sloped         Ext. Girders Clipped         Ext. Girders With Radius | ed Max |
|                                                           | AdSHTO - PCI - ASBI Advanced<br>Standard<br>- Other Concrete Sections                                                                                                      |        |
| Υ.                                                        | Tee Beam Flat Slab Precast I Girder Precast U Girder                                                                                                                       |        |
|                                                           | Steel Girders                                                                                                                                                              |        |

Figura 251. Elegir la sección transversal de Acero

• A continuación se ingresan todas las dimensiones de la sección transversal del puente en la sección metálica y en la opción "**Girder Section**" aparecerá automáticamente la viga de (1165x450) asignada anteriormente.



Figura 252. Detalle de la sección transversal metálica

Fuente: Diseño del Puente Mixto sobre el rio Calshi

| ine Bridge Section Data - Steel Girder                                                                    |                   |                                           |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------|--|--|--|--|
| Vidth<br>Vidth<br>L1<br>Vidth<br>L2<br>Ref Pt<br>L2<br>L2<br>L2<br>L2<br>L2<br>L2<br>L2<br>L2<br>L2<br>L2 | 1<br>thor<br>or   | x x x v v v v v v v v v v v v v v v v v   |  |  |  |  |
| Section Data                                                                                              | Value II          | Girder Uutput                             |  |  |  |  |
| General Data                                                                                              | Value 🔺           | Modify/Show Girder Force Output Locations |  |  |  |  |
| Bridge Section Name                                                                                       | S METAL           |                                           |  |  |  |  |
| Slab Material Property                                                                                    | CONCB=280         | Modify/Show Properties Units              |  |  |  |  |
| Number of Interior Girders                                                                                | 1                 | Materials Frame Sects Kgf, m, C 🔻         |  |  |  |  |
| Total Width                                                                                               | 7                 |                                           |  |  |  |  |
| Girder Longitudinal Lavout                                                                                | Along Layout Line |                                           |  |  |  |  |
| Constant Girder Spacing                                                                                   | Yes               |                                           |  |  |  |  |
| Constant Girder Haunch Thickness (t2)                                                                     | Yes               |                                           |  |  |  |  |
| Constant Girder Frame Section                                                                             | Yes               |                                           |  |  |  |  |
| Slab Thickness                                                                                            |                   |                                           |  |  |  |  |
| Top Slab Thickness (t1)                                                                                   | 0.19              |                                           |  |  |  |  |
| Concrete Haunch + Flange Thickness (t2)                                                                   | 0.05              |                                           |  |  |  |  |
| Girder Section Properties                                                                                 |                   |                                           |  |  |  |  |
| Girder Section                                                                                            | Vig (1165x450)    |                                           |  |  |  |  |
| Girder Modeling In Area Object Models                                                                     |                   |                                           |  |  |  |  |
| Girders Modeling Object Type                                                                              | Frame             |                                           |  |  |  |  |
| Fillet Horizontal Dimension Data                                                                          |                   |                                           |  |  |  |  |
|                                                                                                           |                   |                                           |  |  |  |  |

Figura 253. Configuración de la sección transversal metálica

• Al deslizar hacia abajo se continua llenando los datos de los volados del puente tanto a la izquierda como a la derecha

| Width       Vidth       Vidth <th colsp<="" th=""><th colspan="5">Jefine Bridge Section Data - Steel Girder</th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <th colspan="5">Jefine Bridge Section Data - Steel Girder</th> | Jefine Bridge Section Data - Steel Girder |                                           |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------|-------------------------------------------|--|--|--|
| Vidth         Image: Section Data         Image: Section Data </td <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |                                           |                                           |  |  |  |
| Width       Left overhang Data       Constant or Variable Oirder Specing       Section Data       Gide Oirder Specing       Section Data       Constant or Variable Oirder Specing       Section Data       Modify/Show Girder Force Output Locations       Modify/Show Wroperties       Left Overhang Data       Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |                                           |                                           |  |  |  |
| Section Data     Constant of Variable Oirder Spacing       Item     Value       If Horizontal Dimension     0       Iceft Overhang Data     0       Left Overhang Data     0.3       Left Overhang Data     0.3       Left Overhang Data     0.3       Binkt Overhang Data     0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Width                                                          | +                                         |                                           |  |  |  |
| Image: Section Data       Image: Section Data         Image: Section Data       Image: Section Data <td></td> <td>+</td> <td></td>                                                                                                                                                                                                                                                                                                                                  |                                                                | +                                         |                                           |  |  |  |
| Image: Section Data       Image: Section Constant or Variable Oirder Spacing         Image: Section Data       Image: Section Constant or Variable Oirder Spacing         Image: Section Data       Image: Section Constant or Variable Oirder Spacing         Image: Section Data       Image: Section Constant or Variable Oirder Spacing         Image: Section Data       Image: Section Constant or Variable Oirder Spacing         Image: Section Data       Image: Section Constant or Variable Oirder Spacing         Image: Section Data       Image: Section Constant or Variable Oirder Spacing         Image: Section Data       Image: Section Constant or Variable Oirder Spacing         Image: Section Data       Image: Section Constant or Variable Oirder Spacing         Image: Section Data       Image: Section Constant or Variable Oirder Spacing         Image: Section Data       Image: Section Constant or Variable Oirder Spacing         Image: Section Data       Image: Section Constant or Variable Oirder Spacing         Image: Section Data       Image: Section Constant or Variable Oirder Space Oirder Space Oirder Constant or Variable Oirder Constant or | 의 의 부 및 RefPt 부                                                | l m                                       |                                           |  |  |  |
| Image: Section Data     Image: Section Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                | ■⊐                                        |                                           |  |  |  |
| Echnology     Interior     Interior       Sinder     Sinder     Sinder       Sinder     Sinder     Sinder       Section Data     Section is Legal     Show Section Details       If Horizontal Dimension     0     Gider Output       Left Overhang Data     0.3     Modify/Show Birder Force Output Locations       Heterials     Frame Sects     Kgr, m. C       Birder Doverhang Data     0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |                                           |                                           |  |  |  |
| Girder     Sincer     Girder     Girder       Section Data     Image: Section Section Data     Section Section Details       Individual Dimension     0.       Deficience to Fillet (L3)     0.3       Left Overhang Dutance to Fillet (L3)     0.13       Brider     0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Exterior Interior Exterio                                      | or                                        |                                           |  |  |  |
| Section Data       Constant or Variable Girder Spacing         Section Data       Section is Legal         If Horizontal Dimension       0.         If Horizontal Dimension       0.         If Horizontal Dimension       0.         If Horizontal Dimension       0.         Item       Value         If Horizontal Dimension       0.         Itel Overhang Data       0.         Left Overhang Data       0.3         Left Overhang Data       0.3         Left Overhang Data       0.3         Bright Doverhang Data       0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ginder Ginder 1Ginder 2 Ginder                                 | ·                                         | l → x                                     |  |  |  |
| Section Data         If Horizontal Dimension         0         1/2 Horizontal Dimensintis Legal         1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Constant or Variable Girder Spacing                            |                                           | X Y 🔽 Do Snap                             |  |  |  |
| Section Data     Section is Legal     Show Section Detais       Item     Value     Girder Output       If Horizontal Dimension     0.     Modify/Show Girder Force Output Locations       Iceft Overhang Data     0.       Left Overhang Dutation     0.3       Left Overhang Outer Thickness (f5)     0.19       Bridet Overhang Data     0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                           |                                           |  |  |  |
| Item     Value       If Horizontal Dimension     0.       If Horizontal Dimension     0.       Iceft Overhang Data     0.       Left Overhang Length (1)     0.9       Left Overhang Dutance to Fillet (1.3)     0.3       Left Overhang Data     0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |                                           | Section is Legal Show Section Details     |  |  |  |
| Item     Value       If Horizontal Dimension     0.       If Horizontal Dimension     0.       Left Overhang Data     0.       Left Overhang Length (1)     0.9       Left Overhang Dutance to Fillet [L3]     0.3       Left Overhang Data     0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Section Data                                                   |                                           | Girder Output                             |  |  |  |
| Interview     Description       11 Horizontal Dimension     0.       12 Horizontal Dimension     0.9       12 Horizontal Dimension     0.3       12 Horizontal Dimension     0.19       Bidde Disenses (15)     0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Item                                                           | Value 🔺                                   | Modifu/Show Girder Force Output Locations |  |  |  |
| Left Overhang Data     ∩       Left Overhang Data     Modify/Show Properties       Left Overhang Distance to Fillet (L3)     0.3       Left Overhang Outer Thickness (f5)     0.19       Bright Doubla     0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | f1 Horizontal Dimension                                        | 0.                                        |                                           |  |  |  |
| Left Overhang Data     Image: Sector 1       Left Overhang Length (1)     0.9       Left Overhang Distance to Fillet (1.3)     0.3       Left Overhang Duter Thickness (f5)     0.19       Bright Overhang Data     0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f2 Horizontal Dimension                                        | 0                                         | Modifu/Show Properties                    |  |  |  |
| Left Overhang Length (L1)     0.9       Left Overhang Distance to Fillet (L3)     0.3       Left Overhang Outer Thickness (f5)     0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Left Overhang Data                                             |                                           |                                           |  |  |  |
| Left Overhang Distance to Fillet [L3] 0.3<br>Left Overhang Outer Thickness (f5) 019<br>Bright Discharge Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Left Overhang Length (L1)                                      | 0.9                                       | Materials Frame Sects Kgf, m, C 💌         |  |  |  |
| Left Overhang Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Left Overhang Distance to Fillet (L3)                          | 0.3                                       |                                           |  |  |  |
| Bight Overhang Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Left Overhang Outer Thickness (t5)                             | 0.19                                      |                                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Right Overhang Data                                            |                                           |                                           |  |  |  |
| Right Overhang Length (L2) 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Right Overhang Length (L2)                                     | 0.9                                       |                                           |  |  |  |
| Right Overhang Distance to Fillet (L4) 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Right Overhang Distance to Fillet (L4)                         | 0.3                                       |                                           |  |  |  |
| Right Overhang Outer Thickness (t6) 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Right Overhang Outer Thickness (t6)                            | 0.19                                      |                                           |  |  |  |
| Live Load Curb Locations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Live Load Curb Locations                                       |                                           |                                           |  |  |  |
| Distance To Inside Edge of Left Live Load Curb 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Distance To Inside Edge of Left Live Load Curb                 | 0.                                        |                                           |  |  |  |
| Distance To Inside Edge of Right Live Load Curb 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Distance To Inside Edge of Right Live Load Curb                | 0.                                        |                                           |  |  |  |
| Distance to Centerline of Median Live Load Curb 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Distance To Centerline of Median Live Load Curb                | 0.                                        |                                           |  |  |  |
| Width of Median Live Load Curb 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Width of Median Live Load Curb                                 | U.                                        |                                           |  |  |  |
| Insertion Point Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Insertion Point Location                                       | 0                                         |                                           |  |  |  |
| Urrset & from Hererence Point to Insertion Point U.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Officer X From Herefence Point To Insertion Point              | <u>u.</u>                                 |                                           |  |  |  |
| Uliset i riuli nelelerce rum to insettion Point U. V OK Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unsect From Reference Point To Insertion Point                 | U. 🔻                                      | OK Cancel                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                |                                           |                                           |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |                                           |                                           |  |  |  |

Figura 254. Configuración de la sección transversal metálica

#### 9.1.2.6. Definición de los diafragmas

• Para crear las características de los diafragmas ir al menú "Components", hacer clic en "Items" y elegir la opción "Diaphragms"



Figura 255.Crear un nuevo Diafragma

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

Al seleccionar la opción "Diaphragms" se activa el icono de "New Diaphragms", que al hacerlo clic se abre la siguiente ventana en la cual se elige como "Solid" y se ingresa el espesor del diafragma de concreto en "Diaphragms Thickness"



Figura 256.Detalle del diafragma

Fuente: Diseño del Puente Mixto sobre el río Calshi



Figura 257. Definición del diafragma de concreto

A continuación se define el diafragma metálico al hacer clic en "New Diphragm" y en la ventana que se abre seleccionar la opción "Chord and Brace" y automáticamente aparecerá la sección de ángulo de 100x100x8anteriormente creado, de acuerdo a la figura que se muestra a continuación se debe elegir "X Brace" y desactivar el enunciado de "Incluide bottom chord" adicional a esto se debe ingresar la distancia a la que se encuentran las diagonales en la parte superior a 0.10m y en la parte inferior a 0.12m.



Figura 258. Detalle del diafragma metálico

Fuente: Diseño del Puente Mixto sobre el rio Calshi



Figura 259. Definición del diafragma metálico

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

#### 9.1.2.7. Definición de los apoyos

• Para la definición de los apoyos ir al menú "Components", dirigirse al icono de "Items" de la sub-estructura y seleccionar la opción "Bearings".



