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RESUMEN 

El siguiente trabajo de investigación se enfoca en implementar un sistema de 

posicionamiento que integre IMU/GPS (Unidad de medida Inercial/Sistema de 

Posicionamiento Global) con ayuda de fusión de sensores y ML (Maching Learning). Este 

sistema recopila datos del GPS e IMU, los cuales son tecnologías de bajo costo. 

La fusión de sensores es implementada usando el algoritmo de EKF (Filtro extendido de 

Kalman), este algoritmo es evaluado usando datos reales recopilados por la unidad de 

medida Inercial (MPU6050) y el receptor GPS NEO-6M, estos datos previamente estimados 

por el Filtro pasan a ser procesados por los modelos Random Forest y LSTM para suavizar 

y optimizar mejor las estimaciones. Los resultados obtenidos de este sistema muestran tener 

una mejor estimación de posición de un vehículo. 

Palabras claves: GPS, ML, EFK, optimizar, posicionamiento. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ABSTRACT 

The following research work focuses on implementing a positioning system that integrates 

IMU/GPS (Inertial Measurement Unit/Global Positioning System) using sensor fusion and ML 

(Machine Learning). This system collects data from GPS and IMU, which are low-cost 

technologies. 

Sensor fusion is implemented using the EKF (Extended Kalman Filter). This algorithm is 

evaluated using real data collected by the Inertial Measurement Unit (MPU6050) and the NEO-

6M GPS receiver. These data, previously estimated by the Filter, are processed by the Random 

Forest and LSTM models to smooth and better optimize the estimates. The results from this system 

show better vehicle position estimation. 

Keywords: GPS, ML, EFK, optimize, positioning. 
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CAPÍTULO I 

1.1 Introducción 

En los últimos años, el Sistema de posicionamiento global (GPS) se ha considera como uno 

de los más importantes avances tecnológicos empleados en la navegación y localización. 

Durante varios años, el territorio ecuatoriano ha empleado tecnología GPS en diversos 

sectores como: vehicular, industrial, policial y militar lo cual ha contribuido a optimizar 

operativos de patrullaje, logística, entre otras aplicaciones [1]. 

Un receptor GPS necesita un mínimo de 4 satélites para determinar su posición actual con 

un error inferior a 20 m. En términos generales el receptor GPS en condiciones ideales 

proporciona una precisión aproximada de 2 a 5 m [2], pero está precisión disminuye por la 

influencia de varios factores como: malas condiciones climáticas, áreas urbanas o donde 

haya mala cobertura satelital, esto debido a que las señales GPS pueden llegar a rebotar en 

árboles, montañas, grandes edificios, etc. [3], esto provoca que estas señales lleguen 

distorsionadas haciendo que el receptor no pueda determinar correctamente la posición. 

En la actualidad la precisión en la geolocalización se ha convertido en un componente 

esencial para una variedad de aplicaciones críticas que van desde la navegación autónoma, 

donde la exactitud milimétrica juega un papel fundamental. Asimismo, en la seguridad vial, 

agricultura de precisión, aplicaciones comerciales, robótica, seguimiento y monitoreo de 

vehículos, activos, animales, entre otros. 

La navegación integrada como tecnología, permite combinar datos de GPS con otros 

sistemas como son los inerciales para corregir errores y mejorar la exactitud de la posición, 

incorporando técnicas de procesamiento de señales avanzadas y algoritmos. Varios autores 

han contribuido al desarrollo de algoritmos de navegación integrada, con un conjunto 

mínimo de sensores para mantener las condiciones de bajo costo [4].  

Con el presente proyecto de investigación se pretende dar una opción económica y 

tecnológica en cuanto a los sistemas de posicionamiento, lo cual se consigue mediante la 

integración de técnicas avanzadas de Machine Learning y filtrado de posiciones 

geolocalizadas. La combinación de estas metodologías no solo promete superar las 

limitaciones tradicionales de los sistemas GPS como: la precisión limitada bajo malas 

condiciones climáticas, en entornos urbanos densos o áreas con obstrucciones, sino que 

también busca establecer fiabilidad en la determinación de la ubicación. 
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1.2 Planteamiento del Problema 

El posicionamiento de vehículos es un elemento clave para numerosos sistemas de asistencia 

al conductor, sistemas de transporte inteligente, sistemas de seguridad, entre otros. En 

función de estas diversas aplicaciones, se requieren mayores o menores niveles de fiabilidad 

y precisión en la estimación del posicionamiento [5].  

El GPS en condiciones ideales no es capaz de proporcionar información completamente 

aceptable y continua sobre la posición de un cuerpo en movimiento y presentan varios 

desafíos con respecto a la localización que dependen del entorno local. En presencia de 

interferencia electromagnética, ruido, problemas de sincronización, malas condiciones 

climáticas, zonas urbanas densas, entornos indoor, las señales GPS pueden llegar a 

distorsionarse agresivamente generando errores en la estimación de la posición. 

A pesar de que los sistemas GPS convencionales proporcionan ubicaciones con un margen 

de error aceptable, existen limitaciones en términos de precisión y exactitud, ya que una 

ubicación imprecisa o una estimación errónea puede llegar a afectar negativamente la 

eficiencia operativa y la seguridad de un vehículo. Para abordar esta problemática, se 

propone implementar un sistema que combine técnicas de Machine Learning con métodos 

de filtrado de posiciones para optimizar la estimación de posición y fiabilidad de la 

localización de un vehículo. 

1.3 Justificación 

Las señales GPS aún bajo condiciones ideales son vulnerables a diversos factores físicos y 

ambientales que afectan su fiabilidad, en consecuencia, el receptor entrega coordenadas con 

errores significativos, por lo cual la implementación de un sistema que optimice la 

estimación de posición de un vehículo se vuelve fundamental para los sistemas de 

navegación.  

La aplicación de algoritmos de Machine Learning pueden corregir errores sistemáticos y 

optimizar las estimaciones de posición, aprovechando patrones y correlaciones en los datos 

históricos de posicionamiento. Además, el filtro de Kalman o el uso de técnicas más 

avanzadas de fusión de sensores permiten integrar datos de múltiples fuentes, logrando filtrar 

el ruido que provocan estos sensores como: GPS e IMU. El trabajo conjunto de estos 

sistemas nos puede ayudar a obtener estimaciones más fiables y robustas. 

Mediante el presente proyecto de investigación se busca desarrollar una alternativa 

económica en cuanto a sistemas de navegación se refiere, esto abre nuevas oportunidades 

para aplicaciones vehiculares comerciales rentables, por tal motivo la implementación de 

este sistema proporcionará un dispositivo que sea fiable y que integre tecnología de bajo 

costo. 
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1.4 Objetivos 

1.4.1 Objetivo General 

Implementar un sistema para optimizar el posicionamiento de un vehículo mediante Machine 

Learning y filtrado de posiciones geolocalizadas. 

1.4.2 Objetivos Específicos 

• Estudiar los entornos de desarrollo y sistemas implicados en el vehículo para la 

estimación del posicionamiento. 

• Implementar técnicas de fusión de algoritmos de estimación y el sistema de 

localización sobre un medio de transporte utilizando algoritmos de inteligencia 

artificial. 

• Diseñar una interfaz gráfica para monitorear la ubicación del vehículo en tiempo real. 

• Evaluar el funcionamiento del sistema mediante pruebas de campo y análisis 

estadístico. 
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CAPÍTULO II. 

MARCO TEÓRICO 

2.1 Estado del Arte. 

El posicionamiento por GPS en zonas urbanas densamente pobladas puede ser un reto, 

principalmente debido al bloqueo de señales por edificios o túneles. En el caso de los 

vehículos autónomos se necesitan de contar con un posicionamiento extremadamente 

preciso para trazar rutas y moverse por carreteras, especialmente en vías complejas como 

intersecciones y autopistas, por lo que se propone una estructura de localización para zonas 

urbanas densamente pobladas que incluye tanto un algoritmo robusto de detección de 

errores, capaz de evaluar el rango de confianza de cada estimación, como una precisa técnica 

de localización alternativa basada en un algoritmo de map matching de bajo coste 

computacional. Finalmente se demuestra que esta propuesta no solo se centra en detectar 

correctamente los errores a lo largo de la trayectoria, sino que además acota el efecto de 

dichos errores mejorando la precisión del sistema [6]. 

Por otro lado, los INS son diseñados para ayudar a la navegación, ya que proporciona una 

posición estimada del vehículo, entonces se implementó un sistema de navegación de bajo 

costo hecho con filtros de Kalman, esta solución se montó sobre un automóvil de juguete y 

el navegador se implementó por medio de Arduino, logrando tener una mejora significativa 

en la precisión de los sensores utilizados para hallar la posición del automóvil, la posición 

se determinó por medio de las variables de distancia y los ángulos Roll, Pitch, Yaw o RPY. 

Para validar los resultados obtenidos por el algoritmo de Kalman, se realizaron pruebas 

específicas en el procesamiento con registros y gráficas [7].   

