

UNIVERSIDAD NACIONAL DE CHIMBORAZO FACULTAD DE CIENCIAS DE LA SALUD CARRERA DE TERAPIA FÍSICA Y DEPORTIVA

TÍTULOEFECTIVIDAD DE LA ESTIMULACIÓN ELÉCTRICA NEUROMUSCULAR EN PACIENTES POST ICTUS

Trabajo de Titulación para optar al título de Licenciados en Ciencias de la Salud en Terapia Física y Deportiva

Autores:

Jerez Chiliquinga Hector Santiago Proaño Sánchez Paola Valeria

Tutor:

Mgs. Luis Alberto Poalasin Narváez

Riobamba, Ecuador. 2022

DERECHOS DE AUTORÍA

Nosotros Hector Santiago Jerez Chiliquinga, con cédula de ciudadanía 0503968836 y Paola Valeria Proaño Sánchez, con cédula de ciudadanía 0504237678, autores del trabajo de investigación titulado: EFECTIVIDAD DE LA ESTIMULACIÓN ELÉCTRICA NEUROMUSCULAR EN PACIENTES POST ICTUS, certifico que la producción, ideas, opiniones, criterios, contenidos y conclusiones expuestas son de mí exclusiva responsabilidad.

Asimismo, cedo a la Universidad Nacional de Chimborazo, en forma no exclusiva, los derechos para su uso, comunicación pública, distribución, divulgación y/o reproducción total o parcial, por medio fisico o digital; en esta cesión se entiende que el cesionario no podrá obtener beneficios económicos. La posible reclamación de terceros respecto de los derechos de autor (a) de la obra referida, será de mi entera responsabilidad; librando a la Universidad Nacional de Chimborazo de posibles obligaciones.

En Riobamba, 12 de julio del 2022

Hector Santiago Jerez Chiliquinga

C.I: 0503968836

Paola Valeria Proaño Sánchez

C.I: 0504237678

DICTAMEN FAVORABLE DEL TUTOR Y MIEMBROS DEL TRIBUNAL

UNIVERSIDAD NACIONAL DE CHIMBORAZO FACULTAD DE CIENCIAS DE LA SALUD CARRERA DE TERAPIA FÍSICA Y DEPORTIVA

CERTIFICADO DEL TRIBUNAL

Los miembros del tribunal de revisión del proyecto de investigación denominado: EFECTIVIDAD DE LA ESTIMULACIÓN ELÉCTRICA NEUROMUSCULAR EN PACIENTES POST ICTUS; presentado por HECTOR SANTIAGO JEREZ CHILIQUINGA Y PAOLA VALERIA PROAÑO SÁNCHEZ y dirigido por el Mgs. LUIS ALBERTO POALASIN NARVÁEZ en calidad de tutor; una vez revisado el informe escrito del proyecto de investigación con fines de graduación en el cual se ha constatado el cumplimiento de las observaciones realizadas, se procede a la calificación del documento.

Por la constancia de lo expuesto firman:

Mgs. Luis Alberto Poalasín Narváez

TUTOR

Mgs. Edissa María Bravo Brito

Miembro de Tribunal

MsC. Silvia del Pilar Vallejo Chinche

Miembro de Tribunal

Riobamba, 04 de julio del 2022

UNIVERSIDAD NACIONAL DE CHIMBORAZO FACULTAD DE CIENCIAS DE LA SALUD CARRERA DE TERAPIA FÍSICA Y DEPORTIVA

CERTIFICADO DEL TUTOR

Yo, Mgs. LUIS ALBERTO POALASIN NARVÁEZ docente de la carrera de Terapia Física y Deportiva de la Universidad Nacional de Chimborazo, en mi calidad de tutor del proyecto de investigación denominado EFECTIVIDAD DE LA ESTIMULACIÓN ELÉCTRICA NEUROMUSCULAR EN PACIENTES POST ICTUS, elaborado por los señores HECTOR SANTIAGO JEREZ CHILIQUINGA Y PAOLA VALERIA PROAÑO SÁNCHEZ certifico que, una vez realizadas la totalidad de las correcciones el documento se encuentra apto para su presentación y sustentación.

Es todo cuanto puedo certificar en honor a la verdad facultando a los interesados hacer uso del presente para los trámites correspondientes.

Riobamba, 04 de julio del 2022

Atentamente,

Mgs. Luis Alberto Poalasin Narváez

DOCENTE TUTOR

CERTIFICADO ANTI PLAGIO

UNIVERSIDAD NACIONAL DE CHIMBORAZO

FACULTAD DE CIENCIAS DE LA SALUD

COMISIÓN DE INVESTIGACIÓN Y DESARROLLO CID Ext. 1133

Riobamba 22 de junio del 2022 Oficio Nº 194-URKUND-CU-CID-TELETRABAJO-2022

Dr. Marcos Vinicio Caiza Ruiz
DIRECTOR CARRERA DE TERAPIA FÍSICA Y DEPORTIVA
FACULTAD DE CIENCIAS DE LA SALUD
UNACH
Presente.-

Estimado Profesor:

Luego de expresarle un cordial saludo, en atención al pedido realizado por el MSc. Luís Alberto Poalasín Narváez, docente tutor de la carrera que dignamente usted dirige, para que en correspondencia con lo indicado por el señor Decano mediante Oficio Nº 1898-D-FCS-TELETRABAJO-2020, realice validación del porcentaje de similitud de coincidencias presentes en el trabajo de investigación con fines de titulación que se detalla a continuación; tengo a bien remitir el resultado obtenido a través del empleo del programa URKUND, lo cual comunico para la continuidad al trámite correspondiente.

No	Documento	Documento número Título del trabajo	Nombres y apellidos del estudiante	% URKUND	Validación	
	numero			verificado	5i	No
1	D- 134123911	Efectividad de la estimulación eléctrica neuromuscular en pacientes post ICTUS	Hector Santiago Jerez Chiliquinga Paola Valeria Proaño Sánchez	3	x	

Atentamente,

CARLOS
GAFAS
GONZALEZ
GONZALEZ
152721-0908

Dr. Carlos Gafas González Delegado Programa URKUND FCS / UNACH

C/c Dr. Gonzalo E. Bonilla Pulgar - Decano FCS

Debido a que la respuesta del análisis de validación del porcentaje de similitud se realiza mediante el empleo de la modalidad de Teletrabajo, una vez que concluya la Emergencia Sanitaria por COVID-19 e inicie el trabajo de forma presencial, se procederá a recoger las firmas de recepción del documento en las Secretarias de Carreras y de Decanato.

DEDICATORIA

Este trabajo de investigación va dedicado principalmente a Dios, quien me ha brindado la sabiduría necesaria en todo este camino. También se lo dedico a mis padres a mi hermana y mi sobrinito quienes son el motivo por el cual nunca me rendí, porque ellos me enseñaron a tener el coraje y la valentía para afrontar nuevos retos, además, a quienes me han brindado su apoyo y colaboración en la realización de este trabajo permitiéndome así alcanzar la meta anhelada.

Santiago Jerez

El presente trabajo lo dedico principalmente a Dios, por ser el inspirador y darme la fuerza para continuar en este proceso de obtener uno de los anhelos más deseados. A mis padres y abuelitos, por su amor, trabajo y sacrificio en todos estos años, gracias a ustedes he logrado llegar hasta aquí y convertirme en lo que soy. Ha sido el orgullo y el privilegio de ser su hija. A mis hermanos por estar siempre presentes, acompañándome y por el apoyo moral, que me brindaron a lo largo de esta etapa.

Valeria Proaño

AGRADECIMIENTO

Agradecemos a Dios por bendecirnos la vida, por guiarnos a lo largo de nuestra existencia, ser el apoyo y fortaleza en aquellos momentos de dificultad y de debilidad. A nuestras familias, por habernos dado la oportunidad de formarnos en esta prestigiosa universidad y haber sido nuestro apoyo durante todo este tiempo. De manera especial a nuestro tutor de proyecto Msc. Luis Poalasín, por habernos guiado, no solo en la elaboración de este trabajo de titulación, sino a lo largo de mi carrera universitaria y haberme brindado el apoyo para desarrollarnos profesionalmente y seguir cultivando nuestros valores, a la Universidad Nacional de Chimborazo, por habernos brindado tantas oportunidades y enriquecernos en

conocimiento.

Hector Santiago Jerez Chiliquinga Paola Valeria Proaño Sánchez

ÍNDICE GENERAL

DERECHOS DE AUTORÍA
DICTAMEN FAVORABLE DEL TUTOR Y MIEMBROS DEL TRIBUNAL
CERTIFICADO ANTI PLAGIO
DEDICATORIA
AGRADECIMIENTO
ÍNDICE GENERA
ÍNDICE DE TABLAS
RESUMEN
ABSTRACT
1. CAPÍTULO I. INTRODUCCIÓN
2. CAPÍTULO II. MARCO TEÓRICO
3. CAPÍTULO III. METODOLOGÍA
3.2 Estrategia de Búsqueda
3.1 Criterios de Inclusión y Exclusión
3.1.1 Criterios de inclusión:
3.1.2 Criterios de exclusión:
3.3 Valoración de la calidad de estudio
Tabla 1. Artículos recolectados para el estudio
4. CAPÍTULO IV. RESULTADOS Y DISCUSIÓN38
4.1 Resultados
4.2. Discusión 62
5. CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES
5.1 Conclusiones 65
5.2 Propuesta

6. BIBLIOGRAFÍA67

7. ANEXOS
,
ÍNDICE DE TABLAS
Table 1. Autéquies manalactedes name al actudio
Tabla 1. Artículos recolectados para el estudio
Tabla 2 Artículos recolectados. Resultados de la estimulación eléctrica neuromuscular en
pacientes post ictus
ÍNDICE DE ILUSTRACIONES
INDICE DE ILUSTRACIONES
Ilustración 1 Algoritmo de búsqueda

RESUMEN

La investigación estuvo orientada en la modalidad de revisión bibliográfica, en la cual se analizaron estudios en donde los autores identifican los efectos que tiene la estimulación eléctrica neuromuscular en la rehabilitación fisioterapéutica de pacientes post ictus, determinando el aporte que tiene la técnica en la recuperación motora en miembro superior e inferior. En el proceso de revisión se encontraron 85 artículos científicos, con las variables referentes al tema principal, los mismos que fueron recolectados a partir del año 2011 hasta la actualidad de las diferentes bases de datos como: PubMed, Elsevier, Scielo, Google Scholar, Lilacs, ProQuest, Refseek, PEDro. Los artículos fueron seleccionados a través de los criterios de inclusión y la valoración mediante la escala de PEDro teniendo un total de 35 artículos que se consideraron aptos para el estudio, debido a que cumplían con un puntaje mayor o igual a 6 en la escala de PEDro, los cuales se encuentran en idiomas como inglés, español y turco. Al concluir con la investigación y análisis de los artículos científicos se cumplió el objetivo de analizar los efectos que produce la estimulación eléctrica neuromuscular como parte de la rehabilitación fisioterapéutica en pacientes post ictus, con lo cual se determinó la eficacia de la aplicación en esta patología.

Palabras claves: Accidente Cerebrovascular, Ictus, Estimulación Eléctrica, Estimulación Eléctrica Neuromuscular, ACV, EENM, ECV

ABSTRACT

The research was oriented in the bibliographic review modality, in which studies were analyzed in which the authors identified the effects of neuromuscular electrical stimulation in the physiotherapeutic rehabilitation of post-stroke patients. The analysis determined the technique's contribution to motor recovery in the upper and lower limb. Eighty-five scientific articles were found in the review process, with the variables referring to the main topic. The same topic was collected from 2011 to the present from the different databases such as PubMed, Elsevier, Scielo, Google Scholar, Lilacs, ProQuest, Refseek, PEDro. The articles were selected through the inclusion criteria and the evaluation using the PEDro scale, having a total of 35 articles that were considered suitable for the study because they met a score greater than or equal to 6 on the PEDro scale, which are in languages such as English, Spanish and Turkish. At the end of the research and analysis of the scientific articles, the objective of analyzing the effects of neuromuscular electrical stimulation as part of physiotherapeutic rehabilitation in post-stroke patients was fulfilled. Thus, the effectiveness of the application in this pathology was determined.

Keywords: Cerebrovascular Accident, Stroke, Electrical Stimulation, Neuromuscular Electrical Stimulation, CVA, NMES, CVD

Review of the Abstract translation by

Dr. Narcisa Fuertes, PhD

Professor at Competencias Linguisticas UNACH

1. CAPÍTULO I. INTRODUCCIÓN.

La investigación se realizó mediante la recolección de artículos de carácter científico referentes a la rehabilitación fisioterapéutica mediante la aplicación de estimulación eléctrica neuromuscular (EENM) en pacientes post ictus, que presentan secuelas físicas lo cual afecta su calidad de vida, así con ello evidenciar de manera clara los efectos del uso de esta técnica en la rehabilitación.

A nivel mundial el accidente cerebrovascular (ACV) es una emergencia neurológica frecuente y es considerada la tercera causa de mortalidad después de la enfermedad coronaria y el cáncer y la primera causa de invalidez en adultos (Capdevila, y otros, 2005). "Según datos de la Organización Mundial de la Salud (OMS) cada año 15 millones de personas sufren ictus de las cuales 5 millones fallecen y otros 5 millones adquieren una discapacidad permanente" (Sabin, Ávarez, Vallejo, & Masjuan, 2013, pág. 16). En América Latina se registró una mortalidad por enfermedad cerebrovascular (ECV) del 26% en los hombres y el 28% en las mujeres, sin embargo, los decesos han sido menos favorables en referencia a Canadá y Estados Unidos. (Núñez, Duplat, & Simancas, 2018)

En Ecuador según Núñez et al., la mortalidad por ECV ocupa la tercera causa en toda la población, la segunda causa en mujeres y la cuarta en hombres (Núñez, Duplat, & Simancas, 2018). "Según el Instituto Nacional de Estadísticas y Censos (INEC) 2019 se registró en el Ecuador 4627 defunciones por ACV entre hombres y mujeres que corresponde al 6.2% del total de muertes". (Lugmaña, Carrera, & Fernández, 2020, pág. 4)

El ACV o ictus incluye todas las enfermedades que afectan al cerebro y son causadas por trastornos de la circulación cerebral (Sabin, Ávarez, Vallejo, & Masjuan, 2013). Es un síndrome que altera la vascularidad del sistema nervioso central que lleva al desequilibrio entre el aporte y los requerimientos de oxígeno cuya consecuencia es una disfunción focal del tejido cerebral, por otra parte, según la naturaleza de la lesión se clasifica en dos grupos: isquémico y hemorrágico. El ACV de origen hemorrágico es la ruptura de un vaso sanguíneo y el ACV isquémico está causado por la obstrucción de una arteria que irriga una parte del cerebro. (Alfonso, y otros, 2019)

Los factores de riesgo del ictus son una serie de enfermedades o hábitos de vida, los mismos que se clasifican en dos grupos que son: modificables y no modificables. Los factores modificables pueden marcar la diferencia entre sufrir o no de ACV entre ellos tenemos: la hipertensión arterial, tabaquismo, diabetes, sobrepeso, obesidad, niveles de

colesterol alto y cardiopatías. Entre los factores de riesgo no modificables tenemos: edad, antecedentes familiares, raza, sexo y accidente cerebrovascular previo (Peñafiel & Eugenia, 2018). La incidencia de esta patología depende de la prevalencia y del correcto control que se tenga en los diferentes factores de riesgo. (Capdevila, y otros, 2005)

Las manifestaciones clínicas dependen del sitio de la localización y extensión de la lesión cerebral, los principales territorios vasculares que pueden verse alterados son los irrigados por: la arteria cerebral anterior, media, y posterior (Alfonso, y otros, 2019). Entre los signos y síntomas más frecuentes tenemos la pérdida de la fuerza en la mitad del cuerpo, sensación de adormecimiento o pérdida de sensibilidad, pérdida brusca de visión parcial o total, alteraciones del lenguaje. (Arauza & Franco, 2012)

Aun cuando el ictus es una enfermedad cerebral puede afectar a todo el cuerpo provocando trastornos motores como la hemiplejia, hemiparesia que son consecuencias de una alteración en el sistema motor, muchos pacientes con el tiempo tienden a desarrollar espasticidad lo cual provoca que el paciente adopte de forma espontánea posturas como: la flexión en el brazo y la extensión en la pierna, otras secuelas son los problemas de equilibrio el mismo que incrementa el riesgo de caídas; el paciente también presenta cansancio excesivo en relación con la actividad física, finalmente los pacientes experimentan dolor y sensaciones extrañas de incomodidad. (Sabin, Ávarez, Vallejo, & Masjuan, 2013)

Los pacientes después del ictus necesitarán de un programa de rehabilitación fisioterapéutica con el objetivo de conseguir la máxima recuperación funcional posible y con ello mejorar la calidad de vida del mismo. Según Ávarez et al., la rehabilitacion fisioterapéutica reduce el número de pacientes que quedan dependientes del ictus, además, recomiendan iniciar precozmente la rehabilitación debido a que la recuperación de los déficits neurológicos son más rapidos durante los primeros 3 meses siendo este periodo óptimo para la rehabilitación . (Sabin, Ávarez, Vallejo, & Masjuan, 2013).

