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RESUMEN

El siguiente trabajo de investigacion se enfoca en implementar un sistema de
posicionamiento que integre IMU/GPS (Unidad de medida Inercial/Sistema de
Posicionamiento Global) con ayuda de fusion de sensores y ML (Maching Learning). Este
sistema recopila datos del GPS e IMU, los cuales son tecnologias de bajo costo.

La fusion de sensores es implementada usando el algoritmo de EKF (Filtro extendido de
Kalman), este algoritmo es evaluado usando datos reales recopilados por la unidad de
medida Inercial (MPUG6050) y el receptor GPS NEO-6M, estos datos previamente estimados
por el Filtro pasan a ser procesados por los modelos Random Forest y LSTM para suavizar
y optimizar mejor las estimaciones. Los resultados obtenidos de este sistema muestran tener
una mejor estimacion de posicion de un vehiculo.

Palabras claves: GPS, ML, EFK, optimizar, posicionamiento.



ABSTRACT

The following research work focuses on implementing a positioning system that integrates
IMU/GPS (Inertial Measurement Unit/Global Positioning System) using sensor fusion and ML
(Machine Learning). This system collects data from GPS and IMU, which are low-cost

technologies.

Sensor fusion is implemented using the EKF (Extended Kalman Filter). This algorithm is
evaluated using real data collected by the Inertial Measurement Unit (MPU6050) and the NEO-
6M GPS receiver. These data, previously estimated by the Filter, are processed by the Random
Forest and LSTM models to smooth and better optimize the estimates. The results from this system

show better vehicle position estimation.

Keywords: GPS, ML, EFK, optimize, positioning.
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CAPITULO |

1.1 Introduccion

En los altimos afos, el Sistema de posicionamiento global (GPS) se ha considera como uno
de los méas importantes avances tecnoldgicos empleados en la navegacion y localizacion.
Durante varios afios, el territorio ecuatoriano ha empleado tecnologia GPS en diversos
sectores como: vehicular, industrial, policial y militar lo cual ha contribuido a optimizar
operativos de patrullaje, logistica, entre otras aplicaciones [1].

Un receptor GPS necesita un minimo de 4 satélites para determinar su posicion actual con
un error inferior a 20 m. En términos generales el receptor GPS en condiciones ideales
proporciona una precision aproximada de 2 a 5 m [2], pero esta precision disminuye por la
influencia de varios factores como: malas condiciones climaticas, areas urbanas o donde
haya mala cobertura satelital, esto debido a que las sefiales GPS pueden llegar a rebotar en
arboles, montafas, grandes edificios, etc. [3], esto provoca que estas sefiales lleguen
distorsionadas haciendo que el receptor no pueda determinar correctamente la posicion.

En la actualidad la precision en la geolocalizacion se ha convertido en un componente
esencial para una variedad de aplicaciones criticas que van desde la navegacién autbnoma,
donde la exactitud milimétrica juega un papel fundamental. Asimismo, en la seguridad vial,
agricultura de precision, aplicaciones comerciales, robética, seguimiento y monitoreo de
vehiculos, activos, animales, entre otros.

La navegacion integrada como tecnologia, permite combinar datos de GPS con otros
sistemas como son los inerciales para corregir errores y mejorar la exactitud de la posicién,
incorporando técnicas de procesamiento de sefiales avanzadas y algoritmos. Varios autores
han contribuido al desarrollo de algoritmos de navegacion integrada, con un conjunto
minimo de sensores para mantener las condiciones de bajo costo [4].

Con el presente proyecto de investigacion se pretende dar una opcidon econémica y
tecnoldgica en cuanto a los sistemas de posicionamiento, lo cual se consigue mediante la
integracion de técnicas avanzadas de Machine Learning y filtrado de posiciones
geolocalizadas. La combinacion de estas metodologias no solo promete superar las
limitaciones tradicionales de los sistemas GPS como: la precision limitada bajo malas
condiciones climaticas, en entornos urbanos densos o areas con obstrucciones, sino que
también busca establecer fiabilidad en la determinacion de la ubicacion.
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1.2 Planteamiento del Problema

El posicionamiento de vehiculos es un elemento clave para numerosos sistemas de asistencia
al conductor, sistemas de transporte inteligente, sistemas de seguridad, entre otros. En
funcion de estas diversas aplicaciones, se requieren mayores 0 menores niveles de fiabilidad
y precision en la estimacion del posicionamiento [5].

El GPS en condiciones ideales no es capaz de proporcionar informacion completamente
aceptable y continua sobre la posicion de un cuerpo en movimiento y presentan varios
desafios con respecto a la localizacion que dependen del entorno local. En presencia de
interferencia electromagnética, ruido, problemas de sincronizacion, malas condiciones
climéticas, zonas urbanas densas, entornos indoor, las sefiales GPS pueden llegar a
distorsionarse agresivamente generando errores en la estimacion de la posicion.

A pesar de que los sistemas GPS convencionales proporcionan ubicaciones con un margen
de error aceptable, existen limitaciones en términos de precision y exactitud, ya que una
ubicacion imprecisa 0 una estimacién errénea puede llegar a afectar negativamente la
eficiencia operativa y la seguridad de un vehiculo. Para abordar esta problematica, se
propone implementar un sistema que combine técnicas de Machine Learning con métodos
de filtrado de posiciones para optimizar la estimacion de posicion y fiabilidad de la
localizacion de un vehiculo.

1.3 Justificacion

Las sefiales GPS aun bajo condiciones ideales son vulnerables a diversos factores fisicos y
ambientales que afectan su fiabilidad, en consecuencia, el receptor entrega coordenadas con
errores significativos, por lo cual la implementacion de un sistema que optimice la
estimacion de posicion de un vehiculo se vuelve fundamental para los sistemas de
navegacion.

La aplicacién de algoritmos de Machine Learning pueden corregir errores sistematicos y
optimizar las estimaciones de posicion, aprovechando patrones y correlaciones en los datos
histéricos de posicionamiento. Ademas, el filtro de Kalman o el uso de técnicas mas
avanzadas de fusién de sensores permiten integrar datos de multiples fuentes, logrando filtrar
el ruido que provocan estos sensores como: GPS e IMU. El trabajo conjunto de estos
sistemas nos puede ayudar a obtener estimaciones mas fiables y robustas.

Mediante el presente proyecto de investigacion se busca desarrollar una alternativa
econdmica en cuanto a sistemas de navegacion se refiere, esto abre nuevas oportunidades
para aplicaciones vehiculares comerciales rentables, por tal motivo la implementacion de
este sistema proporcionara un dispositivo que sea fiable y que integre tecnologia de bajo
costo.
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1.4 Objetivos

141

Objetivo General

Implementar un sistema para optimizar el posicionamiento de un vehiculo mediante Machine
Learning y filtrado de posiciones geolocalizadas.

1.4.2

Objetivos Especificos

Estudiar los entornos de desarrollo y sistemas implicados en el vehiculo para la
estimacion del posicionamiento.

Implementar técnicas de fusion de algoritmos de estimacion y el sistema de
localizacion sobre un medio de transporte utilizando algoritmos de inteligencia
artificial.

Disefar una interfaz grafica para monitorear la ubicacion del vehiculo en tiempo real.

Evaluar el funcionamiento del sistema mediante pruebas de campo y analisis
estadistico.

17



CAPITULO ILI.
MARCO TEORICO

2.1 Estado del Arte.

El posicionamiento por GPS en zonas urbanas densamente pobladas puede ser un reto,
principalmente debido al bloqueo de sefiales por edificios o tuneles. En el caso de los
vehiculos autbnomos se necesitan de contar con un posicionamiento extremadamente
preciso para trazar rutas y moverse por carreteras, especialmente en vias complejas como
intersecciones y autopistas, por lo que se propone una estructura de localizacion para zonas
urbanas densamente pobladas que incluye tanto un algoritmo robusto de deteccion de
errores, capaz de evaluar el rango de confianza de cada estimacién, como una precisa técnica
de localizacion alternativa basada en un algoritmo de map matching de bajo coste
computacional. Finalmente se demuestra que esta propuesta no solo se centra en detectar
correctamente los errores a lo largo de la trayectoria, sino que ademas acota el efecto de
dichos errores mejorando la precision del sistema [6].

Por otro lado, los INS son disefiados para ayudar a la navegacion, ya que proporciona una
posicion estimada del vehiculo, entonces se implementd un sistema de navegacion de bajo
costo hecho con filtros de Kalman, esta solucion se monté sobre un automoévil de juguete y
el navegador se implemento6 por medio de Arduino, logrando tener una mejora significativa
en la precision de los sensores utilizados para hallar la posicion del automovil, la posicion
se determind por medio de las variables de distancia y los angulos Roll, Pitch, Yaw o RPY.
Para validar los resultados obtenidos por el algoritmo de Kalman, se realizaron pruebas
especificas en el procesamiento con registros y graficas [7].

Ante las carencias de cobertura de posicionamiento de GPS y de otros sistemas de
radiofrecuencia en entornos hostiles, como tlneles, aeropuertos o almacenes, se propone
estudiar el rango de frecuencias de la luz visible para el posicionamiento (VLP). Se plantea
asi emplear VLP en estos entornos hostiles, donde tanto el comportamiento como guia de
onda, la presencia de metales o las restricciones del uso de la radiofrecuencia hacen que
utilizar VLP sea una buena solucion. Finalmente, mediante pruebas de campo se ha
demostrado que es posible implementar un sistema de geolocalizacion o de posicionamiento
en lugares hostiles para la radiofrecuencia, pudiendo posicionar un vehiculo de manera mas
confiable en dichos entornos [8].

A nivel internacional en la investigacion realizada se evalud un sistema de navegacién
inercial GNSS/IMU en automocion para sistemas de automatizaciéon a la conduccion, en
donde para integrar las soluciones de los sistemas satelital de navegacion global (GNSS) e
INS se combino en un FK para obtener la solucion del sistema integrado, el FK se utilizd
para estimar los errores INS. En entornos urbanos y montafiosos las pérdidas de precision
fueron notables, alcanzando hasta los 40 metros y 7 metros respectivamente, mientras que
en un entorno de cielo abierto se alcanzan los 0.2 metros. Ademas, se observé las pérdidas
de precision a pesar de contar con un numero Optimo de satélites, siendo destacable que las
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precisiones no superan los 0.05 m de error. Los resultados obtenidos destacan la influencia
crucial del GNSS en la precision de la solucion de posicionamiento [9].