Ante las carencias de cobertura de posicionamiento de GPS y de otros sistemas de 

radiofrecuencia en entornos hostiles, como túneles, aeropuertos o almacenes, se propone 

estudiar el rango de frecuencias de la luz visible para el posicionamiento (VLP). Se plantea 

así emplear VLP en estos entornos hostiles, donde tanto el comportamiento como guía de 

onda, la presencia de metales o las restricciones del uso de la radiofrecuencia hacen que 

utilizar VLP sea una buena solución. Finalmente, mediante pruebas de campo se ha 

demostrado que es posible implementar un sistema de geolocalización o de posicionamiento 

en lugares hostiles para la radiofrecuencia, pudiendo posicionar un vehículo de manera más 

confiable en dichos entornos [8]. 

A nivel internacional en la investigación realizada se evaluó un sistema de navegación 

inercial GNSS/IMU en automoción para sistemas de automatización a la conducción, en 

donde para integrar las soluciones de los sistemas satelital de navegación global (GNSS) e 

INS se combinó en un FK para obtener la solución del sistema integrado, el FK se utilizó 

para estimar los errores INS. En entornos urbanos y montañosos las pérdidas de precisión 

fueron notables, alcanzando hasta los 40 metros y 7 metros respectivamente, mientras que 

en un entorno de cielo abierto se alcanzan los 0.2 metros. Además, se observó las pérdidas 

de precisión a pesar de contar con un número óptimo de satélites, siendo destacable que las 
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precisiones no superan los 0.05 m de error. Los resultados obtenidos destacan la influencia 

crucial del GNSS en la precisión de la solución de posicionamiento [9]. 

La Inteligencia Artificial y el Machine Learning son fundamentales para el desarrollo de 

vehículos autónomos, entonces se apuesta por utilizar redes neuronales para procesar datos 

de múltiples sensores lo que permite a los vehículos autónomos tomar decisiones informadas 

en tiempo real. Como punto de partida es indispensable la optimización del posicionamiento 

de un vehículo, lo cual contribuye a la efectividad de los sistemas de conducción autónoma, 

mejorando la navegación y la respuesta a situaciones del entorno, el resultado de esta 

implementación se refleja en la reducción de accidentes en pruebas de vehículos autónomos 

y la mejora en la eficiencia del tráfico en entornos urbanos [10]. 

Los vehículos autónomos prometen numerosos beneficios para el tráfico vehicular, incluida 

una mayor capacidad vial y flujo de tráfico, menos accidentes como resultado de los sistemas 

de prevención de colisiones, en este contexto se propone implementar un sistema de visión 

artificial basado en redes convolucionales para el correcto posicionamiento de un vehículo 

en un carril compuesto por dos módulos. La primera, de procesamiento de imágenes que son 

capturadas por un sensor óptico por medio de inteligencia artificial aplicando OpenCV, 

Tensorflow y Keras. El segundo modulo se encarga del control de los motores y la 

interpretación de los datos obtenidos por el primer módulo de procesamiento, los resultados 

obtenidos apuntan a el sistema de detección de carril está dentro de los rangos precisos de 

interpretación para evitar salirse de los limites trazados en un carril a escala, la precisión de 

entendimiento de la red neuronal llega a un 98.54%. Se concluye que el prototipo de sistema 

permite una conducción estable de un vehículo y de interpretación de imágenes en óptimas 

condiciones de iluminación [11]. 

En otro ámbito se planteó un modelo de predicción de tiempos de traslado mediante el 

modelo de machine Learning de Random Forest programado en el lenguaje de programación 

Python, esto utilizando GPS de vehículos registrados en la plataforma de SimpliRoute y de 

Transantiago para complementar zonas faltantes en el mapa. En primer lugar, se calculó la 

velocidad promedio de movimiento de los vehículos, para luego obtener un algoritmo de 

cálculo de tiempos históricos de traslado. Con los valores históricos obtenidos se realizó un 

modelo de entrenamiento de Random Forest que realiza una predicción de los tiempos en 

base a datos históricos. Dicha predicción se realiza con un 96.88 % de precisión calculado, 

utilizando la medida de error porcentual MAPE. Para asegurar que la predicción obtenida 

sea certera se realizó una comparación con los valores obtenidos de una llamada a la API de 

Google Maps, obteniendo como resultado que la predicción calculada por el modelo de 

Random Forest tiene una diferencia de ±5 minutos con los obtenidos por Google Maps [12]. 

Uno de los principales puntos que se debe resolver es el mejorar la propia localización del 

vehículo dentro de su entorno, para ello se propone una técnica basada en la fusión del 

posicionamiento absoluto en un mapa del vehículo a partir de sensores de visión (Visual-

SLAM) o LiDAR (LiDAR-SLAM)  en conjunto con el Aprendizaje profundo o Deep 

Learning para mejorar el posicionamiento de vehículos autónomos, el resultado obtenido 
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consigue una consistencia mayor en la estimación de la posición y una mejora notable en la 

calidad de la misma [13].  

Los sistemas de posicionamiento son utilizados en diferentes aplicaciones, uno de ellos es 

en la robótica, en donde se propone utilizar dicho sistema para la localización de un robot 

autónomo en superficies exteriores, como resultado el autor tuvo diferentes problemas y 

desafíos con respecto a la capacidad de procesamiento que se requiere para trabajar con 

inteligencia artificial y con el entorno exterior que alberga multitud de interferencias y malas 

condiciones ambientales [14]. 

A nivel internacional también se propone mejorar la precisión del posicionamiento en 

entornos afectados por multipath, mediante la aplicación de técnicas avanzadas de 

inteligencia artificial y machine Learning, en donde se realizó un estudio exhaustivo sobre 

las medidas GNSS, explorando diversas características como la elevación, los residuos, el 

SNR (Signal-to-Noise Ratio), el CRC (Cyclic Redundancy Check) y el CMC (Code 

Multipath Correction). Estas características se agrupan y se comparan utilizando dos 

enfoques: el modelo K-Means y el uso de mapas autoorganizados, como resultado se ha 

observado una reducción en los picos de error durante el cálculo de posicionamiento [15]. 

La aplicación de filtros de Kalman para mejorar el posicionamiento de un objeto se ha vuelto 

una de las alternativas utilizadas en la conducción autónoma, como se menciona en el estudio 

se determinó la orientación de un vehículo no tripulado mediante el sistema GNSS, con lo 

cual se concluyó que se necesita aplicar rutinas de filtrado de Kalman para mejorar el error 

estático y así conseguir mayor precisión en la orientación y trayectoria [16]. Otro trabajo se 

basó en este mismo principio anterior, pero aplicando el filtrado de Kalman a un robot 

autónomo, con lo cual se consiguió describir su movimiento y planificar su trayectoria con 

mejores resultados [17]. 

Entre las más recientes investigaciones hechas para mejorar la ubicación precisa y confiable 

en interiores, se propone analizar y mejorar la tecnología de posicionamiento por Ultra 

Wideband (UWB), la cual se destaca por su alta precisión, bajo consumo de energía y 

resistencia a interferencias.  En este trabajo, la tecnología UWB emplea el algoritmo TDoA 

(diferencia de tiempo de llegada) y ToA (Tiempo de llegada) para medir el tiempo que tardan 

las ondas electromagnéticas en viajar desde el transmisor hasta el receptor, gracias a esta 

fusión de algoritmos se consiguió una precisión de posicionamiento a nivel de centímetros, 

satisfaciendo ampliamente los requisitos de posicionamiento de alta precisión en diversos 

escenarios [18].  

 

 



 

 

 

 

21 

 

2.2 Fundamento Teórico.  

2.2.1 Sistema de Navegación Inercial (INS). 

La navegación inercial se basa en los principios de la cinemática, que partiendo de un punto 

de partida puede calcular posiciones futuras en cualquier momento cuando se conocen la 

velocidad relativa, la dirección y la aceleración, sin embargo, la precisión de este tipo de 

navegación se degrada con el tiempo, debido a los errores acumulativos causados por offsets, 

bias, factores de escala y no linealidades presentes en los sensores inerciales [19]. 

Unidad de Medida Inercial (IMU). 

La IMU es un dispositivo electrónico, está conformado por un conjunto de sensores como: 

acelerómetro, giroscopio y opcionalmente un magnetómetro, se utilizan para rastrear la 

posición y orientación de un objeto en relación con un punto de partida [9].  

 

Figura. 2.1. Unidad de medida inercial [20]. 

Componentes principales. 

• Acelerómetro: Mide la aceleración lineal en los ejes x, y, z en 𝑚/𝑠2. Los 

acelerómetros son sensibles a entornos vibrantes y a la diferencia entre la 

aceleración lineal del sensor y el campo gravitacional local. 

• Giroscopio: Mide la velocidad angular o cambios de orientación en los ejes x, y, z 

en 𝑟𝑎𝑑/𝑠 o °/𝑠. Son sensibles a errores que pueden acumularse a lo largo de 

tiempo. 

• Magnetómetro: Mide la dirección del campo magnético, usado principalmente 

para determinar la orientación. 

Características de Ruido en Giroscopio y Acelerómetro. 