La estimulación eléctrica neuromuscular (EENM) se basa en la estimulación de uno o varios grupos musculares por medio de corrientes eléctricas mediante electrodos que son aplicados en la superficie corporal, la misma que tiene como fin enviar señales al músculo lo que causa una contracción simulando así la actividad muscular normal. (Jiménez, y otros, 2014)

La EENM se la usa en la rehabilitación fisioterapéutica de pacientes con trastornos neurológicos como el ictus con el fin de fortalecer la musculatura, recuperación funcional tras la parálisis, disminuir la espasticidad y reducir el dolor. La técnica depende de las condiciones físicas y necesidades que el paciente tenga, por eso actualmente los profesionales de la salud usan esta técnica junto con la terapia convencional para de esta manera alcanzar los objetivos de la intervención. (Kotaro Takeda, 2017)

La intervención fisioterapéutica en pacientes post ictus a los cuales se les aplico EENM mostró efectos en la reducción de la espasticidad, a través de mecanismos que facilitan la inhibición recurrente de las células de Renshaw sobre inhibición reciproca antagonista y sobre el aumento de los estímulos sensoriales cutáneos. (Sbruzzi & Plentz, 2015)

En la rehabilitación de ACV la aplicación de la EENM ayuda a aumentar el trofismo muscular, mejora la circulación sanguínea, aumenta la resistencia muscular y la recuperación motora, la aplicación de esta técnica también puede reducir la espasticidad; este método se aplica según la condición en que se encuentra el paciente y también se hace referencia al grado de parálisis por ejemplo en pacientes con parálisis leve una aplicación por debajo del umbral motor combinada con otra rehabilitación ayuda a la mejoría funcional. (Takeda, Tanino, & Miyasaka, 2017)

Katherine et al., afirman que los beneficios de la EENM tiene como fin aportar efectos beneficos para mejorar la capacidad funcional siendo una alternativa de tratamiento que se recomienda utilizar lo mas pronto posible después del ictus para prevenir la disfuncion muscular (Vasquez & Rojas, 2020). Además, conjuntamente con otras técnicas de rehabilitación se obtiene mejores resultados en las secuelas del ictus, por lo tanto, se debe incluir en los programas de tratamiento del mismo. (Beguiristain & Andrea, 2019)

Debido a que la mayor cantidad de información científica encontrada fue sobre la aplicación de la EENM en miembros superiores e inferiores. El aporte de esta investigación se centrará en analizar los efectos que produce la EENM aplicada en pacientes post ictus con trastornos motores de miembros superiores e inferiores.

La importancia de esta investigación es aportar con información actualizada y fundamentada con evidencia científica de diferentes autores sobre los beneficios que tiene la aplicación de la EENM en pacientes con secuelas de ictus.

El objetivo de la presente investigación fue analizar los efectos que produce la estimulación eléctrica neuromuscular como parte de la rehabilitación fisioterapéutica en pacientes post ictus, mediante la recolección bibliográfica que brindará información verídica y actualizada sobre el abordaje fisioterapéutico en esta patología.

Palabras claves: Accidente Cerebrovascular, ictus, Estimulación Eléctrica, Estimulación Eléctrica Neuromuscular, ACV, EENM, ECV

2. CAPÍTULO II. MARCO TEÓRICO.

Sistema nervioso

Está conformado por el sistema nervioso central y periférico que son los responsables de controlar y regular el funcionamiento de órganos y sistemas, está organizado para detectar los cambios en el medio interno y externo para así evaluar la información y responder por medio de músculos o glándulas. (Tortora, 2011)

Sistema nervioso central

Está formado por encéfalo y medula espinal. El encéfalo está localizado en el cráneo y comprende el cerebro, cerebelo y tronco encefálico. La medula espinal está situada en el canal vertebral la cual recibe, integra y correlaciona distintos tipos de información sensorial. (Tortora, 2011)

Partes del sistema nervioso central

El diencéfalo recibe impulsos sensitivos y actúa como centro de conexiones, en este se encuentra el tálamo (Arikan, 2012). Una de las funciones del tálamo es recibir información sensitiva de diferentes tipos y distribuirla a las regiones específicas de la corteza cerebral. (Haines, 2013)

Cerebelo está conectado con diversas regiones del sistema nervioso central y se considera parte del sistema motor, está encargado de coordinar la actividad de grupos musculares individuales para producir movimientos voluntarios finos y sinérgicos. (Haines, 2013)

Médula espinal es el principal enlace entre el sistema nervioso periférico y el encéfalo, transmite información sensitiva procedente de las paredes del tronco, extremidades, vísceras y también distribuye impulsos motores a dichas áreas. (Haines, 2013)

El bulbo raquídeo está constituido por neuronas que desarrollan funciones propias del bulbo y tractos ascendentes y descendentes. (Haines, 2013)

Mesencéfalo coordina los mensajes que llegan desde el cerebro y sale hacia la medula espinal, además, participan en las vías visuales, función motora, en la transición del dolor y funciones viscerales. (Haines, 2013)

El cerebro está constituido por 4 lóbulos los cuales tienden a especializarse en ciertas funciones.

- Lóbulo frontal ocupa la planificación, pensamiento, comprende el control racional y ejecutivo del cerebro, contiene el área de la voluntad propia (la personalidad), la concentración, en este lóbulo también se encuentra el área motora, cada región de esta área controla las contracciones voluntarias de un músculo o grupo de músculos específicos del lado opuesto del cuerpo. (Tortora, 2011)
- Lóbulo temporal se ocupa de procesar el sonido, música, reconocimiento de rostros, objetos y algunas partes de memoria a largo plazo. (Sousa, 2014)
- Lóbulo occipital en él se da el procesamiento de información visual. (Sousa, 2014)
- Lóbulo parietal se ocupa principalmente de la orientación espacial, calculo, en este lóbulo también se encuentra esta área sensitiva la misma que recibe impulsos nerviosos de tacto, presión, vibración, cosquillas, temperatura, dolor y propiocepción. (Tortora, 2011)

Arco reflejo

El reflejo es una secuencia de acción rápida y automática que aparece en respuesta a un estímulo. El trayecto del impulso nervioso se denomina arco reflejo. (Tortora, 2011)

- Receptor sensitivo: Estructuras especializadas en la transformación de los estímulos en impulsos nerviosos que pueden ser integrados en el sistema nervioso central.
 Estos pueden ser de varios tipos como: Mecanorreceptores, quimiorreceptores, termorreceptores y fotorreceptores.
- Neurona sensitiva: Capta la información y lleva el mensaje a la médula.
- Interneurona: Se encuentra en los centros integradores y conecta a las neuronas sensitivas y motoras.
- Neurona motora: Lleva el impulso nervioso de la médula hasta el efector.
- Efector: Órgano encargado de efectuar una respuesta (músculo esquelético, liso, cardiaco). (Tortora, 2011)

El ictus

El accidente cerebrovascular también conocido como ictus que es una enfermedad que afecta a los vasos que irrigan el sistema nervioso central y compromete una área del cerebro, por lo tanto disminuye la presión de perfusión cerebral y esto ocasiona muerte celular, esto se debe a una afección cerebral brusca de las arterias ya sea causada por una hemorragia o por una oclusión. (Capdevila, y otros, 2005)

Etiología

Alrededor del 87 % de los accidentes cerebrovasculares son ocasionados por un coágulo sanguíneo o la obstrucción de una arteria que lleva sangre al cerebro. El 13 % restante es ocasionado por vasos sanguíneos rotos o dañados que derraman sangre en el cerebro o alrededor de él. (Catillo & Jiménez, 2014)

Clasificación

El ictus se clasifica en dos grupos hemorrágicos e isquémicos: el hemorrágico se produce por la ruptura de la arteria del cerebro. El isquémico este ocurre por la obstrucción de una arteria que irriga el cerebro como consecuencia de esta obstrucción se ve afectado el suministro de sangre y oxígeno hacia el cerebro. (Sabin, Ávarez, Vallejo, & Masjuan, 2013)

Fisiopatología

El cerebro a diferencia de otros órganos no puede almacenar energía, por lo tanto, depende del aporte continuo de oxígeno y de glucosa en el torrente circulatorio. Cuando el aporte de sangre se ve comprometido se altera la función cerebral y el flujo sanguíneo no se restablece a tiempo puede producirse la muerte cerebral. La isquemia cerebral se origina cuando el flujo sanguíneo disminuye hasta interferir con la función del sistema nervioso. Al ocluirse un vaso sanguíneo se produce un gradiente de perfusión que origina un área de intensa isquemia en el centro del territorio vascular ocluido, en la cual se produce una rápida muerte neuronal. La rotura de la pared de una arteria produce la salida de sangre al interior del cerebro, lo que conlleva que salgan múltiples sustancias que pueden resultar tóxicas para el tejido cerebral; sin embargo, gran parte del daño que se produce por las hemorragias cerebrales se debe a la presión que ejerce la sangre sobre las estructuras vecinas. La salida de sangre dentro del tejido cerebral origina el aumento brusco de la presión local, lo cual puede comprimir a las pequeñas arterias vecinas y limitar el flujo sanguíneo en esa zona. (Catillo & Jiménez, 2014)

Factores de riesgo

Los factores de riesgo son una serie de enfermedades y hábitos en la vida, cuando estos aparecen aumenta el riesgo de sufrir ACV. Se clasifican en dos grupos modificables y no modificables; Los modificables son aquellos factores que marcan la diferencia entre sufrir o no de ictus entre ellos están: la hipertensión arterial, tabaquismo, diabetes, sobrepeso, obesidad, niveles de colesterol alto y cardiopatías. Los no modificables son aquellos

factores en los cuales no podemos actuar entre ellos tenemos: edad, antecedentes familiares, raza y sexo. (Peñafiel & Eugenia, 2018)

Manifestaciones clínicas

Sabin et al., mencionan que las manifestaciones clínicas aparecen de forma brusca, las más frecuentes son pérdida de fuerza en la mitad del cuerpo, sensación de adormecimiento, pérdida de la sensibilidad de la mitad del cuerpo, pérdida brusca de visión y dificultad para hablar o comprender (Sabin, Ávarez, Vallejo, & Masjuan, 2013). Además, el ictus siempre va a dejar grado de dependencia al rededor del 30% al 40% de las personas, en el primer año no están en las condiciones de realizar algún tipo de actividades de la vida diaria, por lo tanto, requieren de ayuda. (Paixão Teixeira & Silva, 2009)

Manifestaciones clínicas según la arteria afectada

"La arteria cerebral anterior: presentará hemiparesia e hipoestesia contralateral de predominio crural, disartria, incontinencia urinaria y abulia" (Alfonso, y otros, 2019, pág. 5). Según Alfonso et al., la arteria cerebral media presentará hemiplejia e hipoestesia contralateral, hemianopsia homónima, desviación forzada de la mirada, alteración del estado de conciencia, afasia y apraxias. (Alfonso, y otros, 2019, pág. 5)

Arteria cerebral posterior: presentará afección del campo visual contralateral, agnosia visual, ceguera cortical. El territorio vertebro basilar pueden presentar compromiso cerebeloso o tronco encefálico de acuerdo con la arteria afectada. (Alfonso, y otros, 2019, pág. 6)

Diagnóstico

El diagnostico de ACV se lo puede realizar mediante una evaluación clínica y se confirma con imágenes cerebrales como la tomografía axial computarizada (TC). (Rojas, Rubio, Quintana, & Miranda, 2013)

Escalas de valoración

En el área fisioterapéutica la valoración es amplia dada la gran variedad de déficits y discapacidad que provoca el ictus. (Cuadrado & Arias, 2009)

Para la valoración de las secuelas del ictus se usa varios test como:

La escala de Ashworth modificada (MAS) esta escala valora la espasticidad, calificando con 0 cuando el tono muscular es normal y con 4 cuando hay hipertonía extrema es decir esto implica que el músculo está completamente rígido en movimientos de flexión o

extensión incluso cuando se mueve de forma pasiva, esta escala es considerada de valoración subjetiva es decir la puntuación depende de la apreciación personal del profesional. (Aguilera, Artau, & Sánchez, 2020)

La escala de Fugl Meyer (FMA) está destinada a la evaluación de la actividad refleja, el control del movimiento y la fuerza muscular, la misma se divide en 4 dominios (motor, sensorial, rango de movimiento, dolor articular). (Aguilera, Artau, & Sánchez, 2020)

Prueba de brazo de investigación de acción (ARAT) se utiliza para evaluar la recuperación funcional del miembro superior parético, a través, de una evaluación de la habilidad para manipular objetos de distinto tamaño, peso y forma después de una lesión cortical. (Doussoulin, Rivas, & Campos, 2012)

Escala analógica visual (EVA) en esta escala se evalúa la intensidad del dolor en una línea recta en un extremo consta la frase de no dolor y en el extremo opuesto el peor dolor. (Pardo, Muñoz, & SEMICYUC, 2006)

El índice de Barthel (IB) valora la capacidad de una persona para realizar de forma dependiente o independiente actividades básicas de la vida diaria por ejemplo comer, bañarse, vestirse, arreglarse, uso del sanitario, traslado silla a cama, deambulación, subir o bajar escalones. (Arturo & Pinzón, 2018)

La prueba de función motora de Wolf (WMFT) sirve para valorar la actividad de la extremidad superior, evalúa tres dimensiones como: tiempo, habilidad funcional y fuerza, donde 0 indica que no hay movimiento y 5 que el movimiento es normal al observar. (Aguilera, Artau, & Sánchez, 2020)

Test de velocidad de marcha sirve para valorar la marcha, el paciente en recorrer 10 metros en línea recta y miden el tiempo en segundos. (Cerda, 2013)

Dentro del tratamiento del ictus interviene un equipo multidisciplinario donde el objetivo principal es reactivar la plasticidad cerebral y de esta forma poder recuperar las funciones pérdidas y en algunos casos mantener las que siguen integras, el proceso de intervención debe empezar lo más pronto posible y con programas de rehabilitación específicos e individuales cubriendo las necesidades de cada paciente. (Sabin, Ávarez, Vallejo, & Masjuan, 2013)

Intervención fisioterapéutica

La intervención después del ictus depende de varios factores, por lo cual se requiere un equipo multidisciplinario y de esa forma se puede abordar las distintas secuelas con el objetivo de mejorar la calidad de vida y reintegrar al paciente a las actividades de la vida diaria.