Figura 260.Crear un apoyo

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Luego dar clic en "New Bearings" para definir el apoyo Fijo, en el cual todas las restricciones son fijas y las rotaciones se libera para trabajar como articulación fija como se muestran en la siguiente imagen.

| Home Layout Components Loads Bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analysis Design/Rating Advanced                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Image: Second state         Image: Second state | Sections rs                                                     |
| 3-D View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bridge Bearing Data                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bridge Bearing Name FU0 Units Kgf, m, C 💌                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bridge Bearing Is Defined By:     C Link/Support Property     + |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>User Definition</li> </ul>                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | User Bearing Properties                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DOF/Direction Release Type Stiffness                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Translation Vertical (U1) Fixed                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Translation Along Layout Line (U3) Fixed                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rotation About Vertical (R1) Free                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rotation About Normal to Layout Line (R2) Free                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hotation About Layout Line (H3) Free                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OK Cancel                                                       |

Figura 261. Definición del apoyo fijo

 A continuación se designa un apoyo móvil haciendo clic en "New bearings" y liberar el desplazamiento horizontal en U3 al igual en las rotaciones colocar "Free"

|                    | Home     | Layout     | Components | Loads      | Bridge         | Analysis | Design/Rating                                                                                                                                     | Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           |                                                                              |                   |  |
|--------------------|----------|------------|------------|------------|----------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------|--|
| i⊆ I<br>€V<br>Type | Uiga Est | ri (70x30) |            | Item D. CO | NCRETO         |          | 国社<br>批Ⅲ<br>Item<br>FIIO                                                                                                                          | re - Bearings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                           |                                                                              |                   |  |
| 3-                 | D View   |            |            |            |                |          | Bridge Bearing                                                                                                                                    | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |                                                                              |                   |  |
|                    |          |            |            |            | v <sup>2</sup> |          | Bridge Bear<br>- Bridge Bear<br>C Link/S<br>C User D<br>- User Bearin<br>Translati<br>Translati<br>Translati<br>Translati<br>Rotation<br>Rotation | aring Name<br>ng Is Defined By<br>pport Property<br>efinition<br>p Properties<br><b>DOF/Dir</b><br>N Vertical (U11)<br>n Normal to Lay<br>Normal to Lay<br>Norma | MOVIL<br>ection<br>out Line (U2)<br>Line (U3)<br>31]<br>Layout Line (R2)<br>ne (R3)<br>OK | Release Type<br>Fixed<br>Fixed<br>Firee<br>Firee<br>Firee<br>Firee<br>Cancel | Units<br>Kg, m, C |  |

Figura 262. Definición del apoyo móvil

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

## 9.1.2.8. Definición de la Cimentación

 De la misma forma para asignar las condiciones de la cimentación ir al menú "Components", hacer clic en el icono de "Items" y elegir la opción "Foundation Springs"



Figura 263. Crear la cimentación

• Luego hacer clic en "New foundation Springs" y se abre la siguiente ventana en la cual se le designa todo fijo "Fixed" ya que la cimentación se encuentra empotrada

| Home Layout Components Loads Bridge Anal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ysis Design/Rating Advanced                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Image: State of the state o             |                                                                                                                   |
| Supersonation of the second seco | Foundation Spring Data                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Foundation Spring Name         CIMENTACION         Units           Foundation Spring Is Defined By:               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Translation Vertical (U1) Fixed Translation Along Skew (U2) Fixed                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Translation Normal to Skew (U3) Fixed Rotation About Vertical (R1) Fixed                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rotation About Line Along Skew (R2)         Fixed           Rotation About Line Normal to Skew (R3)         Fixed |
| Y.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OK Cancel                                                                                                         |

Figura 264. Definición de la cimentación



## 9.1.2.9. Definición de los Estribos

 Para la definición de los estribos ir al menú "Components", en el icono "Items" de la sub-estructura elegir la opción "Abutments" y se activara la opción para crear los estribo



Figura 265.Crear un estribo

• Después hacer clic en "New Abutment" se despliega la siguiente ventana en la cual se debe elegir la opción "Connect to Girder Bottom Only", e indica que el estribo se encuentra conectado solo a la parte inferior de la viga la cual se asienta en una viga continua "Continuous Beam" de 70x30 cm asignada anteriormente con su respectiva longitud de 8 metros que es el ancho del estribo y en cuanto a las propiedades de la fundación elegir la opción cimentación como se muestra en la siguiente figura.

| Home Layout Compon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ents Loads Bridge Analysis                                     | Design/Rating Advanced                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Image: Second | Item         D. CONCRETO           Superstructure - Diaphragms | Image: Substructure - Abutments     Fig.                                                                                                                                                                                                                         |
| 3-D View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bri                                                            | idge Abutment Data                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                | Bridge Abutment Name       ESTRIBOS       Units         Girder Support Condition       [Kgf, m, C]         © Integral       © Connect to Girder Bottom Dnly         Substructure Type       Foundation Spring         © Continuous Beam (Continuously Supported) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                | Foundation Spring<br>Foundation Spring Property<br>Note: When substructure type is grade beam, foundation spring property represents a<br>line spring.                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                | OK Cancel                                                                                                                                                                                                                                                        |

Figura 266.Definición del estribo

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

## 9.1.2.10. Definición de la Pila

• En la definición de las pilas ir al menú "Components", en el icono "Items" de la sub-estructura elegir la opción "Bents" y se activara la opción para crear la pila



Figura 267.Crear la pila

• Hacer clic en "New Bents" y se abre la siguiente ventana que se muestra a continuación, la cual ha sido configurada de acuerdo a los siguientes pasos.

1.- Ingresar el valor de 6.6m de la longitud de la viga sobre la cual se apoya la superestructura en la opción "Cap Beam length"

2.- Ingresar en número de columnas que posee la pila, en el literal "Number of column" colocar el valor de 3

3.-Verificar en el enunciado **"Cap Beam Section"**se encuentre la sección de la viga de 100x50 cm

4.-En el tipo de pila seleccionar la opción **"Double bearings line"** debido a que el puente es de dos tramos el uno de hormigón y el otro de acero.

5.- Luego indicar que la pila se encuentra ubicada a la parte inferior de la viga eligiendo la opción "Connect to Girder Bottom Only" de los dos apoyos

6.- Ingresar la distancia a la que se encuentra el apoyo antes y después del eje de la pila en este caso es a 0.10m.

7.- Modificar las características de las columnas hacer clic en **"Modify** Show columns Data"

| Bridge Bent Data         Bridge Bent Name         Units         PILA         Bent Data         Cap Beam Length         Number of Columns         Cap Beam Section         Viga Pila (100x50)         Modify/Show Column Data         Bent Type         Single Bearing Line (Continuous Superstructure)         Connect to Girder Bottom Only         Location of Bearing Line After Bent         Distance from Bent to Bearing Line (Discontinuous Superstructure)         Connect to Girder Bottom Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oonents Loads Bridge                                                                                                                                                                               | Analysis Design/Rating                                                                                                        | Advanced                             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| Bridge Bent Data         Bridge Bent Name         PILA         PLA         Bent Data         Cap Beam Length         Number of Columns         Cap Beam Section         + Viga Pila (100x50)         Image: Connect to Girder Bottom Only         Location of Bearing Line         Output         Cap Beam Section         + Viga Pila (100x50)         Image: Connect to Girder Bottom Only         Connect to Girder Bottom Only         Location of Bearing Line         Output         Distance from Bent to Bearing Line         Image: Connect to Girder Bottom Only         Location of Bearing Line         Image: Connect to Girder Bottom Only         Image: Connect to Bea | Item D. CONCRETO<br>Superstructure - Diaphrag                                                                                                                                                      | ms r                                                                                                                          | ture - Bents                         |  |
| Bridge Bent Name       Units       Girder Support Condition Before Bent         Plata       Kgf, m, C •       Integral         Cap Beam Length       6.6       Distance from Bent to Bearing Line         Number of Columns       3       Circle Support Condition After Bent         Cap Beam Section       + Viga Pila (100x50)       •         Modify/Show Column Data       •       Connect to Girder Bottom Dnly         Bent Type       Connect to Girder Bottom Dnly       Location of Bearing Line After Bent         •       Single Bearing Line (Continuous Superstructure)       Distance from Bent to Bearing Line       0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bridge Bent Data                                                                                                                                                                                   |                                                                                                                               |                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bridge Bent Name<br>PILA<br>Bent Data<br>Cap Beam Length<br>Number of Columns<br>Cap Beam Section +<br>Modify/Show<br>Bent Type<br>C Single Bearing Line (Continu<br>Double Bearing Line (Discord) | Units<br>Kgf, m, C<br>6.6<br>3<br>Viga Pila (100x50)<br>v Column Data<br>ous Superstructure)<br>tinuous Superstructure)<br>DK | Girder Support Condition Before Bent |  |

Figura 268.Definición de la pila



A continuación se muestra la ventana para configurar las columnas con su respectiva sección "Section", distancia "Distance", altura "Height", ángulo "Angle" y base de soporte "Base Support" especificadas en los detalles, también se debe verificar que las reacciones R1-R2-R3 en las tres columnas se encuentren fijas "Fixed"



Figura 269.Detalle de las columnas de la pila

Fuente: Diseño del Puente Mixto sobre el rio Calshi

| ridge Bent Nar<br>BENT1                                                                                | ne                                                                                                                                                    | Modify/Shov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | v Properties<br>action Properties                                                                               | Foundation Sp                                                                                | ring Properties                                                  | Units<br>Kgf, m, C | •        |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------|----------|
| Column Data<br>Column                                                                                  | Section                                                                                                                                               | Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tance H                                                                                                         | eight Ar                                                                                     | ngle B                                                           | ase Support        | <b>_</b> |
| 1                                                                                                      | Columna Pila (100                                                                                                                                     | 0×80) I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D.8                                                                                                             | 18.                                                                                          | 0.                                                               | Fixed              |          |
| 2                                                                                                      | Columna Pila (100                                                                                                                                     | 0×80) :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.3                                                                                                             | 18.                                                                                          | 0.                                                               | Fixed              |          |
| 3                                                                                                      | Columna Pila (100                                                                                                                                     | 0×80) !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.8                                                                                                             | 18. 🛄                                                                                        |                                                                  | Fixed              | 1        |
| Notes:<br>1. The distar<br>2. The colun<br>3. The colun                                                | nce is measured from<br>In height is measured<br>In angle is measured                                                                                 | h the left end of t<br>d from the midhe<br>f in degrees cour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | he cap beam to th<br>ight of the cap bea<br>nterclockwise from                                                  | e center of the colu<br>am to the bottom of<br>a line parallel to the                        | mn.<br>the column.<br>e bent to the colur                        | nn local 2 axis.   | V        |
| Notes:<br>1. The distar<br>2. The colun<br>3. The colun<br>foment Releas                               | ice is measured from<br>in height is measured<br>in angle is measured<br>es at Top of Column                                                          | the left end of t<br>d from the midhe<br>d in degrees cour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | he cap beam to the<br>ight of the cap bea<br>nterclockwise from                                                 | e center of the colu<br>am to the bottom of<br>a line parallel to the                        | mn.<br>the column.<br>bent to the colur                          | nn local 2 axis.   |          |
| Notes:<br>1. The distar<br>2. The colun<br>3. The colun<br>Ioment Releas<br>Column                     | nce is measured from<br>an height is measured<br>an angle is measured<br>es at Top of Column<br><b>R1 Release</b>                                     | the left end of t<br>d from the midhe<br>d in degrees cour<br><b>R2 Release</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | he cap beam to the<br>ight of the cap bea<br>nterclockwise from<br><b>R3 Release</b>                            | e center of the colu<br>am to the bottom of<br>a line parallel to the<br><b>31 Stiffness</b> | mn.<br>the column.<br>e bent to the colur<br><b>R2 Stiffness</b> | nn local 2 axis.   |          |
| Notes:<br>1. The distar<br>2. The colun<br>3. The colun<br>toment Releas<br>Column<br>1<br>2           | nce is measured from<br>nn height is measured<br>nn angle is measured<br>es at Top of Column<br><b>R1 Release</b><br>Fixed<br>Fixed                   | the left end of ti<br>d from the midhe<br>d in degrees cour<br><b>R2 Release</b><br>Fixed<br>Fixed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | he cap beam to the<br>ight of the cap bea<br>nterclockwise from<br><b>R3 Release</b><br>Fixed                   | e center of the colu<br>am to the bottom of<br>a line parallel to the<br><b>31 Stiffness</b> | mn.<br>the column.<br>e bent to the colur<br>R2 Stiffness        | nn local 2 axis.   |          |
| Notes:<br>1. The distar<br>2. The colun<br>3. The colun<br>toment Releas<br>Column<br>1<br>2<br>3<br>3 | nce is measured from<br>nn height is measured<br>nn angle is measured<br>es at Top of Column<br><b>R1 Release</b><br>Fixed<br>Fixed<br>Fixed<br>Fixed | the left end of ti<br>d from the midhe<br>d in degrees cour<br>d in degrees cour<br>d in degrees cour<br>d in degrees cour<br>d in degrees court<br>d in degrees court | he cap beam to the<br>ight of the cap bea<br>nterclockwise from<br><b>R3 Release</b><br>Fixed<br>Fixed<br>Fixed | e center of the colu<br>am to the bottom of<br>a line parallel to the<br>31 Stiffness        | mn.<br>the column.<br>bent to the colur<br><b>R2 Stiffness</b>   | nn local 2 axis.   | ×        |

Figura 270.Configuración de las columnas de la pila

## 9.1.2.11. Definición del Vehículo de diseño

• Ir al menú "Loads" y hacer clic en el icono "New Vehicle" y se elige el vehículo Hsn-44 que se asemeja al empleado en el diseño del puente y se activa automáticamente el factor de escala.

| Home Layou | t Components Loads Bridge                  | Analysis Design/Rating Advanced      |
|------------|--------------------------------------------|--------------------------------------|
| Vehicles   | Vehicle Data                               | UNIFRS VIEw None                     |
|            | Vehicle Name<br>Type<br>C. General Vehicle | Data Definition Region United States |
|            | Standard Vehicle                           | Standard AASHTO  Vehicle Type HSn-44 |
|            | Conversion<br>Show As General Vehicle      | Scale Factor 20 Dynamic Allowance    |
|            | Convert To General Vehicle                 | Class                                |
|            | ОК                                         | Cancel                               |

Figura 271.Elegir el vehículo tipo

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Luego hacer clic en "Convert to General Vehicle" para modificar las medidas y cargas por eje del vehículo, de acuerdo a lo empleado en el diseño, donde se elige el valor a cambiar y se da clic en "Modify".