Entre las principales características de ruido encontramos las siguientes: 
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Offset o desviación de cero. También conocido como bias es un valor de desviación del 

valor real medido dado en unidades 𝑟𝑎𝑑/𝑠 o 𝑚/𝑠2  respectivamente. Para el giroscopio 

cuando el error offset se integra, causa que el error de posición angular crezca con el tiempo 

linealmente [19]. La aceleración se integra dos veces para obtener la posición, por tanto, el 

error de posición crece con el cuadrado del tiempo [19].  

Ruido Blanco Termo-Mecánico. La salida de los giroscopios y acelerómetros pueden ser 

perturbados por la presencia de un ruido blanco termo mecánico el cual oscila a una 

velocidad mucho mayor que el tiempo de muestreos del sensor [19]. 

Filtración de ruido. 

Los acelerómetros inerciales y giroscopios son propensos a ser afectados por ruido, para 

filtrar este ruido, se puede utilizar una media móvil (ecuación. 1), o un filtro exponencial 

(ecuación. 2), con los cuales se podrá atenuar en gran medida este problema. 

𝑦(𝑘) =  (
1

𝑁
) ∑ 𝑥(𝑘 − 𝑖)

𝑁−1

𝑖=0

     (1) 

y(k): representa el promedio filtrado en el instante k. 

N: es el número de muestras a promediar. 

x(k-i): se atribuye al valor tomado en el instante anterior. 

𝑦(𝑘) =  𝛼 ∗  𝑥(𝑘) +  (1 − 𝛼) ∗  𝑦(𝑘 − 1) (2) 

y(k): representa el valor filtrado en el instante k. 

x(k): es el valor de entrada actual. 

y(k-1): es el valor en el instante anterior. 

∝: es el coeficiente de suavizado. 

Estabilidad de bias. La forma de hallar este error es promediando una serie de datos 

ecuación [3], cuando no está bajo ninguna rotación o movimiento y una vez que se conoce 

este error simplemente se resta de la salida de la IMU para compensar. 

𝑦 =  (
1

𝑁
) ∑ 𝑥(𝑖)

𝑁−1

𝑖=0

(3) 

y: representa el promedio de las mediciones cuando la IMU está en reposo. 

N: es el número de muestras. 

x(i): valor de la medición en el instante i. 
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2.2.2 Sistema de Posicionamiento Global (GPS). 

Este sistema proporciona al usuario información específica sobre posicionamiento, 

navegación y cronometraje en un punto concreto. La ubicación y la velocidad del vehículo 

están determinadas por GPS. Esta tecnología de navegación permite obtener mediciones 

aproximadamente cada 1 segundo y el error se limita a 3-5 metros [21]. 

Las órbitas de los satélites se distribuyen de manera que al menos 4 satélites sean siempre 

visibles desde cualquier punto de la Tierra en cualquier instante dado. Cada satélite lleva 

consigo un reloj atómico que funciona con una precisión de 1 nano segundo [22].  

 

Figura. 2.2. Sistema de posicionamiento Global [23]. 

Protocolo NMEA. NMEA 0183 es un estándar para la comunicación de datos desarrollada 

por el U.S. Nacional Marine Electronics Association (NMEA), para evitar 

incompatibilidades entre datos y formatos de mensajes entre dispositivos electrónicos 

marinos. NMEA es fundamentalmente usado para la transmisión de datos entre un receptor 

GPS/GNSS y otros dispositivos. Es un formato ASCII fácilmente legible, pero menos 

compacto que un formato binario [24]. 

Trama NMEA. Es una línea de código en formato hexadecimal que contiene toda la 

información evaluada por el dispositivo GPS. Incluye datos como: tiempo, fecha, 

coordenadas (latitud, longitud), orientación, numero de satélites visibles, velocidad, 

orientación, entre otros. Las tramas de GPS por estandarización utilizan comas, letras o 

símbolos para separar los campos.  

 
Figura. 2.3. Tipos de tramas NMEA [25]. 
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2.2.3 Filtro de Kalman (FK). 

El filtro de Kalman realiza proceso de estimación de estados aplicado a sistemas dinámicos 

que involucran cambios aleatorios. El filtro de Kalman ofrece un algoritmo recursivo lineal, 

sin sesgo y con un mínimo error de varianza, que de manera óptima estima los estados 

futuros de un sistema dinámico, con ruido discreto en tiempo real [26]. 

Filtro extendido de Kalman (EKF). 

Es una evolución del FK clásico, utilizado para sistemas no lineales, aplicado en campos 

como navegación, robótica, procesamiento de señales y control de vehículos autónomos, 

este filtro se compone de dos fases: fase de predicción y fase de corrección, se basa en la 

linealización de las funciones que describen el sistema dinámico, considerando únicamente 

los términos de primer orden del desarrollo en serie de Taylor [19] alrededor del punto 

estimado 𝑥̂𝑘̅ −1 y el Jacobiano representa la matriz de derivadas parciales de esas funciones. 

• Variables de estado x: 

𝑥 =  [𝑥, 𝑦, 𝑣, 𝜃] 

• Variables de control u: 

𝑢 =  [𝑎, 𝜔] 

• Variables de medición z: 

𝑧 =  [𝑥, 𝑦, 𝑣, 𝜃] 

• Modelo de transición del estado, donde wk representa el ruido de proceso: 

𝑥̂𝑘̅ = 𝑓(𝑥𝑘−1, 𝑢𝑘) + 𝑤𝑘 (4) 

• Matriz jacobiana de la función de transición f respecto al estado:  

𝐹𝑘 =
∂𝑓

∂𝑥
|

𝑥𝑘−1, 𝑢𝑘

(5) 

• Modelo de observación, donde vk representa en ruido de medición: 

𝑧𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘 (6) 

• Matriz jacobiana de la función de medición h antes de aplicar la corrección del 

estado con la medición: 

𝐻𝑘 =
∂𝑓

∂𝑥
|

𝑥𝑘̅

(7) 

Fase de predicción. Se calcula la predicción de los estados 𝑥̂𝑘̅ en el instante k y su matriz 

de covarianza 𝑃𝑘
−, donde Q es la matriz de ruido del proceso. 

𝑃𝑘
− = 𝐹𝑘𝑃𝑘−1𝐹𝑘

⊤ + 𝑄 (8) 
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Para ello se hacen uso de las variables de estado x, utilizando como variables de control u 

como entrada para EKF, para luego desarrollar las funciones que describen el movimiento 

simple de un vehículo. 

𝑥𝑘 = 𝑥𝑘−1 + 𝑣𝑘−1 ⋅ cos(θ𝑘−1) ⋅ Δ𝑡 (9) 

𝑦𝑘 = 𝑦𝑘−1 + 𝑣𝑘−1 ⋅ sin(θ𝑘−1) ⋅ Δ𝑡 (10) 

𝑣𝑘 = 𝑣𝑘−1 + 𝑎 ⋅ Δ𝑡 (11) 

θ𝑘 = θ𝑘−1 + ω ⋅ Δ𝑡 (12) 

Estas ecuaciones realizan la predicción de los estados: posición (x, y), velocidad (v) y 

orientación (𝜃). 

Fase de corrección. Se evalúa las variables de medición z en el instante k, junto a la matriz 

de medición 𝐻𝑘 y se calcula la diferencia entre la medida real y la estimada respectivamente. 

Se calcula la ganancia de Kalman 𝐾𝑘 donde R es la matriz de ruido de medición, además se 

corrige las estimaciones de los estados 𝑥𝑘  y la covarianza de estado 𝑃𝑘
− . 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

⊤(𝐻𝑘𝑃𝑘
−𝐻𝑘

⊤ + 𝑅)−1 (12) 

𝑥𝑘 = 𝑥𝑘
− + 𝐾𝑘(𝑧𝑘 − ℎ(𝑥𝑘

−)) (13) 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘
− (14) 

2.2.4 Aprendizaje autónomo (ML). 

Los algoritmos de machine Learning, se basan en el aprendizaje a partir de una muestra de 

datos de patrones y relaciones funcionales entre distintas variables. Las redes neuronales 

recurrentes (RNN) son una clase de aprendizaje profundo, son conocidas por su capacidad 

para procesar y obtener información de datos secuenciales [27]. 

Random Forest (RF). 

Es una técnica de aprendizaje supervisado que genera múltiples árboles de decisión sobre un 

conjunto de datos de entrenamiento. Cada árbol contiene un grupo de observaciones 

aleatorias (elegidas mediante bootstrap, que es una técnica estadística para obtener muestras 

de una población donde una observación se puede considerar en más de una muestra). Las 

observaciones no estimadas en los árboles (también conocidas como “out of the bag”) se 

utilizan para validar el modelo. Las salidas de todos los árboles se combinan en una salida 

final (conocida como ensamblado) que se obtiene mediante alguna regla (generalmente el 

promedio, cuando las salidas de los árboles del ensamblado son numéricas [28]. 



 

 

 

 

26 

 

 

Figura. 2.4. Estructura Random Forest [29]. 

Ventajas: 

• Es un modelo simple de entrenar y muy eficiente con base de datos grandes. 

• Mantiene un grado de precisión aceptable cuando tenemos porciones de datos 

perdidos. 

Desventajas: 

• Puede sobre ajustar los datos cuando hay presencia de ruido. 