La Inteligencia Artificial y el Machine Learning son fundamentales para el desarrollo de
vehiculos autbnomos, entonces se apuesta por utilizar redes neuronales para procesar datos
de multiples sensores lo que permite a los vehiculos autbnomos tomar decisiones informadas
en tiempo real. Como punto de partida es indispensable la optimizacion del posicionamiento
de un vehiculo, lo cual contribuye a la efectividad de los sistemas de conduccion auténoma,
mejorando la navegacion y la respuesta a situaciones del entorno, el resultado de esta
implementacion se refleja en la reduccidn de accidentes en pruebas de vehiculos autbnomos
y la mejora en la eficiencia del trafico en entornos urbanos [10].

Los vehiculos autonomos prometen numerosos beneficios para el trafico vehicular, incluida
una mayor capacidad vial y flujo de trafico, menos accidentes como resultado de los sistemas
de prevencidn de colisiones, en este contexto se propone implementar un sistema de visién
artificial basado en redes convolucionales para el correcto posicionamiento de un vehiculo
en un carril compuesto por dos modulos. La primera, de procesamiento de imagenes que son
capturadas por un sensor optico por medio de inteligencia artificial aplicando OpenCV,
Tensorflow y Keras. El segundo modulo se encarga del control de los motores y la
interpretacion de los datos obtenidos por el primer médulo de procesamiento, los resultados
obtenidos apuntan a el sistema de deteccién de carril esta dentro de los rangos precisos de
interpretacion para evitar salirse de los limites trazados en un carril a escala, la precision de
entendimiento de la red neuronal llega a un 98.54%. Se concluye que el prototipo de sistema
permite una conduccion estable de un vehiculo y de interpretacion de imagenes en 6ptimas
condiciones de iluminacion [11].

En otro &mbito se planted un modelo de prediccion de tiempos de traslado mediante el
modelo de machine Learning de Random Forest programado en el lenguaje de programacion
Python, esto utilizando GPS de vehiculos registrados en la plataforma de SimpliRoute y de
Transantiago para complementar zonas faltantes en el mapa. En primer lugar, se calculd la
velocidad promedio de movimiento de los vehiculos, para luego obtener un algoritmo de
calculo de tiempos histdricos de traslado. Con los valores historicos obtenidos se realiz6 un
modelo de entrenamiento de Random Forest que realiza una prediccion de los tiempos en
base a datos historicos. Dicha prediccion se realiza con un 96.88 % de precision calculado,
utilizando la medida de error porcentual MAPE. Para asegurar que la prediccion obtenida
sea certera se realizé una comparacion con los valores obtenidos de una llamada a la API de
Google Maps, obteniendo como resultado que la prediccion calculada por el modelo de
Random Forest tiene una diferencia de +5 minutos con los obtenidos por Google Maps [12].

Uno de los principales puntos que se debe resolver es el mejorar la propia localizacion del
vehiculo dentro de su entorno, para ello se propone una técnica basada en la fusion del
posicionamiento absoluto en un mapa del vehiculo a partir de sensores de vision (Visual-
SLAM) o LIiDAR (LiDAR-SLAM) en conjunto con el Aprendizaje profundo o Deep
Learning para mejorar el posicionamiento de vehiculos autébnomos, el resultado obtenido
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consigue una consistencia mayor en la estimacion de la posicion y una mejora notable en la
calidad de la misma [13].

Los sistemas de posicionamiento son utilizados en diferentes aplicaciones, uno de ellos es
en la robdtica, en donde se propone utilizar dicho sistema para la localizacion de un robot
autonomo en superficies exteriores, como resultado el autor tuvo diferentes problemas y
desafios con respecto a la capacidad de procesamiento que se requiere para trabajar con
inteligencia artificial y con el entorno exterior que alberga multitud de interferencias y malas
condiciones ambientales [14].

A nivel internacional también se propone mejorar la precision del posicionamiento en
entornos afectados por multipath, mediante la aplicacion de técnicas avanzadas de
inteligencia artificial y machine Learning, en donde se realiz6 un estudio exhaustivo sobre
las medidas GNSS, explorando diversas caracteristicas como la elevacion, los residuos, el
SNR (Signal-to-Noise Ratio), el CRC (Cyclic Redundancy Check) y el CMC (Code
Multipath Correction). Estas caracteristicas se agrupan y se comparan utilizando dos
enfoques: el modelo K-Means y el uso de mapas autoorganizados, como resultado se ha
observado una reduccion en los picos de error durante el calculo de posicionamiento [15].

La aplicacion de filtros de Kalman para mejorar el posicionamiento de un objeto se ha vuelto
una de las alternativas utilizadas en la conduccion autdnoma, como se menciona en el estudio
se determind la orientacion de un vehiculo no tripulado mediante el sistema GNSS, con lo
cual se concluyd que se necesita aplicar rutinas de filtrado de Kalman para mejorar el error
estatico y asi conseguir mayor precision en la orientacion y trayectoria [16]. Otro trabajo se
baso en este mismo principio anterior, pero aplicando el filtrado de Kalman a un robot
auténomo, con lo cual se consiguid describir su movimiento y planificar su trayectoria con
mejores resultados [17].

Entre las mas recientes investigaciones hechas para mejorar la ubicacion precisa y confiable
en interiores, se propone analizar y mejorar la tecnologia de posicionamiento por Ultra
Wideband (UWB), la cual se destaca por su alta precision, bajo consumo de energia y
resistencia a interferencias. En este trabajo, la tecnologia UWB emplea el algoritmo TDoA
(diferencia de tiempo de llegada) y ToA (Tiempo de llegada) para medir el tiempo que tardan
las ondas electromagnéticas en viajar desde el transmisor hasta el receptor, gracias a esta
fusion de algoritmos se consiguio una precision de posicionamiento a nivel de centimetros,
satisfaciendo ampliamente los requisitos de posicionamiento de alta precision en diversos
escenarios [18].
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2.2 Fundamento Teérico.

2.2.1 Sistema de Navegacion Inercial (INS).

La navegacion inercial se basa en los principios de la cinematica, que partiendo de un punto
de partida puede calcular posiciones futuras en cualquier momento cuando se conocen la
velocidad relativa, la direccion y la aceleracion, sin embargo, la precision de este tipo de
navegacion se degrada con el tiempo, debido a los errores acumulativos causados por offsets,
bias, factores de escala y no linealidades presentes en los sensores inerciales [19].

Unidad de Medida Inercial (IMU).

La IMU es un dispositivo electronico, estd conformado por un conjunto de sensores como:
acelerémetro, giroscopio y opcionalmente un magnetometro, se utilizan para rastrear la
posicion y orientacion de un objeto en relacidén con un punto de partida [9].

oz

Inertial
Measurement
Unit

Yaw

Figura. 2.1. Unidad de medida inercial [20].

Componentes principales.

e Acelerémetro: Mide la aceleracion lineal en los ejes X, y, zen m/s?. Los
acelerometros son sensibles a entornos vibrantes y a la diferencia entre la
aceleracion lineal del sensor y el campo gravitacional local.

e Giroscopio: Mide la velocidad angular o cambios de orientacién en los ejes X, y, z
enrad/s 0 °/s. Son sensibles a errores que pueden acumularse a lo largo de
tiempo.

e Magnetémetro: Mide la direccion del campo magnético, usado principalmente
para determinar la orientacion.

Caracteristicas de Ruido en Giroscopio y Acelerémetro.

Entre las principales caracteristicas de ruido encontramos las siguientes:
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Offset o desviacion de cero. También conocido como bias es un valor de desviacion del
valor real medido dado en unidades rad/s o m/s? respectivamente. Para el giroscopio
cuando el error offset se integra, causa que el error de posicidn angular crezca con el tiempo
linealmente [19]. La aceleracion se integra dos veces para obtener la posicion, por tanto, el
error de posicion crece con el cuadrado del tiempo [19].

Ruido Blanco Termo-Mecanico. La salida de los giroscopios y acelerometros pueden ser
perturbados por la presencia de un ruido blanco termo mecéanico el cual oscila a una
velocidad mucho mayor que el tiempo de muestreos del sensor [19].

Filtraciéon de ruido.

Los acelerémetros inerciales y giroscopios son propensos a ser afectados por ruido, para
filtrar este ruido, se puede utilizar una media movil (ecuacién. 1), o un filtro exponencial
(ecuacion. 2), con los cuales se podra atenuar en gran medida este problema.

N-1

yw = () Y xk— M

i=0
y(K): representa el promedio filtrado en el instante k.
N: es el numero de muestras a promediar.
x(k-1): se atribuye al valor tomado en el instante anterior.

yk)=a* x(k)+ 1 -a)* y(k—1) (2)

y(K): representa el valor filtrado en el instante k.
X(Kk): es el valor de entrada actual.
y(k-1): es el valor en el instante anterior.
oc. es el coeficiente de suavizado.

Estabilidad de bias. La forma de hallar este error es promediando una serie de datos
ecuacion [3], cuando no esta bajo ninguna rotacién o movimiento y una vez que se conoce
este error simplemente se resta de la salida de la IMU para compensar.

N-1

y=(5) Y x 3

i=0
y: representa el promedio de las mediciones cuando la IMU esté en reposo.
N: es el nimero de muestras.

x(i): valor de la medicion en el instante i.
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2.2.2 Sistema de Posicionamiento Global (GPS).

Este sistema proporciona al usuario informacion especifica sobre posicionamiento,
navegacion y cronometraje en un punto concreto. La ubicacion y la velocidad del vehiculo
estan determinadas por GPS. Esta tecnologia de navegacion permite obtener mediciones
aproximadamente cada 1 segundo y el error se limita a 3-5 metros [21].

Las orbitas de los satélites se distribuyen de manera que al menos 4 satélites sean siempre
visibles desde cualquier punto de la Tierra en cualquier instante dado. Cada satélite lleva
consigo un reloj atdbmico que funciona con una precision de 1 nano segundo [22].

Satellite ’
L

S

Satellite

Figura. 2.2. Sistema de posicionamiento Global [23].

Protocolo NMEA. NMEA 0183 es un estandar para la comunicacién de datos desarrollada
por el U.S. Nacional Marine Electronics Association (NMEA), para evitar
incompatibilidades entre datos y formatos de mensajes entre dispositivos electrénicos
marinos. NMEA es fundamentalmente usado para la transmision de datos entre un receptor
GPS/GNSS vy otros dispositivos. Es un formato ASCII facilmente legible, pero menos
compacto que un formato binario [24].

Trama NMEA. Es una linea de cddigo en formato hexadecimal que contiene toda la
informacion evaluada por el dispositivo GPS. Incluye datos como: tiempo, fecha,
coordenadas (latitud, longitud), orientacion, numero de satélites visibles, velocidad,
orientacion, entre otros. Las tramas de GPS por estandarizacion utilizan comas, letras o
simbolos para separar los campos.