Período agudo en esta etapa el signo más determinante es la hipotonía, por lo cual se tiene por objetivo evitar los trastornos cutáneos prevenir actitudes viciosas y también se puede realizar movilizaciones pasivas lentas. (Cuadrado & Arias, 2009)

Período subagudo en este periodo aparece la espasticidad e hiperreflexia normalmente este va acompañado de una recuperación motora en casos favorables dando inicio a trabajo activo del paciente esta fase de rehabilitación se podría decir que es la más importante puesto que el paciente puede intervenir de forma activa, entre las técnicas que se puede utilizas están: la cinesiterapia, reeducación propioceptiva y coordinación, ejercicios para parálisis facial, terapia ocupacional orientadas a las actividades de la vida diaria y la electroestimulación. (Cuadrado & Arias, 2009)

Músculo

El músculo esquelético está constituido por miles de células que se denominan fibras musculares las mismas que tienen miofibrillas y cada miofibrilla contiene a su vez miofilamentos que son la actina y la miosina las mismas que permiten la contracción muscular, además, el músculo está cubierto de tejido conectivo, vasos sanguíneos y nervios. La actividad normal del músculo esquelético depende de la inervación debido a que cada una de las fibras está en contacto con una terminación nerviosa las mismas que regulan su actividad. (Tortora, 2011)

Contracción muscular

Las neuronas que estimulan la contracción del músculo se denominan neuronas motoras. Esta neurona está compuesta por un axón que se extiende desde el encéfalo hasta la medula espinal y a los diferentes músculos, estas neuronas transmiten impulsos emitidos por el sistema nervioso central. La contracción muscular se produce porque las cabezas de miosina se unen y se desliza a lo largo de los filamentos finos en ambos extremos de un sarcómero. (Tortora, 2011)

La estimulación eléctrica neuromuscular

Consiste en la estimulación de uno o varios grupos musculares por medio de corrientes eléctricas, a través, de electrodos aplicados en la superficie corporal estos impulsos tienen como objetivo enviar señales a un músculo el cual va a reaccionar contrayéndose igual que haría con la actividad muscular normal, esta técnica trabaja en el músculo por medio de electrodos. (Jiménez, y otros, 2014)

Clasificación

La EENM se puede clasificar de acuerdo a la forma de la onda entre ellas tenemos:

Según la forma de pulso:

Monofásicas

- Continua o directa –galvánica
- Cuadrada o rectangular
- Exponenciales o progresivas

Corrientes bifásicas alternas

- Consecutivas
- Desfasadas
- Asimétricas

Corrientes moduladas

Según su polaridad:

- Polares
- Apolares

Según la intensidad:

- **Baja frecuencia:** 1 Hz 1 kHz tiene efecto sensitivo y excito motor del músculo inervado se aplica directo sobre la piel.
- **Media frecuencia:** 1 kHz 10 kHz tiene efecto analgésico, antiinflamatorio y excito motor se aplica directo sobre la piel.
- Alta frecuencia: Mayor a 10 kHz 24 a 50 MHz tiene efecto sensitivo y la acción de producir calor en el interior del organismo. (Cordero, 2008)

La frecuencia del impulso es el parámetro terapéutico más importante. En la mayoría de los equipos de electroterapia para el fortalecimiento muscular puede ajustarse entre 1-100 Hz y también algunos equipos ya vienen integrados con programas preestablecidos con diferentes frecuencias de tratamiento. Para una contracción completa y agradable se recomienda usar una frecuencia de 50 Hz. (Maya & Albornoz, 2010).

Colocación de los electrodos

La colocación de los electrodos se lo realiza con frecuencia en el vientre muscular no obstante se prefiere la colocación de un electrodo en el punto motor del músculo que suele estar en el vientre muscular hacia su tercio proximal para de esa forma ser más eficaz en cuanto a una mayor y mejor contracción con la menor intensidad de corriente. La ubicación de los electrodos requiere de destreza por parte del fisioterapeuta y se requiere de conocimientos de fisiología muscular y articular. (Maya & Albornoz, 2010)

Aplicación longitudinal sobre el punto motor

Se aplica directamente un electrodo sobre la masa muscular uno proximal y el otro distal al anterior. (Maya & Albornoz, 2010)

Aplicación sobre el nervio motor

Ambos electrodos se ubican sobre el recorrido del nervio motor, las ubicaciones de los electrodos se establecen en las zonas en la que el nervio se encuentra más superficial. (Maya & Albornoz, 2010)

Aplicación transversal

Se colocan los electrodos en ambos lados del vientre muscular de forma transversal a las fibras musculares este método usualmente se utiliza en grandes músculos como el cuádriceps o bíceps femoral. (Maya & Albornoz, 2010)

Indicaciones

Esta técnica se la usa en la práctica diaria del fisioterapeuta en las diferentes especialidades como la traumatología, reumatología y neurología para fines como: aumentar la estabilidad articular, calmar el dolor, fortalecer la musculatura, prevención o retraso de la atrofia, incremento de la circulación local de la sangre y reeducación del músculo. (Maya & Albornoz, 2010)

Contraindicaciones

No se debe usar este tipo de corrientes en: pacientes portadores de marcapasos, arritmias inestables, sobre lesiones cancerosas, zonas con trombosis arterial o venosa, tromboflebitis, tronco y zona lumbar durante el embarazo. (Cameron, 2013)

3. CAPÍTULO III. METODOLOGÍA.

El trabajo de investigación sobre EENM en pacientes post ictus se desarrolló bajo el marco de revisión bibliográfica, la investigación se llevó a cabo mediante la búsqueda de artículos científicos, libros y revistas que se encuentran en las diferentes bases de datos digitales como: PubMed, Elsevier, Scielo, Google Scholar, Lilacs, ProQuest, Refseek, PEDro. La búsqueda se realizó en idiomas como inglés, español y turco obteniendo así un amplio respaldo bibliográfico para enriquecer los conocimientos del lector.

El método de la investigación es inductivo debido a que se analizó información de cada una de las variables para luego integrarlas en un todo, de esta manera aportando información valiosa sobre los efectos de la estimulación eléctrica neuromuscular en pacientes post ictus. El nivel de investigación fue descriptivo por el análisis de los artículos en los cuales se identificó la estimulación eléctrica neuromuscular y el ictus para posteriormente presentar conclusiones y determinar la eficacia de la estimulación eléctrica neuromuscular en pacientes post ictus.

Su diseño fue documental debido a que se refirió a la obtención y análisis de datos bibliográficos que provienen de cualquier tipo de documento o revista científica en este caso artículos científicos que fueron recolectados de las diferentes bases de datos científicas existentes relacionados al tema de investigación. En relación al tiempo la investigación fue retrospectiva, debido a que la información de las variables se recolectó de fuentes que proporcionan estudios realizados por varios autores dando con ello la confiabilidad necesaria para obtener una buena calidad de estudio.

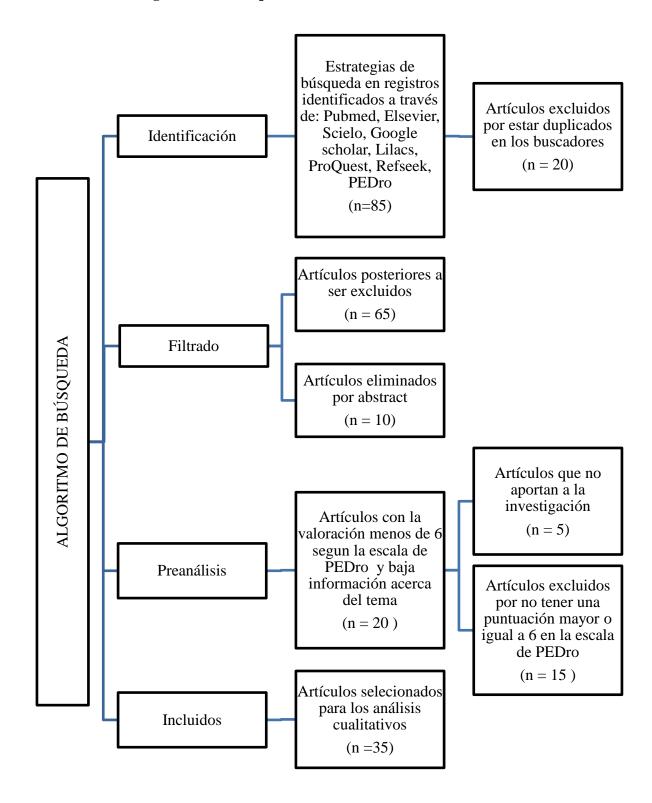
La revisión bibliográfica de la investigación se respaldó mediante la verificación con la escala de PEDro (Physiotherapy Evidence Database), la misma que es una herramienta útil para la valoración metodológica de artículos que contienen ensayos clínicos. El artículo tiene validez en la escala de PEDro cuando tiene una puntuación igual o superior a 6/10, sin embargo, si este tiene información relevante se puede añadir como parte de la bibliografía utilizada.

3.2 Estrategia de Búsqueda

La estrategia de búsqueda de la investigación fue elaborada de acuerdo al artículo "estrategias para la búsqueda bibliográfica" de los autores Barderas, A; Estrada, J; González, T. Las palabras estratégicas de búsqueda fueron: "Estimulación eléctrica neuromuscular", "electroestimulación", "Terapia de estimulación eléctrica", "Accidente

cerebrovascular", "Ictus", en las bases de datos en inglés se usará "Neuromuscular electrical stimulation", "stroke".

3.1.- Criterios de Inclusión y Exclusión


3.1.1.- Criterios de inclusión:

- Artículos científicos publicados desde el 2011 hasta la actualidad.
- Artículos científicos que hablen de las variables de estudio.
- Artículos científicos en idiomas como: inglés, español y turco.
- Artículos científicos que mediante la valoración de la escala de PEDro sean igual o mayor a la puntuación de 6.

3.1.2.- Criterios de exclusión:

- Artículos que no se desbloquearon con Sci-hub.
- Artículos científicos incompletos.
- Artículos científicos duplicados.

Ilustración 1.- Algoritmo de búsqueda

Elaborado por: Jerez Chiliquinga Hector Santiago

Proaño Sánchez Paola Valeria

Fuente: Formato revisión bibliográfica

3.3.- Valoración de la calidad de estudio

Tabla 1. Artículos recolectados para el estudio.

N°	Autores	Año	Título original del artículo	Título traducido al español	Base de	Escala
					datos	de
						PEDro
1	(Shen, y	2022	Effectiveness of a Novel Contralaterally	Eficacia de una nueva estimulación eléctrica	Pubmed	6
	otros, 2022)		Controlled Neuromuscular Electrical	neuromuscular controlada contra lateralmente		
			Stimulation for Restoring Lower Limb	para restaurar el rendimiento motor de las		
			Motor Performance and Activities of Daily	extremidades inferiores y las actividades de la		
			Living in Stroke Survivors: A Randomized	vida diaria en sobrevivientes de accidentes		
			Controlled Trial	cerebrovasculares: un ensayo controlado		
				aleatorio		
2	(Du, y otros,	2022	Effects of Neuromuscular Electrical	Efectos de la estimulación eléctrica	Pubmed	8
	2022)		Stimulation Combined with Repetitive	neuromuscular combinada con la estimulación		
			Transcranial Magnetic Stimulation on	magnética transcraneal repetitiva en la		
			Upper Limb Motor Function Rehabilitation	rehabilitación de la función motora de las		
			in Stroke Patients with Hemiplegia	extremidades superiores en pacientes con		
				accidente cerebrovascular y hemiplejía		
3	(Huang, y	2021	Effectiveness of Contralaterally Controlled	Efectividad de la estimulación eléctrica	Google	8
	otros, 2021)		Functional Electrical Stimulation versus	funcional controlada contra lateralmente versus	Académi	

			Neuromuscular Electrical Stimulation on	la estimulación eléctrica neuromuscular en la	со	
			Upper Limb Motor Functional Recovery in	recuperación funcional motora de las		
			Subacute Stroke Patients: A Randomized	extremidades superiores en pacientes con		
			Controlled Trial	accidente cerebrovascular subagudo: un ensayo		
				controlado aleatorizado		
4	(Sentandreu-	2021	A randomized clinical trial comparing 35	Un ensayo clínico aleatorizado que compara los	Proquest	8
	Mañó,		Hz versus 50 Hz frequency stimulation	efectos de la estimulación de frecuencia de 35		
	Tomás, &		effects on hand motor recovery in older	Hz versus 50 Hz sobre la recuperación motora de		
	Terrádez,		adults after stroke	la mano en adultos mayores después de un		
	2021)			accidente cerebrovascular		
5	(Busk H, y	2021	Neuromuscular Electric Stimulation in	Estimulación eléctrica neuromuscular además de	Pubmed	7
	otros, 2021)		Addition to Exercise Therapy in Patients	la terapia de ejercicios en pacientes con paresia		
			with Lower Extremity Paresis Due to	de las extremidades inferiores debido a un		
			Acute Ischemic Stroke. A proof-of-concept	accidente cerebrovascular isquémico agudo. Un		
			randomised controlled trial	ensayo controlado aleatorizado de prueba de		
				concepto		
6	(KARABIÇA	2020	Hemiplejik omuzda bantlama ile	Una comparación de los resultados del vendaje y	PEDro	8
	K & TALU,		nöromüsküler elektrik	la estimulación eléctrica neuromuscular en el		
	2020)		stimülasyon sonuçlarının karşılaştırılması:	hombro hemipléjico: un ensayo controlado		
			randomize kontrollü çalışma	aleatorizado		

7	(Mitsutake,	2019	The effects of electromyography-triggered	Los efectos de la estimulación eléctrica	PEDro	6
	Sakamoto, &		neuromuscular electrical stimulation plus	neuromuscular activada por electromiografía		
	Horikawa,		tilt sensor functional electrical stimulation	más el entrenamiento de estimulación eléctrica		
	2019)		training on gait performance in patients	funcional con sensor de inclinación sobre el		
			with subacute stroke: a randomized	rendimiento de la marcha en pacientes con		
			controlled pilot trial	accidente cerebrovascular subagudo: un ensayo		
				piloto controlado aleatorizado		
8	(Etoh, y	2019	Effects of concomitant neuromuscular	Efectos de la estimulación eléctrica	Pubmed	8
	otros, 2019)		electrical stimulation during repetitive	neuromuscular concomitante durante la		
			transcranial magnetic stimulation before	estimulación magnética transcraneal repetitiva		
			repetitive facilitation exercise on the	antes del ejercicio de facilitación repetitivo en la		
			hemiparetic hand	mano hemiparética		
9	(Kızılay,	2019	Akut İnme Hastalarında Omuz	Comparación de la eficacia del kinesio tape con	Google	6
	Durmuş,		Subluksasyonunun Önlenmesinde	estimulación eléctrica en la prevención de	Académi	
	Kızılay, &		Kinezyo Bantlama Etkinliğinin Elektrik	subluxación de hombro en pacientes con acv	co	
	Toy, 2019)		Stimülasyonu İle	agudo		
			Karşılaştırılması			
10	(Cruz,	2019	Effects of cryotherapy associated with	Efectos de la crioterapia asociada a la	Lilacs	6
	Januário,		kinesiotherapy and electrical stimulation	cinesioterapia y de la estimulación eléctrica en		
	Júnior, Lima,		on spastic hemiparetic patients	pacientes hemiparéticos espásticos		
	& Lima,					

	2019)					
11	(Yen, Jeng,	2019	Standard early rehabilitation and lower	Rehabilitación temprana estándar y estimulación	PEDro	7
	Luh, Lee, &		limb transcutaneous nerve or	eléctrica neuromuscular o nerviosa transcutánea		
	Pan, 2019)		neuromuscular electrical stimulation in	de miembros inferiores en pacientes con		
			acute stroke patients: a randomized	accidente cerebrovascular agudo: un estudio		
			controlled pilot study	piloto controlado aleatorizado		
12	(Park, 2019)	2019	Effects of mental imagery training	Efectos del entrenamiento de imágenes mentales	Pubmed	8
			combined electromyogram-triggered	combinado con estimulación eléctrica		
			neuromuscular electrical stimulation on	neuromuscular activada por electromiograma		
			upper limb function and	sobre la función de las extremidades superiores y		
			activities of daily living in patients with	las actividades de la vida diaria en pacientes con		
			chronic	accidente cerebrovascular crónico: un ensayo		
			stroke: a randomized controlled trial	controlado aleatorizado		
13	(Yang, y	2018	Effects of neuromuscular electrical	Efectos de la estimulación eléctrica	Refseek	6
	otros, 2018)		stimulation on gait performance in chronic	neuromuscular sobre el rendimiento de la marcha		
			stroke with inadequate ankle control - A	en accidentes cerebrovasculares crónicos con		
			randomized controlled trial	control inadecuado del tobillo: ensayo		
				controlado		
14	(Zeynep,	2018	The effect of task-oriented	El efecto de la estimulación eléctrica de los	PEDro	6
	Gencay-Can,		electromyography-triggered electrical	extensores paréticos de la muñeca		
	Karaca-		stimulation of the paretic wrist extensors	desencadenada por electromiografía orientada a		