• Las predicciones no son de naturaleza continua y no puede predecir más allá del 

rango de valores del conjunto de datos usado para entrenar el modelo [28].  

Long Short-Term Memory (LSTM). 

Las LSTM poseen la capacidad de procesar datos secuenciales y retener información de 

pasos anteriores en la secuencia, lo que les permite predecir los pasos futuros de manera 

efectiva. Esta característica las hace altamente adecuadas para tareas que involucran 

dependencias a largo plazo [30]. 

El flujo de información dentro de las redes LSTM está gobernado por tres puertas internas 

durante el proceso de aprendizaje: la puerta de olvido, la puerta de entrada y la puerta de 

salida. La puerta de olvido (𝑓𝑡) determina qué información del estado de la celda debe ser 

descartada. La puerta de entrada (𝑖𝑡) decide qué nueva información se añadirá al estado de 

la celda. Finalmente, la puerta de salida (𝑜𝑡) controla la salida del estado oculto. Este 

mecanismo de puertas permite a las unidades LSTM gestionar eficazmente las dependencias 

a largo plazo al actualizar y retener información selectivamente a lo largo del tiempo [30]. 
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Figura. 2.5. Arquitectura LSTM [30]. 

La complejidad temporal para un paso de entrenamiento implica 𝑚𝑛(𝑛+(𝑚−1)) = 𝑛²𝑚+𝑛𝑚² 

−𝑛𝑚 operaciones. Esto se realiza para cada una de las tres puertas, el estado de la celda, y 

durante 𝑘 pasos de tiempo, resultando en 4𝑘(𝑛²𝑚+𝑛𝑚²−𝑛𝑚). En consecuencia, esto puede 

resultar en tiempos de entrenamiento más largos, especialmente cuando se trabaja con 

grandes conjuntos de datos o cuando se utiliza un alto número de unidades LSTM, esto 

supone recursos computacionales significativos [30]. 
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CAPÍTULO III 

METODOLOGÍA. 

3.1 Tipo de investigación. 

3.1.1 Investigación cuantitativa. 

Se basó en la recolección y análisis de datos numéricos para evaluar la efectividad del 

sistema propuesto en la optimización del posicionamiento de un vehículo. Esto permitió 

obtener resultados medibles con el fin de comparar el desempeño del sistema implementado 

frente al sistema GPS tradicional. 

3.2 Métodos de Investigación. 

3.2.1 Método Experimental. 

Se utilizó la recolección de datos a través de pruebas de campo con el fin de analizar cuál de 

los sistemas (sistema propuesto vs tradicional) proporciona el menor margen de error. 

Finalmente se interpretó los resultados de forma objetiva. 

3.3 Diseño de Investigación. 

Este trabajo de investigación se desarrolló en tres fases que se describen a continuación: 

 

Figura. 3.1. Fases de Investigación 

 

3.3.1 Fase 1 

1. Recopilación de Información. 

En esta primera fase se realizó el estudio de los entornos de desarrollo y sistemas implicados 

en el vehículo para la estimación del posicionamiento, para lo cual se investigó en artículos 
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y publicaciones similares al tema propuesto para estudiar las diversas tecnologías, 

algoritmos y sistemas disponibles para la geolocalización. Además, se optó por software y 

hardware específico, tomando en cuenta características, ventajas, requerimientos y 

objetivos, con el fin de desarrollar e implementar un sistema económico. 

Módulo MPU-6050. 

Es un sensor de medición inercial, que combina un giroscopio de 3 ejes y un acelerómetro 

de 3 ejes en el mismo chip de silicio junto con un Procesador de Movimiento Digital a bordo 

capaz de procesar complejos algoritmos de fusión de sensores de 9 ejes. Los algoritmos de 

fusión de movimiento de 9 ejes integrados en el MPU-6000 y el MPU-6050 acceden a 

magnetómetros externos u otros sensores a través de un bus I2C [31]. 

Entre sus principales ventajas encontramos que: Es un sensor de muy bajo costo y fácil de 

adquirir, además tiene un gran soporte comunitario con codificación, módulos y librerías 

gratis, soporta el protocolo I2C, lo cual es compatible con diferentes microcontroladores, 

para el caso una ESP32. 

• El protocolo I2C, se utiliza para la comunicación síncrona entre circuitos integrados 

a corta distancia, utilizando el sistema maestro-esclavo. 

 

Figura. 3.2. Sensor MPU-6050 [32]. 

Los pines utilizados son: 

• VCC, para la alimentación 3.3V y GND, pin a tierra. 

• SCL, línea de reloj conectado al pin GPIO22 de la ESP32. 

• SDA, línea de datos conectado al pin GPIO21 de la ESP32. 

 

Tabla 3.1 Características técnicas de la MPU-6050. 

Voltaje de operación  2.375V-3.46V 

Interfaz serial I2C 

Rango del giroscopio ±250, ±500, ±1000, ±2000 °/seg 

Rango del acelerómetro ±2g, ±4g, ±8g, ±16g 
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Corriente de operación Giroscopio 3.6 mA 

Corriente de operación acelerómetro 500 uA 

Frecuencia de muestreo Giroscopio 8 KHz programable 

Frecuencia de muestreo Acelerómetro 1 KHz programable 

Módulo GPS NEO-6M. 

Es un receptor GPS ampliamente utilizado, diseñado para un consumo de energía bajo [33], 

entre sus ventajas tenemos: es económico y compacto, utiliza interfaz serial UART, 

compatible con diferentes microcontroladores pal caso ESP32, además cuenta con librerías 

gratis que facilitan su implementación. 

• El protocolo UART, se utiliza para la comunicación asíncrona entre dispositivos TX 

y RX. La sincronización se logra mediante la coincidencia de las tasas de baudios y 

un formato de trama de bits. 

 

Figura. 3.3. Módulo y antena GPS NEO-6M [34]. 

• Aquí los pines RX - TX, se conectan a los pines TX - RT de la ESP32. 

• VCC, conectado a 3.3 V y GND a tierra. 

Tabla 3.2 Características técnicas de GPS NEO-6M. 

Voltaje de operación  2.7V-3.6V 

Interfaz serial UART 

Sensibilidad de rastreo Hasta -161 dBm 

Sensibilidad de adquisición Hasta -148 dBm 

Baud rate por defecto 9600 bps 

Protocolo NMEA 

Frecuencia de muestreo 1 a 5 Hz programable 

Precisión de posición horizontal 2.5 m CEP en condiciones ideales [35]. 

Módulo ESP32. 

ESP32 es un microcontrolador combinado de Wi-Fi y Bluetooth de 2.4 GHz. Está diseñado 

para lograr el mejor rendimiento de potencia y RF, mostrando robustez, versatilidad y 

fiabilidad en una amplia variedad de aplicaciones como IOT y sistemas embebidos [36]. 
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Figura. 3.4. Microcontrolador ESP32 [37]. 

Entre sus principales características podemos encontrar que: posee un procesador de doble 

núcleo de 32 bits operando a 240 MHz como máximo, además posee un coprocesador de 

ultra bajo consumo para tareas simples, una de sus ventajas es que la corriente de reposo es 

inferior a 5 µA, por lo que es adecuado para aplicaciones de electrónica portátiles con 

batería, además es compatible con ARDUINO IDE, Lua y Micro Python, lo cual hace 

que tenga una amplia comunidad, por tanto tienes acceso a librerías codificación gratis. 

Tabla 3.3 Características Técnicas ESP32. 

Voltaje de operación 3.3 V 

Interfaz serial UART, I2C, SPI, Ethernet, I2S 

Numero de pines 30 

SRAM 520 KB 

Memoria Flash SPI 4 MB 

Interfaces UART 3 

Interfaces SPI 4 

Interfaces I2C 2 

• La mayoría de los pines GPIOx son utilizados con entrada o salida digital, el voltaje 

lógico es de 3.3 V, pin Vin para alimentar con 5V, pin 3V3 para salida de voltaje, 

pines ADC, DAC y para el caso se utilizan los pines TX, RX, SDA, SCL. 

Python. 

Es un lenguaje de programación versátil, utilizada en una enorme gama de aplicaciones 

como: desarrollo web, análisis de datos, ML, automatización, IA, entre otros. Entre sus 

ventajas esta que: tiene una gran colección de librerías, módulos, bibliotecas, útil para 

desarrollar diversos proyectos, además de que es un lenguaje eficiente y fácil de aprender. 

Micropython. 

Es un lenguaje de programación, el cual viene a ser una versión optimizada de Python para 

microcontroladores y sistemas embebidos de bajos recursos, su ventaja es que también posee 
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una gran cantidad de módulos para hardware, lo cual te permite interactuar directamente con 

los pines del microcontrolador, además de que es un lenguaje fácil de aprender. 

Thonny IDE. 

Es un editor de código, que soporta Python y Micropython, posee una interfaz de usuario 

sencilla y fácil de usar, además de que es una plataforma que no consume muchos recursos. 

VS Code IDE. 

Es un editor de código multi idioma que soporta diferentes lenguajes de programación entre 

ellos Python, es versátil y potente, además también es una plataforma ligera. 

2. Análisis de la Información. 

En base al fundamento teórico, en este apartado se analizó los principios que se tomaron en 

cuenta para diseñar e implementar el sistema. 