Figura 272. Vehículo tipo

Fuente: Diseño del Puente Mixto sobre el rio Calshi

| venicie name                                   |                  |                     | Units-          |                            | _      |                  |              |                          |             |
|------------------------------------------------|------------------|---------------------|-----------------|----------------------------|--------|------------------|--------------|--------------------------|-------------|
| HS-15-44                                       |                  |                     | Tonf, m         | i, C 💌                     |        |                  | ٠            | •                        | •           |
| Floating Axle Loads                            |                  |                     |                 |                            |        |                  | •            | •                        | •           |
|                                                | Value            | Wie                 | lth Type        | Axle Width                 | Loa    | d Plan           |              |                          |             |
| For Lane Moments                               | 0.               | One Poi             | nt 💌            |                            |        |                  |              |                          | I           |
| For Other Responses                            | 0.               | One Poi             | nt 💌            |                            |        |                  |              |                          |             |
| Double the Lane Mr.                            | oment Load who   | n Calculat          | ina Neastive 9  | Span Moments               |        |                  | ¥            | ¥                        | *           |
|                                                |                  |                     |                 |                            | Loa    | d Elevation      |              |                          |             |
| Usage                                          |                  | Min                 | Dist Allowed F  | From Axle Load             |        | Length           | Effects      |                          |             |
| Lane Negative Mome                             | ents at Supports | Lar                 | ne Exterior Edg | ge  0.3048                 | _      | Axle             | None         | <b>•</b>                 | Modify/Show |
| Interior Vertical Suppl<br>All other Besponses | ort horces       | Lar                 | ne Interior Edg | e 0.6096                   |        | Unifor           | m None       | •                        | Modify/Show |
| J♥ All other tresponses                        |                  |                     |                 |                            |        |                  |              |                          |             |
| Loads                                          |                  |                     | 11.2            |                            |        |                  |              |                          |             |
| Load<br>Length Type                            | Distance [       | iaximum<br>)istance | Load            | Unirorm<br>Width Type      | ,      | Unirorm<br>Width | Load         | Axie<br>Width Type       | Width       |
| Leading Load 🛛 🚽 In                            | finite           |                     | 0.              | Fixed Width                | -      | 8.048            | 5.45         | Two Points               | ▼ 1.8       |
| Leading Load In                                | finite           |                     | 0.              | Fixed Width                | -i     | 3.048            | 5.45         | Two Points               | 1.8         |
| Fixed Length 4.<br>Variable Length 4.          | 27 9.1           | 44                  | 0.              | Fixed Width<br>Fixed Width |        | 3.048<br>3.048   | 5.45<br>6.45 | Two Points<br>Two Points | 1.8<br>1.8  |
|                                                |                  |                     |                 |                            |        |                  |              |                          |             |
|                                                |                  |                     |                 |                            |        |                  |              |                          |             |
| II_                                            |                  |                     |                 | 1                          |        |                  | 1            | 1                        | ļ           |
|                                                |                  | hά                  | -               | Insert                     | Modifu |                  | )elete       |                          |             |
| Adu Insek Mouly Delete                         |                  |                     |                 |                            |        |                  |              |                          |             |

Figura 273. Características del vehículo tipo



 Una vez creado el vehículo tipo se crea la clase de vehículos al hacer clic en "Vehicle Classes"



Figura 274.Crear una clase de vehículo

• A continuación se debe hacer clic en "New Vehicle Classes" y añadir el vehículo creado Hs-15-44.

| Home Layout                         | Components Loads                                                                         | Bridge Analysis                             | Design/Ra |
|-------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------|-----------|
| Type HS=15-44<br>Vehicles - Classes | DL<br>Load<br>Patterns<br>Load Patterns                                                  | Type UNIFRS<br>Functions - Response Sp      | Dectrum   |
| Trane @ Z=0                         | Vehicle Class Data                                                                       |                                             |           |
|                                     | Vehicle Class Name<br>Define Vehicle Class<br>Vehicle Name<br>HS-15-44<br>HS-15-44<br>OK | VECL1 Scale Factor Add Modify Delete Cancel |           |

Figura 275. Definición de la clase de vehículo

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

#### 9.1.2.12. Definir los patrones de carga

Para definir los patrones de carga ir al menú "Loads" elegir el icono "Load Patterms", por defecto el programa tiene carga muerta de tipo "Dead" en la cual se escribió CM con un factor multiplicador de 1 para que se aplique el peso propio de la estructura y se presionó "Modify Load Patters" las demás cargas se las añade con el tipo de carga que representa cada una y con un factor de 0 como se indica en la siguiente figura.


Figura 276.Definición de los patrones de carga

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# 9.1.2.13. Definición de las cargas del puente

La primera carga que se añade es la carga puntual de los postes ubicado a la derecha, para lo cual ir al menú "Loads" seleccionar "Type" y elegir "Point Load"



Figura 277. Creación de la carga puntual

 Luego hacer clic en "New" y se abre el siguiente cuadro de dialogo, tomado en cuenta la dirección de la carga en este caso es "Gravity", ingresando el valor de la carga en la opción "Value" verificando las unidades en este caso es de 0.10 T, y por último se indica la ubicación "Right Edge of Deck" con su respectiva distancia a 0.10 del lado derecho.

| Loads Bridge Analysis Design/Rating Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| DL<br>Load<br>Patterns<br>ad Patterns<br>ad Patterns<br>Functions - Response Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Load Name<br>Load Distribution Deta<br>Load Value |  |
| Value Utad Transverse Location Reference Location Load Distance from Reference Location Load Vertical Location Top Slab is Loaded at Midheight of its Thinnest Portion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |

Figura 278.Definición de los postes a la derecha

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

Después crear una copia del anterior hacer clic en "Copy" y se abre el siguiente cuadro de dialogo, en el cual solo se debe cambiar la ubicación a la izquierda conservando las mismas características, es decir hacer clic en "Left Edge of Deck" y en "Ok".

| ing Advanced                         |                                |
|--------------------------------------|--------------------------------|
| Type Post Der                        | <sup>⊥</sup> <sup>P</sup><br>× |
| Bridge Point Load Distribution Defin | iition Data                    |
| Load Name                            | Units                          |
| Pos Izq                              | Tonf, m, C                     |
| Load Direction                       |                                |
| Load Type                            | Force                          |
| Coordinate System                    | GLOBAL                         |
| Direction Gravity                    | <u> </u>                       |
| Load Value                           |                                |
| Value                                | 0.1                            |
| Load Transverse Location             |                                |
| Reference Location                   | Left Edge of Deck              |
| Load Distance from Reference L       | ocation  0.1                   |
| Load Vertical Location               |                                |
| Top Slab is Loaded at Midheight      | of its Thinnest Portion        |
| ОК                                   | Cancel                         |

Figura 279. Definición de los postes izquierdos

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 A continuación se define la carga lineal aplicada sobre el puente o también conocida como carga de baranda con un valor de 0.15 T/m, los pasos a seguir son: ir al menú "Loads" seleccionar el menú "Type" escoger el literal "Line Load"



Figura 280.Crear la carga lineal

Luego se activa la opción "New Line load", dar clic sobre tal opción y se desplegara el siguiente cuadro de dialogo en el cual primero se elige las unidades, después se indica la dirección de la carga es decir "Gravity" con un valor de 0.15T/m se encuentra ubicada a la derecha seleccionar el item "Right Edge of Deck" a una distancia de 0.10m

| Loads Bridge Analysis Design<br>DL<br>Load Type Espectro<br>Patterns Functions - Response Spectru               | VRating Advanced                              |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| real and a second se | Bridge Line Load Distribution Definition Data |

Figura 281.Definición de la carga de baranda derecha

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 Para crear la carga de baranda izquierda se dio clic en "New Line Load" y se insertan los mismos valores y dirección de la baranda derecha a diferencia de su ubicación en este caso definimos "Left Edge of Deck" y con la distancia de 0.10m

| Loads      | Bridge | An       | alysis   | Design/Rating Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|------------|--------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ) L<br>oad |        | <b>L</b> |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| terns      | Type   | Espectr  | 0        | Bridge Line Load Distribution Definition Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Patterns   | Funct  | Z        | lesponse | Load Name<br>Bar Izq<br>Load Direction<br>Load Type<br>Coordinate System<br>Direction<br>Coordinate System<br>Direction<br>Gravity<br>Load Value<br>Value<br>Value<br>Units<br>Tonf, m, C<br>Coordinate System<br>GLOBAL<br>Direction<br>Gravity<br>Coordinate System<br>Direction<br>Gravity<br>Coordinate System<br>Direction<br>Gravity<br>Coordinate System<br>Direction<br>Gravity<br>Coordinate System<br>Direction<br>Gravity<br>Coordinate System<br>Direction<br>Gravity<br>Coordinate System<br>Direction<br>Gravity<br>Coordinate System<br>Direction<br>Gravity<br>Coordinate System<br>Coordinate System<br>Co |  |
|            |        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

Figura 282. Definición de la carga de baranda Izquierda

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• La tercera carga asignada es la carga en área, su definición inicia al dirigirse al menú "Type", eligiendo el literal "Area Load"



Figura 283.Crear la carga de asfalto

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

Posteriormente se hace clic en "New Area Load" y se desplegara el siguiente cuadro de dialogo, en el cual se ubica las unidades de trabajo en T-m, luego se ingresa la dirección "Direction" "Gravity", se continua insertando el valor de 0.12T/m2 de la carga tanto a ala derecha como a la izquierda y por último se coloca su localización con su respectiva distancia es decir a la izquierda "Left Edge of Deck" a 0.15 m y a la derecha "Right Edge of Deck" a 0.15m



Figura 284.Definición de la carga de asfalto

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

### 9.1.2.14. Definición de carga móvil

Para la asignación de la carga móvil del camión de diseño ir al menú "Analysis", después dar clic en el icono "Type" y seleccionar el literal "Moving Load"

|                 |      | Home Layout Compon            | ents Loads Bridge                           | Analysis           | Design/Rating Adva                      | nced                     |                                   |
|-----------------|------|-------------------------------|---------------------------------------------|--------------------|-----------------------------------------|--------------------------|-----------------------------------|
|                 | Type |                               | Schedule Convert Show<br>Stages Combos Tree | Bridge<br>Response | DOF's<br>Model Analysis<br>Lock Options | Run Last<br>Analysis Run | Modify Reset<br>Geometry Geometry |
| L               | 臣    | All                           | u 5                                         | Bridge             | LOCK                                    | inalyze                  | Shape Finding                     |
|                 | 臣    | Static                        |                                             |                    |                                         |                          |                                   |
|                 | Ŀ    | Nonlinear Staged Construction |                                             |                    |                                         |                          |                                   |
|                 | Ŀ    | Multistep Static              |                                             |                    |                                         |                          |                                   |
|                 | Ŀ    | Modal                         |                                             |                    |                                         |                          |                                   |
|                 | Ŀ    | Response Spectrum             |                                             |                    |                                         |                          |                                   |
|                 | Ŀ    | Time History                  |                                             |                    |                                         |                          |                                   |
| $\triangleleft$ | I.   | Moving Load                   |                                             |                    |                                         |                          |                                   |
|                 | Ŀ    | Buckling                      |                                             |                    |                                         |                          | /                                 |
|                 | Ŀ    | Steady State                  |                                             |                    |                                         |                          |                                   |
|                 | Ŀ    | Power Spectral Density        |                                             |                    |                                         |                          |                                   |
|                 | Ŀ    | Hyperstatic                   | ]                                           |                    |                                         |                          |                                   |

Figura 285.Crear la carga móvil

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

Se activará la opción "New Moving Load", al hacer clic se despliega el siguiente cuadro de dialogo, en donde se añade la clase de vehículo al dar clic en "Add", también se debe verificar que en el caso de carga o "Load Case Type" se encuentre especificado "Moving Load" y que el factor de reducción de escala sea igual a 1 cuando se tiene dos carriles, y por último seleccionar los dos carriles lo cual indica que sobre ellos circulará el vehículo tipo



Figura 286. Configuración de la carga móvil

### 9.1.2.15. Definición del objeto puente

 Para la definición del objeto puente ir al menú "Bridge", seleccionar al icono "New Bridge Objet" y se abrirá la ventana que se muestra a continuación en la cual se debe configurar los espacios o "Spans" siguiendo los siguientes pasos

1.- En el enunciado **"Define Bridge Object Reference Line"**, elegir la fila de **"Start Abument"** y se le cambia el nombre a **"Estribo"** luego hacer clic en **"Modify"** para que se guarden los cambios.

2.-Luego se vuelve a seleccionar la fila de "Estribo" se cambia el nombre por "TRAMO ACERO" a una estación o "Station" de 25 m que es la longitud del tramo de puente de acero y al hacer clic en "Add" el puente se divide en dos tramos

3.-El segundo espacio se lo configura de acuerdo al literal uno y se lo llama **"TRAMO CONCRETO"** el cual se encuentra desde los 25m hasta los 46m

| Home Layout Compo | onents Loads Bridge Analysis                | Design/Rating Advanced                             |                   |                                            |
|-------------------|---------------------------------------------|----------------------------------------------------|-------------------|--------------------------------------------|
| **                | Bridge Object Data                          |                                                    |                   |                                            |
| None Spans        | Bridge Object Name                          | Layout Line Name                                   | Coordinate System | Units                                      |
| 3-D View          | P.MIXTO                                     | EJE PRINCIPAL                                      | GLOBAL            | ▼ Kgf, m, C ▼                              |
|                   | Define Bridge Object Reference Line         |                                                    |                   | Modify/Show Assignments                    |
|                   | Span Station                                | Span<br>Tupe                                       |                   | Spans                                      |
|                   | TRAMO CONCRETO                              | 16. Full Span to End Abutment                      |                   | Abutments                                  |
|                   | ESTRIBO 0.                                  | Start Abutment                                     | Add               | In-Span Hinges (Expansion Jt:              |
|                   | TRAMO ACERO 25.<br>TRAMO CONCRETO 46.       | Full Span to End Bent<br>Full Span to End Abutment | Modify            | Superelevation<br>Prestress Tendons        |
|                   |                                             |                                                    | Delete            | Girder Rebar<br>Staged Construction Groups |
|                   |                                             |                                                    |                   | Point Load Assigns                         |
|                   |                                             |                                                    | T Delete All      |                                            |
|                   | Note: 1. Bridge object location is based on | bridge section insertion point following specified | f layout line.    | Modify/Show                                |
|                   | Bridge Object Plan View (X-Y Projection)    |                                                    |                   |                                            |
|                   | North                                       |                                                    |                   |                                            |
|                   |                                             |                                                    |                   |                                            |
|                   | ^ Y<br>×                                    | Show Enlarged Sketch                               | ОК                | Cancel                                     |
|                   |                                             |                                                    |                   |                                            |

Figura 287. Asignación del tramo de concreto y acero

### 9.1.2.15.1. Asignación del Span

 Se procede a asignar la sección transversal de cada tramo, dar clic en "Spans" y en el primer espacio llamado "TRAMO ACERO" elegir la sección transversal "S.METAL" y para el segundo espacio "TRAMO CONCRETO" elegir la sección "S.CONCRETO".

| 3ridge Object Name<br>P. MIXTO                                            |                                    | Layout Line Name                                                     | Coordinate System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s<br>f, m, C 🗨                                           |
|---------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Define Bridae Obiect Refere                                               | nce Line                           | ,                                                                    | Modify/Show As:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sianments                                                |
| Span<br>Label                                                             | Station<br>m                       | Span<br>Type<br>Start Abutment                                       | Spans<br>User Disorctizati<br>Abutments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on Points                                                |
| ESTRIBO INICIO<br>TRAMO ACERO<br>TRAMO CONCRETO<br>Bridge Object Span Ass | 0.<br>25.<br>46.                   | Start Abutment<br>Full Span to End Bent<br>Full Span to End Abutment | Add In-Span Hinges (<br>In-Span Hinges (<br>In | (Expansion Jt:<br>iaphragms<br>ns<br>stion Groups<br>gns |
| Bridge Object                                                             | ct Name P.                         | МІХТО                                                                | Delete All Modify/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Show                                                     |
| Span<br>RAMO ACER<br>MO CONCRI                                            | Section<br>S. METAL<br>S. Concreto | Section Varies<br>No<br>No                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |
|                                                                           |                                    |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |

Figura 288. Asignación de los espacios

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# 9.1.2.15.2. Asignación de los estribos

• Asignación de los estribos hacer clic en "Abutments" para configurar los siguientes parámetros en el estribo de inicio "Start Abutment"

**1.**-En la opción **"Abutment Property"** escoger la sección con las características anteriormente creadas en la sub estructura

**2.-**Dirigirse al literal **"Elevation (Global Z)** e ingresar la altura descendente a la que se encuentra ubicado el estribo con respecto al eje del puente, la cual es calculada de la siguiente manera.