	Umay, &		on upper limb motor function early after	tareas sobre la función motora de las		
	Cakci, 2018)		stroke: a pilot randomized controlled trial	extremidades superiores poco después del		
				accidente cerebrovascular: un ensayo piloto		
				controlado aleatorizado		
15	(Meimei	2018	Efficiency of Neuromuscular Electrical	Eficiencia de la estimulación eléctrica	Pubmed	6
	Zhou, Fang		Stimulation and Transcutaneous Nerve	neuromuscular y la estimulación nerviosa		
	Li, Weibo		Stimulation on Hemiplegic Shoulder Pain:	transcutánea en el dolor de hombro hemipléjico:		
	Lu, & Junfa		A Randomized Controlled Trial	un ensayo controlado aleatorio		
	Wu, 2018)					
16	(Chen, Tang,	2018	Effects of the hybrid of neuromuscular	Efectos del híbrido de estimulación eléctrica	Pubmed	7
	Hsu, Lo, &		electrical stimulation and noxious thermal	neuromuscular y estimulación térmica nociva en		
	Lin, 2018)		stimulation on upper extremity motor	la recuperación motora de las extremidades		
			recovery in patients with stroke: a	superiores en pacientes con accidente		
			randomized controlled trial	cerebrovascular: un ensayo controlado aleatorio		
17	(Xu, Guo,	2017	Effects of mirror therapy combined with	Efectos de la terapia del espejo combinada con	Pubmed	7
	Salem, Chen,		neuromuscular electrical stimulation on	estimulación eléctrica neuromuscular sobre la		
	& Huang,		motor recovery of lower limbs and walking	recuperación motora de las extremidades		
	2017)		ability of patients with stroke: a	inferiores y la capacidad para caminar de		
			randomized controlled study	pacientes con accidente cerebrovascular: un		
				estudio controlado aleatorizado		
18	(Chuang, y	2017	Effect of EMG-triggered neuromuscular	Efecto de la estimulación eléctrica	Proquest	6

	otros, 2017)		electrical stimulation with bilateral arm	neuromuscular activada por EMG con		
			training on hemiplegic shoulder pain and	entrenamiento bilateral de brazos sobre el dolor		
			arm function after stroke: a randomized	de hombro hemipléjico y la función del brazo		
			controlled trial	después de un accidente cerebrovascular: un		
				ensayo controlado aleatorizado		
19	(Qian, y	2017	Early Stroke Rehabilitation of the Upper	Rehabilitación temprana del ictus de la	Reefsek	6
	otros, 2017)		Limb Assisted with an Electromyography-	extremidad superior asistida con un brazo		
			Driven Neuromuscular Electrical	robótico de estimulación eléctrica neuromuscular		
			Stimulation-Robotic Arm	impulsado por electromiografía		
20	(Takebayashi	2017	Improvement of Upper Extremity Deficit	Mejora del déficit de las extremidades superiores	Google	6
	, Takahashi,		after Constraint-Induced Movement	después de la terapia de movimiento inducida	Académi	
	Moriwaki,		Therapy Combined with and without	por restricción combinada con y sin estimulación	co	
	Sakamoto, &		Preconditioning Stimulation Using Dual-	de preacondicionamiento utilizando estimulación		
	Domen,		hemisphere Transcranial Direct Current	de corriente continua transcraneal de dos		
	2017)		Stimulation and Peripheral Neuromuscular	hemisferios y estimulación neuromuscular		
			Stimulation in Chronic Stroke Patients: A	periférica en pacientes con accidente		
			Pilot Randomized Controlled Trial	cerebrovascular crónico: un ensayo piloto		
				controlado aleatorizado		
21	(Tosun, y	2017	Effects of low-frequency repetitive	Efectos de la estimulación magnética	Pubmed	6
	otros, 2017)		transcranial magnetic stimulation and	transcraneal repetitiva de baja frecuencia y la		
			neuromuscular electrical stimulation on	estimulación eléctrica neuromuscular en la		

			upper extremity motor recovery in the	recuperación motora de las extremidades		
			early period after stroke: a preliminary	superiores en el período temprano después del		
			study	accidente cerebrovascular: un estudio preliminar		
22	(Miyasaka, y	2016	Ability of electrical stimulation therapy to	Capacidad de la terapia de estimulación eléctrica	Pubmed	6
	otros, 2016)		improve the effectiveness of robotic	para mejorar la efectividad del entrenamiento		
			training for paretic upper limbs in patients	robótico para miembros superiores paréticos en		
			with stroke	pacientes con accidente cerebrovascular		
23	(Lee, Lee, &	2016	Mirror Therapy with Neuromuscular	Terapia de espejo con estimulación eléctrica	Pubmed	6
	Jeong, 2016)		Electrical Stimulation for improving motor	neuromuscular para mejorar la función motora		
			function of stroke survivors: A pilot	de los supervivientes de un accidente		
			randomized clinical study	cerebrovascular: un estudio clínico piloto		
				aleatorizado		
24	(Wang,	2015	Full-movement neuromuscular electrical	La estimulación eléctrica neuromuscular de	Pubmed	6
	Meng,		stimulation improves plantar flexor	movimiento completo mejora la espasticidad del		
	Zhang, Xu, &		spasticity and ankle active dorsiflexion in	flexor plantar y la dorsiflexión activa del tobillo		
	Yue, 2015)		stroke patients: a randomized controlled	en pacientes con accidente cerebrovascular: un		
			study	estudio controlado aleatorizado		
25	(Gharib,	2015	efficacy of electrical stimulation as an	Eficacia de la estimulación eléctrica como	Pubmed	8
	Aboumousa,		adjunct to repetitive task practice therapy	complemento de la terapia de práctica de tareas		
	Elowishy,		on skilled hand performance in	repetitivas en el desempeño de manos calificadas		
	Rezk-Allah,		hemiparetic stroke patients: a randomized	en pacientes con accidente cerebrovascular		

	& Yousef,		controlled trial	hemiparético: un ensayo controlado aleatorizado.		
	2015)					
26	(Bao-Juan	2015	Effects of a 12-hour neuromuscular	Efectos de un programa de tratamiento de	Google	6
	Cui, y otros,		electrical stimulation treatment program on	estimulación eléctrica neuromuscular de 12	Académi	
	2015)		the recovery of upper extremity function in	horas en la recuperación de la función de las	со	
			sub-acute stroke patients: a randomized	extremidades superiores en pacientes con		
			controlled pilot trial	accidente cerebrovascular subagudo: un ensayo		
				piloto controlado aleatorio		
27	(Lee, y otros,	2015	Effects of combining robot-assisted	Efectos de la combinación de terapia asistida por	Pubmed	7
	2015)		therapy with neuromuscular electrical	robot con estimulación eléctrica neuromuscular		
			stimulation on motor impairment, motor	sobre el deterioro motor, la función motora y		
			and daily function, and quality of life in	diaria, y la calidad de vida en pacientes con		
			patients with chronic stroke: a double-	accidente cerebrovascular crónico: un ensayo		
			blinded randomized controlled trial	controlado aleatorio doble ciego		
28	(Xiao-Ling	2014	Wrist Rehabilitation Assisted by an	Rehabilitación de muñeca asistida por un robot	PEDro	6
	Hu, y otros,		Electromyography-Driven Neuromuscular	de estimulación eléctrica neuromuscular		
	2014)		Electrical Stimulation Robot After Stroke	impulsado por electromiografía después de un		
				accidente cerebrovascular		
29	(Shimodozon	2013	Repetitive facilitative exercise under	Ejercicio de facilitación repetitivo bajo	PEDro	7
	o, y otros,		continuous electrical stimulation for severe	estimulación eléctrica continua para la		
	2013)		arm impairment after sub-acute stroke: a	discapacidad grave del brazo después de un		

			randomized controlled pilot study	accidente cerebrovascular subagudo: un estudio		
				piloto controlado aleatorio		
30	(Boyaci, y	2013	Comparison of the effectiveness of active	Comparación de la efectividad de la estimulación	Pubmed	7
	otros, 2013)		and passive neuromuscular electrical	eléctrica neuromuscular activa y pasiva de las		
			stimulation of hemiplegic upper	extremidades superiores hemipléjicas: un ensayo		
			extremities: a randomized, controlled trial	controlado aleatorizado		
31	(Jayme S.	2013	Contralaterally controlled neuromuscular	Estimulación eléctrica neuromuscular contra	Pubmed	6
	Knutson, y		electrical stimulation for recovery of ankle	lateralmente controlada para la recuperación de		
	otros, 2013)		dorsiflexion: a pilot randomized controlled	la dorsiflexión del tobillo: un ensayo piloto		
			trial in patients with chronic post-stroke	controlado aleatorizado en pacientes con		
			hemiplegia	hemiplejía crónica posterior a un accidente		
				cerebrovascular		
32	(Sahin,	2012	The efficacy of electrical stimulation in	La eficacia de la estimulación eléctrica en la	Pubmed	6
	Ugurlu, &		reducing the post-stroke spasticity: a	reducción de la espasticidad posterior al ictus: un		
	Albayrak,		randomized controlled study	estudio controlado aleatorizado		
	2012)					
33	(Malhotra, y	2012	A randomized controlled trial of surface	Un ensayo controlado aleatorio de estimulación	PEDro	8
	otros, 2012)		neuromuscular electrical stimulation	eléctrica neuromuscular superficial aplicada		
			applied early after acute stroke: Effects on	temprano después de un accidente		
			wrist pain, spasticity and contractures.	cerebrovascular agudo: efectos sobre el dolor de		
				muñeca, espasticidad y contracturas.		

34	(Sheeba	2012	Can surface neuromuscular electrical	¿Puede la estimulación eléctrica neuromuscular	Pubmed	7
	Rosewilliam,		stimulation of the wrist and hand combined	superficial de la muñeca y la mano, combinada		
	Shweta		with routine therapy facilitate recovery of	con la terapia de rutina, facilitar la recuperación		
	Malhotra,		arm function in patients with stroke?	de la función del brazo en pacientes con		
	Christine			accidente cerebrovascular?		
	Roffe, Peter					
	Jones, &					
	Anand D.					
	Pandyan,					
	2012)					
35	(Duarte, y	2011	Efectos de la toxina botulínica tipo A y		Elsevier	7
	otros, 2011)		electroestimulación en la espasticidad			
			flexora distal de la extremidad superior en			
			el ictus. Ensayo clínico aleatorizado			

Elaborado por: Jerez Chiliquinga Hector Santiago

Proaño Sánchez Paola Valeria

4. CAPÍTULO IV. RESULTADOS Y DISCUSIÓN

4.1.- Resultados

Tabla 2.- Artículos recolectados. Resultados de la estimulación eléctrica neuromuscular en pacientes post ictus

Autores	Tipo de	Población	Intervención	Resultados
	estudio			
(Shen, y otros,	Estudio	44 pacientes	-EENM, frecuencia de	Se registraron un total de 44 pacientes con ACV los cuales se
2022)	controlado	G1: 22 pacientes,	60 Hz, onda bifásica	dividieron aleatoriamente recibiendo 5 sesiones de estimulación
	aleatorio	grupo EENM	-La duración del	eléctrica de 60 Hz durante 15 minutos. Los valores de FMA en la
		controlada	tratamiento 3 semanas	extremidad inferior y BI del músculo tibial anterior afectado
		contralateral		aumentaron significativamente en ambos grupos después del
		G2: 22 pacientes,		tratamiento (p<0,01). Los pacientes del grupo EENM controlada
		grupo EENM		contralateral mostraron mejoras significativas en todas las
				mediciones en comparación con el grupo EENM después del
				tratamiento. Las diferencias dentro del grupo en todos los
				indicadores previos y posteriores al tratamiento fueron
				significativamente mayores en el grupo estimulación eléctrica
				neuromuscular controlada contralateral que en el grupo EENM
				(p<0,05). (Shen, y otros, 2022)
(Du, y otros,	Estudio	240 pacientes	-EENM con frecuencia	En el estudio se aplicó EENM en los músculos extensor del carpo
2022)	controlado	G1: 60 pacientes,	de 50 Hz	y extensor común de los dedos. En el grupo de EENM +

	aleatorio	grupo control	-Estimulación eléctrica	estimulación eléctrica transcraneal repetitiva (EMTr) las
	cegado	G2: 60 pacientes,	transcraneal repetitiva	actividades de la vida diaria fueron evaluadas por IB. Los
	por el	grupo EENM		resultados mostraron que no hubo una diferencia significativa en el
	evaluador	G3: 60 pacientes,		IB entre los pacientes de los cuatro grupos antes del tratamiento (p
		grupo		>0,05). El IB aumentó significativamente después el tratamiento
		estimulación		en los cuatro grupo en comparación con antes del tratamiento (p
		magnética		<0,001). Los resultados de la puntuación mostraron que no hubo
		transcraneal		diferencias significativas en la FMA entre los cuatro grupos antes
		repetitiva		del tratamiento. En comparación con el período de pretratamiento,
		G4: 60 pacientes,		FMA fue considerablemente mayor después del tratamiento en
		grupo EENM +		todos los grupos, pero el grupo de EENM + EMTr fue
		estimulación		significativamente mayor que los tres grupos. La tensión muscular
		eléctrica		del codo, muñeca y dedos fue evaluada por MAS. En comparación
		transcraneal		con antes del tratamiento la espasticidad según el MAS de codo
		repetitiva		muñeca y dedos se elevaron en forma observable en el grupo de
				EENM + EMTr después del tratamiento. (Du, y otros, 2022)
(Huang, y	Ensayo	50 pacientes	-EENM con frecuencia	Este ensayo tuvo como propósito comparar la eficacia de la
otros, 2021)	controlado	G1: 25 pacientes,	de 35 pulsos por	EENM como de la estimulación eléctrica funcional controlada
	aleatorizad	grupo	segundo, onda	contra lateralmente. Después de una intervención de tres semanas
	o paralelo	estimulación	rectangular bifásica	los 50 pacientes según la escala FMA de la extremidad superior y
		eléctrica	-Estimulación eléctrica	el índice de Barthel aumentaron significativamente en ambos

		funcional	funcional controlada	grupos. ARAT aumentó significativamente solo en el grupo de
		controlada contra	contra lateralmente	estimulación eléctrica funcional controlada contra lateralmente, la
		lateralmente	-Duración del	relación de contracción del flexor radial del carpo en el grupo
		G2: 25 pacientes,	tratamiento 3 semanas	estimulación eléctrica funcional controlada contra lateralmente no
		grupo EENM		disminuyo significativamente en comparación con el EENM
				(Huang, y otros, 2021).
(Sentandreu-	Ensayo	69 pacientes	-EENM con frecuencia	El presente estudio tuvo efectos en el rango de movimiento en el
Mañó, Tomás,	clínico	G1: 23 pacientes,	de 35Hz y 50 Hz	grupo de EENM de 35 Hz como de 50 Hz. Se encontró mejoría en
& Terrádez,	aleatorizad	grupo control		todas las variables dependientes. El grupo de control solo presento
2021)	0	G2: 23 pacientes,		una ganancia significativa en la extensión pasiva de la muñeca,
		grupo de 50 Hz		pero fue ineficaz para todas las demás medidas de rango de
		de EENM		movimiento, sin embargo, las ganancias producidas por 35 Hz
		G3: 23 pacientes,		fueron mayoras a las de 50 Hz. Con respecto al grupo de 35 Hz
		grupo de 35 Hz		hubo ganancias significativas en ambas medidas de fuerza en los
		de EENM		tres momentos del tiempo: mitad del tratamiento, final del
				tratamiento y seguimiento. En el caso de 50 Hz no hubo ganancias
				significativas entre 1 mes y el inicio de tratamiento en la fuerza de
				agarre, pero hubo diferencias significativas y grandes efectos para
				las otras comparaciones la mayor de esta fue entre el valor inicial
				y el seguimiento para la EENM de 35 Hz. Efectos sobre el tono
				muscular hubo ganancias en ambos grupos de tratamiento según el