• Para obtener los datos crudos de los sensores MPU-6050 y GPS NEO-6M, se utiliza 

los módulos y librerías disponibles en repositorios y páginas web, los cuales 

ayudaron a interpretar y transformar estos datos a un formato global como es: 

acelerómetro 𝑚/𝑠2, Giroscopio rad/s, latitud-longitud DD, velocidad m/s y 

orientación en rad. 

• Para filtrar el ruido de los sensores de la MPU-6050 se utiliza un filtro pasa bajos 

exponencial, el cual me permite reducir el ruido, además este introduce poco retardo 

en la señal filtrada y supone un coste computacional bajo. 

• En el caso de las bias, se implementa una media móvil que va recoger N muestras, 

cuando el dispositivo este en absoluto reposo, es resultado se resta a las salidas de 

los datos de los sensores, mientras que cuando haya movimiento las bias se estimaron 

de manera suave, estos datos son enviados por cable hacia la PC. 

• En la Pc para fusionar los sensores, se utiliza el filtro extendido de Kalman (EKF), 

el cual tendrá con estados a la posición, velocidad y orientación, como entradas de 

control a la aceleración y orientación, como estados de medición a la posición, 

velocidad y orientación medidas directamente del GPS, el cual ayuda a corregir las 

estimaciones que hace el EKF. 

• El EKF trabaja conjuntamente con un modelo de ML Random Forest, el cual se 

utiliza porque no consume muchos recursos y permite encontrar patrones no lineales 

en los datos, sin necesidad de mucha parametrización, además es útil para corregir 

errores o sesgos que puede tener las estimaciones del EKF. 

• Para la etapa final se implementa una red neuronal simple LSTM, porque es capaz 

de aprender dependencias a largo plazo y patrones dinámicos en la trayectoria del 

vehículo, lo cual permite suavizar mejor la trayectoria aprovechando el historial de 
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los estados estimados, esta trayectoria será finalmente mostrado en una interfaz 

gráfica. 

3.3.2 Fase 2. 

1. Diseño e implementación: 

En esta fase se procedió a diseñar y construir cada etapa del sistema, el cual incluye 

programación para la IMU y GPS dentro de la ESP32, programación para el EKF, Random 

Forest y LSTM dentro de la PC y finalmente el diseño de una página web. 

  

Figura. 3.5. Arquitectura general del sistema. 

Diseño del dispositivo 

Para diseñar el dispositivo que se encarga de recolectar datos se utilizó Wokwi, un simulador 

de circuitos online que trabaja con micropython. En la (figura. 3.6), se aprecia la conexión 

de cada sensor con la ESP32, para el caso del GPS el pin TX al pin RX GPIO16 de la ESP32 

el pin RX del GPS al TX GPIO17 de la esp32, para la MPU el pin SCL al pin SCL GPIO22 

de la ESP32, el pin SDA al SDA GPIO21 de la ESP32, y finalmente VCC del GPS y MPU 

a 3.3 V de la ESP32, lo mismo sucede con GND, está configuración es útil a la hora de 

programar cada sensor, ya que se debe mencionar al puerto o pin que se va ocupar. 
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Figura. 3.6. Esquemático del dispositivo. 

Programación en la ESP32 

Para la parte de programación, la ESP32 es la encargada de controlar cada uno de los 

sensores, para eso se utilizó Thonny. 

GPS NEO-6M 

Se procedió a programar este módulo, en donde primeramente se debe saber que los datos 

que genera el receptor vienen en tramas NMEA, cada una contiene un tipo de información, 

para lo cual se consideró las tramas de tipo, GPRMC, GPGLL, GPVTG, GPGGA, GPGSA, 

GPGSV. La biblioteca que me permitió obtener e interpretar la información de cada una de 

estas tramas se obtuvo desde la página web [38], está biblioteca cargada contiene una clase 

llamada “MicropyGPS”, en donde se modificó ciertos parámetros en la función “latitude” y 

“longitude”, para que devuelvan la posición en formato grado-decimal (DD), además se 

modificó la función “compass_direction” para que devuelta la dirección en radianes, esta 

información la obtiene la ESP32 por la Interfaz serial UART. 

MPU-6050 

Para este módulo se carga la biblioteca que se encuentra en el repositorio de GitHub [39], la 

cual contiene la clase “MPU6050” necesaria para interpretar los datos del acelerómetro y 

giroscopio, dentro de esta clase también se realizaron ciertos cambios. Se modificó los 

rangos de medida y se induce por forzar un rango de +- 4G para el acelerómetro y +- 500 

grados para el giroscopio, esto con el fin de que la señal proveniente de los sensores no se 

sature cuando haya, maniobras fuertes o aceleraciones bruscas del vehículo, además se 

modificó las funciones “read_gyro_data” y “read_accel_data” para que devuelvan datos en 

rad/s y m/s2, esta información la obtiene la ESP32 por la interfaz serial I2C. 
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MAIN 

Es el script principal de donde se gestiona cada proceso y a cada sensor, aquí se procedió a 

instanciar a las dos clases mencionadas anteriormente, además aquí se encuentra alojado la 

lógica del filtro exponencial y la media móvil para estimar las bias de la IMU, estos se 

utilizaron para suavizar y mejor los datos. Los datos del receptor GPS, se muestrearon a 1 

Hz y se obtuvieron a través de la interfaz serial UART2 a 9600 baudios lo cual viene por 

defecto. Los datos de la IMU se muestrearon a 50 Hz y se obtuvieron a través de la Interfaz 

serial I2C a 100Khz por defecto. Finalmente, estos datos filtrados y suavizados se enviaron 

a través de la Interfaz UART/USB hacia la PC. 

 

Figura. 3.7. Fragmento de codificación para main. 

Programación en la PC. 

En la PC se codifican 5 scripts: el primero para el EKF, el segundo para entrenar el modelo 

Random Forest, el tercero para entrenar LSTM, el cuarto para mostrar la posición del 

vehículo en una interfaz gráfica y el último el cual es el script principal que se encarga de 

gestionar todos los scripts anteriores.  

EKF 

Este script la cual es una clase se programó en base al fundamento teórico, en donde se 

utilizó las ecuaciones y fases que el filtro ejecuta para estimar la posición. Como variables 

de estado tenemos x = [x, y, v, o], entonces comenzamos inicializando el tiempo que se 

ejecutara cada ciclo del filtro que viene dado por la frecuencia de muestreo de la IMU, 

también se inicializó las bias estimadas por el ESP32, de la misma manera se inicializó los 

factores de ajuste dinámico para corrección de bias. 

Pasamos a la fase de predicción, aquí es donde se predice o estima las variables de estado 

como: posición, velocidad, orientación, además se calculó la covarianza o incertidumbre del 
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modelo, para el caso la velocidad y orientación no son tan importantes como la posición del 

vehículo. Las entradas de control u = [a, w] se utilizaron para modelar el movimiento, para 

ellos se usaron las ecuaciones de movimiento de la cinemática. La predicción se realiza 

aproximadamente cada 20 ms frecuencia a la que la IMU muestrea, entonces como el filtro 

no puede trabajar con sistemas no lineales, lo que hiso es aproximar el modelo a una versión 

lineal a través de las series de Tylor de primer orden, además para el caso de las bias que se 

generan en el filtro, se realizó un proceso suave de corrección. 

Para la fase de corrección, igual que en la predicción se linealiza el modelo no lineal, 

entonces se tomó los valores de la variable de medición z = [x, y, v, o] para corregir los 

estados estimados en el proceso anterior, además se calculó la ganancia de Kalman, lo cual 

representa la incertidumbre del modelo y finalmente se actualiza la covarianza, esta fase se 

realiza aproximadamente cada 1000 ms frecuencia a la que muestrea el GPS. 

Estas fases de corrección y predicción se ejecutan continuamente a medida que los datos de 

la IMU lleguen, entonces la posición corregida vuelve a ser tomada como estado inicial del 

filtro, además cada fase trabaja con las matrices Q y R que representan la incertidumbre de 

predicción y de medición respectivamente. Estos datos estimados por Kalman pasan a ser 

procesados por el modelo Random Forest. 

 

Figura. 3.8. Fragmento de codificación para EKF. 
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Random Forest y LSTM. 

Para estos modelos de ML se programó en base a [40], [41], [42], [43]. Ramdon Forest y 

LSTM fueron utilizados como un complemento para mejorar las estimaciones que el EKF 

predecía, pero cada modelo cumple un papel diferente, en el caso de RF se utilizó con el 

objetivo de corregir errores o patrones no lineales que el EKF puede generar en las 

estimaciones hechas, esto se nota más cuando hay demasiado ruido entre las mediciones 

crudas de los sensores, entonces como RF no necesita de supuestos estadísticos puede 

aprender a predecir mejor la posición.  Para RF se colocó como variables de entrada:                     

x = [x_est, y_est, v_est, ort_est, accel_imu, gyro_imu, v_gps, ort_gps, num_sat, hdop], estas 

variables el modelo los utilizó para aprender patrones y combinaciones que los relaciona con 

la posición real y = [x_r, y_r] y de esa manera pude ajustar los umbrales en cada árbol de 

decisión para minimizar el error entre la predicción y la posición real durante el 

entrenamiento. 