## altura de la viga + alura del tablero + altura del neopreno

1.167m + 0.19m + 0.05m = 1.405m se coloca 1.41m

El valor calculado es de 1.41m se ingresa en este casillero con signo negativo debido a que es una altura descendente.

3.- Definir el apoyo móvil en la opción "Bearing Property", también ingresar la altura descendente a la que se encuentra el apoyo que es de 1.36m tomando en cuenta solo la altura de la viga más el tablero.

|                                                                            | Bridge Object Data       | * *                                   |                     |                                                                                            |
|----------------------------------------------------------------------------|--------------------------|---------------------------------------|---------------------|--------------------------------------------------------------------------------------------|
| Span Supports Super Prestress<br>Items Elevation Tendons<br>Bridge Objects | Bridge Object Name       | Layout Line Name                      | Coordinate System   | ✓ Units<br>Kgf, m, C ✓                                                                     |
| Bridge Object Abutment Assignments                                         | Calley Trapp Trapp Trapp |                                       |                     | Modify/Show Assignments                                                                    |
| Bridge Object Name                                                         | Р. МІХТО                 |                                       | Units<br>Kgf, m, C  | Spans<br>User Discretization Points<br>Abutments<br>Bents<br>In-Span Hinges (Expansion Jt: |
| Start Abutment End Abutment                                                |                          |                                       | 1                   | In-Span Cross Diaphragms<br>Superelevation<br>Prestress Tendons                            |
| Superstructure Assignment                                                  |                          | Bearing Assignment                    |                     | Staged Construction Groups                                                                 |
| Abutment Direction (Bearing Angle)                                         | Default                  | Bearing Property + MOVIL              |                     | Point Load Assigns<br>Line Load Assigns                                                    |
| Diaphragm Property +                                                       | lone 💌                   | Restrainer Property at Bearing + None | -                   |                                                                                            |
| - Substructure Assignment                                                  |                          | Elevation at Layout Line (Global Z)   | -1.36               | Modify/Show                                                                                |
| C None                                                                     |                          | Rotation Angle from Bridge Default    | 0.                  |                                                                                            |
| Abutment Property + E                                                      | STRIBOS                  | Girder-By-Girder Overwrites           |                     |                                                                                            |
| C Bent Property +                                                          |                          | Modify/Show Overwrites                | No Overwrites Exist |                                                                                            |
| Substructure Location                                                      |                          |                                       |                     |                                                                                            |
| Elevation (Global Z)                                                       | -1.41                    |                                       |                     |                                                                                            |
| Horizontal Offset                                                          | 0.                       |                                       |                     |                                                                                            |
| Note: Horizontal offset is from layout line t                              | o midlength of abutment. |                                       |                     |                                                                                            |
|                                                                            |                          |                                       |                     | OK Cancel                                                                                  |
|                                                                            |                          | Cancel                                |                     |                                                                                            |

Figura 289. Asignación del estribo de inicio

• A continuación seleccionar el enunciado "End Abutment", que son las características del estribo ubicado al final del puente, se realiza el mismo análisis pero tomando en cuenta que contiene un diafragma de concreto y que la altura descendente del estribo es de -1.50 m y la altura del apoyo es de -1.45m esto varia por la diferencia de altura de las vigas.

| Bridge Object Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P. MIXTO         |                                                                                                                                                                                                                                                | Kgf, m, C 💌                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| tart Abutment       End Abutment         End Abutment       Superstructure Assignment         Abutment Direction (Bearing Angle)       Default         Diaphragm Property       +         Substructure Assignment       C         Substructure Assignment       C         None       +         Abutment Property       +         Bent Property       +         Substructure Location       Elevation (Global Z)         Horizontal Offset       0.         Note:       Horizontal offset is from layout line to midlength of al | 5<br>5<br>5<br>5 | Bearing Assignment<br>Bearing Property + MOVIL<br>Restrainer Property at Bearing + None<br>Elevation at Layout Line (Global Z)<br>Rotation Angle from Bridge Default<br>Girder By Girder Overwrites for End Abutment<br>Modify/Show Overwrites | -1.45<br>0.<br>No Overwrites Exist |
| Horizontal Offset 0.<br>Note: Horizontal offset is from layout line to midlength of al                                                                                                                                                                                                                                                                                                                                                                                                                                          | outment.         |                                                                                                                                                                                                                                                |                                    |

Figura 290. Asignación del estribo del fin

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# 9.1.2.15.3. Asignación del Bent

• Se asignará las condiciones de la pila en el puente, para ello hacer clic en **"Bents"** y se abre la siguiente ventana de dialogo la cual se configura de la siguiente manera. 1.- El primer paso es identificar la ubicación de la pila que se encuentre a
25m al fin del "TRAMO DE ACERO" en la opción "Specify Bent Considered"

**2.-** El segundo paso es dirigirse al enunciado **"Diaphragma Property After Bent"** y elegir el diafragma de concreto **"D.Concreto"** que se encuentra después de la pila como se especifica en los detalles .

3.- Definir la altura descendente a la que se encuentra la pila en la opción
"Elevation (Global Z)" insertar el valor de -1.50m, en este caso se adoptó la altura de las vigas de hormigón

**4.-** Asignar como fijo el apoyo ubicado antes de la pila en el enunciado **"Bearing Assignment Before Bent"** y en la elevación se colocó -1.45m, las mismas características se colocan en el apoyo después de la pila en la opción **"Bearing Assignment After Bent"** 

| Bridge Object Bent Assignments                                                                                                                                           |                                                                                                                                                                                                            |                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Bridge Object Name         Units           P. MIXTO         Kgf, m, C                                                                                                    | Bearing Assignment Before Bent<br>Bearing Property + FUO -                                                                                                                                                 | ▼ Units                                                                                                               |
| Specify Bent Considered Bent Is At the End of This Span TRAMO ACERD  Bent Is At This Station  25.                                                                        | Restrainer Property at Bearing + None  Elevation (At Layout Line, Global Z) 1.45 Rotation Angle from Bridge Default Girder-By-Girder Bearing Overwrites Before Bent                                        | Modify/Show Assignments<br>Spans<br>User Discretization Points<br>Portuments<br>Pents<br>In Span Himnes (Empansion Jt |
| Superstructure Continuity Condition Discontinuous Mesh Superstructure to Match Bent Bearing Yes                                                                          | Modify/Show Dverwrites No Overwrites Exist Bearing Assignment After Bent                                                                                                                                   | In-Span Cross Diaphragms<br>Superelevation<br>Prestress Tendons<br>Girder Rebar                                       |
| Diaphragm Property Before Bent + None   Diaphragm Property After Bent + D. CONCRETO  Restrainer Property  Intone                                                         | Bearing Property         +         ELIO         •           P Restrainer Property at Bearing         +         None         •           Elevation (At Layout Line, Global Z)         -         -         - | Point Load Assigns                                                                                                    |
| Restrainer Elevation (At Layout Line, Global Z)     Girder-By-Girder Overwrites Superstructure Restrainer Overwrites     Modifu/Show Overwrites.     Nn Overwrites Exist | Rotation Angle from Bridge Default 0. Girder-By-Girder Bearing Overwrites After Bent Modifu/Show Overwrites No. Overwrites Evict                                                                           |                                                                                                                       |
| Bent Assignment Bent Property + PILA    Plus                                                                                                                             |                                                                                                                                                                                                            |                                                                                                                       |
| Bent Location Elevation (Global Z) Horizontal Offset 0. Note: Horizontal offset is from bridge layout line to midlength of cap beam.                                     | OK Cancel                                                                                                                                                                                                  | Cancel                                                                                                                |

Figura 291. Asignación de la pila

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

### 9.1.2.15.4. Asignación de los Diafragmas

 El siguiente parámetro a definir en el puente son los diafragmas, hacer clic en "In Span Cross Diaphragms" e ingresar las distancias o "Distance" especificadas en los detalles de las vigas metálicas y de las vigas de hormigón, en el literal "Diaphragm Property" se elige la sección de diafragmas creadas anteriormente de acero o de concreto y se da clic en "Add"



Figura 292. Asignación de los diafragmas

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

### 9.1.2.15.5. Asignación de las varillas de refuerzo longitudinal

• A continuación se ingresa los aceros de refuerzo del tramo de concreto, seleccionar "Girder Rebar", se abre un cuadro de dialogo para insertar cada uno de los aceros siguiendo una secuencia de pasos

 Elegir el nombre de la varilla "Bar size" la primera varilla ingresada es de nombre "N32", luego elegir el número de la varilla en "N.of Bars" en este caso son 6

2.- Se indica la referencia de la línea **"Reference Line"** se escoge **"Center of TRAMO DE CONCRETO"** es decir: desde el centro del tramo de concreto

3.- Ingresar la distancia a la izquierda del centro "Dist. Left", seria 10.45mla mitad del puente restando el recubrimiento

4.-Ingresar la distancia derecha con respecto al centro del tramo de concreto**"Dist. Right",** seria10.45m la mitad del puente restando el recubrimiento

5.-Insertar el valor de la distancia vertical "**Dist Vertical**" con respecto a la parte de la viga "**Bottom**" abajo, "**Top**" arriba en este ejemplo se tomó "**Bottom**" a 0.05m que representa el recubrimiento, luego de haber definido todos estos parámetros hacer clic en "**Add**" para añadir el acero longitudinal en las vigas



Figura 293. Asignación del acero de refuerzo longitudinal

### 9.1.2.15.6. Asignación de las varillas de acero de refuerzo transversal

• Luego se adiciona el acero transversal al elegir la opción "Transverse Reinforcement", se abre la ventana para insertar cada uno de los aceros siguiendo una secuencia de pasos mostrada a continuación.

1.-Elegir el espacio o "Span" es el llamado "TRAMO DE CONCRETO"

2.-El segundo ítem es la localización del acero, es decir: se eligió al inicio del tramo de concreto o **"Spans Start"** 

3.-Elegir el nombre de la varilla **"Bar size"** la varilla ingresada es de nombre **"N12"** 

4.-Elegir el número de la varilla en **"N.of Bars"** en este caso son 4 por ser dos estribos que contiene cada viga

5.-Ingresar la dimensión de los espacios o "Spacing" que es de 0.35m

6.- Se indica el número de espacios en el literal "N. of Spaces" que son 16

7.- Por último se coloca el valor de la distancia de inicio y fin de este refuerzo transversal que sería de 0 hasta 5.6m de la viga

**Nota:** Siguiendo esta secuencia de pasos se ingresan los demás aceros de refuerzo y a medida que se va ingresando se puede ver en la parte inferior la gráfica de cada uno de ellos.

| Select Bridge Object      | - Se     | lect Bridge Girder—<br>eft Exterior Girder | <b>_</b>     | Copy to Inte | rior Girder 1 | •               | Units<br>Kgf, m, C | • |
|---------------------------|----------|--------------------------------------------|--------------|--------------|---------------|-----------------|--------------------|---|
| C Longitudinal Reinforcem | nent 🔇   | Transverse R                               | einforcement | >            |               |                 |                    |   |
| Transverse Rebar          |          |                                            |              |              |               |                 |                    |   |
| Material Fy=4200 kg/o     | cm2 💌    |                                            |              |              |               |                 |                    |   |
| Span Locati               | on       | Bar Size                                   | N. of Bars   | Spacing      | N. of Spaces  | Start Dist.     | End Dist.          |   |
| TRAMO CON 💌 Span (        | Center 💌 | N12 -                                      | 4            | 0.68         |               | 5.6             | 15.4               |   |
| TRAMO CONCR Span          | Start    | N12                                        | 4            | 0.35         | 16            | 0.              | 5.6                |   |
| TRAMO CONCR Span I        | End      | N12                                        | 4            | 0.35         | 16            | 15.4            | 21.                | 1 |
|                           |          |                                            |              |              |               |                 |                    |   |
|                           |          | БРА                                        | 1 Mo         | odify        | Delete        |                 |                    |   |
| Girder Reinforcement Lay  | out Plot | [Add                                       | . Mo         | odify        | Delete        |                 |                    |   |
| Girder Reinforcement Lay  | out Plot | . Add                                      | j Mo         | odify        | Delete        |                 |                    |   |
| Girder Reinforcement Lay  | out Plot | - Add                                      | ] <u>M</u> ( |              |               |                 |                    |   |
| Girder Reinforcement Lay  | out Plot | 25.                                        | M(           |              |               | 21.             |                    |   |
| Girder Reinforcement Lay  | out Plot | 25.<br>AMO ACERO                           | 1 <u>M</u>   |              | Delete        | 21.<br>CONCRETO |                    |   |
| Girder Reinforcement Lay  | out Plot | 25.<br>AMO ACERO                           | I <u>M</u>   | odify        | Delete        | 21.<br>CONCRETO |                    |   |

Figura 294. Asignación del acero de refuerzo transversal

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

### 9.1.2.15.7. Asignación de las cargas

• Para la asignación de las cargas puntuales anteriormente definidas hacer clic en **"Point Load Assigment"** luego se despliega una ventana en la cual se ingresa todas las cargas puntuales tomadas en cuenta en el diseño, así tenemos la carga de postes, tanto a la derecha como a la izquierda a lo largo del puente. En el tramo de acero se tiene 7 postes ubicados a 3.83m de longitud iniciando a 1 m del tablero luego continúan 5 postes más en el tramo de concreto a una distancia de 4.15m.

| Layout Components Loads Bridge A<br>Stisz Spans Span Supports Super<br>Bridge Objects Point Load Assignments - P. MIXTO                                                                                                                                    | nalysis Design/Rating Advanced<br>Bridge Object Data<br>Bridge Object Name<br>[P. MCTO<br>Define Bridge Object Reference Line<br>Scanner Station<br>Scanner Station                                                                                                                                                    | Coordinate System  GLOBAL  Modify/Show Asignments  Abutments  Posper Hinges Expansion Je  Posper Hinges Exper Hi |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Point Load Data           Load Pattern         Load Distribution           Pos         Post Der           Pos         Post Der | Stat Station         Spacing         Number         Transverse Variation           m         m         n         n         n           1         3.83         7         None         n           26         4.15         5         None         n           26         4.15         5         None         n         n | Add New     Add New       Add Copy     Prestess Tendons       Delete     Staget devined in Groups       Up     Down       +     Load Patterns       +     Load Patterns       +     Variations       Kgf. m. C     V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                            | DK Cancel                                                                                                                                                                                                                                                                                                              | Sketch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Figura 295. Asignación de la carga de frenado y postes

### Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• La siguiente carga a asignar es la lineal por ello hacer clic en "Line Load Assigns" y elegir la carga de baranda tanto izquierda como derecha, la cual inicia en 0 y termina en la longitud del puente 46m

| 1 S2 | 51 S2                | 1                                           |                        | Bridge Obje | ect Data            | : :         |                      |                  |                                                          |                  |                                               |
|------|----------------------|---------------------------------------------|------------------------|-------------|---------------------|-------------|----------------------|------------------|----------------------------------------------------------|------------------|-----------------------------------------------|
| bans | ; Span S<br>Items Br | Supports Super<br>Elevatio<br>ridge Objects | Prestress<br>n Tendons | Bridge (    | Dbject Name         |             | EJE PRINCIPAL        | •                | Coordinate System                                        | •                | Units<br>Kgf, m, C 💌                          |
| -    |                      |                                             |                        | Define      | Bridge Object Refer | ence Line   |                      |                  |                                                          | Modify.          | /Show Assignments                             |
| Li   | ne Load Assign       | ments - P. MIXTO                            |                        |             | lane .              | 1000        | 100                  |                  |                                                          | Abutm            | ients 🔺                                       |
|      | Line Load Da         | ła                                          |                        |             |                     |             |                      |                  |                                                          | In-Spa<br>In-Spa | n Hinges (Expansion Jt:<br>n Cross Diaphragms |
| Ш    | L                    | oad Pattern                                 | Load Dist              | ribution    | Start Station       | End Station | Transverse Variation | ^                | Add New                                                  | Super<br>Prestre | elevation<br>ess Tendons<br>Pabar             |
| ш    | Bar                  |                                             | Bar Der                |             | 0.                  | 46.         | None                 |                  | Add Copy                                                 | Stage            | d Construction Groups                         |
|      | Bar                  |                                             | Barlzq                 |             | 0.                  | 46.         | None                 |                  | Delete                                                   | Cine L           | oad Assigns                                   |
|      |                      |                                             |                        |             |                     |             |                      | +<br>+<br>+<br>+ | Load Patterns     Load Distributions     Variations m, C |                  | Modily/Show                                   |
|      |                      |                                             |                        |             | ОК                  | Cancel      |                      |                  |                                                          |                  |                                               |
|      |                      |                                             |                        |             | ×                   |             | Show Enla            | iged Sketch      |                                                          | ОК               | Cancel                                        |

Figura 296. Asignación de la carga de baranda

 La siguiente carga a asignar es en área por ello hacer clic en "Area Load Assigns" y elegir la carga de Asfalto ya definida, la cual inicia en 0 y termina en la longitud del puente 46m

| st st sz<br>ans Span<br>Items Supports Super Prestress<br>Elevation Tendons<br>Bridge Objects   | Bridge Object Data Bridge Object Name P. MIXTO   | Layout Line Name                         | Coordinate System                                                                                              | Units<br>Kgf, m, C V                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Area Load Assignments - P. MIXTO Area Load Data Load Patern Load Distribution Astraito Astraito | Start Station End Station Left Ec<br>0. 46. None | e Variation Right Edge Variation (None ) | Add New<br>Add Copy<br>Delete<br>Up Down<br>+ Load Daterns<br>+ Load Distributions<br>+ Variations<br>gf, m, C | Modily/Show Assignments<br>Abutments<br>Bents<br>In-Span Hinges (Expansion Jt:<br>In-Span Cross Diaphragms<br>Superelevation<br>Prestness Tendons<br>Grider Rebat<br>Staged Construction Groups<br>Priorit Load Assigns<br>Priorit Load Assigns<br>Nos Load Assigns<br>Nos Load Assigns<br>Modily/Show |
|                                                                                                 | OK Cance                                         |                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                        |
|                                                                                                 | X<br>X                                           | Show Enlarged Sketch.                    |                                                                                                                | Cancel                                                                                                                                                                                                                                                                                                 |

Figura 297. Asignación de la carga de asfalto



• En la siguiente figura se tiene ya asignados todos los parámetros del puente como se puede observar en la parte inferior de la ventana, finalmente hacer clic en "Ok" para cerrar el objeto puente

| P. MIXTO                                                                                          |                                              | EJE PRINCIPAL                         | Coordinate 9             | Gystem   | ▼ Units                                                 |
|---------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------|--------------------------|----------|---------------------------------------------------------|
| ) efine Bridge Object Befere                                                                      | nceline                                      | ,                                     |                          |          | Iodifu/Show Assignments                                 |
| Span<br>Label                                                                                     | Station<br>m                                 | Span<br>Type                          |                          |          | Bpans<br>Jser Discretization Points                     |
| ESTRIBO INICIO                                                                                    | <u> </u> 0                                   | Start Abutment                        |                          | E E      | Bents                                                   |
| ESTRIBO INICIO                                                                                    | 0.                                           | Start Abutment                        |                          | Add      | n-Span Hinges (Expansion Jt:<br>n-Span Cross Diaphragms |
| TRAMO ACERO                                                                                       | 25.                                          | Full Span to End Bent                 | м                        | lodify   | Superelevation                                          |
|                                                                                                   | 40:                                          | T di oparito Ena Abdancha             | D                        | elete    | Girder Rebar                                            |
|                                                                                                   |                                              |                                       |                          | [ī       | Line Load Assigns 🛛 🚬                                   |
| Note: 1. Bridge object loca<br>ridge Object Plan View (X-)                                        | tion is based on br                          | idge section insertion point followin | g specified layout line. | lete All | ine Load Assigns 🔹                                      |
| Note: 1. Bridge object loca<br>tridge Object Plan View (X*<br>Video Object Plan View (X*<br>North | tion is based on br<br><b>? Projection</b> ) | idge section insertion point followin | g specified layout line. | lete All | ine Load Assigns ▼                                      |
| Note: 1. Bridge object loca<br>Iridae Object Plan View IX-<br>View IX-<br>North                   | tion is based on br                          | idge section insertion point followin | g specified layout line. | lete All | ine Load Assigns ▼<br>Modify/Show                       |

Figura 298. Ventana del objeto puente



• Después de haber definido todos los parámetros del puente se actualiza en la opción "Update", se abrirá una ventana de dialogo en la cual se debe configurar "Update as Area Object Modal" con un valor de uno y también se cambia a uno el ancho de la discretización especificado en el literal "Discretization Information"

|                                | D*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| Home Layout                    | Components Loads Bridge Analysis Design/Rating Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |
| Р. MIXTO                       | Trisz     Strisz     Stris     Strisz     Strisz     Strisz |  |  |  |  |  |  |  |  |  |  |
| X-Y Plane @ Z=0                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |
| Update Bridge Structural Model |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |  |
|                                | Select a Bridge Object and Action         Bridge Object       Action         P. MCXTD       Update Linked Model         Modify/Show Selected Bridge Object       Update as Spine Model Usion Erame Objects         Discretization Information       Update as Solid Object Model         Maximum Segment Length for Deck Spans       1.         Maximum Segment Length for Bent Columns       1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |  |
|                                | Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |  |

Figura 299. Actualización del modelo

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# 9.1.2.16. Visualizar las cargas sobre el puente

Una vez asignadas las cargas se pueden visualizar como actúan sobre el tablero del puente, para ello dirigirse al menú "Home", dar clic en "Show Bridge Loads", elegir la carga a observar en el enunciado "Load Pattern", la primera carga es "Asfalto", como es una carga en área será de color "Magenta" y hacer clic en "ok"

| Home Layout Components                                                                               | Loads Bridge Analysis       | Design/Rating Advanced                                                                                                     |
|------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Bridge<br>Wizard<br>Wizard     Q     Q     Q     W       Wizard<br>Wizard     ✓     R     ✓     Nore | All R Select<br>Snap Select | Deselect More Display Bridge Object Loads                                                                                  |
| 3-D View                                                                                             |                             |                                                                                                                            |
|                                                                                                      |                             | Load Pattern Asfato                                                                                                        |
|                                                                                                      |                             | Bridge Object      Show Loads for All Bridge Objects      Show Loads for Specified Linked Bridge Object      Bridge Object |
|                                                                                                      |                             | Load Type<br>© Force C Moment                                                                                              |
|                                                                                                      |                             | Loads Displayed and Factors                                                                                                |
|                                                                                                      |                             | Iveral pads Scale Factor 1.                                                                                                |
| A                                                                                                    |                             | Obsplay Area Loads as Pressures     Obsplay Area Loads as Discretized Line Loads     Set Scale Factors to Default Values   |
|                                                                                                      |                             | OK Cancel                                                                                                                  |

Figura 300.Configuración de la carga de asfalto

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

- A continuación se muestra la ventana aplicada la carga de "Asfalto"

Figura 301. Visualización de la carga de asfalto

 La carga que se muestra a continuación es la de la baranda siguiendo el mismo proceso ya mencionado, elegir la opción "Bar", y como es una carga lineal será de color amarillo por último dar clic en "Ok"



Figura 302.Configuración de la carga de baranda

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• En la figura que se muestra a continuación se observa la aplicación de la carga de baranda



Figura 303. Visualización de la carga de baranda

• La última carga a observar es la de los postes siguiendo la misma secuencia de pasos, elegir la opción **"Pos**" y como son cargas puntuales se mostraran de color azul.

| Home Layout Components Loads | Bridge Analysis Design/Rating                                                                                                                  | Advanced                                                                                                                                                                                                                                                                               |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bridge Object Loads (Bar)    | Load Patter<br>Load Patter<br>Bridge Object<br>© Show L<br>Brid<br>Load Type<br>© Force<br>Loads Display<br>© Point L<br>© Area LC<br>© C<br>C | Name n  Control Bridge Objects Control Bridge Object  Ge Object  Ge Object  Ce Moment  red and Factors  Ce Moment  red and Factors  Sociele Factor 11  Control T  Control T  Display Area Loads as Discretized Line Loads  Set Scale Factors to Default Values  DK  Cancel  DK  Cancel |

Figura 304.Configuración de la carga de postes

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• En la siguiente figura se muestra como están aplicadas las cargas de postes anteriormente asignadas



Figura 305. Visualización de las cargas de postes

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

### 9.1.2.17. Selección de las combinaciones de carga

 Para elegir las combinaciones de carga a emplear en el análisis, ir al menú "Desing/Rating" elegir el icono "Add Defaults", se despliega el siguiente cuadro de dialogo en la cual se escoge el item "Bridge Design" y después dar clic en el enunciado "Set Load Combination Data"



Figura 306. Configuración de las combinaciones de carga

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

- A continuación se abre la siguiente ventana en la cual se elige las combinaciones de carga a trabajar en el puente, en este caso se emplean la combinación de Resistencia 1"Strength I" y Servicio 1"Service I", quienes constan de las siguientes consideraciones.
- **Resistencia I:** Combinación de carga básica para el camión normal sin viento.
- Servicio I: Combinación de cargas que representa la operación normal del puente. También se relaciona con el control de las deflexiones de las

estructuras metálicas enterradas, revestimientos de túneles y de las estructuras de hormigón armado.