				MAS para flexores de muñeca y flexores del metacarpofalángico
				(MCP) de los dedos. Con respecto a los grupos experimentales
				hubo mejoras en la prueba inicial, 2 meses y seguimiento para
				todas las variables dependientes (flexores de muñeca y flexores del
				MCP). La EENM de 35Hz tuvo efectos más grandes en el tono
				muscular. Sobre los efectos de la actividad eléctrica muscular la
				EENM de 35 Hz tuvo efectos mayores para los extensores,
				mientras que la EENM de 50 Hz tuvo efectos mayores para los
				extensores antagonistas. Por último los efectos sobre las medidas
				de resultados funcionales en el grupo control y en el grupo de 50
				Hz no cambiaron significativamente en comparación al valor
				inicial, sin embargo, según el IB mejoró el grupo de 35 Hz
				(Sentandreu-Mañó, Tomás, & Terrádez, 2021).
(Busk H, y	Ensayo	50 pacientes	- EENM	Se incluyeron 50 pacientes de ictus con una edad media de 67 años
otros, 2021)	controlado	G1: 25 pacientes,	-En el periodo de	de un rango de 43 a 83, se aplicó 10 minutos de EENM en los
	aleatorio	grupo de terapia	calentamiento 5 Hz,	músculos tibiales anteriores + terapia del ejercicios o terapia del
	de prueba	de ejercicios +	fase de contracción de	ejercicio sola. No hubo diferencia significativa en los grupos en
	de	EENM	4.75 a 50 Hz, fase final	prueba de caminata de 10 minutos desde el inicio hasta los 90 días
	concepto	G2: 25 pacientes,	3 Hz	de seguimiento, el grupo que recibió terapia con ejercicios +
		grupo terapia de	-Terapia de ejercicios	EENM mejoró en mayor porcentaje en comparación con el grupo
		ejercicios	-Duración del	de terapia de ejercicios, sin embargo, ambos grupos superaron el

			tratamiento 2 semanas	umbral de diferencia mínimamente importante. Todos los
				resultados secundarios no mostraron diferencias estadísticamente
				significativas entre los grupos (Busk H, y otros, 2021).
(KARABIÇA	Ensayo	60 pacientes	-EENM con frecuencia	El estudio aleatorizado simple ciego en el cual se estableció como
K & TALU,	controlado	G1: 20 pacientes,	de 30 Hz a 50 Hz, onda	objetivo comparar los efectos de la EENM y el kinesioteping. Los
2020)	aleatorizad	grupo EENM	bifásica simétrica	análisis estadísticos mostraron que todos los diferentes enfoques
	0	G2: 20 pacientes,	-Kinesiotaping	de tratamiento conservador conducen a una mejora significativa en
		grupo	-Duración del	todos los subparámetros de la escala sensorio motora de Fulg
		kinesiotaping	tratamiento 4 semanas	Meyer en los valores posteriores al tratamiento en comparación a
		G3: 20 pacientes,		los valores previos de tratamiento. Con respecto al dolor dentro del
		grupo control		grupo de taping y EENM disminuyo significativamente el dolor en
				reposo y con la actividad (KARABIÇAK & TALU, 2020).
(Mitsutake,	Ensayo	41 pacientes	-EENM activada por	En el estudio participaron 41 pacientes que fueron asignados
Sakamoto, &	piloto	G1: 14 pacientes,	electromiografía con	aleatoriamente 14 al grupo rehabilitación convencional, 13 al
Horikawa,	controlado	grupo	frecuencia de 20 Hz	grupo EENM activada por electromiografía y 14 grupo
2019)	aleatorizad	rehabilitación	-Rehabilitación	estimulación eléctrica funcional + estimulación eléctrica, durante
	0	convencional	convencional	el periodo de intervención de dos semanas, el grupo de EENM
		G2: 13 pacientes,	-Estimulación eléctrica	mostró un aumento significativo en el velocidad de la marcha y la
		grupo EENM	funcional	aceleración del tronco durante pruebas de marcha de 10 metros y
		activada por	-Duración del	en el grupo de estimulación eléctrica combinada mostraron
		electromiografía	tratamiento 2 semanas	disminuciones significativas en los planos vertical, medio lateral y

		G3: 14 pacientes,		anteroposterior y balanceo del cuerpo antes y después de la
		grupo		intervención. (Mitsutake, Sakamoto, & Horikawa, 2019).
		estimulación		
		eléctrica		
		funcional +		
		EENM activada		
		por		
		electromiografía		
(Etoh, y otros,	Estudio	20 pacientes	-EENM con frecuencia	Al aplicar la EENM sobre los músculos extensor común de los
2019)	cruzado	G1: 10 pacientes,	de 1 Hz, onda triangular	dedos los sujetos no mostraron ningún efecto adverso durante el
	aleatorizad	grupo EENM +	durante 10 minutos,	transcurso del estudio. Los aumentos de FMA y ARAT no
	o doble	estimulación	intensidad 16- 38.5 mA	difirieron entre las sesiones de EENM con la simulación de
	ciego	magnética	-Estimulación	EENM. Las puntuaciones FMA y ARAT en las extremidades
		transcraneal	magnética transcraneal	superiores hemipareticas aumentaron en las sesiones de EENM,
		repetitiva	repetitiva	pero no en la simulación de EENM. La disminución de MAS no
		G2: 10 pacientes,	-Duración del	tubo cambios en ningún grupo, las puntuaciones MAS en los
		EENM simulada+	tratamiento 4 semanas	flexores del codo mostraron una mejoría durante la simulación de
		estimulación		EENM, en cambio, en los flexores de la muñeca y dedos
		magnética		mostraron una mejoría significativa en EENM (Etoh, y otros,
		transcraneal		2019).
		repetitiva		

(Kızılay,	Ensayo	44 pacientes	-EENM	I con frec	uencia	En el estudio no hubo diferencia significativa en los parámetros de
Durmuş,	clínico	G1: 22 pacientes,	de 4	0 Hz,	onda	evaluación demográfica, radiológica y clínica entre los grupos
Kızılay, &		grupo	simétri	ca bifásica		antes del tratamiento (p>0,05). En el estudio la EENM fue
Toy, 2019)		kinesiotaping	-Kinesi	otaping		aplicada en la parte posterior del deltoides. En la evaluación
		G2: 22 pacientes,	-Durac	ón	del	radiológica entre los grupos después del tratamiento se encontró
		grupo EENM	tratami	ento 3 sem	anas	una disminución significativa en los valores de asimetría total del
						grupo de estimulación en comparación con el grupo de Kinesitape
						(p<0,05). En la evaluación de las actividades de la vida diaria se
						encontró una mejora significativa en el BI en el grupo de EENM
						en comparación con el grupo de Kinesitape (p<0,05). No hubo
						diferencia significativa en la evaluación de la Escala Visual
						Analógica (EVA) entre grupos y dentro de los grupos en
						comparación con el pretratamiento (p>0,05). En MAS hubo un
						aumento significativo en el grupo de Kinesiotape (p<0,05),
						mientras que no hubo diferencia significativa en el grupo de
						EENM en comparación con la evaluación previa al tratamiento.
						No se encontraron diferencias significativas entre los grupos
						después del tratamiento (p>0,05) (Kızılay, Durmuş, Kızılay, &
						Toy, 2019).
(Cruz,	Ensayo	40 pacientes	-EENM	I con frec	uencia	Cuarenta pacientes ingresaron al estudio aleatoriamente. Los
Januário,	clínico	G1: 20 pacientes,	de 5	0 Hz,	onda	resultados demostraron un aumento de la capacidad de prensión

Júnior, Lima,	controlado	grupo EENM	rectangular bifásica	palmar en el grupo crioterapia + cinesiterapia, la crioterapia se
& Lima, 2019)		G2: 20 pacientes,	simétrica	aplicó en los flexores espásticos de la muñeca y cinesiterapia en
		grupo crioterapia	-Crioterapia	los agonistas y antagonistas de los flexores y extensores de la
		+ cinesiterapia	-Cinesiterapia	muñeca espástica (p=0,0244) que se mantuvo al finalizar el
			-Durante 16 sesiones	tratamiento. Este aumento podría deberse al hecho de que el
				enfriamiento puede mejorar la fuerza muscular y en el grupo
				EENM se aplicó en los extensores de la muñeca (p=0,0144) que se
				mantuvo un mes después del final del tratamiento. Esta mejora en
				la función motora se puede atribuir a una posible mejora en el
				flujo sanguíneo de los grupos musculares sometidos a EENM de
				esta forma a la función motora en pacientes post ictus (Cruz,
				Januário, Júnior, Lima, & Lima, 2019).
(Yen, Jeng,	Estudio	42 pacientes	-EENM, frecuencia de	En el estudio se añadió tres grupos de intervención y control en el
Luh, Lee, &	piloto	G1: 14 pacientes,	100 Hz, onda cuadrada	pre tratamiento los pacientes de los tres grupos no podían sentarse,
Pan, 2019)	controlado	grupo TENS +	bifásica	pararse o caminar. Durante las dos semanas de intervención
	aleatorio	rehabilitación	-TENS	ningún participante experimento molestias o efectos adversos, un
		estándar	-Rehabilitación	análisis del efecto principal del grupo mostró que las puntuaciones
		G2: 14 pacientes,	convencional	totales en el nervio transcutáneo el grupo de EENM fueron
		grupo EENM +	-Duración del	significativamente mayores que los del grupo estándar de
		rehabilitación	tratamiento 2 semanas	rehabilitación temprana después de la intervención de dos semanas
		estándar		(P<0,001) y a las dos semanas de seguimiento (P=0,006). Para la

		G3: 14 pacientes,		Medida de Independencia Funcional, las puntuaciones totales para
		grupo control		el grupo de TENS fueron significativamente mayores que las del
				grupo estándar de rehabilitación temprana después de la
				intervención de dos semanas (P=0,03). Después de la intervención
				de dos semanas y a partir del seguimiento de dos semanas. Los
				porcentajes para alcanzar el hito de caminar 50 m en los grupos de
				TENS y EENM fueron significativamente mayores que los del
				grupo estándar temprano (Yen, Jeng, Luh, Lee, & Pan, 2019).
(Park, 2019)	Ensayo	68 pacientes	-EENM activada por	El estudio se llevó a cabo durante 6 semanas del cual se obtuvo
	controlado	G1: 34 pacientes,	electromiografía con	dos grupos. En la aplicación de la EENM el electrodo activo se
	aleatorizad	grupo	frecuencia de 35 Hz,	aplicó en el extensor corto del pulgar y extensor largo del pulgar.
	О	entrenamiento de	intensidad de 15 a 30	Después de la intervención, ambos grupos mostraron mejoras
		imágenes	mA, onda bifásica	significativas en todas las medidas de resultado. Sin embargo, no
		mentales +	-Entrenamiento de	hubo diferencias significativas en las medidas de resultado entre
		EENM activada	imágenes mentales	ambos grupos. Hubo mejoras significativas en ARAT, FMA y BI
		por	-Duración del	en ambos grupos (p <0,05). (Park, 2019).
		electromiografía	tratamiento 6 semanas	
		G2: 34 pacientes,		
		grupo EENM		
		activada por		
		electromiografía		

(Yang, y otros,	Ensayo	25 pacientes	-EENM con frecuencia	En este estudio mediante comparaciones de los resultados
2018)	controlado	G1: 8 pacientes,	de 50 Hz con onda	mostraron que la espasticidad se redujo en todos los grupos, pero
	aleatorizad	grupo control	cuadrada bifásica	en el grupo de EENM -TA se encontró una diferencia significativa
	0	G2: 8 pacientes,	-Rehabilitación	según MAS la espasticidad estática p= 0,028 y dinámica p=0,025
		grupo EENM en	convencional	de los flexores plantares del tobillo disminuyo favorablemente
		el músculo tibial	-Duración del	después del entrenamiento, también hubo mejoras durante el
		anterior EENM-	tratamiento 7 semanas	impulso y la fuerza muscular de los dorsiflexores del tobillo en
		TA)		comparación al grupo control, EENM-MG mostró una
		G3: 9 pacientes,		disminución significativa en la asimetría temporal. (Yang, y otros,
		grupo EENM en		2018)
		el músculo		
		gastrocnemio		
		medial (EENM-		
		MG)		
(Zeynep,	Ensayo	23 pacientes	-Estimulación eléctrica	Los resultados indican que el grupo experimental EENM
Gencay-Can,	piloto	G1: 12 pacientes,	desencadenada por	desencadenada por electromiografía + fisioterapia convencional
Karaca-Umay,	controlado	grupo	electromiografía con	mostró mejoría en la recuperación motora y funcional de la mano
& Cakci,	aleatorio	experimental	frecuencia de 35 Hz	parética evidenciando así según ARAT que las puntuaciones en
2018)		estimulación	-Fisioterapia	agarre y pellizco fueron significativamente mayores a las del
		eléctrica	convencional	grupo control, sin embargo, la función de la mano y actividades de
		desencadenada	-Duración del	la vida diaria no mostraron mejoría significativa. Una vez

		por	tratamiento 4 semanas	terminado el tratamiento se realizó el seguimiento a los tres meses
		electromiografía		donde las puntuaciones no fueron significativas tanto en la fuerza
		+ fisioterapia		como en la prensión entre los grupos. (Zeynep, Gencay-Can,
		convencional		Karaca-Umay, & Cakci, 2018)
		G2: 11 pacientes,		
		grupo control		
		fisioterapia		
		convencional		
(Meimei	Ensayo	90 pacientes	-EENM con frecuencia	En este estudio se seleccionó 90 pacientes los mismos que fueron
Zhou, Fang Li,	prospectiv	G1: 36 pacientes,	de 15 Hz	divididos en tres grupos respectivamente, el tratamiento consistió
Weibo Lu, &	0	grupo EENM +	-TENS	en realizar 20 sesiones en cuatro semanas, la eficacia del grupo
Junfa Wu,	controlado	rehabilitación	-Rehabilitación	EENM fue superior a la de los demás grupos. Con diferencias
2018)	aleatorizad	convencional	convencional	estadísticamente significativas entre los tres grupos P < 0,001. Los
	0	G2: 36 pacientes,	-Duración del	grupos de tratamiento de EENM Y TENS experimentaron
		grupo TENS +	tratamiento 4 semanas	puntuaciones en la escala de calificación numérica
		rehabilitación		significativamente reducidas a las 2 semanas que se redujeron más
		convencional		a las 4 semanas y se mantuvieron a las 8 semanas también se
		G3: pacientes, 18		evidenció una reducción gradual en el grupo de control con
		grupo		diferencias significativas a las 4 y 8 semanas, pero no a las 2
		rehabilitación		semanas de igual forma en las puntuaciones de movimiento activo
		convencional		FMA y IB del hombro fueron significativamente mejores en

				comparación con las pruebas iniciales dentro de cada grupo
				(Meimei Zhou, Fang Li, Weibo Lu, & Junfa Wu, 2018).
(Chen, Tang,	Ensayo	43 pacientes	-EENM con frecuencia	En este estudio fueron incluidos 43 pacientes de los cuales 13
Hsu, Lo, &	controlado	G1: 13 pacientes,	de 50 Hz, onda	fueron incluidos al grupo de EENM, 13 a la condición de
Lin, 2018)	aleatorio	grupo EENM	trapezoidal simétrica	estimulación térmica nociva y 17 a la híbrida. La mayoría de los
		G2: 13 pacientes,	bifásica, intensidad	participantes tenían una discapacidad leve a moderada según los
		grupo	entre 10 - 20 mA	puntajes de IB. Las comparaciones entre los grupos después del
		estimulación	-Estimulación térmica	tratamiento y al mes de seguimiento no se encontró diferencias en
		térmica nociva	nociva	las puntuaciones de FMA, MAS, IB. La pruebas mostraron
		G3: 17 pacientes,	-Duración del	mejoras significativas según FMA en el grupo híbrido después del
		grupo EENM +	tratamiento 8 semanas	tratamiento y al mes de seguimiento, además, las puntuaciones de
		estimulación		MAS disminuyeron en los grupos estimulación térmica nociva e
		térmica nociva		híbrido. Ninguno de los participantes sufrió daños físicos como
				quemadura o ampollas (Chen, Tang, Hsu, Lo, & Lin, 2018).
(Xu, Guo,	Estudio	69 pacientes	-Rehabilitación	Los resultados del estudio mostraron después de 4 semanas en los
Salem, Chen,	controlado	G1: 23 pacientes,	convencional	pacientes de terapia el espejo (P = 0,04) y de terapia de espejo +
& Huang,	aleatorizad	grupo control.	-Terapia del espejo	EENM (P < 0,001) tuvieron una mejoría mayor que la mostrada
2017)	О	G2:23 pacientes,	-EENM a frecuencia de	por los pacientes del grupo control. Los pacientes del grupo de
		grupo terapia del	50 Hz, intensidad 10	terapia del espejo y terapia del espejo + EENM tuvieron una
		espejo.	mA	mejoría significativa en la prueba de caminata de 10 metros (P <
		G3:23 pacientes,	-Duración del	0,05) y el rango de movimiento pasivo (P < 0,05) en comparación