El modelo de LSTM se lo utilizó con el objetivo de procesar datos temporales, entonces 

como entrada se colocó a la posición corregida por RF x = [x_rf, y_rf, v_est, 

ort_est, accel_imu, gyro_imu, v_gps, ort_gps, num_sat, hdop], con estos datos el modelo 

internamente ajusta sus pesos minimizando el error para que la secuencia de entrada 

produzca la posición final más cercana a la real y = [x_r, y_r]. En general LSTM usa la 

historia de posiciones para inferir la tendencia de movimiento suavizando la posición final 

en base a los patrones temporales aprendidos.  

 

Figura. 3.9. Fragmento de codificación para Random Forest. 
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Figura. 3.10. Fragmento de codificación para LSTM 

Interfaz gráfica. 

La interfaz gráfica se diseñó utilizando HTML y se optó por utilizar Openstrepmap, el cual 

me permite utilizar sus mapas digitales de forma gratuita, en general la interfaz es una página 

web que se aloja en un servidor local (PC), al cual se puede acceder a través de una dirección 

IP o localhost, esta interfaz está diseñada para observar la trayectoria del vehículo en tiempo 

real a través de un mapa geográfico y también en un plano x-y, para ello se hace uso de la 

librería leaflet que me ayuda a mostrar el mapa que me proporciona Openstrepmap, luego se 

ajusta diferentes parámetros como estilo, color, tipo de texto, tamaño entre otros de acuerdo 

al resultado que se espera obtener, posteriormente se llama a la función actualizarDatos() 

que me sirve para capturar la posición del vehículo para su posterior visualización, 

finalmente se integró un botón que sirve para ocultar o visualizar la trayectoria en un plano 

x-y según se requiera. 
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Figura. 3.11. Fragmento de codificación para la interfaz gráfica.  

Main. 

Este script se encarga de controlar todos los procesos como son: filtrado, predicción, 

corrección, envió de datos hacia la web y visualización. Primero instanciamos la clase EKF, 

importamos las bibliotecas necesarias para RF y LSTM y también cargamos los modelos 

entrenados anteriormente, luego recibimos los datos por serial/USB desde la ESP32 a 

115200 baudios por defecto, estos datos son procesados con ayuda de funciones y sentencias, 

para luego ser redirigidos hacia cada clase según corresponda, como se mencionó los datos 

de entrada para el EKF son provistas por la ESP32 esos datos son procesados por este filtro 

los cuales se convierten en las entradas para el modelo de RF y luego esos datos corregidos 

por dicho modelo se convierten en las entradas para el modelo LSTM. Finalmente se creó 

un servidor local utilizando Flask el cual me ayuda en el proceso de enviar las posiciones 

finales corregidas a una página web para su posterior visualización de posición y trayectoria 

del vehículo en tiempo real. 
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 Figura. 3.12. Fragmento de codificación para main. 

2. Pruebas de implementación: 

Se realizó el ensamblado del dispositivo que se encarga de recoger mediciones en un 

Protoboard para posteriormente ensamblarlo en un PCB, entonces se comenzó a verificar el 

funcionamiento correcto de cada etapa, primero se verificó el funcionamiento de la ESP32 

y sus sensores, los cuales respondían acorde a lo programado, recolectando posiciones, 

filtrando y suavizando esos datos para posteriormente ser enviados a la PC a través de cable 

USB, obteniendo el resultado esperado. 

 
Figura. 3.13. Ensamblado del dispositivo en el Protoboard y PCB. 
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En la PC se realizaron las pruebas preliminares de cada proceso por separado, entonces se 

verificó que el EKF estime las posiciones del vehículo las cuales tenían un cierto grado de 

error especialmente en curvas, además se verifico que la página web y el servidor local 

funcionen correctamente. Luego se procedió a recopilar bases de datos de diferentes 

trayectorias reales recorridas para entrenar cada modelo de ML implementado, cada modelo 

predecía con un cierto grado de error que se medió a través de la variable RMSE (raíz 

cuadrática media), mientras más pequeño sea este valor el modelo predecía de mejor manera, 

una vez entrenado los modelos de ML se procedió a verificar el funcionamiento en conjunto 

de toda la arquitectura del sistema obteniendo los resultados que se esperaba. 

 

Figura. 3.14. Trayectoria recorrida por el vehículo en tiempo real al realizar las pruebas de 

funcionamiento. 

3.3.3 Fase 3. 

1. Evaluación de resultados: 

Se llevó a cabo la recolección y análisis de datos obtenidos durante las pruebas de campo en 

entornos controlados, en donde se consideró implementar algunas mejoras a la etapa de 

estimación por EKF y los modelos de ML. Para entrenar los modelos de ML finalmente se 

escogió 11 trayectorias distintas conformando una base de 3205 datos totales. 

 
Figura. 3.15. Estructura general de la base de datos para entrenar los modelos de ML. 

2. Implementación de mejoras y ajustes. 
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Con base en los resultados se implementó algunas mejoras y ajustes para que el sistema 

funcione de mejor manera. Uno de los ajustes hechos fue para la etapa del EKF, al cual se le 

agrego una fase de ajuste de la matriz R de manera dinámica que me ayudó a detectar deriva 

de las mediciones de GPS y según esos datos la matriz R sube o baja su confianza en la 

medición, también se implementó un umbral que me sirve para detectar saltos grandes en las 

mediciones GPS y descartar automáticamente esa medición. De la misma manera se optó 

por optimar los modelos de ML, para el caso de RF se aumentó el número de estimaciones 

lo cual hace al modelo más estable, pero a la misma ves le cuesta más procesar datos, lo 

mismo sucede con LSTM al cual se le incremento más la dependencia temporal y se optó 

por usar una pausa de entrenamiento para que el modelo no sobreajuste los parámetros. 

 

Figura. 3.16. Diagrama de error real vs estimado en el modelo RF. 

 

Figura. 3.17. Error real vs estimado en el modelo LSTM 

Los dos anteriores gráficos fueron generadas luego de implementar los ajustes descritos en 

el apartado anterior, en las cuales se observa que los modelos predicen el error de posición 

de manera más óptima, ya que la mayoría de puntos se agrupan y se alinean más a la línea 

ideal, pero también se observan algunos puntos más alejados lo que indican que ubo eventos 

atípicos causados por una pérdida agresiva de señal, ruido en los datos o saltos temporales, 
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pero si se analiza la raíz cuadrática media (RMSE) de los modelos, se sabe que LSTM tiene 

un mejor comportamiento al momento de predecir los errores de posición y eso también se 

evidencia en su gráfico de comportamiento, ya que LSTM predijo errores con valores más 

pequeños, mientras que RF predijo errores con valores más grandes. A la final estos valores 

atípicos no influyeron fuertemente ya que mientras RMSE sea más pequeño el modelo en 

promedio predice mejor los errores con respecto a la posición real. 

3.4 Población y Muestra  

3.4.1 Población 

La población está determinada por los datos generados en la variable dependiente Margen 

de error mínimo, estos datos estarán conformados por la posición en la que se encuentra el 

vehículo. Además, la población contemplará tres grupos de datos que serán medidos por el 

sistema GPS tradicional y por el nuevo sistema propuesto.  

3.4.2 Muestra 

La muestra fue tomada aleatoriamente a partir de los datos obtenidos de la población. 

3.5 Operacionalización de las variables: 

Tabla 3.4. Variables dependientes e Independientes 

Variables Tipo Descripción Indicador  Instrumento 

de medición 

Margen de 

error 

mínimo  

Cuantitativa 

Dependiente 

Error entre la ubicación 

real y la medida. 

Valor en 

metros 

Observación 

Tipo de 

sistema 

Cualitativa   

Independiente 

El tipo de sistema 

utilizado para 

determinar la posición.                                         

Tipo Observación 

 

3.6 Hipótesis  

El sistema implementado utilizando filtrado de posiciones geolocalizadas y modelos de 

Machine Learning (RF y LSTM) logra optimizar el posicionamiento del vehículo, 

comparado con el sistema GPS tradicional. 

• Hipótesis nula (𝐻0). 

La implementación del sistema utilizando modelos de ML y filtrado de posiciones 

geolocalizadas no mejora el rendimiento de posicionamiento del vehículo, comparado con 

el sistema GPS tradicional. 

• Hipótesis alternativa (𝐻1). 
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La implementación del sistema utilizando modelos de ML y filtrado de posiciones 

geolocalizadas mejora el rendimiento de posicionamiento del vehículo, comparado con el 

sistema GPS tradicional. 
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CAPÍTULO IV 

RESULTADOS Y DISCUSIÓN 

Para validar el funcionamiento del sistema se realizaron pruebas de campo en entornos reales 

pero controlados, es decir se sigo una trayectoria predefinida a una velocidad constante 

comparando el error que existe entre la posición real y la estimada por el sistema GPS 

tradicional y el sistema implementado. Debido a la usencia de receptores por corrección de 

cinemática en tiempo real (RTK), se usó un GPS con soporte de múltiples costelaciones de 

doble banda integrado en un móvil, como referencia de posición real confiable para evaluar 

la precisión de estimación de posicionamiento del vehículo utilizando el sistema GPS 

tradicional y el sistema implementado utilizando filtrado de posiciones geolocalizadas y los 

modelos de Machine Learning RF y LSTM. 