Trama Descripcion Datos Clave
GGA Informacién de posicién Latitud, Longitud, Hora, Calidad de la sefial
GLL Posicién geografica Latitud, Longitud, Hora, Indicador de posicién vélida
GSA Satélites activos Satélites utilizados, DOP
GSV Satélites en vista NUmero total de satélites, ID, Elevacion, Azimut
RMC Informacion minima de navegacion Latitud, Longitud, Hora, Velocidad, Rumbo

Figura. 2.3. Tipos de tramas NMEA [25].
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2.2.3 Filtro de Kalman (FK).

El filtro de Kalman realiza proceso de estimacion de estados aplicado a sistemas dindmicos
que involucran cambios aleatorios. El filtro de Kalman ofrece un algoritmo recursivo lineal,
sin sesgo y con un minimo error de varianza, que de manera Optima estima los estados
futuros de un sistema dinamico, con ruido discreto en tiempo real [26].

Filtro extendido de Kalman (EKF).

Es una evolucién del FK clasico, utilizado para sistemas no lineales, aplicado en campos
como navegacion, robotica, procesamiento de sefiales y control de vehiculos autbnomos,
este filtro se compone de dos fases: fase de prediccion y fase de correccion, se basa en la
linealizacion de las funciones que describen el sistema dindmico, considerando Unicamente
los términos de primer orden del desarrollo en serie de Taylor [19] alrededor del punto
estimado Xz _; y el Jacobiano representa la matriz de derivadas parciales de esas funciones.

e Variables de estado x:

x = [x,y,v,0]
e Variables de control u:
u = [a,w]
e Variables de medicion z:
z = [x,y,v,0]

e Modelo de transicién del estado, donde wk representa el ruido de proceso:
X = f(xg-1,uk) + wk (4)

e Matriz jacobiana de la funcidn de transicion f respecto al estado:

of
Fy = ox _—— (5)
e Modelo de observacion, donde vk representa en ruido de medicion:
zk = h(xk) + vk (6)
e Matriz jacobiana de la funcidn de medicién h antes de aplicar la correccion del
estado con la medicion:
Hy = % . (7)

Fase de prediccion. Se calcula la prediccion de los estados Xz en el instante k y su matriz
de covarianza P, , donde Q es la matriz de ruido del proceso.

Py = FyPyr1F +Q (8)

24



Para ello se hacen uso de las variables de estado X, utilizando como variables de control u
como entrada para EKF, para luego desarrollar las funciones que describen el movimiento
simple de un vehiculo.

Xi = Xg—1 + Vg—1 - €0S(0y_1) - At 9
Yk = Y1+ V-1 - Sin(0y_1) - At (10)
Uy =Vp_q+a-At (11)
0, =01 +w- At (12)

Estas ecuaciones realizan la prediccion de los estados: posicion (x, y), velocidad (v) y
orientacion ().

Fase de correccion. Se evalUa las variables de medicion z en el instante k, junto a la matriz
de medicién Hy, y se calcula la diferencia entre la medida real y la estimada respectivamente.
Se calcula la ganancia de Kalman Kj, donde R es la matriz de ruido de medicion, ademas se
corrige las estimaciones de los estados x;, y la covarianza de estado P .

Ky = P Hy (H P Hy + R)™ (12)
X = X, + Kk(zk - h(x,;)) (13)
P = — KiH )Py, (14)

2.2.4 Aprendizaje autbnomo (ML).

Los algoritmos de machine Learning, se basan en el aprendizaje a partir de una muestra de
datos de patrones y relaciones funcionales entre distintas variables. Las redes neuronales
recurrentes (RNN) son una clase de aprendizaje profundo, son conocidas por su capacidad
para procesar y obtener informacion de datos secuenciales [27].

Random Forest (RF).

Es una técnica de aprendizaje supervisado que genera maltiples arboles de decision sobre un
conjunto de datos de entrenamiento. Cada arbol contiene un grupo de observaciones
aleatorias (elegidas mediante bootstrap, que es una técnica estadistica para obtener muestras
de una poblacion donde una observacion se puede considerar en mas de una muestra). Las
observaciones no estimadas en los arboles (también conocidas como “out of the bag”) se
utilizan para validar el modelo. Las salidas de todos los arboles se combinan en una salida
final (conocida como ensamblado) que se obtiene mediante alguna regla (generalmente el
promedio, cuando las salidas de los arboles del ensamblado son numéricas [28].
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Figura. 2.4. Estructura Random Forest [29].
Ventajas:

e Esun modelo simple de entrenar y muy eficiente con base de datos grandes.
e Mantiene un grado de precision aceptable cuando tenemos porciones de datos
perdidos.

Desventajas:

e Puede sobre ajustar los datos cuando hay presencia de ruido.
e Las predicciones no son de naturaleza continua y no puede predecir mas alla del
rango de valores del conjunto de datos usado para entrenar el modelo [28].

Long Short-Term Memory (LSTM).

Las LSTM poseen la capacidad de procesar datos secuenciales y retener informacion de
pasos anteriores en la secuencia, lo que les permite predecir los pasos futuros de manera
efectiva. Esta caracteristica las hace altamente adecuadas para tareas que involucran
dependencias a largo plazo [30].

El flujo de informacion dentro de las redes LSTM esta gobernado por tres puertas internas
durante el proceso de aprendizaje: la puerta de olvido, la puerta de entrada y la puerta de
salida. La puerta de olvido (ft) determina qué informacién del estado de la celda debe ser
descartada. La puerta de entrada (it) decide qué nueva informacion se afiadira al estado de
la celda. Finalmente, la puerta de salida (ot) controla la salida del estado oculto. Este
mecanismo de puertas permite a las unidades LSTM gestionar eficazmente las dependencias
a largo plazo al actualizar y retener informacion selectivamente a lo largo del tiempo [30].
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Figura. 2.5. Arquitectura LSTM [30].

La complejidad temporal para un paso de entrenamiento implica mn(n+(m—1)) = n2m+nm?2
—nm operaciones. Esto se realiza para cada una de las tres puertas, el estado de la celda, y
durante k pasos de tiempo, resultando en 4k(nZm+nm?-nm). En consecuencia, esto puede
resultar en tiempos de entrenamiento mas largos, especialmente cuando se trabaja con
grandes conjuntos de datos o cuando se utiliza un alto nimero de unidades LSTM, esto
supone recursos computacionales significativos [30].

27



CAPITULO 11l

METODOLOGIA.
3.1 Tipo de investigacion.
3.1.1 Investigacion cuantitativa.

Se baso en la recoleccion y andlisis de datos numéricos para evaluar la efectividad del
sistema propuesto en la optimizacion del posicionamiento de un vehiculo. Esto permitio
obtener resultados medibles con el fin de comparar el desempefio del sistema implementado
frente al sistema GPS tradicional.

3.2 Meétodos de Investigacion.
3.2.1 Meétodo Experimental.

Se utilizé la recoleccion de datos a través de pruebas de campo con el fin de analizar cual de
los sistemas (sistema propuesto vs tradicional) proporciona el menor margen de error.
Finalmente se interpreto los resultados de forma objetiva.

3.3 Disefio de Investigacion.

Este trabajo de investigacion se desarrollé en tres fases que se describen a continuacion:

e I
v L L
ﬁecopllqcic’m de Informacion \ 6seﬁo e Implementacién \ ’rEvc:quclc’:n de resultados \
* Estudio de los enfornos * Diserio de la * Recoleccion de datos
de desarrollo y sistemas arquitectura del sistema. mediante pruebas de
implicados en el * Pruebas de campo.
vehiculo para la implementacion para * Implementacion de
estimacion del verificar la funcionalidad mejoras y ajustes.
posicionamiento. del sistema.

* Fleccion de hardware vy
soffware, en base a sus

\corc-:'er'sf'cas. J \_ j \_ _J

Figura. 3.1. Fases de Investigacion

3.3.1 Fasel

1. Recopilacion de Informacion.

En esta primera fase se realizo el estudio de los entornos de desarrollo y sistemas implicados
en el vehiculo para la estimacion del posicionamiento, para lo cual se investigé en articulos
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y publicaciones similares al tema propuesto para estudiar las diversas tecnologias,
algoritmos y sistemas disponibles para la geolocalizacion. Ademas, se optd por software y
hardware especifico, tomando en cuenta caracteristicas, ventajas, requerimientos y
objetivos, con el fin de desarrollar e implementar un sistema econémico.

Modulo MPU-6050.

Es un sensor de medicion inercial, que combina un giroscopio de 3 ejes y un acelerometro
de 3 ejes en el mismo chip de silicio junto con un Procesador de Movimiento Digital a bordo
capaz de procesar complejos algoritmos de fusion de sensores de 9 ejes. Los algoritmos de
fusion de movimiento de 9 ejes integrados en el MPU-6000 y el MPU-6050 acceden a
magnetometros externos u otros sensores a traves de un bus 12C [31].

Entre sus principales ventajas encontramos que: Es un sensor de muy bajo costo y facil de
adquirir, ademas tiene un gran soporte comunitario con codificacion, modulos y librerias
gratis, soporta el protocolo 12C, lo cual es compatible con diferentes microcontroladores,
para el caso una ESP32.

e El protocolo 12C, se utiliza para la comunicacion sincrona entre circuitos integrados
a corta distancia, utilizando el sistema maestro-esclavo.

Figura. 3.2. Sensor MPU-6050 [32].

Los pines utilizados son:
e VCC, para la alimentacién 3.3V y GND, pin a tierra.
e SCL, linea de reloj conectado al pin GP1022 de la ESP32.
e SDA, linea de datos conectado al pin GP1021 de la ESP32.

Tabla 3.1 Caracteristicas técnicas de la MPU-6050.

Voltaje de operacion 2.375V-3.46V
Interfaz serial 12C
Rango del giroscopio +250, £500, £1000, +2000 °/seg
Rango del acelerémetro 129, +49, +80, 169
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Corriente de operacion Giroscopio

3.6 mA

Corriente de operacion acelerometro

500 uA

Frecuencia de muestreo Giroscopio

8 KHz programable

Frecuencia de muestreo Acelerometro

1 KHz programable

Modulo GPS NEO-6M.

Es un receptor GPS ampliamente utilizado, disefiado para un consumo de energia bajo [33],
entre sus ventajas tenemos: es econdémico y compacto, utiliza interfaz serial UART,
compatible con diferentes microcontroladores pal caso ESP32, ademas cuenta con librerias

gratis que facilitan su implementacion.

e El protocolo UART, se utiliza para la comunicacion asincrona entre dispositivos TX
y RX. La sincronizacion se logra mediante la coincidencia de las tasas de baudios y

un formato de trama de bits.