|                                                                                                        | Strength II                                                                                           | Г                                                                    | Strength III   | Strength                                                                                              | uV.                                                                                          | Strength V                                                                                                                      |  |  |  |  |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Service I                                                                                              | Service II                                                                                            | Г                                                                    | Service III    | Service                                                                                               | IV                                                                                           | · · · · · · · · · · · · · · · · · · ·                                                                                           |  |  |  |  |
| Extreme Event I                                                                                        | 🔲 Extreme Ev                                                                                          | rent II 🛛                                                            | Fatigue        |                                                                                                       |                                                                                              |                                                                                                                                 |  |  |  |  |
| Load Factors for Permanent and Transient Loads                                                         |                                                                                                       |                                                                      |                |                                                                                                       |                                                                                              |                                                                                                                                 |  |  |  |  |
| Set Load Factors                                                                                       | for Permanent and Tra                                                                                 | ansient Loads                                                        | 1              |                                                                                                       |                                                                                              |                                                                                                                                 |  |  |  |  |
|                                                                                                        |                                                                                                       |                                                                      | -              |                                                                                                       |                                                                                              |                                                                                                                                 |  |  |  |  |
| Choose Load Cases to U                                                                                 | Jse for Limit State                                                                                   |                                                                      |                |                                                                                                       |                                                                                              |                                                                                                                                 |  |  |  |  |
|                                                                                                        |                                                                                                       |                                                                      |                |                                                                                                       |                                                                                              |                                                                                                                                 |  |  |  |  |
| Limit State Stron                                                                                      | ath I                                                                                                 |                                                                      |                |                                                                                                       |                                                                                              |                                                                                                                                 |  |  |  |  |
| Limit State Stren                                                                                      | ngth I 💌                                                                                              |                                                                      |                |                                                                                                       |                                                                                              |                                                                                                                                 |  |  |  |  |
| Limit State Stren                                                                                      | ngth I 📃 💌                                                                                            |                                                                      |                | - Load Cases for User D                                                                               | efined Load Co                                                                               | mbinations                                                                                                                      |  |  |  |  |
| Limit State Stren<br>-List of Load Cases<br>Load Case Name                                             | ngth I 💽                                                                                              | Design Load Typ                                                      | be             | ⊂Load Cases for User D<br>Load Case Name                                                              | efined Load Co<br>Load Case                                                                  | mbinations<br>Type_Design Load Typ                                                                                              |  |  |  |  |
| Limit State Stren<br>List of Load Cases<br>Load Case Name<br>Fren<br>Fren<br>Jacobal                   | Load Case Type [                                                                                      | Design Load Typ<br>DTHER<br>DTHER                                    | De             | Load Cases for User D<br>Load Case Name<br>Asfalto                                                    | efined Load Co<br>Load Case<br>LinStatic                                                     | mbinations<br>Type Design Load Typ<br>WEARING SURI                                                                              |  |  |  |  |
| Limit State Stren<br>List of Load Cases<br>Load Case Name<br>Fren<br>MDDAL<br>Viento                   | Igth I                                                                                                | Design Load Typ<br>DTHER<br>DTHER<br>DTHER<br>DTHER                  | 0e<br>>>       | - Load Cases for User D<br>Load Case Name<br>Asfalto<br>Bar<br>Camion                                 | efined Load Co<br>Load Case<br>LinStatic<br>LinStatic<br>LinStatic<br>LinMoving              | mbinations<br>Type Design Load Typ<br>WEARING SURI<br>DEAD MANUFAI<br>VEHICLE LIVE                                              |  |  |  |  |
| Limit State Stren<br>List of Load Cases<br>Load Case Name<br>Fren<br>MODAL<br>Viento                   | Load Case Type D<br>LinStatic<br>LinModal<br>LinStatic                                                | Design Load Typ<br>DTHER<br>DTHER<br>DTHER<br>DTHER                  |                | Load Cases for User D<br>Load Case Name<br>Asfalto<br>Bar<br>Camion<br>DEAD<br>Poe                    | efined Load Co<br>Load Case<br>LinStatic<br>LinStatic<br>LinStatic<br>LinStatic<br>LinStatic | Investign Load Typ<br>WEARING SURI<br>DEAD MANUFAI<br>VEHICLE LIVE<br>DEAD<br>DEAD MANUEAI                                      |  |  |  |  |
| Limit State Stren<br>List of Load Cases                                                                | Load Case Type D<br>LinStatic<br>LinModal I<br>LinStatic I                                            | Design Load Typ<br>DTHER<br>DTHER<br>DTHER<br>DTHER                  | be<br>→><br><< | Load Cases for User D<br>Load Case Name<br>Asfalto<br>Bar<br>Camion<br>DEAD<br>Pos                    | efined Load Co<br>Load Case<br>LinStatic<br>LinStatic<br>LinMoving<br>LinStatic<br>LinStatic | mbinations<br>Type Design Load Typ<br>WEARING SURI<br>DEAD MANUFAI<br>VEHICLE LIVE<br>DEAD<br>DEAD MANUFAI<br>DEAD MANUFAI      |  |  |  |  |
| Limit State Stren<br>List of Load Cases<br>Load Case Name<br>Fren<br>MDDAL<br>Viento<br>Show Only Load | Ingth I                                                                                               | Design Load Typ<br>DTHER<br>DTHER<br>DTHER<br>DTHER<br>gn Load Types | De<br>→<br>≪   | Load Cases for User D<br>Load Case Name<br>Astato<br>Bar<br>Camion<br>DEAD<br>Pos                     | efined Load Co<br>Load Case<br>LinStatic<br>LinStatic<br>LinMoving<br>LinStatic<br>LinStatic | mbinations<br>Fype Design Load Typ<br>WEARING SURI<br>DEAD MANUFAI<br>VEHICLE LIVE<br>DEAD<br>DEAD MANUFAI<br>Service I         |  |  |  |  |
| Limit State Stren<br>List of Load Cases<br>Load Case Name<br>Fren<br>MDDAL<br>Viento<br>Show Only Load | Load Case Type I<br>LinStatic<br>LinStatic<br>LinStatic<br>LinStatic<br>I<br>d Cases with Valid Desig | Design Load Typ<br>DTHER<br>DTHER<br>DTHER<br>DTHER<br>gn Load Types |                | Load Cases for User D<br>Load Case Name<br>Astate<br>Bar<br>Camion<br>DEAD<br>Pos<br>Copy             | efined Load Co<br>Load Case<br>LinStatic<br>LinStatic<br>LinStatic<br>LinStatic<br>LinStatic | mbinations<br>Type Design Load Typ<br>WEARING SURI<br>DEAD MANUFAI<br>VEHICLE LIVE<br>DEAD MANUFAI<br>DEAD MANUFAI<br>Service I |  |  |  |  |
| Limit State Stren<br>List of Load Cases<br>Load Case Name<br>Fren<br>MDDAL<br>Viento                   | Load Case Type I<br>LinStatic<br>LinStatic<br>LinStatic<br>LinStatic<br>I<br>d Cases with Valid Desig | Design Load Typ<br>DTHER<br>DTHER<br>DTHER<br>gn Load Types          | w Load Case D  | Load Cases for User D<br>Load Case Name<br>Astato<br>Bar<br>Camon<br>DEAD<br>Pos<br>Copy<br>efinition | efined Load Co<br>Load Case<br>LinStatic<br>LinStatic<br>LinStatic<br>LinStatic<br>LinStatic | mbinations<br>Type Design Load Typ<br>WEARING SURI<br>DEAD MANUFAI<br>VEHICLE LIVE<br>DEAD<br>DEAD MANUFAI<br>Service I         |  |  |  |  |

Figura 307. Elección de las combinaciones de carga



• Se crean automáticamente las combinaciones de carga seleccionadas con su respetiva envolvente como se muestra en la siguiente figura

|   | J               | Home            | e La | ayout    | Componer               | nts Loads           | Bridge             | Analysis | Desig              | n/Rating   |
|---|-----------------|-----------------|------|----------|------------------------|---------------------|--------------------|----------|--------------------|------------|
|   | D+L<br>StrIGrou | D+ <b> </b><br> | D+   | D+L<br>X | D+L<br>Add<br>Defaults | CODE<br>Preferences | Design<br>Requests | Run Opt  | <b>\</b><br>timize | Preference |
|   | StrIG           | iroup1          |      | -        | Fa.                    | S                   | uperstructur       | e Design |                    |            |
|   | Str-I           | 1               |      | =        | 5)                     |                     |                    |          |                    |            |
| ľ | Str-L           | 2               |      |          |                        |                     |                    |          |                    |            |
|   | Str-E           | 3               |      |          |                        |                     |                    |          |                    |            |
|   | Str-I4          | 4               |      |          |                        |                     |                    |          |                    |            |
|   | Str-I           | 5               |      |          |                        |                     |                    |          |                    |            |
|   | Str-I           | 6               |      |          |                        |                     |                    |          |                    |            |
|   | Str-I           | 7               |      |          |                        |                     |                    |          |                    |            |
|   | Str-I           | 8               |      |          |                        |                     |                    |          |                    |            |
|   | Ctr_I           | 0               |      | Ψ.       |                        |                     |                    |          |                    |            |
|   |                 |                 |      |          |                        |                     |                    |          |                    |            |

Figura 308. Combinaciones de carga creadas

## 9.1.2.18. Definición de los arriostramientos horizontales

• El primer paso para definir los arriostramientos horizontales es desactivar la opción de juntas invisibles ir al menú "Home" y elegir el icono " " y desactivar la opción "Invisible"

| Home Layout Components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Loads Bridge Analysis                                                                                                     | Design/Rating Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                           |                                                                                                                                                                                                                            |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Image: Wizard Wizard     Image: Wizard Wizard     Image: Wizard Wizard Wizard     Image: Wizard Wizard Wizard Wizard     Image: Wizard Wizard Wizard Wizard Wizard     Image: Wizard Wizard Wizard Wizard Wizard Wizard     Image: Wizard Wiza | H4 ALL R<br>ALL R<br>PS SS<br>Snap Select<br>Select<br>Select<br>Select<br>Select                                         | Age     Age       Deselect     More       etct     Age                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Named<br>Display<br>Display                                                                                                                                                               |                                                                                                                                                                                                                            |  |  |  |
| Bridge Object Loads (Pos)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                                                                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Display Options For Active Wine                                                                                           | wob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                           |                                                                                                                                                                                                                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Joints         Labels         ✓ Restraints         ✓ Springs         Local Aves         ✓ Invisible         ✓ Not in View | Frames/Cables/Tendons     Gene       Labels     Image: Cables/Tendons       Releases     Image: Cables/Tendons       Releases     Image: Cables/Tendons       Releases     Image: Cables/Tendons       Releases     Image: Cables/Tendons       Cables Not in View     Image: Cables/Tendons Not in View       Solids     Image: Cables       Lobels     Image: Cables/Tendons       Sections     Image: Cables/Tendons       Local Axes     Image: Cables/Tendons       Not in View     Image: Cables/Tendons | stal<br>Shrink Dbjects<br>Extrude View<br>Fill Objects<br>Show Edges<br>Show Ref. Lines<br>Show Bounding Boxes<br>Show Bounding Boxes<br>Labels<br>Properties<br>Load Axes<br>Not in View | View by Colors of  C Dibjects C Sections C Materials C Color Printer White Background, Black Objects C Selected Groups Select Groups Miscellaneous Show Analysis Model (If Available) Show Joints Only For Objects In View |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OK Cancel                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                                                                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | đ                                                                                                                                                                                         |                                                                                                                                                                                                                            |  |  |  |

Figura 309.Configuración de la visibilidad de las juntas

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Esto ocasionará que se visualicen las juntas de todo el puente como se muestra en la figura.



Figura 310. Visualización de las juntas

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Luego hacer clic en el eje "XY" para obtener la vita en planta

| Home Layout Components<br>Bridge<br>Wizard<br>Wizard<br>Wizard         | Loads Bridge Analysis Design/Rating Advanced |  |
|------------------------------------------------------------------------|----------------------------------------------|--|
| Set XY View (Shift+F2)<br>Switch to a 2D plan view in the XY<br>plane. |                                              |  |
|                                                                        | Figura 311.Vista en el plano "XY"            |  |

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• El siguiente paso es ir al icono **"More"** elegir la opción **"Set 2D View"** y se abrirá un cuadro de dialogo



Figura 312.Configuración del puente para la vista en 2D

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 Después en el cuadro de dialogo dirigirse hacia el plano "XY" y colocar con respecto a "Z" una altura de -1.34 m de la viga metálica sin la platabanda más el espesor del tablero.



Figura 313.Vista en 2D

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

Una vez culminado el paso anterior se observan solo las juntas de las vigas metálicas en la parte inferior donde se ubican los arriostramientos horizontales como se muestran en los detalles de las vigas metálicas. Para dibujar estos elementos ir al menú "Advance" hacer clic en el icono dibujar, y se abrirá una pequeña ventana en la cual se debe seleccionar el ángulo de 100x100x8 mm y en la opción "Moment Releases" especificar como "Continuous" para simular el efecto de soldadura.

| 1 20            | > 🔓 🏟   | • •                 |       |                        |                 |                                                                |                    |           |                     |
|-----------------|---------|---------------------|-------|------------------------|-----------------|----------------------------------------------------------------|--------------------|-----------|---------------------|
| Home Home       | Layout  | Components          | Loads | Bridge                 | Analysis        | Design/Rating                                                  | Advanced           |           |                     |
| Points Lines    | Areas   | More Defin<br>Defin |       | R √ .<br>N X I<br>Drav | More            | A A<br>Joints Fram                                             | es Areas<br>Assign | A<br>More | A to A<br>Joints Fr |
| 🕥 X-Y Plane @ 2 | Z=-1.34 |                     |       |                        |                 |                                                                |                    |           |                     |
|                 |         |                     |       | Propertie              | es of Object    |                                                                | <b>E</b>           |           |                     |
|                 |         |                     |       | Line Obj               | ect Type        | Straight Fr                                                    | ame                |           |                     |
|                 |         |                     |       | Section                |                 | L (100x10                                                      | 0x8)               |           |                     |
|                 |         |                     |       | Moment                 | Releases        | Continuo                                                       | us                 |           |                     |
|                 |         |                     |       | XY Plan                | e Offset Normal | 0.                                                             |                    |           |                     |
|                 |         |                     |       | Drawing                | Control Type    | None <spac< th=""><th>e bar&gt;</th><th></th><th></th></spac<> | e bar>             |           |                     |
|                 |         |                     |       | <u> </u>               |                 | _                                                              |                    |           |                     |
|                 |         |                     |       |                        |                 |                                                                |                    |           |                     |
|                 |         |                     |       |                        |                 |                                                                |                    |           |                     |
|                 |         |                     |       |                        |                 |                                                                |                    |           |                     |
|                 |         |                     | ,     |                        |                 |                                                                |                    |           |                     |
|                 |         | ÷                   |       |                        |                 |                                                                |                    |           |                     |
|                 |         | 1                   |       |                        |                 |                                                                |                    |           |                     |
|                 |         | •••→ x              |       | •                      | •               | •                                                              | •                  |           | •                   |
|                 |         |                     |       |                        |                 |                                                                |                    |           |                     |
|                 |         |                     |       |                        |                 |                                                                |                    |           |                     |
|                 |         |                     |       |                        |                 |                                                                |                    |           |                     |
|                 |         |                     |       |                        |                 |                                                                |                    |           |                     |

Figura 314. Elección de la sección a dibujar

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Luego se procede a dibujar como se muestra en la figura.

|            | 9966            | (e) ÷      |            |                           |              |                                       |           |               |                       |       |                                                                                  |                                                           |                             |                                                  |
|------------|-----------------|------------|------------|---------------------------|--------------|---------------------------------------|-----------|---------------|-----------------------|-------|----------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------|--------------------------------------------------|
| н          | Home Layou      | Components | Loads      | Bridge Analysi            | s Design/Rat | ting Advance                          | в         |               |                       |       |                                                                                  |                                                           |                             |                                                  |
| Points     | Lines Areas     | More Def   | ine<br>ine | t √ /<br>x ≡<br>m<br>Draw | A<br>Joints  | A A A A A A A A A A A A A A A A A A A | A<br>More | A L<br>Joints | A<br>Frames<br>Assign | Areas | ↓↓↓<br><u>A</u> ∠_<br>More                                                       | Analyze<br>Analyze                                        | D<br>Steel                  | Concrete Mor                                     |
| <b>X-Y</b> | Plane @ Z=-1.34 |            |            |                           |              |                                       |           |               |                       |       |                                                                                  |                                                           |                             |                                                  |
|            | · · · ·         |            | >>         |                           |              |                                       |           | <u> </u>      |                       |       | Properties c<br>Line Object<br>Section<br>Moment Rel<br>XY Plane O<br>Drawing Co | of Object<br>Type<br>eases<br>ffset Normal<br>introl Type | Stra<br>L (10<br>Co<br>None | Bit Frame       b0x100x8)       ntnuous       0. |

Figura 315.Dibujo de los arriostramientos horizontales

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Al terminar de dibujar se encuentra de la siguiente forma



Figura 316. Vista de los arriostramientos horizontales

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Para volver a tener la vista 3D del puente elegir el icono "3D"



Figura 317.Vista en 3D

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 Para poder visualizar los rigidizadores verticales y los arriostramientos horizontales ir al menú "Home" y dirigirse al icono "Select" luego seleccionar la opción "Properties"



Figura 318.Seleccionar las propiedades

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Se despliega una nueva ventana en la cual se debe seleccionar la opción "Frame Section"



Figura 319. Elegir las secciones creadas

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 A continuacion se despliega la siguiente ventana en la cual se elige la seccion de los diafragmas metlicos y los arriostramientos que seria el "L100x100x8"

| Select Sections           BRD1           BRD2           Extrama Pris (1064:90)           L (100x100x8)           Vig (1155x450)           Viga Estri (70x30)           Viga Principal (40x126) | OK<br>Cancel |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                                                                                                                                                                                | Clear All    |

Figura 320.Selección del ángulo de (100x100x8)

• En la siguiente figura indica los elementos seleccionados



Figura 321.Elementos seleccionados

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Después ir al icono "More", elegir el literal "Show Section Only" lo cual permitirá visualizar solo los elementos seleccionados



Figura 322. Configuración para visualizar la estructura metálica

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• En la figura siguiente se puede observar solo los diafragmas y los arriostramientos horizontales.