		grupo terapia	tratamiento 4 semanas	al grupo de control, además, el grupo de terapia del espejo +
		espejo + EENM.		EENM demostraron una espasticidad significativamente menor en
				comparación con los pacientes del grupo control (P < 0,001). (Xu,
				Guo, Salem, Chen, & Huang, 2017)
(Chuang, y	Ensayo	38 pacientes	-EENM con frecuencia	En la investigación, después de la intervención ambos grupos
otros, 2017)	controlado	Hombres: 25	de 30 Hz y la intensidad	mejoraron el dolor en reposo, sin embargo, la EENM activada por
	aleatorizad	Mujeres:13	se ajustó hasta	electromiografía con entrenamiento bilateral del brazo evidencio
	0	G1: 19 pacientes,	conseguir la	una menor intensidad del dolor en los movimientos activo y pasivo
		grupo EENM +	contracción	del hombro y mayor abducción pasiva del hombro sin dolor
		entrenamiento	-Tens	produciendo alivio más duradero. Ambos grupos mejoraron en la
		bilateral del brazo	-Entrenamiento	Evaluación de Fugl-Meyer y la flexión pasiva del hombro y la
		G2: 19 pacientes,	bilateral del brazo	rotación externa, no presentaron dolor después del tratamiento (P
		Tens +	-Duración del	< 0,001) y mantuvieron la mejora en el seguimiento (P < 0,001).
		entrenamiento	tratamiento 4 semanas	(Chuang, y otros, 2017)
		bilateral del brazo		
(Qian, y otros,	Ensayo	24 pacientes	-EENM impulsada por	En el estudio se mostraron una mejora significativa en FMA y
2017)	controlado	G1: 10 pacientes,	electromiografía con	ARAT para ambos grupos. Se observó que el entrenamiento
	aleatorio	grupo control	frecuencia de 40 Hz,	asistido por robots de EENM fue efectivo para una recuperación
	piloto	terapia tradicional	onda cuadrada	temprana en las extremidades superiores, se evidencio una mejora
		G2: 14 pacientes,	-Terapia tradicional	significativa en la mano según FMA, además, se observó una
		grupo EENM	-Duración del	reducción significativa de la espasticidad según la escala (MAS)

		impulsado por	tratamiento 4 semanas	en las articulaciones de codo, muñeca y dedos manteniendo su
		electromiografía		efecto hasta tres meses después, lo que ayudó a que estas
		asistida con un		articulaciones se puedan mover de manera más independiente
		brazo robótico		durante los movimientos propios de cada articulación . (Qian, y
				otros, 2017)
(Takebayashi,	Ensayo	20 pacientes	-EENM periférica con	Participaron 28 candidatos de los cuales cumplieron con los
Takahashi,	piloto	G1: 10 pacientes,	frecuencia de 20 Hz	criterios de inclusión 20 pacientes los mismos fueron divididos en
Moriwaki,	controlado	grupo de	-Terapia de movimiento	dos grupos, el grupo de tratamiento de estimulación de corriente
Sakamoto, &	aleatorizad	tratamiento de	inducido por restricción	continua transcraneal de doble hemisferio + EENM periférica +
Domen, 2017)	0	estimulación de	-Duración del	terapia de movimiento inducido por restricción todos los
		corriente continua	tratamiento 2 semanas	indicadores del rendimiento motor mostraron una mejoría
		transcraneal de		significativa desde el inicio según la puntuación de FMA de
		doble hemisferio		extremidad superior, la mejora fue 4,64 puntos mayor en el grupo
		+ EENM		de tratamiento que en el de control. De manera similar dentro del
		periférica +		grupo control todos los indicadores de rendimiento motor
		terapia de		mejoraron desde el inicio según el puntaje de FMA en la
		movimiento		extremidad superior (Takebayashi, Takahashi, Moriwaki,
		inducido por		Sakamoto, & Domen, 2017).
		restricción		
		G2: 10 pacientes,		
		grupo control de		

			terapia de		
			movimiento		
			introducida por		
			restricción		
(Tosun,	у	Estudio	25 pacientes	-EENM con frecuencia	Al estudio ingresaron 95 pacientes evaluados, pero solo 25
otros, 2017)		preliminar	Hombres: 14	de 50 Hz, onda bifásica	cumplieron los criterios de inclusión y exclusión y se ofrecieron
			Mujeres: 11	simétrica	como voluntarios al estudio. La EENM fue aplicada en los
			G1: 9 pacientes,	-Estimulación	extensores de muñeca y extensor común de los dedos. En el
			grupo	magnética transcraneal	análisis hubo mejoras significativas en todos los grupos a
			estimulación	repetitiva	comparación con los valores iniciales, según las puntuaciones
			magnética	-Duración del	FMA, IB. Aunque se encontró que la FMA no mejoró en el grupo
			transcraneal	tratamiento 4 semanas	de control. Debido a que el tamaño de la muestra fue pequeño se
			repetitiva		calcularon las mejores puntuaciones. En el grupo estimulación
			G2: 7 pacientes,		magnética transcraneal (TMS) + EENM tienen un 93,3% y la más
			grupo EENM +		baja fue el grupo de control con un 28,1%. Se observó en la
			estimulación		resonancia magnética funcional una mayor activación del área
			magnética		motora primaria del hemisferio afectado durante los movimientos
			transcraneal		de la mano paretica en los pacientes del grupo TMS y el grupo
			repetitiva		TMS + EENM. Durante los movimientos de la mano parética la
			G3: 9 pacientes,		corteza motora primaria del hemisferio no afectado no mostro
			grupo control		cambios en los tres grupos (Tosun, y otros, 2017).

(Miyasaka, y	Estudio	30 pacientes	-EENM con frecuencia	En el estudio fueron sometidos a investigación 30 pacientes que
otros, 2016)	aleatorizad	G1: 15 pacientes,	de 20 Hz	recibieron el tratamiento durante dos semanas. El rango de
	0	grupo robot +	-Robot	movimiento activo (ROM) del hombro fue significativamente
		EENM	-Duración del	mejor después del entrenamiento en el grupo EENM, sin embargo,
		G2: 15 pacientes,	tratamiento 2 semanas	esta mejora no se encontró en el grupo de solo robot. Las mejoras
		grupo robot		en el valor de ROM activo de flexión y abducción de hombro
				fueron mayores en el grupo de EENM que en el grupo de solo
				robot 20° y 10° contra 0° y 5° respectivamente. Las puntuaciones
				FMA de hombro y codo y FMA total fueron significativas en
				ambos grupos, aunque en la puntuación FMA tendió a ser mayor
				en el grupo de EENM que en el grupo robot (Miyasaka, y otros,
				2016).
(Lee, Lee, &	Estudio	27 pacientes	-EENM con frecuencia	En el estudio se aplicó EENM en el nervio peroneo común y en la
Jeong, 2016)	clínico	G1: 14 pacientes,	de 35 Hz,	cabeza del peroné ligeramente lateral al punto motor del tibial
	piloto	grupo	-Terapia del espejo	anterior en la pierna más afectada para simular la eversión y
	aleatorizad	experimental	-Terapia convencional	dorsiflexión del tobillo. Después de la intervención, en
	0	terapia del espejo	-Duración del	comparación con los valores iniciales, hubo mejoras significativas
		+ EENM +	tratamiento 4 semanas	en la fuerza muscular donde se utilizó el dinamómetro los
		terapia		pacientes mostraron ángulos articulares de las caderas, rodillas y
		convencional		tobillos a 90° y sentados en una silla y los valores de MAS en el

		G2: 13 pacientes,		grupo experimental (p<0,05). Además, después de la intervención,
		grupo fisioterapia		hubo diferencias significativas entre los dos grupos en fuerza
		convencional		muscular (p <0,05) (Lee, Lee, & Jeong, 2016).
(Wang, Meng,	Estudio	72 pacientes	-Rehabilitación	Los resultados obtenidos después de cuatro semanas de
Zhang, Xu, &	controlado	G1: 18 pacientes,	convencional	tratamiento, la diferencia del pre y el post tratamiento en la escala
Yue, 2015)	aleatorizad	grupo control	- EENM con frecuencia	de (MAS) se observa una disminución significativa de (4.96) % en
	0	G2: 18 pacientes,	de 20 Hz forma de onda	la espasticidad de los flexores plantares solo en el grupo de EENM
		grupo umbral	cuadrada bifásica	de movimiento completo, además, la disminución se mantuvo dos
		sensorial: EENM	simétrica	semanas después del seguimiento; en este grupo también se
		G3: 18 pacientes,	-Duración del	evidencio una mejoría en la dorsiflexión activa del tobillo (p <
		grupo umbral	tratamiento 4 semanas	0,05). (Wang, Meng, Zhang, Xu, & Yue, 2015)
		motor: EENM		
		G4: 18 pacientes,		
		grupo EENM de		
		movimiento		
		completo		
(Gharib,	Ensayo	40 pacientes	-EENM con frecuencia	En el estudio el grupo experimental mostró mejoría según la escala
Aboumousa,	controlado	Hombres:24	de 20 Hz, onda	de evaluación motora. En el grupo experimental que fue EENM
Elowishy,	aleatorizad	Mujeres: 16	cuadrada, intensidad de	combinada con terapia de tareas repetitivas mostraron una
Rezk-Allah, &	0	G1: 20 pacientes,	10 a 30 mA	significativa mejora en la fuerza de los músculos flexores de la
Yousef, 2015)		grupo	-Estimulación eléctrica	muñeca y dedos y por ende el rango de movimiento de los dedos

		experimental:	simulada	esto se debe a que este grupo recibió la técnica antes de cada
		EENM + Tareas	-Tareas repetitivas	sesión de entrenamiento, por lo tanto, los pacientes recibieron su
		repetitivas	-Duración del	entrenamiento durante el incremento de la excitabilidad cortical
		1		
		G2: 20 pacientes,	tratamiento 8 semanas	motora y esto facilita el rendimiento motor, por otro lado en el
		grupo control:		grupo de control que solo recibieron terapia de tareas repetitivas
		Estimulación		con estimulación eléctrica simulada la misma que solo aumenta la
		eléctrica simulada		excitabilidad cortico espinal en pacientes post ACV. (Gharib,
		+ Tareas		Aboumousa, Elowishy, Rezk-Allah, & Yousef, 2015)
		repetitivas		
(Bao-Juan	Ensayo	45 pacientes	-EENM 40 Hz onda	Los sujetos en el estudio completaron un tratamiento mostrando
Cui, y otros,	piloto	G1: 15 pacientes,	rectangular	beneficios en los componentes distales de muñeca y mano según la
2015)	controlado	grupo 12 horas de	-Rehabilitación	evaluación FMA en el grupo de 12 horas de EENM fue más
	aleatorio	EENM +	convencional	significativa que el de 30 minutos de EENM en la semana 4 y en
		rehabilitación	-Duración del	el seguimiento, pero en el seguimiento del estudio se observó que
		convencional	tratamiento 4 semanas	en los dos grupos de EENM mostraron cambios relevantes según
		G2: 15 pacientes,		ARAT en la semana 4 y en el seguimiento. Según MAS para
		grupo 30 minutos		flexores de codo y muñeca en los tres grupo en la semana 4 y el
		EENM +		seguimiento no se encontró evidencia de alivio de la espasticidad
		rehabilitación		entre los sujetos quienes mostraron espasticidad leve a moderada
		convencional		en el codo y muñeca (Bao-Juan Cui, y otros, 2015).
		G3: 15 pacientes,		

		grupo control		
(Lee, y otros,	Estudio	39 pacientes	-EENM	En este estudio según la FMA no mostró una interacción
2015)	controlado	G1: 20 pacientes,	-Duración del	significativa entre el grupo y el tiempo, la puntuación FMA
	aleatorizad	grupo terapia	tratamiento 4 semanas	mejoró significativamente después de la intervención en el grupo
	o doble	asistida por robot		de terapia asistida por robot (RT) bimanual. La puntuación MAS
	ciego	+ EENM		en el flexor de la muñeca disminuyo para el grupo en el RT +
		G2: 19 pacientes,		EENM aparte del flexor de la muñeca no se observó cambios en
		terapia asistida		los pronadores del antebrazo, supinadores del antebrazo y
		por robot +		extensores de la muñeca. Según la escala WMFT mejoraron
		estimulación		significativamente los dos grupos después de la intervención, sin
		simulada		embargo, en el grupo RT + EENM demostró una mejoría mayor
				que en el grupo RT (Lee, y otros, 2015).
(Xiao-Ling	Ensayo	26 pacientes	-EENM impulsada por	En este estudio fueron sometidos a investigación un total de 73
Hu, y otros,	controlado	G1: 11 pacientes,	electromiografía y	sujetos de los cuales 26 cumplieron los criterios de selección y
2014)	aleatorio	grupo robot de	asistida por robot	fueron reclutados, el tiempo mínimo tras el ictus fue de 8 meses y
	simple	EENM impulsada	-Duración del	al máximo de 12 años, se obtuvieron mejoras significativas en la
	ciego	por	tratamiento 7 semanas	FMA hombro y codo después del entrenamiento en los dos grupos
		electromiografía		y las mejoras pudieron mantenerse durante 3 meses después. Las
		G2: 15 pacientes,		puntuaciones del grupo de robots EENM en las pruebas
		grupo robot		posteriores al internamiento y seguimiento de 3 meses son más
		impulsado por		altas que las del grupo de robots. En cuanto a a espasticidad se

		electromiografía		evidenció una disminución en las puntuaciones de MAS del codo
				y la muñeca estadísticamente significativas para ambos grupos
				después del entrenamiento. Según ARAT se encontró una
				diferencia significativa entre los grupos, el grupo de robots EENM
				logro una mejoría en las pruebas posteriores al entrenamiento en
				comparación al grupo de robots (Xiao-Ling Hu, y otros, 2014).
(Shimodozono	Estudio	27 pacientes	-Rehabilitación	Los resultados del estudio reflejan una mejoría estadística y
, y otros,	piloto	G1: 9 pacientes,	convencional	clínicamente significativa del grupo que recibió ejercicio
2013)	controlado	grupo control	-Ejercicio facilitador	facilitador repetitivo en el hombro codo y muñeca + EENM
	aleatorizad	rehabilitación	repetitivo	superficial en comparación con el grupo control que solo recibió
	0	convencional	-EENM superficial con	rehabilitación convencional, además, según la escala de FMA el
		G2: 9 pacientes,	frecuencia de 20 Hz,	grupo ejercicio facilitador repetitivo + EENM mostró un aumento
		grupo ejercicio	onda bifásica simétrica	medio de 15 puntos en comparación con los otros grupos que solo
		facilitador	-Duración del	mostraron un aumento de 9 en el grupo de ejercicio facilitador
		repetitivo +	tratamiento 4 semanas.	repetitivo y 4 puntos en el grupo de control, se vio una mejoría en
		EENM superficial		el rango activo de movimiento de la articulación del codo. Según
		G3: 9 pacientes,		la escala de MAS no hubo diferencias en la flexión de codo o la
		grupo ejercicio		flexión de la muñeca entre los grupos a lo largo del tiempo. No se
		facilitador		observaron efectos adversos de tratamiento como quemaduras
		repetitivo		respuestas alérgicas en la piel o fatiga muscular (Shimodozono, y
				otros, 2013).