4.1 Modelo de regresión lineal. 

Tabla. 4.5. Resumen de modelo de estimación lineal para el GPS. 

Variable dependiente: (Latitud, Longitud) Real   

Variable independiente: (Latitud, Longitud) GPS 

R cuadrado Sig. (p) 

0,992 0,001 

0,997 0,001 

 

 
a) Latitud 
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b) Longitud 

Figura. 4.18. Posición real vs estimada por el GPS tradicional: a) Latitud, b) Longitud. 

Para este primer análisis, las estimaciones son hechas por el GPS tradicional, se evidencia 

que según el coeficiente de determinación 𝑅2 indica que el GPS es capaz de estimar la 

posición con más del 92% de precisión con respecto a la real. 

Gracias al gráfico de posición se evidencia que las posiciones GPS para esta trayectoria están 

casi alineadas con respecto a la línea diagonal con algunas posiciones dispersas, esto a la 

final indica que el GPS estimo la posición del vehículo con una precisión moderada frente a 

la real. 

Tabla. 4.6. Resumen de modelo de estimación lineal para RF. 

Variable dependiente: (Latitud, Longitud) Real   

Variable independiente: (Latitud, Longitud) RF 

R cuadrado Sig. (p) 

0,995 0,001 

0,998 0,001 
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a) Latitud 

 

 

b) Longitud 

Figura. 4.19. Posición real vs estimada por el modelo RF: a) Latitud, b) Longitud. 

Para este segundo análisis, las estimaciones son hechas por el sistema propuesto utilizando 

el modelo RF, donde el coeficiente de determinación 𝑅2 indica que RF es capaz de estimar 

la posición con más del 95% de precisión con respecto a la real, además por el gráfico de 

posición se evidencia que las estimaciones para esa trayectoria están un poco más alineadas 

con respecto a la línea diagonal, esto a la final indica que RF tiene mejor comportamiento a 

la hora de estimar la posición en comparación con el GPS. 
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Tabla. 4.7. Resumen de modelo de estimación lineal para LSTM. 

Variable dependiente: (Latitud, Longitud) Real   

Variable independiente: (Latitud, Longitud) LSTM 

R cuadrado Sig. (p) 

0,999 0,001 

0,998 0,001 

 

a) Latitud 

 

b) Longitud 

Figura. 4.20. Posición real vs estimada por el modelo LSTM: a) Latitud, b) Longitud. 
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Para el tercer análisis, las estimaciones son hechas por el sistema propuesto utilizando el 

modelo LSTM, donde el coeficiente de determinación 𝑅2 indica que LSTM es capaz de 

estimar la posición con más del 98% de precisión con respecto a la real, además por el gráfico 

de posición se evidencia que las estimaciones para esa trayectoria están mucho más alineadas 

con respecto a la línea diagonal, esto a la final indica que LSTM tiene un mejor 

comportamiento al estimar la posición del vehículo en comparación con el GPS y RF. 

En comparación durante el recorrido de la trayectoria, aunque el GPS tiene un 𝑅2 alto, no 

llega a estar al mismo nivel que el sistema utilizando los dos modelos de ML, ya que el 

sistema implementado demuestra tener un mejor rendimiento al estimar la posición. 

Tabla. 4.8. Resumen estadístico para GPS, RF y LSTM. 

 Estadístico Error estándar 

E_GPS Media 5,99860 0,334898 

Mediana 6,64714  

Varianza 14,244  

Desv. estándar 3,774114  

E_RF Media 4,64594 0,262658 

Mediana 3,93227  

Varianza 8,762  

Desv. estándar 2,960000  

E_LSTM Media 2,81619 0,200097 

Mediana 2,12237  

Varianza 5,085  

Desv. estándar 2,254976  

En este caso se va analizar el error euclidiano cometido por cada sistema, este error 

representa cuanta diferencia en metros hay entre la posición real del vehículo y la estimada, 

esto nos indica que tan precisas son las estimaciones realizadas por el sistema con respecto 

a los valores reales, por lo cual los datos de posición fueron transformados a coordenadas 

(x,y) en metros para un mejor análisis. 

Las estimaciones hechas por el GPS convencional tienen una mediana 6,64714 m, este valor 

es alto e indica que las estimaciones no son muy precisas, esto se evidencia también en la 

desviación estándar de 3,774114 lo cual indica que las estimaciones están muy dispersas, lo 

que indica que hay casos en que el GPS estima bien la posición mientras en otros casos no, 

por lo cual las estimaciones son menos consistentes, también otra variable a considerar es el 

error estándar 0,334898 indica que tan precisa es la media calculada con respecto al valor 

real, pal caso tenemos un valor pequeño. 

Las estimaciones hechas por el sistema propuesto utilizando RF tienen una mediana de error 

de 3,93227 m, este valor es menor al del GPS, pero sigue siendo un error considerable, pal 

caso la desviación estándar es 2,960000 con un error estándar de 0,262658, esto indica que 
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RF tiene menos errores al estimar la posición que el GPS y también sus estimaciones están 

menos dispersas y son consistentes. 

Las estimaciones hechas por el sistema utilizando LSTM tienen una mediana de error de 

2,12237 m, un valor menor al GPS y RF, tiene una desviación estándar de 2,254976 y un 

error estándar de 0,200097, estos datos indican que LSTM tiene menos errores al estimar la 

posición y que sus estimaciones son más consistentes que los anteriores modelos. 

En general durante el recorrido de la trayectoria se optó por analizar la mediana de error ya 

que los datos tienden a no seguir una distribución normal, lo cual se analizara y comprobará 

más adelante, a la final la mediana representa un punto central, en donde el 50% de errores 

serán mayores o iguales que la mediana y el otro 50% serán iguales o menores de la misma, 

por tanto el sistema utilizando LSTM con una mediana menor que el resto estima las 

posiciones del vehículo con menos errores, esto también se refleja en sus valores de media, 

desviación estándar y error estándar, los cuales son más pequeños que el resto, por tanto, el 

sistema implementado demuestra ser más confiable, lo que sugiere que la media de error  

cometido por LSTM es más confiable por tanto el rendimiento general del sistema es mejor 

que el sistema GPS y RF.  

 

a) GPS 
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b) RF 

 

c) LSTM 

Figura. 4.21. Distribución de errores: a) GPS, b) RF y c) LSTM. 

En estas figuras se evidencian los errores cometidos por cada sistema al estimar la posición 

y con qué frecuencia se produjeron dichos errores, entonces como se evidencia el GPS 

convencional comete errores grandes y pequeños con mayor frecuencia, mientras que RF 

también comete errores grandes pero con menos frecuencia y errores pequeños con mayor 

frecuencia, pal caso de LSTM comete errores pequeños con más frecuencia y aunque 

también comete errores grande lo hace con mucha menos frecuencia que el resto 
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evidenciando que el sistema propuesto usando el modelo LSTM generalmente es más 

confiable, ya que sus estimaciones de posición del vehículo están más cercanas a los valores 

reales. 

 

Figura. 4.22. Comparación de errores para los grupos (GPS, RF y LSTM). 

Este diagrama de cajas representa la distribución de errores cometidos al estimar la posición 

del vehículo hecha por cada modelo, entonces se evidencia que GPS tiene una dispersión de 

errores bastante grande esto se observa por el ancho de su caja con una mediana bastante 

alta de 6,64714 m, mientras que RF con una mediana de 3,93227 m cuenta con una 

dispersión de errores mucho más reducido que GPS, pero con la presencia de valores atípicos 

que indica que hay casos en donde este modelo realiza predicciones con un error mucho 

mayor al medio, para el caso de LSTM con una mediana de 2,12237 m tenemos una 

distribución de errores mucho menor que el GPS y RF, pero también con presencia de valores 

atípicos que son mucho menos frecuentes con respecto al modelo de RF.  

En general si comparamos los tres modelos, GPS presenta errores muy grandes de manera 

habitual, lo que indica que tiene una baja precisión y gran variabilidad de errores, mientras 

que el sistema propuesto usando los modelos de ML evidencian ser más estables ya que 

logran reducir el error medio en gran medida aunque cuentan con valores atípicos, estos 

valores fueron generalmente ocasionados por perdida agresiva de la señal GPS y también 

posiblemente porque los modelos de ML no generalizan correctamente esa trayectoria, es 

decir les falta más datos de entrenamiento que les ayude a describir y predecir mejor la 

trayectoria, estos errores atípicos presentes se mantienen dentro del rango normal de errores 

del GPS lo que significa que incluso dichos errores no afectan directamente al 

comportamiento general del sistema, ya que su promedio de error sigue estando muy por 

debajo del GPS, entonces a la final el sistema usando el modelo LSTM claramente tiene 

mejor precisión al momento de estimar la posición del vehículo, ya que cuenta con errores 

más pequeños y consistentes que el resto de modelos, además de que este modelo logra 

reducir en gran medida los errores atípicos, lo que demuestra ser más robusto. 
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Figura. 4.23. Trayectoria recorrida para evaluar los resultados. 