Figura 323. Arriostramientos horizontales y diafragmas

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• En seguida de verificar que se encuentren los arriostramientos horizontales con sus respectivos diafragmas regresar a la vista en 3D para lo cual hacer clic en "More" y elegir la opción "Show All"



Figura 324.Configurar ver todo el puente

- Hore Layout Components Loads Bridge Analysis Design/Rating Advanced

   Bridge
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   Q
   <
- Al elegir la opción "Show All" se obtiene la Vista en 3D del puente

Figura 325.Vista en 3D

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# 9.1.2.19. Enviar analizar el puente

Inmediatamente después de crear todas las condiciones del puente se envió a analizarlo, para ello ir al menú "Analisys" y seleccionar el icono "Run Analisys", se abrirá una ventana en la cual se debe elegir la opción "Run Now" que significa correr ahora

| Image: Status       P+L       Image: Status       Pors       Image: Status       Model       Model       Image: Status       Model       Image: Status       Model       Image: Status       Model       Image: Status       Image: Status </th <th>Home Layout Components Loads</th> <th>Bridge Analysis Design/Rating Advanced</th> <th></th> | Home Layout Components Loads | Bridge Analysis Design/Rating Advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Set Load Cases to Run           Case Name         Type         Status         Action           DEAD         Linear Static         Not Run         Run           Adatalo         Linear Static         Not Run         Run           Bar         Linear Static         Not Run         Run           Pos         Linear Static         Not Run         Run           Canion         Moving Load         Not Run         Run           Pos         Linear Static         Not Run         Run           Canion         Moving Load         Not Run         Run           Analysis Monitor Options         Analysis Show         Model Aline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Type DEAD Load Cases - All   | L TE<br>L TE |   |
| Set Load Cases to Run         DEAD       Linear Static       Not Run       Run         MDDAL       Model       Not Run       Run         Adatio       Linear Static       Not Run       Run         Bar       Linear Static       Not Run       Run         Pos       Linear Static       Not Run       Run         Camion       Moving Load       Not Run       Run         Analysis Monitor Options       Analysis Monitor Options       Model Aline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3-D View                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _ |
| C Never Show                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              | Set Load Cases to Run         Case Name       Type       Status       Action         DEAD       Linear Static       Not Run       Run         M0DAL       Modal       Not Run       Run         Astato       Linear Static       Not Run       Run         Bar       Linear Static       Not Run       Run         Pos       Linear Static       Not Run       Run         Camion       Moving Load       Not Run       Run         Pos       Linear Static       Not Run       Run         Camion       Moving Load       Not Run       Run         Analysis Monitor Options       -       -       Analysis Monitor Options         C       Always Show       -       Modal Alive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |

Figura 326.Correr el análisis



• Después de unos minutos aparecerá esta ventana la cual indica que ha completado el análisis

| Analysis Complete - MODELO DE LA PROPUESTA T                                                                                                                                              | ERE 1 final                                                                                  |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------|
| File Name:         D:\Respaldos 2765\Mis Documentos\TESIS\C           Start Time:         14/05/2016 11:06:59         Elap           Finish Time:         14/05/2016 11:09:10         Bur | CSIBRIDGE\OMDELODELAPROPUESTA\M<br>ased Time: 00:02:11<br>• Status: Done - Analusis Complete | IODELO Less |
| NUMBER OF EIGEN MODES FOUND                                                                                                                                                               | = 12                                                                                         | *           |
| NUMBER OF ITERATIONS PERFORMED<br>NUMBER OF STIFFNESS SHIFTS                                                                                                                              | = 7<br>= 0                                                                                   |             |
| RESPONSE-SPECTRUM AN                                                                                                                                                                      | ALYSIS                                                                                       | 11:09:05    |
| CASE: ESPECTRO                                                                                                                                                                            |                                                                                              |             |
| USING MODES FROM CASE: MODAL<br>NUMBER OF DYNAMIC MODES TO BE USED                                                                                                                        | = 12                                                                                         |             |
| MOVING LOAD ANALYSIS                                                                                                                                                                      |                                                                                              | 11:09:05    |
| CASE: CAMION                                                                                                                                                                              |                                                                                              |             |
| USING INFLUENCE LINES FROM CASE:                                                                                                                                                          |                                                                                              |             |
| ANALYSIS COMPLETE                                                                                                                                                                         | 2016/05/14                                                                                   | 11:09:09    |

Figura 327.Proceso de análisis
# 9.1.2.20. Análisis de resultados

• Aparecerá la deformada por carga muerta o "Dead"



Figura 328.Deformada por carga muerta

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 Se procede a realizar el chequeo de la deflexión con la envolvente de las cargas de servicio 1"Service I" de acuerdo a lo especificado en la AASHTO LRFD

| FORMULAS PARA CALCULAR LA D            | EFORMACION |
|----------------------------------------|------------|
| CARGA                                  | FORMULAS   |
| Vehicular                              | L/800      |
| Vehicular y/o peatonal                 | L/1000     |
| vehicular sobre voladizos              | L/300      |
| vehicular y/o peatonal sobre voladizos | L/375      |

Tabla 25. Fórmulas para el cálculo de las deformaciones

Fuente: AASHTO LRFD, sección 2.5.2.2

• El puente analizado es solo Vehicular por ende se toma la deflexión para la carga vehicular.

Con la formula L/800 donde L=Longitud del puente, en este caso se analiza la deflexión para el tramo de acero y para el de hormigón.

# 9.1.2.20.1. Tramo de acero

L=25m

$$\frac{25m}{800} = 0.031m * 100cm = 3.1cm$$

Nota: La deflexión máxima permitida para el tramo de Acero es de 3.1 cm

Para visualizar en el software ir a la opción "Show deformed Shape", en el enunciado "Case /combo Name" elegir la envolvente de la carga de servicio luego ir a elegir un contorno de área respecto a "Uz" y dar en "Ok".

| Home Layout Compon<br>Q Q Q Q Q X<br>Bridge<br>Wizard X Xz YZ (4) 63<br>View<br>View | Ints Loads Bridge Analysis Design/Rating A<br>Deformed Shape<br>Case/Combo<br>Case/Combo Name Stollforce54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dvanced |
|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Deformed Shape (DEAD)                                                                | Casel ontoo name     PENDODOs     Malivalued Options     Casing     Casi |         |

Figura 329. Configuración de la deformada

• Rápidamente aparecerá la siguiente ventana en la cual cambiaremos las unidades a kg/cm para poder observar la deformación en centímetros.



Figura 330.Deflexión con la carga de servicio

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Luego acercamos el cursor hacia el centro donde se produce la mayor deflexión y al hacer clic derecho aparece el cuadro de dialogo en donde indica que tiene una deflexión de 2.52 cm con respecto al eje vertical "U3"



Figura 331.Deflexión tramo metálico

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

**Nota:** La deformación obtenida es de 2.52 cm mientras que la máxima permisible es de 3.1 cm lo cual indica que el diseño del tramo de acero se encuentra dentro de los parámetros permitidos por la AASHTO

## 9.1.2.20.2. Tramo de concreto

L=21m

$$\frac{21m}{800} = 0.026m * 100cm = 2.6cm$$

Nota: La deflexión máxima permitida para el tramo de Concreto es de 2.6 cm

• En la misma deformada del tramo de acero acercamos el cursor hacia el centro del tramo de concreto donde se produce la mayor deflexión y al hacer clic derecho aparece el cuadro de dialogo en donde indica que tiene una deflexión de 1.75 cm con respecto al eje vertical "U3"



Figura 332.Deflexión del tablero de concreto

**Nota:** La deformación obtenida es de 1.75 cm mientras que la máxima permisible es de 2.6 cm lo cual indica que el diseño del tramo de concreto se encuentra dentro de los parámetros permitidos por la AASHTO LRFD

#### 9.1.2.20.3. Desplazamiento con respecto a la carga de resistencia

 Después se determinar los desplazamientos producidos en los estribos y en la pila por efectos de la carga de resistencia, para ello ir a la opción "Show deformed Shape" se abrirá la ventana de dialogo y en el enunciado "Case /combo Name" elegir la envolvente de la carga "StrlGroup1"luego ir a elegir un contorno de área respecto a "Uz"y dar en "Ok".



Figura 333. Configuración del desplazamiento con la combinación de resistencia

• Posteriormente se presenta la deformada con la carga de resistencia para lo cual, acercamos el cursor hacia el extremo del tablero y al hacer clic derecho aparecerá un cuadro de dialogo en donde se elige el valor de "U1", obteniendo como desplazamiento 0.30 cm



Figura 334. Desplazamiento en el estribo con la combinación de resistencia

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# 9.1.2.20.4. Diagramas de Momentos y cortantes de las vigas con el combo de "Resistencia 1"

 Para obtener los diagramas de momento de las vigas ir a la opción "Show Bridge Superstructure Forces/Stresses", se desplegará la siguiente ventana en la cual se muestra el diagrama de momento de todo el puente respecto a la carga muerta.



Figura 335.Diagrama de momento respecto a la carga muerta

## Diagrama de momentos de la Viga exterior izquierda

Para configurar la ventana ir a la opción "Show Results For", elegir "Left Exterior Girder", verificar que se encuentre en el combo de carga "StrIGroup 1" y las unidades cambiara T-m, para obtener valores de momento solo se debe mover el cursor por el contorno del diagrama y en la parte inferior muestra tal valor con su respectiva distancia mientras que en la parte inferior derecha se indica el valor máximo del momento positivo igual a 262.32 T-m y el valor del momento negativo es de -3.00T-m



Figura 336.Diagrama de momento con el combo de resistencia de la viga exterior

## Diagrama de momentos de la Viga interior

Se realiza la misma configuración para observar los resultados de la viga interior, el único cambio es en la opción "Show Results For", elegir "Interior Girder I", así se obtiene un valor máximo del momento positivo igual a 271.08 T-m y el valor del momento negativo es de -2.1-m



Figura 337.Diagrama de momento con el combo de resistencia de la viga interior

## Diagrama de cortante viga exterior izquierda

En la misma ventana dirigirse al enunciado "Moment About horizontal Axis(M3)" cambiar a "Shear Vertical (V2)" y en la opción "Show Results For", elegir "Left Exterior Girder", así se obtiene un valor máximo de cortante positivo igual a 48.73 T-m y el valor del cortante negativo es de - 48.84-m



Figura 338.Diagrama de cortante con el combo de resistencia de la viga exterior

# Diagrama de cortante de la viga interior

 Para observar el diagrama de corte cambiar en la opción "Show Results For" y elegir "Interior Girder", así se obtiene un valor máximo de cortante positivo igual a 53.54 T-m y el valor del cortante negativo es de -53.49T-m



Figura 339.Diagrama de cortante con el combo de resistencia de la viga interior

## 9.1.2.21. Diseño y Evaluación de las vigas.

 Ir al menú "Design/Rating", crear la solicitud de diseño seleccionar el icono "Design Request" y se abrirá una ventana de dialogo en la cual elegir la opción "Add New Request".

|                      | 8 9                | R 🔒        | (e) ÷                       |                          |                    |                           |                           |                   |                                                                                |        |                     |
|----------------------|--------------------|------------|-----------------------------|--------------------------|--------------------|---------------------------|---------------------------|-------------------|--------------------------------------------------------------------------------|--------|---------------------|
| U                    | Home               | Layout     | Components                  | Loads                    | Bridge             | Analysis                  | Design/Ra                 | ting              | Advanced                                                                       |        |                     |
| D+L<br>D<br>StrIGrou | D+L<br>up1<br>Load | Combinatic | D+L<br>+<br>Add<br>Defaults | CODE<br>Preferences      | Design<br>Requests | Run Oj<br>Super<br>Design | Dotimize Pr               | 4<br>reference    | es Design<br>Requests<br>Seismic Design                                        | Report | Preferences R<br>Re |
| 3                    | -D View            | _          |                             |                          |                    |                           |                           |                   |                                                                                |        |                     |
|                      | D Hell             |            | 1                           | Bridge Desig             | n Requests -       | AASHTO LRF                | D 2007                    |                   |                                                                                |        |                     |
|                      |                    |            |                             | Requests     Find this r | equest:            |                           | Cli                       | ck to:            | Add New Request<br>Add Copy of Request<br>Addiy/Show Request<br>Delete Request |        |                     |
|                      |                    |            |                             |                          |                    | 0                         | ĸ                         | Cancel            |                                                                                |        |                     |
|                      |                    |            | Ċ                           | -                        | ~                  |                           | $\langle \rangle \langle$ | $\langle \rangle$ | V V                                                                            |        |                     |

Figura 340. Añadir las solicitudes de diseño

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

En la ventana que se muestra a continuación se plantea la primera solicitud de diseño que sería el análisis a flexión de las vigas de concreto, empleando la combinación de resistencia 1, donde debe constar de los siguientes parámetros: en la opción "Check Type" seleccionar el enunciado "Precast Comp Flexure", en el combo elegir la envolvente de la combinación "StrlGroup1" y por último escoger el método para la distribución de la carga viva en el enunciado "Method" optar por el ítem "Use Directly Girder Forces From Analisys" donde se indica que use directamente las fuerzas de las vigas desde el análisis.

| Namo                       | e                                                         |                               |                                                                           |                              | FLEXION C                                   | COMB 1       |                         |
|----------------------------|-----------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------|------------------------------|---------------------------------------------|--------------|-------------------------|
| Notes                      | \$                                                        |                               |                                                                           |                              | Moo                                         | dify/Show    |                         |
| Bridge                     | e Object                                                  |                               |                                                                           |                              | P. MIXTO                                    | •            |                         |
| Check                      | k Type                                                    |                               |                                                                           |                              | Precast Con                                 | mp Flexure 🔹 |                         |
| Stati                      | on Ranges—                                                |                               |                                                                           |                              |                                             |              |                         |
|                            | Location 1                                                | ype                           | Start Type                                                                | Start Station                | End Type                                    | End Station  | Add                     |
|                            | 0.0.0                                                     |                               | Deiden Cherk                                                              |                              | Deidee Cod                                  |              |                         |
| )esig                      | Both<br>In Request P                                      | aramet                        | Bridge Start<br>ers                                                       |                              | Bridge End                                  | dify/Show    | Delete                  |
| Desig                      | Both<br>In Request P.<br>Iand Sets                        | aramet                        | Bridge Start<br>ers<br>Corr                                               | bo                           | Bridge End                                  | dify/Show    | Delete                  |
| Desig<br>Dem<br>Dan<br>DSc | Both<br>In Request Pa<br>Iand Sets<br><b>me</b><br>et1    | aramet                        | Bridge Start<br>ers<br>Com<br>StrlG                                       | ibo<br>iroup1                | Bridge End<br>Mod<br>Paramete<br>Modify/Shr | dify/Show    | Delete<br>Add<br>Delete |
| Live<br>Met                | Both<br>In Request Pa<br>and Sets<br>et1<br>Load Distribu | aramet<br>ution (L<br>se Dire | Eridge Start<br>ers<br>Con<br>StrlG<br>LD) to Girders<br>actly Girder For | itroup1<br>ces from Analysis | Bridge End<br>Mod<br>Paramete<br>Modify/Shr | dify/Show    | Delete<br>Add<br>Delete |