(Boyaci, y	Ensayo	31 pacientes	-EENM activa con	Participaron en el estudio un total de 31 pacientes de los cuales
otros, 2013)	controlado	G1: 11 pacientes,	frecuencia de 50 Hz	todos completaron el periodo de estudio y todos tenían las mismas
	aleatorizad	grupo EENM	bifásica simétrica	características clínicas y demográficas. Se detectaron mejoras
	0	activa	-EENM pasiva 50 Hz	significativas según los puntajes FMA en rango de extensión
		G2: 10 pacientes,	bifásica simétrica	activa de la muñeca, la fuerza de agarre y los potenciales de
		grupo EENM	-Duración del	superficie electromiográficos después de los tratamientos EENM
		pasiva	tratamiento 3 semanas	activos y pasivos. Después de la terapia activa EENM se observó
		G3: 10 pacientes,		un aumento en la extensión activa de la articulación metacarpo
		grupo		falángica (MCP). En las puntuaciones de rango de movimiento
		estimulación con		activo (ROM) de extensión de muñeca activa y FMA mejoró en el
		placebo		grupo EENM pasivo en comparación al grupo de control, no se
				encontró diferencias significativas con respecto a la espasticidad
				en la hemiplejia crónica, la aplicación de EENM fue bien tolerada
				y no hubo complicaciones ni quejas de los pacientes (Boyaci, y
				otros, 2013).
(Jayme S.	Ensayo	26 pacientes	- EENM contralateral	Veintiséis pacientes con ACV fueron aleatorizados a dos grupos,
Knutson, y	piloto	G1: 14 pacientes,	- EENM cíclica	pero dos no completaron la fase de tratamiento, por lo que los
otros, 2013)	controlado	grupo EENM	-Frecuencia de 35 Hz,	resultados se basan en los 24 participantes restantes. Estos
	aleatorizad	contralateral	onda rectangular	participantes no tuvieron problemas para entender el dispositivo o
	0	controlada	bifásica, intensidad de	ponérselo. Un electrodo fue colocado debajo de la cabeza del
		G2: 12 pacientes,	40- 100 mA	peroné y el segundo en el punto motor del tibial anterior. En

		grupo EENM	-Duración del	ambos grupos se encontró un efecto significativo para la
		cíclica	tratamiento 2 semanas	puntuación de FMA, el ángulo máximo de dorsiflexión, el
				momento máximo de dorsiflexión (p<0,05) no hubo mejora en la
				velocidad de la marcha. Estos resultados mostraron una mejoría a
				lo largo del tiempo (Jayme S. Knutson, y otros, 2013).
(Sahin,	Estudio	44 pacientes	-Facilitación	En este estudio se observó que los valores iniciales para MAS y
Ugurlu, &	controlado	G1: 22 pacientes,	neuromuscular	rango de movimiento activo de muñeca no mostraron significancia
Albayrak,	aleatorizad	EENM +	propioceptiva	entre los grupos. MAS mostró una disminución significativa de la
2012)	0	Facilitación	-EENM a frecuencia de	espasticidad en los extensores de la muñeca después del
		neuromuscular	100 Hz	tratamiento en ambos grupos. Los dos grupos mostraron una
		propioceptiva +	-Duración del	mejoría significativa en el rango de movimiento de extensión de la
		infrarrojo	tratamiento 4 semanas	muñeca después del tratamiento. El grupo de facilitación
		G2: 22 pacientes,		neuromuscular propioceptiva + EENM mostró una mejor
		Facilitación		recuperación en términos de MAS y rango de movimiento activo
		neuromuscular		de muñeca en relación al grupo que solo hizo el estiramiento.
		propioceptiva+		(Sahin, Ugurlu, & Albayrak, 2012)
		infrarrojo		
(Malhotra, y	Ensayo	90 pacientes	-EENM superficial con	Se incluyeron 90 pacientes en un rango de 32 a 98 años los
otros, 2012)	controlado	G1: 45 pacientes,	frecuencia de 40 Hz	pacientes no demostraron dolor al inicio, pero a las 6 semanas se
	aleatorizad	grupo de control	-Fisioterapia	desarrolló dolor en el brazo de control, pero no en el de
	О	fisioterapia	-Duración del	tratamiento, después de la intervención se evidencio que la EENM

		G2: 45 pacientes,	tratamiento 6 semanas	superficial reduce el dolor en un brazo no funcional, además, este
		grupo de		tratamiento fue beneficioso para reducir las contracturas, la rigidez
		tratamiento		de los flexores de la muñeca no fue significativamente diferente
		EENM superficial		entre el control y el tratamiento, pero basado en la práctica mostró
		+ fisioterapia		un beneficio limitado en la espasticidad. (Malhotra, y otros, 2012)
(Sheeba	Ensayo	41 pacientes	-EENM con frecuencia	En el estudio participaron 41 pacientes y se los dividió en dos
Rosewilliam,	controlado	G1: 20 pacientes,	de 40 Hz	grupos. Las medidas ARAT no fueron significativamente
Shweta	aleatorio	grupo de	-Duración del	diferentes entre los grupos durante el periodo de tratamiento a las
Malhotra,	simple	tratamiento	tratamiento 6 semanas	6 semanas o durante el periodo de estudio a las 36 semanas,
Christine	ciego	EENM		aunque las puntuaciones ARAT mejoraron más en el grupo de
Roffe, Peter		G2: 21 pacientes,		tratamiento con EENM que en el grupo control. El IB mejoró en
Jones, &		grupo control		ambos grupos, el rango activo de movimiento en la muñeca de
Anand D.				flexión y extensión mejoró más en el grupo EENM que en el
Pandyan,				grupo control. La tasa de mejora fue 3 veces más rápido para el
2012)				rango activo de movimiento en extensión y 6 veces más rápido
				para la fuerza de la muñeca en extensión en el grupo EENM que
				en el grupo de control (Sheeba Rosewilliam, Shweta Malhotra,
				Christine Roffe, Peter Jones, & Anand D. Pandyan, 2012).
(Duarte, y	Ensayo	25 pacientes	-EENM con frecuencia	Es este estudio se asignaron al azar 25 pacientes en dos grupos, la
otros, 2011)	clínico	G1: 13 pacientes,	de 20 Hz, corriente	comparación de los valores base con los resultados a las 4 semanas
	aleatorizad	grupo infiltración	bifásica simétrica,	indica una mayoría significativa de las variables medianas de la

0	con toxina	intensidad de 50 a 90	función motora, capacidad funcional y elasticidad aumento puntos
	botulínica tipo A	mA	en los componente para el miembro superior de la FMA en las 4
	+ EENM	-Infiltración con toxina	semanas y a los 4 meses. La MAS disminuyó significativamente a
	G2: 12 pacientes,	botulínica tipo A	las 4 semanas de infiltrado con toxina botulínica + EENM,
	grupo infiltración	-Duración del	además, a los 4 meses se observó un aumento significativo de 0,2
	con toxina	tratamiento 4 semanas	kilogramos en la fuerza máxima del músculo extensor que no se
	botulínica tipo A		observó a las 4 semanas. No se observaron efectos adversos
	+ EENM placebo		relevantes durante el periodo de seguimiento (Duarte, y otros,
			2011).

Elaborado por: Jerez Chiliquinga Hector Santiago

Proaño Sánchez Paola Valeria

4.2. Discusión

La finalidad del estudio fue la recopilación de información bibliográfica mediante fuentes de información científica en el tratamiento de pacientes post ictus con EENM, redactando la información de tipo documental debido a que se compiló, organizó e interpretó la información de varios autores enmarcando la calidad metodológica del presente trabajo de investigación.

De acuerdo con Huang et al., los hallazgos en su estudio exponen que al aplicar EENM en el extensor radial del carpo mejoró el rango articular y fuerza muscular, además, debido a que la EENM produce movimientos repetitivos lo cual crea un mecanismo de aprendizaje motor que junto con la terapia tradicional promueve la recuperación motora (Huang, y otros, 2021). Lo que concuerda con Sentandreu et al., en su estudio evidenció efectos positivos de la EENM en la recuperación motora en adultos mayores después del ACV en el cual el autor comparó los tratamientos con parámetros de estimulación de frecuencias de 35 y 50 Hz, donde el protocolo de menor frecuencia fue más efectiva puesto que la frecuencia podría estar relacionado con los patrones particulares de activación de las fibras musculares esto se debe a que las fibras musculares tipo I podrían tener mayor afinidad con las frecuencias de estimulación por debajo de 40 Hz, lo cual según el autor ayudó a la destreza manual y resistencia muscular de las articulaciones de la muñeca (Sentandreu-Mañó, Tomás, & Terrádez, 2021); sin embargo, en el estudio no hay pruebas específicas que sustenten el mecanismo neurofisiológico mencionado, en este sentido se sugiere realizar investigaciones al respecto.

En cuanto a la espasticidad, Sahin et al., demostró que la EENM aplicada a flexores y extensores de la muñeca disminuyó la espasticidad al proporcionar relajación en los músculos agonistas y fortalecer los músculos antagonistas, además, según el autor disminuye la espasticidad aumentando la activación de fibras Ib por medio de mecanismos que facilitan la inhibición recurrente de las células de Renshaw lo cual afectó de manera beneficiosa a las funciones de mano y dedos (Sahin, Ugurlu, & Albayrak, 2012); por otra parte, Wang et al., en su investigación en miembros inferiores demostró que la EENM puede ayudar a generar mayor rango de movimiento, reducir la espasticidad del flexor plantar y ayudar a la dorsiflexión activa del tobillo debido a que la EENM puede conducir a la inhibición recíproca de antagonistas espásticos, también puede influir en la excitabilidad de las motoneuronas alfa y desencadenar la reorganización sensoriomotora y

esto contribuye el fortalecimiento de la musculatura parética. Al momento de caminar o correr se reclutan unidades motoras más grandes y fibras musculares rápidas, cuando se aplica la EENM está activa unidades motores y fibras musculares de contracción rápida lo cual según los autores ayudan a mejorar la función de la marcha. (Wang, Meng, Zhang, Xu, & Yue, 2015)

Uno de los beneficios de la EENM son la reducción de dolor por ejemplo, en el estudio realizado por KARABIÇAK et al., nos da a conocer que la aplicación de la EENM provoca una contracción muscular activa aumentando la actividad muscular lo que se cree que conduce a una disminución de la intensidad del dolor en el hombro en pacientes post ictus (KARABIÇAK & TALU, 2020), además, Malhotra et al., en su estudio demostró que la aplicación de esta técnica disminiyó el dolor en pacientes que no recuperaron el movimiento funcional en la extremidad superior, esto se debe a que está técnica tiene el potencial de aumentar la exitabilidad del sistema nervioso central lo cual produjo que se reduzca el dolor a través del mecanismo de activación y liberación de endorfinas. (Malhotra, y otros, 2012)

Yen et al., en su estudio al aplicar EENM con frecuencia de 100 Hz sin producir contracción en pacientes post ictus evidencio mejoría en la estabilidad postural y marcha al ser aplicados en músculos relacionados con la marcha como son el cuádriceps y tibial anterior, esto se debe a que la intenvención fisioterapéutica con la técnica puede inducir directamente al músculo a través de la iniciación de potenciales de acción en los nervios motores periféricos y esto promueve el reaprendizaje motor al simular la actividad presináptica y post sináptica sincronizada en el sistema nervioso, sin embargo, los autores recomiendan realizar estudios de seguimiento a largo plazo para generalizar los hallazgos del estudio. (Yen, Jeng, Luh, Lee, & Pan, 2019)

La investigación de Cruz et al., determino que la intervención de la EENM aumento la fuerza de prensión de la mano del miembro parético y la función motora, esto se puede atribuir a que la EENM puede producir contracciones en grupos musculares específicos lo cual mejoró el flujo sanguíneo, además, la aplicación de la técnica sobre los músculos antagonistas de cierta forma liberó los músculos agonistas espásticos. (Cruz, Januário, Júnior, Lima, & Lima, 2019)

Diversos autores en sus artículos combinaron la EENM con otras técnicas fisioterapéuticas evidenciando mejores resultados por ejemplo, los autores Lee et al., en su estudio

combinaron la EENM con la terapia de espejo donde demostraron mejoría en la fuerza muscular y el equilibrio (Lee, Lee, & Jeong, 2016). Lee at al., en su estudio el objetivo fue investigar los efectos de la EENM asistida por dispositivos roboticos en el cual las puntuaciones indican mejoras significativa en la función motora según la escala Fugl Meyer (Lee, y otros, 2015). Zeynep et al., en su estudio menciona que la aplicación de EENM desencadenada por electromiografía proporciona una retroalimentación propioceptiva a la corteza sensoriomotora lo cual ayudo a la recuperación motora de la extremidad parética. (Zeynep, Gencay-Can, Karaca-Umay, & Cakci, 2018)

Respecto a los parámetros Boyaci et al., en su estudio utiliza los protocolos publicados para la aplicación en neurorrehabilitación los mismos que sugieren que la frecuencia oscile entre 40 y 50 Hz y la intensidad de la corriente eléctrica sea diferente para cada paciente debido a que se debe ajustar para producir una leve contracción muscular sin inducir al movimiento, sin embargo, se encontró una diversidad de combinaciones e incluso varios autores que no los definen porque los adaptan según la confortabilidad del paciente. (Boyaci, y otros, 2013)

Este trabajo investigativo de revisión bibliográfica nos permitió resaltar la efectividad de la aplicación de la EENM en pacientes post ictus, a través, de los criterios y evidencias de diferentes autores respaldando así la técnica dentro del accionar fisioterapéutico en el área neurológica, donde se aportó información actualizada sobre la efectividad de la técnica aplicada a pacientes post ictus, evidenciando mejoría en la fuerza, espasticidad, rango de movimiento, marcha y dolor.

De los 35 artículos recolectados y valorados mediante la escala PEDro se clasifico por su puntuación: 18 artículos científicos con puntuación de 6, 9 artículos científicos con puntuación de 7, 8 artículos científicos con puntuación de 8 lo que convierte en artículos de importancia y aceptabilidad para esta investigación.

5. CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

Al finalizar el proyecto de investigación y mediante el análisis de cada uno de los artículos científicos que calificaron para ser incluidos en esta investigación, se concluyó que la aplicación de la estimulación eléctrica neuromuscular como parte de un tratamiento fisioterapéutico en pacientes post ictus muestra efectividad en la recuperación motora dentro de la cual se identificó beneficios como: mayor rango de movimiento, mejora de la marcha, aumento de la fuerza muscular, reducción de la espasticidad y reducción del dolor, esto se debe a que la estimulación eléctrica neuromuscular produce contracciones musculares que generan movimientos repetitivos lo que induce al reaprendizaje motor y activación muscular, además, es una técnica segura, fácil de usar y se la puede combinar con otras técnicas fisioterapéuticas obteniendo mejores resultados y de esta manera ayudando a la autonomía del paciente en las actividades de la vida diaria y mejorando así la calidad de vida de los mismos, en cuanto a los parámetros para su aplicación deben ser individualizados de acuerdo a las necesidades que tenga el paciente y los objetivos propuestos por el fisioterapeuta.

5.2 Propuesta

De acuerdo con los resultados que se han obtenido en esta investigación se propone:

Tema: Estimulación eléctrica neuromuscular en pacientes post ictus.

Línea de investigación: Salud

Dominio científico en el que enmarca: Salud como producto social orientado al buen vivir.

Objetivo:

Incentivar el espíritu investigativo de los docentes y estudiantes de la Universidad Nacional de Chimborazo, a través, de cursos didácticos sobre estimulación eléctrica neuromuscular en pacientes post ictus para que desarrollen proyectos sobre nuevos protocolos de tratamiento con la finalidad de favorecer el aprendizaje teórico práctico a la carrera de Terapia Física y Deportiva / Fisioterapia.

Socializar sobre las secuelas del ictus y los beneficios de recurrir a un tratamiento fisioterapéutico que incluya estimulación eléctrica neuromuscular, a través, de conferencias gratuitas a la población vulnerable que se encuentran en los establecimientos de salud donde cuentan con la población afectada para con ello brindar información verídica y actualizada sobre la aplicación de esta técnica en las alteraciones motoras de pacientes post ictus.

Temas a tratar:	• Ictus		
	Secuelas del ictus		
	Estimulación eléctrica neuromuscular		
	Efectos de la estimulación eléctrica neuromuscular		
	en pacientes post ictus		
	Beneficios de la técnica		
Población beneficiaria:	Estudiantes y docentes de la carrera de Terapia Física y		
	Deportiva / Fisioterapia, personal sanitario de las diferentes		
	instituciones y pacientes post ictus.		
Ubicación:	La propuesta se establece en la ciudad de Riobamba para		
	que los estudiantes de la carrera de Terapia Física y		
	Deportiva / Fisioterapia sean medios de difusión de la		
	información, a través, de las practicas realizadas en		
	distintos establecimientos de salud ya sean públicos o		
	privados.		