4.2 Test de Normalidad. 

Con el fin de determinar que prueba estadística se ajusta para analizar los datos obtenidos se 

evaluó la normalidad de los datos, entonces se optó por trabajar con (n = 127) dado el tamaño 

de los datos (n ≥ 50) se aplicó la prueba de Kolmogorov–Smirnov como método de 

referencia para saber si estos conjuntos de datos siguen una distribución normal, este enfoque 

ayuda a definir si se puede usar pruebas paramétricas o no paramétricas. 

Hipótesis: 

• Hipótesis nula (𝐻0). 

Los datos de los grupos analizados siguen una distribución normal. 

• Hipótesis alternativa (𝐻1). 

Los datos de los grupos analizados no siguen una distribución normal. 

Tabla. 4.9. Prueba de normalidad. 

Grupo Sig (p). P-valor 

E_GPS 0,001 0,001 es menor a 0,05 

E_RF 0,001 0,001 es menor a 0,05 

E_LSTM 0,001 0,001 es menor a 0,05 
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Evaluado el Test de Normalidad se rechaza la hipótesis nula y se acepta la hipótesis 

alternativa con un nivel de significancia = 0,05, lo que sugiere que los grupos de datos 

analizados no siguen una distribución normal con un nivel de confianza del 95%. 

4.3 Test de Friedman. 

Se realizó un test de Friedman puesto que los grupos son relacionados y no siguen una 

distribución normal, entonces se tomó la mediana de error de posicionamiento de cada grupo 

como referencia para evaluar cuál de ellos tuvo un mejor rendimiento al estimar la posición 

del vehículo. 

•         Hipótesis nula (𝐻0). 

Las medianas de error de posicionamiento del sistema GPS tradicional y el sistema 

implementado utilizando modelos de ML y filtrado de posiciones geolocalizadas son 

significativamente iguales. 

•         Hipótesis alternativa (𝐻1). 

Las medianas de error de posicionamiento del sistema GPS tradicional y el sistema 

implementado utilizando modelos de ML y filtrado de posiciones geolocalizadas son 

significativamente diferentes. 

Tabla. 4.10. Test de Friedman. 

N 127 

Chi-cuadrado 76,621 

gl 2 

Sig. Asintótica. 0,001 

 

Evaluado el Test de Friedman se rechaza la hipótesis nula y se acepta la hipótesis alternativa 

con un nivel de significancia = 0,05, lo que sugiere que las medianas de los tres grupos son 

significativamente diferentes con un 95% de confianza. 

4.4 Comparaciones Post-Hoc 

Tabla. 4.11. Comparaciones por pares. 

Grupos Sig (p) Sig. ajustada 

E_LSTM-E_RF 0,001 0,000 

E_LSTM-E_GPS 0,001 0,000 

E_RF-E_GPS 0,013 0,040 
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Figura. 4.24. Comparaciones por parejas (GPS, RF y LSTM). 

Evaluado las comparaciones Post-Hoc, en donde los grupos de errores se comparan uno a 

uno, nos demuestra que sin excepción cada grupo tiene mediana de errores distintos, pero 

se observa que entre los pares GPS y RF esa diferencia es más pequeña con p = 0,013 

mientras que en el resto de pares la diferencia es más grande con p = 0,001, lo mismo se 

evidencia en el gráfico de comparaciones por parejas, en donde LSTM tiene un rango de 

error medio más bajo con 1,40, seguido de RF con 2,15 y por ultimo GPS con 2,46, por 

tanto el sistema implementado utilizando LSTM tiene un rendimiento significativamente 

mejor que RF y GPS. 

4.4.1 Discusión Final. 

El estudio estadístico realizado, demuestra que el sistema implementado para optimizar el 

posicionamiento del vehículo mediante filtrado de posiciones geolocalizadas y Machine 

Learning logra tener un mejor rendimiento al estimar la posición frente al GPS tradicional 

con una confianza del 95%, esto se evidencia en sus variables estadísticas como: media, 

mediana y desviación estándar que demuestran que el sistema utilizando los modelos de ML 

reducen progresivamente el error de posicionamiento y su variabilidad. 

El análisis comparativo demuestra que LSTM tiene un rango de errores menor que el resto, 

logrando ser más confiable y estable, lo que deja al modelo RF en segundo lugar, por tanto 

LSTM tiene un mejor desempeño proporcionando estimaciones más estables gracias a su 

aprendizaje secuencial demostrando ser robusto frente a datos ruidosos, estos resultados 

validan la hipótesis de que el sistema implementado usando filtrado y ML optimizan de 

manera significativa la precisión y estabilidad de posicionamiento vehicular frente al GPS 

tradicional. 
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CAPÍTULO V 

CONCLUSIONES Y RECOMENDACIONES 

5.1 Conclusiones 

Este proyecto de investigación implementó un sistema de posicionamiento usando ML y 

filtrado de posiciones geolocalizadas para optimizar el posicionamiento de un vehículo, por 

lo cual se diseñó una página web que permitió mostrar los resultados de posición y 

trayectoria que siguió el vehículo en tiempo real. 

La implementación del sistema usando el modelo LSTM redujo de manera considerable el 

error de posicionamiento vehicular con respecto al GPS tradicional, donde LSTM cuenta 

con un error central de 2,12237m, frente a 3,93227m de RF y 6,64714m del GPS 

confirmando que el uso del EKF y ML permite optimizar el posicionamiento vehicular y 

mejorar el rendimiento del sistema asta en un 68% con respecto al GPS tradicional. 

El modelo LSTM al ser más robusto frente a condiciones externas como ruido o perdida de 

señal satelital muestra tener una menor dispersión de errores, por tanto, sus estimaciones 

son más estables y confiables. 

La combinación de EKF y los modelos de ML demostraron ser una combinación efectiva 

y robusta al optimizar el posicionamiento vehicular, ya que especialmente LSTM tiene la 

capacidad de modelar patrones temporales y capturar errores que el filtro de Kalman no 

puede. 

Es importante destacar que la referencia de posición real fue tomada de un sistema GNSS 

de doble banda, cuyo margen de error aproximado es de 1.5m [2], esto implica que los 

errores de posición reportados tanto por el GPS tradicional y el sistema implementado 

incluyan un pequeño valor de incertidumbre, ya que el error reportado no podrá ser menor 

al del sistema de referencia real, por tanto el error final reportado por LSTM variaría 

ligeramente, esto no afecta al resultado final, ya que la diferencia entre estos errores es 

grande, por tanto la mejora sigue siendo estadísticamente significativa. 
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5.2 Recomendaciones 

Se recomienda la fusión de sensores con técnicas de filtrado como el EKF y ML para 

aprovechar los beneficios que cada tecnología ofrece, ya que ayudan a optimizar la precisión 

de estimación vehicular en tiempo real, incluyo se podría utilizar técnicas de filtrado y ML 

más robustas con lo cual posiblemente se conseguiría mejores resultados, pero sacrificando 

la parte de costo computacional el cual sería más elevado. 

Es recomendable estudiar cómo afectan las condiciones del entorno a la calidad de las 

mediciones, esto permite implementar ajustes y calibraciones tanto a la etapa de recolección 

de datos, filtrado y para la etapa de estimación con ML, logrando una mejor respuesta frente 

a estas condiciones, por ende, los resultados serán más confiables. 

Se recomienda tener una dase de entrenamiento variada para los modelos de ML como 

ejemplo: contar con rutas y condiciones ambientales diferentes, para que estos modelos 

aprendan a generalizar y estimar mejor una trayectoria, con esto se logra que las estimaciones 

sean más precisas y consistentes. 

Para futuros estudios se recomienda, tomar como referencia de posición real de alta precisión 

al sistema RTK, ya que este ofrece estimaciones con errores a nivel de cm, por ende, se 

podría contar con una posición de referencia sin incertidumbre, lo cual aria que el error 

reportado sea más fiable, por otro lado se podría adquirir sensores más robustos, los cuales 

ayudarían a que las estimaciones finales sean más precisas, pero todas estas consideraciones 

incrementarían considerablemente es costo total del sistema. 
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ANEXOS 

Anexo 1: Dispositivo ensamblado.   

 

 
 

Anexo 2: Pruebas iniciales del funcionamiento del sistema. 
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Anexo 3: Calibración de los sensores. 

 
 

Anexo 4: Recopilación de información para armar la base de datos. 
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Anexo 5: Pruebas de campo. 

 
 

Anexo 6: Seguimiento de vehículo en tiempo real. 
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Anexo 7: Código para GPS NEO-6M. 

 
Anexo 8: Código para MPU 6050. 
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Anexo 9: Código para calibración de sensores. 

 
 

Anexo 10: Código para la ESP32 
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Anexo 11: Código para el modelo Random Forest. 

 
 

Anexo 12: Código para el modelo LSTM. 
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Anexo 13: Código para el Filtro Extendido de Kalman. 

 
 

Anexo 14: Código para el diseño de la página web. 
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Anexo 15: Código principal del sistema. 

 

 
 