Figura. 3.3. M6dulo y antena GPS NEO-6M [34].

e Aqui los pines RX - TX, se conectan a los pines TX - RT de la ESP32.

e VCC, conectado a 3.3V y GND a tierra.

Tabla 3.2 Caracteristicas técnicas de GPS NEO-6M.

Voltaje de operacién

2.7V-3.6V

Interfaz serial

UART

Sensibilidad de rastreo

Hasta -161 dBm

Sensibilidad de adquisicion

Hasta -148 dBm

Baud rate por defecto

9600 bps

Protocolo

NMEA

Frecuencia de muestreo

1 a 5 Hz programable

Precision de posicion horizontal

2.5 m CEP en condiciones ideales [35].

Modulo ESP32.

ESP32 es un microcontrolador combinado de Wi-Fi y Bluetooth de 2.4 GHz. Esta disefiado
para lograr el mejor rendimiento de potencia y RF, mostrando robustez, versatilidad y
fiabilidad en una amplia variedad de aplicaciones como IOT y sistemas embebidos [36].
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Figura. 3.4. Microcontrolador ESP32 [37].

Entre sus principales caracteristicas podemos encontrar que: posee un procesador de doble
nacleo de 32 bits operando a 240 MHz como méximo, ademas posee un coprocesador de
ultra bajo consumo para tareas simples, una de sus ventajas es que la corriente de reposo es
inferior a 5 YA, por lo que es adecuado para aplicaciones de electronica portatiles con
bateria, ademas es compatible con ARDUINO IDE, Lua y Micro Python, lo cual hace
que tenga una amplia comunidad, por tanto tienes acceso a librerias codificacion gratis.

Tabla 3.3 Caracteristicas Técnicas ESP32.

Voltaje de operacion 3.3V
Interfaz serial UART, 12C, SPI, Ethernet, 12S
Numero de pines 30
SRAM 520 KB
Memoria Flash SPI 4 MB
Interfaces UART 3
Interfaces SPI 4
Interfaces 12C 2

e Lamayoria de los pines GPIOx son utilizados con entrada o salida digital, el voltaje
l6gico es de 3.3 V, pin Vin para alimentar con 5V, pin 3V3 para salida de voltaje,
pines ADC, DAC y para el caso se utilizan los pines TX, RX, SDA, SCL.

Python.

Es un lenguaje de programacion versatil, utilizada en una enorme gama de aplicaciones
como: desarrollo web, andlisis de datos, ML, automatizacion, 1A, entre otros. Entre sus
ventajas esta que: tiene una gran coleccion de librerias, médulos, bibliotecas, util para
desarrollar diversos proyectos, ademas de que es un lenguaje eficiente y facil de aprender.

Micropython.

Es un lenguaje de programacion, el cual viene a ser una version optimizada de Python para
microcontroladores y sistemas embebidos de bajos recursos, su ventaja es que también posee
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una gran cantidad de modulos para hardware, lo cual te permite interactuar directamente con
los pines del microcontrolador, ademas de que es un lenguaje facil de aprender.

Thonny IDE.

Es un editor de codigo, que soporta Python y Micropython, posee una interfaz de usuario
sencilla y facil de usar, ademas de que es una plataforma que no consume muchos recursos.

VS Code IDE.

Es un editor de codigo multi idioma que soporta diferentes lenguajes de programacién entre
ellos Python, es versatil y potente, ademas también es una plataforma ligera.

2. Andlisis de la Informacién.

En base al fundamento teorico, en este apartado se analizo los principios que se tomaron en
cuenta para disefiar e implementar el sistema.

e Para obtener los datos crudos de los sensores MPU-6050 y GPS NEO-6M, se utiliza
los mddulos y librerias disponibles en repositorios y paginas web, los cuales
ayudaron a interpretar y transformar estos datos a un formato global como es:
acelerometro m/s?, Giroscopio rad/s, latitud-longitud DD, velocidad m/s y
orientacion en rad.

e Para filtrar el ruido de los sensores de la MPU-6050 se utiliza un filtro pasa bajos
exponencial, el cual me permite reducir el ruido, ademas este introduce poco retardo
en la sefial filtrada y supone un coste computacional bajo.

e En el caso de las bias, se implementa una media mévil que va recoger N muestras,
cuando el dispositivo este en absoluto reposo, es resultado se resta a las salidas de
los datos de los sensores, mientras que cuando haya movimiento las bias se estimaron
de manera suave, estos datos son enviados por cable hacia la PC.

e En la Pc para fusionar los sensores, se utiliza el filtro extendido de Kalman (EKF),
el cual tendra con estados a la posicion, velocidad y orientacion, como entradas de
control a la aceleracion y orientacion, como estados de medicion a la posicion,
velocidad y orientacion medidas directamente del GPS, el cual ayuda a corregir las
estimaciones que hace el EKF.

o EIl EKF trabaja conjuntamente con un modelo de ML Random Forest, el cual se
utiliza porque no consume muchos recursos y permite encontrar patrones no lineales
en los datos, sin necesidad de mucha parametrizacion, ademas es util para corregir
errores 0 sesgos que puede tener las estimaciones del EKF.

e Para la etapa final se implementa una red neuronal simple LSTM, porque es capaz
de aprender dependencias a largo plazo y patrones dindmicos en la trayectoria del
vehiculo, lo cual permite suavizar mejor la trayectoria aprovechando el historial de
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los estados estimados, esta trayectoria serd finalmente mostrado en una interfaz
gréfica.

3.3.2 Fase 2.

1. Disefio e implementacion:

En esta fase se procedid a disefiar y construir cada etapa del sistema, el cual incluye
programacion para la IMU y GPS dentro de la ESP32, programacién para el EKF, Random
Forest y LSTM dentro de la PC y finalmente el disefio de una pagina web.

GPS NEO-6M MPU-6050
Acelerémetro + Giroscopio

ESP32 '5@ IZ‘K

[latitud, longitud, velocidad, orientacién] [aceleracién, velocidad angular]

Filtro exponencial
+

Media maévil

v

PREDICCION x=[% ¥, v, o]

$ CORRECCION EKE

l

y =[xy, v, o] —_—

l pPC

Random Forest
Latitud/longitud
Interfaz grafica

:

z\@ _( LSTM )

Figura. 3.5. Arquitectura general del sistema.

Transmisién de datos por cable USB

|

Disefio del dispositivo

Para disefiar el dispositivo que se encarga de recolectar datos se utiliz6 Wokwi, un simulador
de circuitos online que trabaja con micropython. En la (figura. 3.6), se aprecia la conexion
de cada sensor con la ESP32, para el caso del GPS el pin TX al pin RX GPI10O16 de la ESP32
el pin RX del GPS al TX GPIO17 de la esp32, para la MPU el pin SCL al pin SCL GP1022
de la ESP32, el pin SDA al SDA GPI0O21 de la ESP32, y finalmente VCC del GPS y MPU
a 3.3V de la ESP32, lo mismo sucede con GND, esta configuracién es util a la hora de
programar cada sensor, ya que se debe mencionar al puerto o pin que se va ocupar.
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Figura. 3.6. Esquematico del dispositivo.

Programacion en la ESP32

Para la parte de programacion, la ESP32 es la encargada de controlar cada uno de los
sensores, para eso se utilizé Thonny.

GPS NEO-6M

Se procedi6 a programar este médulo, en donde primeramente se debe saber que los datos
que genera el receptor vienen en tramas NMEA, cada una contiene un tipo de informacion,
para lo cual se consider6 las tramas de tipo, GPRMC, GPGLL, GPVTG, GPGGA, GPGSA,
GPGSV. La biblioteca que me permitié obtener e interpretar la informacién de cada una de
estas tramas se obtuvo desde la pagina web [38], esta biblioteca cargada contiene una clase
[lamada “MicropyGPS”, en donde se modifico ciertos pardmetros en la funcién “latitude” y
“longitude”, para que devuelvan la posicion en formato grado-decimal (DD), ademaés se
modifico la funcion “compass_direction” para que devuelta la direccion en radianes, esta
informacién la obtiene la ESP32 por la Interfaz serial UART.

MPU-6050

Para este mddulo se carga la biblioteca que se encuentra en el repositorio de GitHub [39], la
cual contiene la clase “MPU6050” necesaria para interpretar los datos del acelerémetro y
giroscopio, dentro de esta clase también se realizaron ciertos cambios. Se modificd los
rangos de medida y se induce por forzar un rango de +- 4G para el acelerdmetro y +- 500
grados para el giroscopio, esto con el fin de que la sefial proveniente de los sensores no se
sature cuando haya, maniobras fuertes o aceleraciones bruscas del vehiculo, ademas se
modificd las funciones “read_gyro_data” y “read_accel_data” para que devuelvan datos en
rad/s y m/s?, esta informacion la obtiene la ESP32 por la interfaz serial 12C.
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MAIN

Es el script principal de donde se gestiona cada proceso y a cada sensor, aqui se procedio a
instanciar a las dos clases mencionadas anteriormente, ademas aqui se encuentra alojado la
l6gica del filtro exponencial y la media movil para estimar las bias de la IMU, estos se
utilizaron para suavizar y mejor los datos. Los datos del receptor GPS, se muestrearon a 1
Hz y se obtuvieron a través de la interfaz serial UART2 a 9600 baudios lo cual viene por
defecto. Los datos de la IMU se muestrearon a 50 Hz y se obtuvieron a través de la Interfaz
serial 12C a 100Khz por defecto. Finalmente, estos datos filtrados y suavizados se enviaron
a través de la Interfaz UART/USB hacia la PC.