6. BIBLIOGRAFÍA

- Aguilera, X. B., Artau, L. G., & Sánchez, N. N. (2020). EVALUACIÓN Y ABORDAJE FISIOTERAPÉUTICO EN PACIENTES CON ALTERACIONES DE LA EXTREMIDAD SUPERIOR TRAS SUFRIR UN ICTUS. Google Academico.
- Alfonso, C. G., Reyes, A. M., García, V., Fajardo, A. R., Torres, I., & Coral, J. (Julio-Septiembre de 2019). Actualización en diagnóstico y tratamiento del ataque cerebrovascular isquémico agudo. *Scielo*, 60 (3), 2-3.
- Arauza, A., & Franco, A. R. (mayo- junio de 2012). Enfermedad vascular cerebral. *Scielo,* 55(3), 16-17.
- Arikan, F. (2012). ANATOMÍA Y FISIOLOGÍA DEL SISTEMA NERVIOSO CENTRAL. Barcelona.
- Arturo, Y. V., & Pinzón, E. Y. (Diciembre de 2018). Desempeño funcional en un grupo de adultos mayores. *Scielo*, 34(4), 94.
- Bao-Juan Cui, M., Dao-Qing Wang, M., Jian-Qing Qiu, M., Lai-Gang Huang, M., Fan-Shuo Zeng, M., Qi Zhang, M., . . . Qiang-San Sun, M. (2015). Effects of a 12-hour neuromuscular electrical stimulation treatment program on the recovery of upper extremity function in sub-acute stroke patients: a randomized controlled pilot trial. Google Académico.
- Beguiristain, & Andrea. (11 de Febrero de 2019). *Neurorehab*. (J. M. Alba París Alemany, Editor) Recuperado el 25 de Enero de 2022, de Neurorehab: https://neurorehabnews.com
- Boyaci, A., Topuz, O., Alkan, H., Ozgen, M., Sarsan, A., Yildiz, N., & Ardic, F. (2013). Comparison of the effectiveness of active and passive neuromuscular electrical stimulation of hemiplegic upper extremities: a randomized, controlled trial. *Pubmed*.
- Busk H, M., Skou ST, P., Lyckhage LF, P., Arens CH, P. M., Asgari N, P., & Wienecke T, P. (agosto de 2021). Neuromuscular Electric Stimulation in Addition to Exercise Therapy in Patients with Lower Extremity Paresis Due to Acute Ischemic Stroke. A proof-of-concept randomised controlled trial. *Pubmed*.
- Cameron, M. H. (2013). Agenes fisicos en rehabilitacion. Barcelona: DRK Edicion.
- Capdevila, M. S., Sas, M. A., Morientes, N. V., Raurell, R. F., Capdevila, M. V., & Tebar, A. H. (2005). Abordaje de los ictus: colaboración entre Atención Primaria y Especializada. Google Academico.
- Catillo, J., & Jiménez, I. (2014). Reeducacion funcional tras un ictus. Barcelona.
- Cerda, L. (2013). Manejo del trastorno de marcha del adulto mayor. Med Clin, 4-5.
- Chen, C.-C., Tang, Y.-C., Hsu, M.-J., Lo, S.-K., & Lin, J.-H. (2018). Effects of the hybrid of neuromuscular electrical stimulation and noxious thermal stimulation on upper

- extremity motor recovery in patients with stroke: a randomized controlled trial. *Pubmed*.
- Chuang, L.-L., Chen, Y.-L., Chen, C.-C., Li, Y.-C., Wong, A. M.-K., Hsu, A.-L., & Chang, Y.-J. (2017). Effect of EMG-triggered neuromuscular electrical stimulation with bilateral arm training on hemiplegic shoulder pain and arm function after stroke: a randomized controlled trial. *Proquest*.
- Cordero, D. J. (2008). Agentes Físicos Terapéuticos. Cuba: Ciencias Médicas.
- Cruz, A. T., Januário, P. d., Júnior, A. R., Lima, F. P., & Lima, M. O. (2019). Effects of cryotherapy associated with kinesiotherapy and electrical stimulation on spastic hemiparetic patients. *Lilacs*.
- Cuadrado, & Arias, Á. (2009). Rehabilitación del ACV: evaluación, pronóstico y tratamiento. Sociedade Galega de Medicina Interna.
- Doussoulin, A., Rivas, R., & Campos, V. (2012). Validación de "Action Research Arm Test" (ARAT) en pacientes con extremidad superior parética post ataque cerebro vascular en Chile. *Scielo*, 140(1), 60-61.
- Du, J., Wang, S., Cheng, Y., Xu, J., Li, X., Gan, Y., . . . Cui, X. (enero de 2022). Effects of Neuromuscular Electrical Stimulation Combined with Repetitive Transcranial Magnetic Stimulation on Upper Limb Motor Function Rehabilitation in Stroke Patients with Hemiplegia. Pubmed.
- Duarte, E., Marco, E., Cervantes, C., Díaz, D., Chiarella, S., & Escalada, F. (2011). Efectos de la toxina botulínica tipo A y electroestimulación en la espasticidad flexora distal de la extremidad superior en el ictus. Ensayo clínico aleatorizado. *Elsevier*.
- Etoh, S., Kawamura, K., Tomonaga, K., Miura, S., Harada, S., Noma, T., . . . Shimodozono, M. (2019). Effects of concomitant neuromuscular electrical stimulation during repetitive transcranial magnetic stimulation before repetitive facilitation exercise on the hemiparetic hand. *Pubmed*.
- Gharib, N. M., Aboumousa, A. M., Elowishy, A. A., Rezk-Allah, S. S., & Yousef, F. S. (22 de Mayo de 2015). Efficacy of electrical stimulation as an adjunct to repetitive task practice therapy on skilled hand performance in hemiparetic stroke patients:a randomized controlled trial. *Pubmed*.
- Haines, D. (2013). Principios de neurociencia (Cuarta ed.). Barcelona: DRK.
- Huang, S., Liu, P., Chen, Y., Gao, B., Li, Y., Chen, C., & Bai, Y. (2021). Effectiveness of Contralaterally Controlled Functional Electrical Stimulation versus Neuromuscular Electrical Stimulation on Upper Limb Motor Functional Recovery in Subacute Stroke Patients: A Randomized Controlled Trial. Google Académico.
- Jayme S. Knutson, P., Kristine Hansen, P., Jennifer Nagy, P., Stephanie N. Bailey, B., Douglas D. Gunzler, P., Lynne R. Sheffler, M., & John Chae, M. (2013). Contralaterally

- Controlled Neuromuscular Electrical Stimulation for Recovery of Ankle Dorsiflexion: A Pilot Randomized Controlled Trial in Chronic Stroke Patients. *Pubmed*.
- Jiménez, A. J., Simó, V. E., Bernaveu, E. T., López, Ó. P., Pinedo, G. I., Solé, I. L., . . . Arellano, M. R. (Octubre- Diciembre de 2014). Electroestimulación neuromuscular: una nueva opción terapéutica en la mejoría de la condición física de los pacientes en hemodiálisis. Scielo, 270-271.
- KARABIÇAK, G. Ö., & TALU, B. (2020). Hemiplejik omuzda bantlama ile nöromüsküler elektrik stimülasyon sonuçlarının karşılaştırılması: randomize kontrollü çalışma. *PEDro*.
- Kızılay, E., Durmuş, B., Kızılay, F., & Toy, Ş. (2019). Akut İnme Hastalarında Omuz Subluksasyonunun Önlenmesinde Kinezyo Bantlama Etkinliğinin Elektrik Stimülasyonu İle Karşılaştırılması. Google Academico.
- Kotaro Takeda, G. T. (24 de Agosto de 2017). Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation. *Medical Devices*, 207-208.
- Lee, D., Lee, G., & Jeong, J. (2016). Mirror Therapy with Neuromuscular Electrical Stimulation for improving motor function of stroke survivors: A pilot randomized clinical study. *Pubmed*.
- Lee, Y.-y., Lin, K.-c., Cheng, H.-j., Wu, C.-y., Hsieh, Y.-w., & Chen, C.-k. (2015). Effects of combining robot-assisted therapy with neuromuscular electrical stimulation on motor impairment, motor and daily function, and quality of life in patients with chronic stroke: a double-blinded randomized controlled trial. *Pubmed*.
- Lugmaña, G., Carrera, S., & Fernández, A. A. (2020). Registro de estadístico de defunciones generales. Instituto Nacional de Estadística y Censos (INEC), Gestión de Estadísticas Sociales y Demográficas en Base a Registros Administrativos.
- Malhotra, S., Rosewilliam, S., Hermens, H., Roffe, C., Jones, P., & Pandyan, A. D. (2012). A randomized controlled trial of surface neuromuscular electrical stimulation applied early after acute stroke: effects on wrist pain, spasticity and contractures. *PEDro*.
- Maya, J., & Albornoz, M. (2010). Estimulación electrica transcutánea y neuromuscular. España.
- Meimei Zhou, M., Fang Li, D. e., Weibo Lu, M., & Junfa Wu, M. P. (2018). Efficiency of Neuromuscular Electrical Stimulation and Transcutaneous Nerve Stimulation on Hemiplegic Shoulder Pain: A Randomized Controlled Trial. *Pubmed*.
- Mitsutake, T., Sakamoto, M., & Horikawa, E. (2019). The effects of electromyography-triggered neuromuscular electrical stimulation plus tilt sensor functional electrical stimulation training on gait performance in patients with subacute stroke: a randomized controlled pilot trial. *PEDro*.
- Miyasaka, H., Orand, A., Ohnishi, H., Tanino, G., Takeda, K., & Sonoda, S. (2016). Ability of electrical stimulation therapy to improve the effectiveness of robotic training for paretic upper limbs in patients with stroke. *Pubmed*.

- Mora, & Alfonso, M. L. (Marzo de 2017). Propiedades metricas del "timed get up and go version modificada" en el riesgo de caídas en mujeres activas. *Scielo*, 48(1), 20-21.
- Núñez, S., Duplat, A., & Simancas, D. (2018). Mortalidad por enfermedades cerebrovasculares en Ecuador 2001-2015:Estudio de tendencias, aplicación del modelo de regresión joinpoint. *Scielo*, 27(1), 16-17.
- Paixão Teixeira, C., & Silva, L. (2009). As incapacidades físicas de pacientes com acidente vascular cerebral: ações de enfermagem. *Scielo*(15), 2-3.
- Pardo, C., Muñoz, T., & SEMICYUC, C. C. (2006). Monitorización del dolor. Recomendaciones del grupo de trabajo de analgesia y sedación de la SEMICYUC. Scielo, 30(8).
- Park, J.-H. (2019). Effects of mental imagery training combined electromyogram-triggered neuromuscular electrical stimulation on upper limb function and activities of daily living in patients with chronic stroke: a randomized controlled trial. *Pubmed*.
- Peñafiel, & Eugenia, M. (2018). 9 factores de riesgo modificables y no de accidente cerebrovascular. Elsiever, 3-4.
- Qian, Q., Hu, X., Lai, Q., Ng, S. C., Zheng, Y., & Poon, W. (Saptiembre de 2017). Early Stroke rehabilitation of the Upper limb assisted with an Electromyography-Driven neuromuscular Electrical Stimulation-robotic arm. *Reefsek*, 8.
- Rojas, Rubio, N., Quintana, & Miranda, J. A. (Noviembre de 2013). Diagnóstico precoz de las enfermedades cerebrovasculares isquémicas. *Scielo*, 17(11).
- Sabin, Ávarez, J., Vallejo, & Masjuan, J. (2013). Comprender el Ictus. Barcelona: Editorial Amat.
- Sahin, N., Ugurlu, H., & Albayrak, I. (2012). The efficacy of electrical stimulation in reducing the post-stroke spasticity: a randomized controlled study. *Pubmed*, 152-155.
- Sbruzzi, G., & Plentz, R. D. (Agosto de 2015). Efectos de la estimulación eléctrica en músculos espásticos después del accidente cerebrovascular. *Pubmed*, 6-7.
- Sentandreu-Mañó, T., Tomás, J. M., & Terrádez, J. R. (2021). A randomised clinical trial comparing 35 Hz versus 50 Hz frequency stimulation effects on hand motor recovery in older adults after stroke. *Proquest*.
- Sheeba Rosewilliam, M., Shweta Malhotra, M., Christine Roffe, M., Peter Jones, P., & Anand D. Pandyan, P. (2012). Can Surface Neuromuscular Electrical Stimulation of the Wrist and Hand Combined With Routine Therapy Facilitate Recovery of Arm Function in Patients With Stroke? *Pubmed*.
- Shen, Y., Chen, L., Zhang, L., Hu, S., Su, B., Qiu, H., . . . Wang, T. (2022). Effectiveness of a Novel Contralaterally Controlled Neuromuscular Electrical Stimulation for Restoring Lower Limb Motor Performance and Activities of Daily Living in Stroke Survivors: A Randomized Controlled Trial. *Pubmed*.

- Shimodozono, M., Noma, T., Matsumoto, S., Miyata, R., Etoh, S., & Kawahira, K. (3 de Diciembre de 2013). Repetitive facilitative exercise under continuous electrical stimulation for severe arm impairment after sub-acute stroke: A randomized controlled pilot study. *Pubmed*.
- Sousa, D. (2014). Neurociencia educativa. Madrid: Narcea.
- Takebayashi, T., Takahashi, K., Moriwaki, M., Sakamoto, T., & Domen, K. (2017). Improvement of Upper Extremity Deficit after Constraint-Induced Movement Therapy Combined with and without Preconditioning Stimulation Using Dualhemisphere Transcranial Direct Current Stimulation and Peripheral Neuromuscular Stimulation in Chronic Stroke. *Google Académico*.
- Takeda, K., Tanino, G., & Miyasaka, H. (2017). Revisión de los dispositivos utilizados en la estimulación eléctrica neuromuscular para la rehabilitación del accidente cerebrovascular. *Medical Devices*.
- Tortora, G. (2011). Principios de Anatomia y Fisiologia. España: Panamericana.
- Tosun, A., Türe, S., Askin, A., Yardimci, E. U., Demirdal, S. U., Incesu, T. K., . . . Gelal, F. M. (2017). Effects of low-frequency repetitive transcranial magnetic stimulation and neuromuscular electrical stimulation on upper extremity motor recovery in the early period after stroke: a preliminary study. *Pubmed*.
- Vasquez, K. S., & Rojas, A. V. (Octubre de 2020). Electroestimulación neuromuscular aplicada en disfagia. *Scielo*, 39-40.
- Wang, Y.-h., Meng, F., Zhang, Y., Xu, M.-y., & Yue, S.-w. (Agosto de 2015). Full-movement neuromuscular electrical stimulation improves plantar flexor spasticity and ankle active dorsiflexion instroke patients: A randomized controlled study. *Pubmed*.
- Xiao-Ling Hu, P., Raymond Kai-yu Tong, P., Newmen S. K. Ho, M., Xue, J.-j., Wei Rong, M., & Leonard S. W. Li, M. (2014). Wrist Rehabilitation Assisted by an Electromyography-Driven Neuromuscular Electrical Stimulation Robot After Stroke. *PEDro*.
- Xu, Q., Guo, F., Salem, H. M., Chen, H., & Huang, X. (Diciembre de 2017). Effects of mirror therapy combined with neuromuscular electrical stimulation on motor recovery of lower limbs and walking ability of patients with stroke: a randomized controlled study. Pubmed, 1-9.
- Yang, Y.-R., Mi, P.-L., Huang, S.-F., Chiu, S.-L., Liu, Y.-C., & Wang, R.-Y. (10 de Diciembre de 2018). Effects of neuromuscular electrical stimulation on gait performance in chronic stroke with inadequate ankle control A randomized controlled trial. *Reefsek*.
- Yen, H.-C., Jeng, W.-S. C.-S., Luh, J.-J., Lee, Y.-Y., & Pan, G.-S. (2019). Standard early rehabilitation and lower limb transcutaneous nerve or neuromuscular electrical stimulation in acute stroke patients: a randomized controlled pilot study. *PEDro*.

Zeynep, K.-U., Gencay-Can, A., Karaca-Umay, E., & Cakci, F. A. (28 de Noviembre de 2018). The effect of task-oriented electromyography-triggered electrical stimulation of the paretic wrist extensors on upper limb motor function early after stroke: a pilot randomized controlled trial. *PEDro*.

7. ANEXOS

7.1. Anexo 1: Escala de PEDro

	Criterios	Si	No
1	Criterios de elegibilidad fueron especificados (no se cuenta para el total)	1	0
2	Sujetos fueron ubicados aleatoriamente en grupos	1	0
3	La asignación a los grupos fue encubierta	1	0
4	Los grupos tuvieron una línea de base similar en el indicador de pronóstico más importante	1	0
5	Hubo cegamiento para todos los grupos	1	0
6	Hubo cegamiento para todos los terapeutas que administraron la intervención	1	0
7	Hubo cegamiento de todos los asesores que midieron al menos un resultado clave	1	0
8	Las mediciones de al menos un resultado clave fueron obtenidas en más del 85% de los sujetos inicialmente ubicados en los grupos	1	0
9	Todos los sujetos medidos en los resultados recibieron el tratamiento o condición de control tal como se les asigno, o si no fue este el caso, los datos de al menos uno de los resultados clave fueron analizados con intención de tratar	1	0
10	Los resultados de comparaciones estadísticas entre grupos fueron reportados en al menos un resultado clave	1	0
11	El estadístico provee puntos y mediciones de variabilidad para al menos un resultado clave	1	0

7.2. Anexo 2: Segmentos corporales aplicados en los artículos de la investigación

Segmento aplicado	Artículos
Miembro superior	26
Miembro inferior	9

Total	35	
7.3. Anexo 3: Tiempo de rehabilitación		

Tiempo de rehabilitación	Número de artículos	Porcentaje
1 a 2 semanas	5	14%
3 a 4 semanas	21	60%
5 a 6 semanas	4	12%
7 a 8 semanas	5	14%
Total	35	100%

7.4. Anexo 4: Frecuencias usadas en los artículos

Frecuencia (Hz)	Número de artículos	Porcentajes
1 Hz	1	3 %
15 Hz	1	3 %
20 Hz	7	20 %
30 Hz	2	6 %
35 Hz	6	17 %
40 Hz	5	14 %
50 Hz	8	22 %
60 Hz	1	3 %
100 Hz	2	6 %
No especifican	2	6 %
Total	35	100%