Figura 341. Solicitud de diseño por flexión con el combo 1

La segunda solicitud de diseño es a resistencia para el tramo de vigas metálicas empleando la combinación envolvente de resistencia 1 "StrlGroup1" los demás parámetros se los configura de la siguiente manera: en la opción "Check Type" seleccionar el enunciado "Steel Comp Strength", en el combo elegir la envolvente de la combinación "StrlGroup1" y por último escoger el método para la distribución de la carga viva en el enunciado "Method" optar por el ítem "Use Directly

**Girder Forces From Analisys**" donde se indica que use directamente las fuerzas de las vigas desde el análisis.

| ame                                                                            |                                                                       |                               | RESISTENC                                   | CIA COM 1      |                         |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|---------------------------------------------|----------------|-------------------------|
| otes                                                                           |                                                                       |                               | Moo                                         | dify/Show      |                         |
| ridge Object                                                                   |                                                                       |                               | P. MIXTO                                    |                |                         |
| heck Type                                                                      |                                                                       | (                             | Steel-I Comp                                | o Strength 🗸 💌 |                         |
| Station Ranges                                                                 |                                                                       |                               |                                             |                |                         |
| Location Type                                                                  | Start Type                                                            | Start Station                 | End Type                                    | End Station    | Add                     |
| 1.1 Both                                                                       | Bridge Start                                                          |                               | I Bridge End                                |                |                         |
| esign Request Param                                                            | eters                                                                 |                               | Mod                                         | dify/Show      | Delete                  |
| esign Request Param<br>Jemand Sets<br>Name                                     | eters                                                                 | 0                             | Mod<br>Paramete                             | dify/Show      | Delete                  |
| esign Request Param<br>Demand Sets<br>Name<br>Mdnc Combo                       | eters Comb StrlGro                                                    | o<br>up1                      | Mod<br>Paramete<br>Modify/Sh                | dify/Show      | Delete<br>Add<br>Delete |
| esign Request Param<br>)emand Sets<br>Name<br>Mdnc Combo<br>Mdc Combo          | eters<br>Comb<br>StriGro<br>StriGro                                   | 0<br>up1<br>up1               | Mod<br>Paramete<br>Modify/Sho<br>Modify/Sho | dify/Show      | Delete<br>Add<br>Delete |
| esign Request Param<br>Jemand Sets<br>Name<br>Mdnc Combo<br>Mdc Combo<br>DSet1 | eters<br>Combo<br>StriGro<br>StriGro<br>StriGro                       | <b>թ</b><br>աթ1<br>աթ1<br>աթ1 | Modify/Sha<br>Modify/Sha<br>Modify/Sha      | dify/Show      | Delete<br>Add<br>Delete |
| esign Request Param<br>Demand Sets<br>Mane Combo<br>Mdc Combo<br>DSet1         | eters<br>Combo<br>StrlGro<br>StrlGro<br>StrlGro<br>(LLD) to Girders — | <b>թ</b><br>up1<br>up1<br>up1 | Modify/Sha<br>Modify/Sha<br>Modify/Sha      | dify/Show      | Delete<br>Add<br>Delete |

Figura 342. Solicitud de diseño por resistencia combo 1

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

La tercera solicitud de diseño es a corte para el tramo de vigas de concreto empleando la combinación envolvente de resistencia 1 "StrlGroup1"los demás parámetros se los configura de la siguiente manera: en la opción "Check Type" seleccionar el enunciado "Precast Comp Shear", en el combo elegir la envolvente de la combinación "StrlGroup1" y por último escoger el método para la distribución de la carga viva en el enunciado

"Method" optar por el ítem "Use Directly Girder Forces From Analisys" donde se indica que use directamente las fuerzas de las vigas desde el análisis

| lam                      | ne                             |                                                         |               | CORTE CO                           | MB 1         | ]                              |
|--------------------------|--------------------------------|---------------------------------------------------------|---------------|------------------------------------|--------------|--------------------------------|
| Notes                    |                                |                                                         |               | Mod                                | dify/Show    |                                |
| Bridg                    | je Object                      |                                                         |               | P. MIXTO                           | -            | ]                              |
| Chec                     | ck Type                        |                                                         | C             | Precast Com                        | np Shear 💌   | Þ                              |
| Stat                     | tion Ranges                    |                                                         |               |                                    |              |                                |
|                          | Location Tune                  | Start Tune                                              | Chart Station | End Tune                           | E d Chatland |                                |
| _                        | Location Type                  | Julie Type                                              | Juan Juanon   | cur i Ahe                          | End Station  |                                |
| 1.                       | gn Request Parame              | Bridge Start                                            |               | Bridge End                         | lify/Show    |                                |
| 1.<br>Desig              | gn Request Parame              | Bridge Start                                            |               | Bridge End<br>Mod                  | lify/Show    | <br>Delete                     |
| 1.<br>Desig<br>Dem<br>DS | gn Request Parame<br>nand Sets | eters Combo                                             |               | Bridge End Moc Paramete Modify/Shc | tity/Show    | Add<br>Delete<br>Add<br>Delete |
| 1.<br>Dem<br>Da<br>DS    | gn Request Parame<br>nand Sets | Start Type<br>Bridge Start<br>eters<br>Combr<br>StriGro |               | Paramete<br>Modify/Sho             | ify/Show     | Add<br>Delete<br>Add<br>Delete |

Figura 343. Solicitud de diseño a corte

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Una vez definidas todas las solicitudes de diseño se obtiene la siguiente ventana donde se puede apreciar todas las solicitudes creadas

| Bridge Design Requests - AASHTO LRFD 2007 |                       |
|-------------------------------------------|-----------------------|
| - Requests<br>Find this request:          | Click to:             |
|                                           | Add New Request       |
| FLEXION COMB 1<br>RESIST COMBO 1          | Add Copy of Request   |
| CORTE COMB 1                              | [Modify/Show Request] |
|                                           | Delete Request        |
|                                           |                       |
|                                           |                       |
|                                           |                       |
| OK                                        | Cancel                |
|                                           |                       |

Figura 344. Solicitudes de diseño creadas

• A continuación dirigirse al icono "**Run Super**" y al hacer clic sobre él se desplegara la siguiente ventana en al cual se envía a diseñar las solicitudes creadas para ello dar clic en "**Design Now**"

| Home Layout Co                                                     | omponents Loads Brid                                                                                                | ge Analysis Design/Rat                                                                   | ing Advanced                                                                         |                                                                                          |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| D+L     D+L     D+L       StriGroup1     V       Load Combinations | Add<br>efaults                                                                                                      | Run<br>sts<br>ctur<br>Design                                                             | eferences Design<br>Requests Seismic<br>Seismic Design                               | Preferences Rating<br>Requests<br>Load R                                                 |
| Deformed Shape (StrIGroup                                          | p1)                                                                                                                 |                                                                                          |                                                                                      |                                                                                          |
|                                                                    | Perform Bridge Design - Sup<br>Request Name Bridg<br>FLEXION COMB 1 P. M<br>RESIST COMB 1 P. M<br>CORTE COMB 1 P. M | erstructure e Object Check Type Status XTO Superstructure Desig XTO Superstructure Desig | Action<br>ned Design<br>ned Design<br>Design<br>Design<br>Design<br>Design<br>Cancel | iign/Do Not Design<br>e Design for Request<br>gn/Do Not Design All<br>relete All Designs |

Figura 345.Diseño de la superestructura

## 9.1.2.21.1. Resultados de la evaluación Demanda/ Capacidad

- Luego de haber corrido el diseño se abre automáticamente la siguiente ventana de resultados.
- Se analiza la primera solicitud o "Requests" llamada "Flexión Combo1" para la viga izquierda "Left Exterior Girder", en el tramo de concreto



Figura 346. Ventana que aparece después de correr en programa

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Al hacer clic en **"Positive Resistance"** y **"Negative Resistance"** indican la capacidad de la viga para soportar el momento con las líneas de color tomate que se muestra en la siguiente figura, las cuales indican que el acero de refuerzo positivo y negativo cumple con el armado colocado.



Figura 347. Evaluación de la viga exterior de concreto con el combo de resistencia

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

 Luego se cambia la solicitud de diseño en la opción "Requests" elegir "Resistencia Combo1"para la viga izquierda "Left Exterior Girder", ahora se analiza las vigas del tramo de acero, en este caso hacer clic en "D/C Limit" para visualizar la demanda capacidad de la viga en donde indica que cubre el momento requerido.

| Bridge Object Response Display                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Select Bridge Object         Bridge Model Type           P. MIXTO         Area Object                                                                                                          | Show Table Export To Excel Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Select Display Component<br>Show Results For Left Exterior Girder<br>C Force C Stress C Design/Rating<br>Include Tendon Forces Show Selected Girder<br>Demand/Capacity Ratio - Positive Moment | Design/Rating       Multivalued Options         Requests       Image: Second seco |
| Bridge Response Plot                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                | Max Value = 0.2417 Min Value = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Muura Brinteel eestier                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mouse Pointer Location       25.22         Distance From Start of Bridge Object       25.22         Response Quantity Just Before Current Location                                             | 279     Irror       Irror     Snap to Computed Response Points       Done                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Figura 348. Evaluación de la viga exterior metálica combo de resistencia

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# Viga interior

- Se analiza la solicitud o "Requests" llamada "Flexión Combo1" para la viga interior "Interior Girder 1", en el tramo de concreto
- Al hacer clic en **"Positive Resistance"** y **"Negative Resistance"** indican la capacidad de la viga para soportar el momento con las líneas de color tomate que se muestra en la siguiente figura, las cuales indican que el acero de refuerzo positivo y negativo cumple con el armado colocado.



Figura 349. Evaluación de la viga interior de concreto con el combo de resistencia

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

• Luego se cambia la solicitud de diseño en la opción "Requests" elegir "Resistencia Combo1" para la viga interior "Interior Girder 1", ahora se analiza las vigas del tramo de acero, en este caso hacer clic en "D/C Limit" para visualizar la demanda capacidad de la viga en donde indica que cubre el momento requerido.

| ge Object Response Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Select Bridge Object           P. MIXTO         Image: Constraint of the second secon | Show Tabular Display of Current Plot           Show Table         Export To Excel         Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Select Display Component<br>Show Results For Interior Girder 1<br>C Force C Stress C Design/Rating<br>Include Tendon Forces Show Selected Girder<br>Demand/Capacity Ratio - Positive Moment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Design/Rating       Multivalued Options         Requests       RESIST COMBO 1       C         Image: Comparison of the state of |
| ,<br>Bridge Bespanse Plat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -1.           ◀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Max Value = 0.2477 Min Value = 0.<br>▶                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mouse Pointer Location         Distance From Start of Bridge Object         Response Quantity Just Before Current Location         Response Quantity Just After Current Location         Q.2475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Snap Options<br>Snap to Computed Response Points<br>Done                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Figura 350.Evaluación de la viga interior metálica combo de resistencia

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# 9.1.2.21.2. Evaluación a Corte de las vigas de concreto con la combinación resistencia 1

# Viga exterior

 Primero se evalúa la demanda capacidad a corte para la viga exterior izquierda "Left Exterior Girder"se debe configurar los siguientes parámetros: ir a la opción "Request" y elegir "Corte Combo 1", posteriormente seleccionar "D/C Limit", obteniendo como resultados que la capacidad de la viga se encuentra sobre la demanda.

| Bridge Object Response Display                                                                                                                                                                                            |                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Select Bridge Object Bridge Model Type                                                                                                                                                                                    | Show Tabular Display of Current Plot            |
| P. MIXTO                                                                                                                                                                                                                  | Show Table Export To Excel Tonf, m, C           |
| Select Display Component                                                                                                                                                                                                  | Design/Rating Multivalued Options               |
| Show Results For Left Exterior Girder                                                                                                                                                                                     | Requests CORTE COMB 1 C Envelope Max/Min        |
| C Force C Stress C Design/Rating                                                                                                                                                                                          | D/C Limit     C Envelope Max     C Envelope Min |
| Include Lendon Forces Show Selected Girder                                                                                                                                                                                |                                                 |
| Uontrolling Demand/Capacity Ratio                                                                                                                                                                                         |                                                 |
| Bridge Response Plot                                                                                                                                                                                                      |                                                 |
|                                                                                                                                                                                                                           |                                                 |
|                                                                                                                                                                                                                           | Max Value - 0. 1707 Mill Value = 0.             |
| Mouse Pointer Location       46.         Distance From Start of Bridge Object       46.         Response Quantity Just Before Current Location       0.17         Response Quantity Just After Current Location       N.A | Snap Options<br>783<br>Done                     |

Figura 351. Evaluación de la viga exterior izquierda a corte

Fuente: CSIBRIDGE V15.2 VERSION EVALUACIÓN

# Viga interior

• A continuación se evalúa la demanda capacidad a corte para la viga interior "Interior Girder 1" con la solicitud "Request" de "Corte Combo 1", posteriormente seleccionar "D/C Limit", obteniendo como resultados que la capacidad de la viga se encuentra sobre la demanda.

| ridge Object Response Display                                                                                                                                                         |                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Select Bridge Object         Bridge Model Type           P. MIXTO         Area Object                                                                                                 | Show Tabular Display of Current Plot Units Show Table Export To Excel Tonf, m, C                                                                               |
| Select Display Component<br>Show Results For Interior Girder 1<br>C Force C Stress C Design/Rating<br>Include Tendon Forces Show Selected Girder<br>Controlling Demand/Capacity Ratio | Design/Rating     Multivalued Options       Requests     CORTE COMB 1     C       Image: D /C Limit     Envelope Max       C     Envelope Min       C     Step |
| Bridge Response Plot                                                                                                                                                                  |                                                                                                                                                                |
|                                                                                                                                                                                       |                                                                                                                                                                |
|                                                                                                                                                                                       | Max Value = 0.1959 Min Value = 0.                                                                                                                              |
|                                                                                                                                                                                       |                                                                                                                                                                |
| Mouse Pointer Location Distance From Start of Bridge Object Response Quantity Just Before Current Location Response Quantity Just After Current Location                              | Snap Options  Snap to Computed Response Points  Done                                                                                                           |

Figura 352. Evaluación de la viga interior a corte