[ main.py ]
try:
if t1 >= intervalo_imu:
imu_ms = ahora
mensaje = "IMU,{},{:.8F},{:.8F},{:.8F},{:.8F},{:.8F},{:.8F\n" format(
imu_ms, *acc_corr, *gyro_corr)
sys.stdout.buffer.write(mensaje.encode())

if t2 >= intervalo_gps:
gps_ms = ahora
while gps_serial.any():
data = gps_serial.read()
for byte in data:
stat = gps.update(chr(byte))
if stat is not None:
num_sats = gps.satellites_in_use
hdop = gps.hdop
lat = gps.latitude_string()
lon = gps.longitude_string()
speed = gps.speed_string()
direc = gps.compass_direction()
if lat != ultima_lat or lon != ultima_lon:
ultima_lat = lat
ultima_lon = lon
mensaje = "GPS,{},{:.8F},{:.8},{},{},{},{}\n" format(gps_ms, lat, lon, num_sats, hdop, speed, direc)
sys.stdout.buffer.write(mensaje.encode())
intervalo = ahora
elif time.ticks_diff(ahora, intervalo) >= 800:
mensaje = "GPS,{},{:.8f},{:.8F},{},{},{},{}\n".format(gps_ms, ultima_lat, ultima_lon, num_sats, hdop, speed, direc)
sys.stdout .buffer.write(mensaje.encode())
intervalo = ahora
except Exception as e:

Consola

IMU, €892, -1. 36629391, -U. 18277997, 9. 63787556, -0 0081382, —0. V021671, -0. VUL /0 /Y
IMU, €919, -1.36861300,-0.17927569, 9. 63071156, -0.00480331, —0. 00203450, 0. 00162460
GPS, 6919,-1.68794227,-78.78247833,9,0.98,0.01697667,0.0

IMU, 6974, -1.37334192,-0.17551491, 5. 62355137, -0.00506868, —0. 00192788, -0. 00166302
IMU, 7001, -1.37712598, -0.17777386, 9. 61783123, -0.00576125, —0. 00146947, -0. 00169372
MU, 7028, -1.38063264,-0.17958136, 5. 61465841, -0.00636524, -0.00147573, -0. 00177155
MU, 7054, -1.38343883, -0.17671605, 5. 61794472, -0.00696286, -0.00174717, -0. 00163375

Figura. 3.7. Fragmento de codificacion para main.
Programacion en la PC.

En la PC se codifican 5 scripts: el primero para el EKF, el segundo para entrenar el modelo
Random Forest, el tercero para entrenar LSTM, el cuarto para mostrar la posicion del
vehiculo en una interfaz grafica y el ultimo el cual es el script principal que se encarga de
gestionar todos los scripts anteriores.

EKF

Este script la cual es una clase se programé en base al fundamento tedrico, en donde se
utilizé las ecuaciones y fases que el filtro ejecuta para estimar la posicion. Como variables
de estado tenemos x = [x, y, v, 0], entonces comenzamos inicializando el tiempo que se
ejecutara cada ciclo del filtro que viene dado por la frecuencia de muestreo de la IMU,
también se inicializé las bias estimadas por el ESP32, de la misma manera se inicializo los
factores de ajuste dinamico para correccion de bias.

Pasamos a la fase de prediccidn, aqui es donde se predice o estima las variables de estado
como: posicion, velocidad, orientacién, ademas se calculé la covarianza o incertidumbre del
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modelo, para el caso la velocidad y orientacion no son tan importantes como la posicion del
vehiculo. Las entradas de control u = [a, w] se utilizaron para modelar el movimiento, para
ellos se usaron las ecuaciones de movimiento de la cinematica. La prediccion se realiza
aproximadamente cada 20 ms frecuencia a la que la IMU muestrea, entonces como el filtro
no puede trabajar con sistemas no lineales, lo que hiso es aproximar el modelo a una version
lineal a través de las series de Tylor de primer orden, ademas para el caso de las bias que se
generan en el filtro, se realizd un proceso suave de correccion.

Para la fase de correccion, igual que en la prediccion se linealiza el modelo no lineal,
entonces se tomd los valores de la variable de medicién z = [x, y, v, 0] para corregir los
estados estimados en el proceso anterior, ademas se calculd la ganancia de Kalman, lo cual
representa la incertidumbre del modelo y finalmente se actualiza la covarianza, esta fase se
realiza aproximadamente cada 1000 ms frecuencia a la que muestrea el GPS.

Estas fases de correccion y prediccion se ejecutan continuamente a medida que los datos de
la IMU lleguen, entonces la posicién corregida vuelve a ser tomada como estado inicial del
filtro, ademas cada fase trabaja con las matrices Q y R que representan la incertidumbre de
prediccion y de medicion respectivamente. Estos datos estimados por Kalman pasan a ser
procesados por el modelo Random Forest.

ExtendedKalmanFilter:

predict(s . :
X, ¥, v, the ax, bias_gz = self.x.flatten()

v_neWw = v _x_corr * self.dt

theta_new rr * self.dt
X NeW = X + V_I (theta_new)
y_new =y + v_new * in(theta_new)

self.x[:4, 8] = [x_new, y_new, v_new, theta_new]

abs(g_z) >

Fle, t

F[e, in( | * self.dt
F[1. a_n

F[1, p.cos(theta_new) * self.dt
F[3, 5] = -self.dt

self.P = F @ self.P @ F.T + Q

Figura. 3.8. Fragmento de codificacion para EKF.
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Random Foresty LSTM.

Para estos modelos de ML se program0 en base a [40], [41], [42], [43]. Ramdon Forest y
LSTM fueron utilizados como un complemento para mejorar las estimaciones que el EKF
predecia, pero cada modelo cumple un papel diferente, en el caso de RF se utilizé con el
objetivo de corregir errores o patrones no lineales que el EKF puede generar en las
estimaciones hechas, esto se nota mas cuando hay demasiado ruido entre las mediciones
crudas de los sensores, entonces como RF no necesita de supuestos estadisticos puede
aprender a predecir mejor la posicion. Para RF se colocdé como variables de entrada:
X =[x_est,y_est,v_est, ort_est, accel_imu, gyro_imu, v_gps, ort_gps, num_sat, hdop], estas
variables el modelo los utilizé para aprender patrones y combinaciones que los relaciona con
la posicion real y = [x_r, y_r] y de esa manera pude ajustar los umbrales en cada arbol de
decision para minimizar el error entre la prediccion y la posicion real durante el
entrenamiento.

El modelo de LSTM se lo utilizé con el objetivo de procesar datos temporales, entonces
como entrada se coloc6 a la posicion corregida por RF x = [x_rf, y rf, v_est,
ort_est, accel_imu, gyro_imu, v_gps, ort_gps, num_sat, hdop], con estos datos el modelo
internamente ajusta sus pesos minimizando el error para que la secuencia de entrada
produzca la posicion final mas cercana a la real y = [x_r, y_r]. En general LSTM usa la
historia de posiciones para inferir la tendencia de movimiento suavizando la posicion final
en base a los patrones temporales aprendidos.

1
dfs = []
~ for file in csv_files:
ubset (df.columns):

dfs.append(df)
combined df = pd.concat(dfs, ignore_index=

~ features =

» random_state=42)

Figura. 3.9. Fragmento de codificacion para Random Forest.
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features = r "y rf"]

["x_
features = [f fo in features if f in combined df.columns]

ombined df[fe
ombined df[[" R ~_y"]].values

X _mean = X.me
X_std (
X_norm = (X - X_mean) / X_std

sequence_length = 18
quences(X, y, seq_length):
[
(len(X) - seq_length}:
i + seq_length)])
append ()} + seq_length])
return np.array(Xs), np.array(ys)

X_seq, y_seq = create sequences(X norm, y, sequence_length)

X_train_seq, X test_seq, y_train_seqg, y test_seq = train_test split(
X _seq, y seq, test size=8.2, random state=42

)

model = Sequential([
activation="tanh’, return sequences= » input_shape=(sequence_length, X seq.shape[2])),

Figura. 3.10. Fragmento de codificacion para LSTM

Interfaz grafica.

La interfaz gréafica se disefi6 utilizando HTML vy se opté por utilizar Openstrepmap, el cual
me permite utilizar sus mapas digitales de forma gratuita, en general la interfaz es una pagina
web que se aloja en un servidor local (PC), al cual se puede acceder a través de una direccion
IP o localhost, esta interfaz esta disefiada para observar la trayectoria del vehiculo en tiempo
real a través de un mapa geogréafico y también en un plano x-y, para ello se hace uso de la
libreria leaflet que me ayuda a mostrar el mapa que me proporciona Openstrepmap, luego se
ajusta diferentes pardmetros como estilo, color, tipo de texto, tamafio entre otros de acuerdo
al resultado que se espera obtener, posteriormente se llama a la funcion actualizarDatos()
que me sirve para capturar la posicion del vehiculo para su posterior visualizacion,
finalmente se integro un boton que sirve para ocultar o visualizar la trayectoria en un plano
X-Yy segln se requiera.
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1) .addTo(map) ;

polylines = {

gps: L.polyline([], {color <'}).addTo(map),
ekf: L.polyline([], {c d addTo(map) .,
rf: L.polyline([], ] addTo(map),
1stm: L.polyline([], {co : ) .addTo(map)

: {color '}, name:

1

[1: 5@, r: 58, t: 58, b: 58}, title:"Trayectoria”, x X (m)"}, yaxis:{title:"Y (m)'}};
Plotly.ne traceData, layout);
centrado =

actualizarDatos() {

Figura. 3.11. Fragmento de codificacion para la interfaz gréfica.
Main.

Este script se encarga de controlar todos los procesos como son: filtrado, prediccion,
correccion, envié de datos hacia la web y visualizacién. Primero instanciamos la clase EKF,
importamos las bibliotecas necesarias para RF y LSTM y también cargamos los modelos
entrenados anteriormente, luego recibimos los datos por serial/USB desde la ESP32 a
115200 baudios por defecto, estos datos son procesados con ayuda de funciones y sentencias,
para luego ser redirigidos hacia cada clase segun corresponda, como se menciond los datos
de entrada para el EKF son provistas por la ESP32 esos datos son procesados por este filtro
los cuales se convierten en las entradas para el modelo de RF y luego esos datos corregidos
por dicho modelo se convierten en las entradas para el modelo LSTM. Finalmente se cre6
un servidor local utilizando Flask el cual me ayuda en el proceso de enviar las posiciones
finales corregidas a una pagina web para su posterior visualizacion de posicion y trayectoria
del vehiculo en tiempo real.
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while

trama = ser.readline().decode( utf-8", g ").strip()

if trama.strip():
continue

tramas.write(trama + "\n")
a tramas.flush()

if trama.startswith("GPs") trama.startswith("IMU"):
continue

posicion = trama.split(’,")

posicion[7])

if 1t_imu
1t_imu = timestamp

Figura. 3.12. Fragmento de codificacion para main.
2. Pruebas de implementacion:

Se realizd el ensamblado del dispositivo que se encarga de recoger mediciones en un
Protoboard para posteriormente ensamblarlo en un PCB, entonces se comenzé a verificar el
funcionamiento correcto de cada etapa, primero se verifico el funcionamiento de la ESP32
y sus sensores, los cuales respondian acorde a lo programado, recolectando posiciones,
filtrando y suavizando esos datos para posteriormente ser enviados a la PC a través de cable
USB, obteniendo el resultado esperado.
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En la PC se realizaron las pruebas preliminares de cada proceso por separado, entonces se
verificd que el EKF estime las posiciones del vehiculo las cuales tenian un cierto grado de
error especialmente en curvas, ademas se verifico que la pagina web y el servidor local
funcionen correctamente. Luego se procedié a recopilar bases de datos de diferentes
trayectorias reales recorridas para entrenar cada modelo de ML implementado, cada modelo
predecia con un cierto grado de error que se medié a través de la variable RMSE (raiz
cuadratica media), mientras mas pequefio sea este valor el modelo predecia de mejor manera,
una vez entrenado los modelos de ML se procedio a verificar el funcionamiento en conjunto
de toda la arquitectura del sistema obteniendo los resultados que se esperaba.

Figura. 3.14. Trayectoria recorrida por el vehiculo en tiempo real al realizar las pruebas de
funcionamiento.

3.3.3 Fase 3.

1. Evaluacion de resultados:

Se llevé a cabo la recoleccion y analisis de datos obtenidos durante las pruebas de campo en
entornos controlados, en donde se consider6 implementar algunas mejoras a la etapa de
estimacion por EKF y los modelos de ML. Para entrenar los modelos de ML finalmente se
escogid 11 trayectorias distintas conformando una base de 3205 datos totales.

=7 218 6@l 1

Figura. 3.15. Estructura general de la base de datos para entrenar los modelos de ML.

2. Implementacion de mejoras y ajustes.
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Con base en los resultados se implementd algunas mejoras y ajustes para que el sistema
funcione de mejor manera. Uno de los ajustes hechos fue para la etapa del EKF, al cual se le
agrego una fase de ajuste de la matriz R de manera dindmica que me ayudoé a detectar deriva
de las mediciones de GPS y segln esos datos la matriz R sube o baja su confianza en la
medicion, también se implementd un umbral que me sirve para detectar saltos grandes en las
mediciones GPS y descartar automéaticamente esa medicion. De la misma manera se optd
por optimar los modelos de ML, para el caso de RF se aumento el nimero de estimaciones
lo cual hace al modelo més estable, pero a la misma ves le cuesta mas procesar datos, lo
mismo sucede con LSTM al cual se le incremento méas la dependencia temporal y se opt6
por usar una pausa de entrenamiento para que el modelo no sobreajuste los parametros.

[ Error real vs. Predicho — Random Forest

Error X — RMSE: 1.5115 m Error Y — RMSE: 1.7174 m

® Prediccion ® Prediccién
Ideal 209 == ideal
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10 4
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Figura. 3.16. Diagrama de error real vs estimado en el modelo RF.

0 Error real vs. Predicho — LSTM

Error X — RMSE: 1.1364 m

Error Y — RMSE: 1.2516 m

10 1
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Error predicho Y

15

10 4

@ Prediccién
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T T T T
=5 0 5 10
Error real X Error real Y

Figura. 3.17. Error real vs estimado en el modelo LSTM

Los dos anteriores graficos fueron generadas luego de implementar los ajustes descritos en
el apartado anterior, en las cuales se observa que los modelos predicen el error de posicion
de manera méas Optima, ya que la mayoria de puntos se agrupan y se alinean mas a la linea
ideal, pero también se observan algunos puntos mas alejados lo que indican que ubo eventos
atipicos causados por una pérdida agresiva de sefial, ruido en los datos o saltos temporales,
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pero si se analiza la raiz cuadratica media (RMSE) de los modelos, se sabe que LSTM tiene
un mejor comportamiento al momento de predecir los errores de posicion y eso también se
evidencia en su grafico de comportamiento, ya que LSTM predijo errores con valores mas
pequefios, mientras que RF predijo errores con valores méas grandes. A la final estos valores
atipicos no influyeron fuertemente ya que mientras RMSE sea mas pequefio el modelo en
promedio predice mejor los errores con respecto a la posicion real.

3.4 Poblacién y Muestra
3.4.1 Poblacién

La poblacion esta determinada por los datos generados en la variable dependiente Margen
de error minimo, estos datos estaran conformados por la posicién en la que se encuentra el
vehiculo. Ademas, la poblacion contemplara tres grupos de datos que seran medidos por el
sistema GPS tradicional y por el nuevo sistema propuesto.

3.4.2 Muestra
La muestra fue tomada aleatoriamente a partir de los datos obtenidos de la poblacion.

3.5 Operacionalizacion de las variables:
Tabla 3.4. Variables dependientes e Independientes

Variables | Tipo Descripcion Indicador Instrumento
de medicion

Margen de | Cuantitativa Error entre la ubicacion | Valor en Observacion

error Dependiente real y la medida. metros

minimo

Tipo de Cualitativa El tipo de sistema Tipo Observacion

sistema Independiente | utilizado para

determinar la posicion.

3.6 Hipotesis

El sistema implementado utilizando filtrado de posiciones geolocalizadas y modelos de
Machine Learning (RF y LSTM) logra optimizar el posicionamiento del vehiculo,
comparado con el sistema GPS tradicional.

e Hipotesis nula (Hy).

La implementacion del sistema utilizando modelos de ML y filtrado de posiciones
geolocalizadas no mejora el rendimiento de posicionamiento del vehiculo, comparado con
el sistema GPS tradicional.

e Hipdtesis alternativa (H, ).
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La implementacion del sistema utilizando modelos de ML y filtrado de posiciones
geolocalizadas mejora el rendimiento de posicionamiento del vehiculo, comparado con el
sistema GPS tradicional.
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CAPITULO IV

RESULTADOS Y DISCUSION

Para validar el funcionamiento del sistema se realizaron pruebas de campo en entornos reales
pero controlados, es decir se sigo una trayectoria predefinida a una velocidad constante
comparando el error que existe entre la posicion real y la estimada por el sistema GPS
tradicional y el sistema implementado. Debido a la usencia de receptores por correccién de
cinemaética en tiempo real (RTK), se us6 un GPS con soporte de multiples costelaciones de
doble banda integrado en un mavil, como referencia de posicion real confiable para evaluar
la precision de estimacion de posicionamiento del vehiculo utilizando el sistema GPS
tradicional y el sistema implementado utilizando filtrado de posiciones geolocalizadas y los
modelos de Machine Learning RFy LSTM.

4.1 Modelo de regresion lineal.

Tabla. 4.5. Resumen de modelo de estimacion lineal para el GPS.

Variable dependiente: (Latitud, Longitud) Real
Variable independiente: (Latitud, Longitud) GPS

R cuadrado Sig. (p)
0,992 0,001
0,997 0,001

000000000

-50,000000000

-100,000000000

-150,000000000

Lat_Real

-200,000000000 -150,000000000 -100,000000000 -50,000000000 000000000

Lat_GPS

@ Obsenado
=—Lineal

a) Latitud
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Lon_Real

@ Observado

150000000000 —Lineal

100,000000000

50,000000000

000000000 3

-50,000000000

-100,000000000
-100,000000000  -50,000000000 ,000000000 50,000000000 100,000000000  150,000000000

Lon_GPS

b) Longitud
Figura. 4.18. Posicidn real vs estimada por el GPS tradicional: a) Latitud, b) Longitud.

Para este primer analisis, las estimaciones son hechas por el GPS tradicional, se evidencia
que segun el coeficiente de determinacion R? indica que el GPS es capaz de estimar la
posicion con mas del 92% de precision con respecto a la real.

Gracias al grafico de posicion se evidencia que las posiciones GPS para esta trayectoria estan
casi alineadas con respecto a la linea diagonal con algunas posiciones dispersas, esto a la
final indica que el GPS estimo la posicion del vehiculo con una precisién moderada frente a
la real.

Tabla. 4.6. Resumen de modelo de estimacion lineal para RF.

Variable dependiente: (Latitud, Longitud) Real
Variable independiente: (Latitud, Longitud) RF

R cuadrado Sig. (p)
0,995 0,001
0,998 0,001
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Lat_Real

@ (Observado
= Lineal

000000000
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Figura. 4.19. Posicidn real vs estimada por el modelo RF: a) Latitud, b) Longitud.

Para este segundo analisis, las estimaciones son hechas por el sistema propuesto utilizando
el modelo RF, donde el coeficiente de determinacion R? indica que RF es capaz de estimar
la posicion con mas del 95% de precision con respecto a la real, ademas por el grafico de
posicion se evidencia que las estimaciones para esa trayectoria estan un poco mas alineadas
con respecto a la linea diagonal, esto a la final indica que RF tiene mejor comportamiento a
la hora de estimar la posicién en comparacién con el GPS.
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Tabla. 4.7. Resumen de modelo de estimacion lineal para LSTM.

Variable dependiente: (Latitud, Longitud) Real
Variable independiente: (Latitud, Longitud) LSTM
R cuadrado Sig. (p)

0,999 0,001
0,998 0,001

Lat_Real
@ Obsenado
= Lineal
000000000
(]
-50,000000000
[
-100,000000000
' )
-150,000000000
-200,000000000  -150,000000000  -100,000000000  -50,000000000 000000000 50,000000000
Lat_LSTM
Lon_Real
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000000000
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100,000000000
-100,000000000 -50,000000000 000000000 50,000000000 100,000000000 150,000000000

Lon_LSTM

b) Longitud
Figura. 4.20. Posicidn real vs estimada por el modelo LSTM: a) Latitud, b) Longitud.



Para el tercer analisis, las estimaciones son hechas por el sistema propuesto utilizando el
modelo LSTM, donde el coeficiente de determinacion R? indica que LSTM es capaz de
estimar la posicién con mas del 98% de precision con respecto a la real, ademas por el grafico
de posicion se evidencia que las estimaciones para esa trayectoria estan mucho mas alineadas
con respecto a la linea diagonal, esto a la final indica que LSTM tiene un mejor
comportamiento al estimar la posicion del vehiculo en comparacién con el GPS y RF.

En comparacion durante el recorrido de la trayectoria, aunque el GPS tiene un R? alto, no
llega a estar al mismo nivel que el sistema utilizando los dos modelos de ML, ya que el
sistema implementado demuestra tener un mejor rendimiento al estimar la posicion.

Tabla. 4.8. Resumen estadistico para GPS, RFy LSTM.

Estadistico | Error estandar

E_GPS Media 5,99860 0,334898
Mediana 6,64714
Varianza 14,244
Desv. estandar 3,774114

E RF Media 4,64594 0,262658
Mediana 3,93227
Varianza 8,762
Desv. estandar 2,960000

E LSTM Media 2,81619 0,200097
Mediana 2,12237
Varianza 5,085
Desv. estandar 2,254976

En este caso se va analizar el error euclidiano cometido por cada sistema, este error
representa cuanta diferencia en metros hay entre la posicién real del vehiculo y la estimada,
esto nos indica que tan precisas son las estimaciones realizadas por el sistema con respecto
a los valores reales, por lo cual los datos de posicidn fueron transformados a coordenadas
(x,y) en metros para un mejor analisis.

Las estimaciones hechas por el GPS convencional tienen una mediana 6,64714 m, este valor
es alto e indica que las estimaciones no son muy precisas, esto se evidencia también en la
desviacién estandar de 3,774114 lo cual indica que las estimaciones estan muy dispersas, lo
que indica que hay casos en que el GPS estima bien la posicion mientras en otros casos no,
por lo cual las estimaciones son menos consistentes, también otra variable a considerar es el
error estandar 0,334898 indica que tan precisa es la media calculada con respecto al valor
real, pal caso tenemos un valor pequefio.

Las estimaciones hechas por el sistema propuesto utilizando RF tienen una mediana de error
de 3,93227 m, este valor es menor al del GPS, pero sigue siendo un error considerable, pal
caso la desviacidn estandar es 2,960000 con un error estandar de 0,262658, esto indica que
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RF tiene menos errores al estimar la posicion que el GPS y también sus estimaciones estan
menos dispersas y son consistentes.

Las estimaciones hechas por el sistema utilizando LSTM tienen una mediana de error de
2,12237 m, un valor menor al GPS y RF, tiene una desviacion estdndar de 2,254976 y un
error estandar de 0,200097, estos datos indican que LSTM tiene menos errores al estimar la
posicion y que sus estimaciones son méas consistentes que los anteriores modelos.

En general durante el recorrido de la trayectoria se optd por analizar la mediana de error ya
que los datos tienden a no seguir una distribucién normal, lo cual se analizara'y comprobara
mas adelante, a la final la mediana representa un punto central, en donde el 50% de errores
seran mayores o iguales que la mediana y el otro 50% seréan iguales o menores de la misma,
por tanto el sistema utilizando LSTM con una mediana menor que el resto estima las
posiciones del vehiculo con menos errores, esto también se refleja en sus valores de media,
desviacidn estandar y error estandar, los cuales son mas pequefios que el resto, por tanto, el
sistema implementado demuestra ser méas confiable, lo que sugiere que la media de error
cometido por LSTM es mas confiable por tanto el rendimiento general del sistema es mejor
que el sistema GPS y RF.
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Figura. 4.21. Distribucién de errores: a) GPS, b) RFy ¢) LSTM.

En estas figuras se evidencian los errores cometidos por cada sistema al estimar la posicion
y con qué frecuencia se produjeron dichos errores, entonces como se evidencia el GPS
convencional comete errores grandes y pequefios con mayor frecuencia, mientras que RF
también comete errores grandes pero con menos frecuencia y errores pequefios con mayor
frecuencia, pal caso de LSTM comete errores pequefios con mas frecuencia y aunque
también comete errores grande lo hace con mucha menos frecuencia que el resto
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evidenciando que el sistema propuesto usando el modelo LSTM generalmente es mas
confiable, ya que sus estimaciones de posicion del vehiculo estan mas cercanas a los valores
reales.

14,000 29 26
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Figura. 4.22. Comparacion de errores para los grupos (GPS, RF y LSTM).

Este diagrama de cajas representa la distribucion de errores cometidos al estimar la posicion
del vehiculo hecha por cada modelo, entonces se evidencia que GPS tiene una dispersion de
errores bastante grande esto se observa por el ancho de su caja con una mediana bastante
alta de 6,64714 m, mientras que RF con una mediana de 3,93227 m cuenta con una
dispersion de errores mucho mas reducido que GPS, pero con la presencia de valores atipicos
que indica que hay casos en donde este modelo realiza predicciones con un error mucho
mayor al medio, para el caso de LSTM con una mediana de 2,12237 m tenemos una
distribucion de errores mucho menor que el GPS y RF, pero también con presencia de valores
atipicos que son mucho menos frecuentes con respecto al modelo de RF.

En general si comparamos los tres modelos, GPS presenta errores muy grandes de manera
habitual, lo que indica que tiene una baja precision y gran variabilidad de errores, mientras
que el sistema propuesto usando los modelos de ML evidencian ser méas estables ya que
logran reducir el error medio en gran medida aunque cuentan con valores atipicos, estos
valores fueron generalmente ocasionados por perdida agresiva de la sefial GPS y también
posiblemente porque los modelos de ML no generalizan correctamente esa trayectoria, es
decir les falta méas datos de entrenamiento que les ayude a describir y predecir mejor la
trayectoria, estos errores atipicos presentes se mantienen dentro del rango normal de errores
del GPS lo que significa que incluso dichos errores no afectan directamente al
comportamiento general del sistema, ya que su promedio de error sigue estando muy por
debajo del GPS, entonces a la final el sistema usando el modelo LSTM claramente tiene
mejor precision al momento de estimar la posicion del vehiculo, ya que cuenta con errores
mas pequefios y consistentes que el resto de modelos, ademas de que este modelo logra
reducir en gran medida los errores atipicos, lo que demuestra ser mas robusto.
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Figura. 4.23. Trayectoria recorrida para evaluar los resultados.
4.2 Test de Normalidad.

Con el fin de determinar que prueba estadistica se ajusta para analizar los datos obtenidos se
evalué la normalidad de los datos, entonces se opto por trabajar con (n = 127) dado el tamafio
de los datos (n > 50) se aplicd la prueba de Kolmogorov—Smirnov como método de
referencia para saber si estos conjuntos de datos siguen una distribucion normal, este enfoque
ayuda a definir si se puede usar pruebas paramétricas 0 no paramétricas.

Hipotesis:
e Hipotesis nula (Hy).
Los datos de los grupos analizados siguen una distribucién normal.
e Hipdtesis alternativa (H, ).
Los datos de los grupos analizados no siguen una distribucion normal.

Tabla. 4.9. Prueba de normalidad.

Grupo Sig (p). P-valor
E_GPS 0,001 0,001 es menor a 0,05
E RF 0,001 0,001 es menor a 0,05
E LSTM 0,001 0,001 es menor a 0,05
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Evaluado el Test de Normalidad se rechaza la hipotesis nula y se acepta la hipotesis
alternativa con un nivel de significancia = 0,05, lo que sugiere que los grupos de datos
analizados no siguen una distribucion normal con un nivel de confianza del 95%.

4.3 Test de Friedman.

Se realizo un test de Friedman puesto que los grupos son relacionados y no siguen una
distribucion normal, entonces se tomo la mediana de error de posicionamiento de cada grupo
como referencia para evaluar cudl de ellos tuvo un mejor rendimiento al estimar la posicion
del vehiculo.

e Hipotesis nula (Hy).

Las medianas de error de posicionamiento del sistema GPS tradicional y el sistema
implementado utilizando modelos de ML vy filtrado de posiciones geolocalizadas son
significativamente iguales.

e Hipotesis alternativa (H;).

Las medianas de error de posicionamiento del sistema GPS tradicional y el sistema
implementado utilizando modelos de ML vy filtrado de posiciones geolocalizadas son
significativamente diferentes.

Tabla. 4.10. Test de Friedman.

N 127
Chi-cuadrado 76,621
gl 2
Sig. Asintotica. 0,001

Evaluado el Test de Friedman se rechaza la hipotesis nula y se acepta la hipdtesis alternativa
con un nivel de significancia = 0,05, lo que sugiere que las medianas de los tres grupos son
significativamente diferentes con un 95% de confianza.

4.4 Comparaciones Post-Hoc

Tabla. 4.11. Comparaciones por pares.

Grupos Sig (p) Sig. ajustada

E LSTM-E_RF 0,001 0,000
E LSTM-E _GPS 0,001 0,000
E RF-E GPS 0,013 0,040
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Figura. 4.24. Comparaciones por parejas (GPS, RF y LSTM).

Evaluado las comparaciones Post-Hoc, en donde los grupos de errores se comparan uno a
uno, nos demuestra que sin excepcion cada grupo tiene mediana de errores distintos, pero
se observa que entre los pares GPS y RF esa diferencia es mas pequefia con p = 0,013
mientras que en el resto de pares la diferencia es mas grande con p = 0,001, lo mismo se
evidencia en el grafico de comparaciones por parejas, en donde LSTM tiene un rango de
error medio més bajo con 1,40, seguido de RF con 2,15y por ultimo GPS con 2,46, por
tanto el sistema implementado utilizando LSTM tiene un rendimiento significativamente
mejor que RF y GPS.

4.4.1 Discusién Final.

El estudio estadistico realizado, demuestra que el sistema implementado para optimizar el
posicionamiento del vehiculo mediante filtrado de posiciones geolocalizadas y Machine
Learning logra tener un mejor rendimiento al estimar la posicion frente al GPS tradicional
con una confianza del 95%, esto se evidencia en sus variables estadisticas como: media,
mediana y desviacion estandar que demuestran que el sistema utilizando los modelos de ML
reducen progresivamente el error de posicionamiento y su variabilidad.

El analisis comparativo demuestra que LSTM tiene un rango de errores menor que el resto,
logrando ser mas confiable y estable, lo que deja al modelo RF en segundo lugar, por tanto
LSTM tiene un mejor desempefio proporcionando estimaciones mas estables gracias a su
aprendizaje secuencial demostrando ser robusto frente a datos ruidosos, estos resultados
validan la hipotesis de que el sistema implementado usando filtrado y ML optimizan de
manera significativa la precision y estabilidad de posicionamiento vehicular frente al GPS
tradicional.
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CAPITULO V

CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

Este proyecto de investigacion implementd un sistema de posicionamiento usando ML y
filtrado de posiciones geolocalizadas para optimizar el posicionamiento de un vehiculo, por
lo cual se disefid una pagina web que permiti6 mostrar los resultados de posicion y
trayectoria que sigui6 el vehiculo en tiempo real.

La implementacion del sistema usando el modelo LSTM redujo de manera considerable el
error de posicionamiento vehicular con respecto al GPS tradicional, donde LSTM cuenta
con un error central de 2,12237m, frente a 3,93227m de RF y 6,64714m del GPS
confirmando que el uso del EKF y ML permite optimizar el posicionamiento vehicular y
mejorar el rendimiento del sistema asta en un 68% con respecto al GPS tradicional.

El modelo LSTM al ser més robusto frente a condiciones externas como ruido o perdida de
sefial satelital muestra tener una menor dispersion de errores, por tanto, sus estimaciones
son mas estables y confiables.

La combinacion de EKF y los modelos de ML demostraron ser una combinacién efectiva
y robusta al optimizar el posicionamiento vehicular, ya que especialmente LSTM tiene la
capacidad de modelar patrones temporales y capturar errores que el filtro de Kalman no
puede.

Es importante destacar que la referencia de posicion real fue tomada de un sistema GNSS
de doble banda, cuyo margen de error aproximado es de 1.5m [2], esto implica que los
errores de posicion reportados tanto por el GPS tradicional y el sistema implementado
incluyan un pequefio valor de incertidumbre, ya que el error reportado no podra ser menor
al del sistema de referencia real, por tanto el error final reportado por LSTM variaria
ligeramente, esto no afecta al resultado final, ya que la diferencia entre estos errores es
grande, por tanto la mejora sigue siendo estadisticamente significativa.
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5.2 Recomendaciones

Se recomienda la fusion de sensores con técnicas de filtrado como el EKF y ML para
aprovechar los beneficios que cada tecnologia ofrece, ya que ayudan a optimizar la precision
de estimacion vehicular en tiempo real, incluyo se podria utilizar técnicas de filtrado y ML
mas robustas con lo cual posiblemente se conseguiria mejores resultados, pero sacrificando
la parte de costo computacional el cual seria mas elevado.

Es recomendable estudiar como afectan las condiciones del entorno a la calidad de las
mediciones, esto permite implementar ajustes y calibraciones tanto a la etapa de recoleccion
de datos, filtrado y para la etapa de estimacion con ML, logrando una mejor respuesta frente
a estas condiciones, por ende, los resultados seran mas confiables.

Se recomienda tener una dase de entrenamiento variada para los modelos de ML como
ejemplo: contar con rutas y condiciones ambientales diferentes, para que estos modelos
aprendan a generalizar y estimar mejor una trayectoria, con esto se logra que las estimaciones
sean mas precisas y consistentes.

Para futuros estudios se recomienda, tomar como referencia de posicion real de alta precision
al sistema RTK, ya que este ofrece estimaciones con errores a nivel de cm, por ende, se
podria contar con una posicién de referencia sin incertidumbre, lo cual aria que el error
reportado sea mas fiable, por otro lado se podria adquirir sensores mas robustos, los cuales
ayudarian a que las estimaciones finales sean mas precisas, pero todas estas consideraciones
incrementarian considerablemente es costo total del sistema.
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ANEXOS

Anexo 1: Dispositivo ensamblado.
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Anexo 3: Calibracion de los sensores.
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Anexo 5: Pruebas de campo.
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Anexo 7: Cddigo para GPS NEO-6M.

def latitude_string(self):
Create a readable string of the current latitude data
eturn: string

if self.coord_format == 'dd":
lat_string = self.latitude

elif self.coord_format == 'dms':
formatted_latitude = self.latitude

lat_string = str(formatted_latitude[0]) + '® " + str(formatted latitude[1]) + "' " + str(formatted latitude[2]) + '" ' + str(formatted_latitude[3])

else:

lat_string = str(self._latitude[6]) + '° ' + str(self._latitude[1]) + "' " + str(self. latitude[2])

return lat_string

def longitude_string(self):
Create a readable string of the current longitude data
:return: string

if self.coord_format == 'dd':
lon_string = self.longitude

elif self.coord_format == 'dms":
formatted_longitude = self.longitude

lon_string = str(formatted_longitude[0]) + '° ' + str(formatted_longitude[1]) + "' " + str(formatted longitude[2]) +

else:

lon_string = str(self._longitude[@]) + '° ' + str(self._longitude[1]) + "' " + str(self._longitude[2])

return lon_string

def s

d_string(self, unit="km/h"):

Creates a readable string of the current speed data in one of three units

:param unit: string of 'kph', 'mph, or 'knot'
eturn:

if unit == "'mph":
speed_string = str(self.speed[1]) + " mph'

elif unit == "knot':
if self.speed[0] 1:
unit_str = * knot'
else:
unit_str = ' knots'

speed_string = str(self.speed[0]) + unit_str

Anexo 8: Cédigo para MPU 6050.

def get_gyro_range(selt, raw = False):
raw_data = self.i2c.readfrom_mem(self.addr, _GYRO_CONFIG, 2)

if raw is True:
return raw_data[e]
elif raw is False:
if raw_data[@] == _GYR_RNG_25@DEG:
return 250
elif raw_data[@] == _GYR_RNG_56@DEG:
return 500
elif raw _data[0] == GYR_RNG_1066DEG:
return 1000
elif raw_data[0] == _GYR_RNG_2006DEG:
return 2000
else:
return -1

def read_gyro_data(self):

gyro_data = self._readData(_GYRO_XOUT@)

gyro_range = self._gyro_range

scaler = None

if gyro_range == _GYR_RMG_250DEG:
scaler = GYR_SCLR_258DEG

elif gyro_range == _GYR_RNG_500DEG:
scaler = _GYR_SCLR_50@DEG

elif gyro_range == _GYR_RMNG_1000DEG:
scaler = GYR_SCLR_1000DEG

elif gyro_range == _GYR_RMG_2000DEG:
scaler = _GYR_SCLR_2000DEG

else:
print("Unkown range - scaler set to _GYR_SCLR_25@DEG")
scaler = _GYR_SCLR_250DEG

x
"

= gyro_data["x"] / scaler
= gyro_data["y"] / scaler
gyro_data["z"] / scaler

[N
o

Xr = x * pi [/ 180
yr =y *pi/ 180
zr =z * pi / 180

return {"x": xr, "y": yr, "z": zr}

"4 str(formatted_longitude[3])
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Anexo 9: Cddigo para calibracion de sensores.

from MPU6O5@ import MPUG@5Q
import time

mpu = MPUG@58()

def calibrate_manual(mpu, samples=500):

print(" X

Calibrando manualmente.. Mantén la IMU QUIETA.")

ax_sum = ay_sum = az_sum = 0
gx_sum = gy sum = gz_sum = 0

for _ in range(samples):
acc = mpu.read_accel_data()
gyro = mpu.read_gyro_data()

ax_sum
ay_sum
az_sum

gx_sum
gy_sum
gz_sum

+=
+=
+=

+=
+

time.slee

accel_bias_x
accel_bias_y
accel_bias_z

acc['x"]
acc['y']
acc['z"]

gyro[ 'x']
gyro['y']
gyro['z']

p(0.005)

= ax_sum / samples
= ay_sum / samples
= (az_sum / samples) - 9.81

gyro_bias_x = gx_sum / samples
gyro_bias_y = gy_sum / samples
gyro_bias_z = gz_sum / samples

return (accel _bias_x, accel _bias_y, accel bias_z), (gyro_bias_x, gyro_bias_y, gyro_bias_z)

accel _bias, gyro_bias = calibrate_manual(mpu)

print("Calibracion manual completa.")
print("Bias acelerdmetro:", accel_bias)
print("Bias giroscopio:", gyro_bias)

Anexo 10: Codigo para la ESP32

time.s1
while T

eep(2)

rue:

ahora = time.ticks_ms()
t1 = time.ticks_diff(ahora, imu_ms)

t2
t3

acc

acc_corr,

time.ticks_diff(ahora, gps_ms)
time.ticks_diff(ahora, intervalo)

= mpu.read_accel_data()
gyro = mpu.read_gyro_data()

try:

gyro_corr = filtrar_imu(acc, gyro)

if t1 »>= intervalo_imu:
imu_ms = ahora
mensaje
imu_ms, *acc_corr, *gyro_corr)
sys.stdout.buffer.write(mensaje.encode())

= "IMU,{},{:.8F},{:.8F},{:.8F},{:.8F},{:.8F},{:.8F}\n".format(

if t2 »>= intervalo_gps:
gps_ms = ahora
while gps_serial.any():
data = gps_serial.read()
for byte in data:

stat = gps.update(chr(byte))
if stat is not None:
num_sats = gps.satellites_in_use
hdop = gps.hdop
lat = gps.latitude_string()
lon = gps.longitude_string()
speed = gps.speed_string()
direc = gps.compass_direction()
if lat != ultima_lat or lon != ultima_lon:
ultima_lat = lat
ultima_lon = lon
mensaje = "GPS,{},{:.8F},{:.8F},{},{},{},(}\n".format(gps_ms, lat, lon, num_sats, hdop, speed, direc)
sys.stdout.buffer.write(mensaje.encode())
intervalo = ahora
elif time.ticks_diff(ahora, intervalo) »= 800:
mensaje = "GPS,{},{:.8F},{:.8F}, {},{},{},{}\n".format(gps_ms, ultima_lat, ultima lon, num sats, hdop, speed, direc)
sys.stdout.buffer.write(mensaje.encode())
intervalo = ahora
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Anexo 11: Codigo para el modelo Random Forest.

r files [

et(df.columns)

ignore_inde )
ined_df.shape[@]]

combined_df[[

X_train, X_te train, y_test - train_test_split(X,

_train_seq, y_tes
random_ste

Dropout
LSTH(54,
Dropout (8
Dens
Dense (2

model. Fit(
_seq, y_train_:

y_pred_seq = mode

qrt(np.mean
qrt{np.mean (

input_:

, random_state-42)

ape=(sequence_length,
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* self.dt

elf.dt

F.T +Q

H @ self.P @ H.T + R_base

distancia = np.sqrt(y.T @ n
umbral M = 1@.8
if distancia > umbral_m:

inno =

norm > umbral:

ation_norm /

#t

) -addTo(map

polylin

gps: L.po i c 3 .addTo(map),
.addTo(map),
.addTo(map),
1'}) .addTo(map)

marker :
marker:
marker :

"}, name

name
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Anexo 15: Codigo principal del sistema.

if posicion[@] ==

osicion[1]) / 1600.0
icion[2])

estamp

dt_imu
timestamp

= normalize(abs(accel imu), @, 3
ro_imu), @,

posicion|
at(posicion[4])
(posicion[5])

nti

if late B
lat®, lon@ = lat, lon

x_gps, y_gps = transformar_xy(lat, lon, lat®, lon®)
yaw_gps = normalizar angulo(ort_gps)

alpha_hdop = normalize(hdop
alpha_vel = normalize(

if last yaw
delta_theta

delta_theta
last_yaw
peso_hdop, peso
alpha_total = p
R_dyn = R_min + (R_max - R_min) * alpha_total
gps >= @:
= np.array( Y_EBps, V_gps, Y

gps, R_dyn)

puntos_malos_x.append(x_gps)
puntos_malos_y.append(y_gps)

y_est, t, ort_ o «f .get_state()

_est, lon_ transformar_latlon(> t, y est, latd, long)
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