UNIVERSIDAD NACIONAL DE CHIMBORAZO

FACULTAD DE INGENIERÍA

CARRERA DE INGENIERÍA CIVIL

"Proyecto de investigación previo a la obtención del título de Ingeniero Civil" TRABAJO DE TITULACIÓN

Título del proyecto

"Comparación multicriterio AHP de curvas de capacidad de diferentes zonas

sísmicas según NEC-15 del sistema estructural muros de corte con placa de acero".

Autor: Daniel Ismael Pesantez Pesantez

Tutor: Ing. Diego Hernán Hidalgo Robalino

> Riobamba – Ecuador Año 2020

REVISIÓN

Los miembros del Tribunal de Graduación del proyecto de investigación de título: **"COMPARACIÓN MULTICRITERIO AHP DE CURVAS DE CAPACIDAD DE DIFERENTES ZONAS SÍSMICAS SEGÚN NEC-15 DEL SISTEMA ESTRUCTURAL MUROS DE CORTE CON PLACA DE ACERO".** presentado por Daniel Ismael Pesantez Pesantez y dirigida por: Ing. Diego Hernan Hidalgo Robalino, MSc. una vez escuchada la defensa oral y revisado el informe final del proyecto de investigación con fines de graduación escrito en la cual se ha constatado el cumplimiento de las observaciones realizadas, remite la presente para uso y custodia en la biblioteca de la Facultad de Ingeniería de la Universidad Nacional de Chimborazo.

Para constancia de lo expuesto firman:

Ing. Diego Hidalgo MSc.

Tutor del Proyecto

M.Sc. Ing. Diego J. Barahona, R.

Miembro del tribunal

Ing. Andrea Zárate, MSc.

Miembro del tribunal

DIEGO HERNAN Fecha: HIDALGO 2021.06.17 ROBALINO 18:25:41 -05'00'

Firma

.....

i

Firma

CERTIFICACIÓN DEL TUTOR

Yo, Ing. Diego Hidalgo, MSc, en calidad de Tutor de Tesis que lleva como título: **"COMPARACIÓN MULTICRITERIO AHP DE CURVAS DE CAPACIDAD DE DIFERENTES ZONAS SÍSMICAS SEGÚN NEC-15 DEL SISTEMA ESTRUCTURAL MUROS DE CORTE CON PLACA DE ACERO",** CERTIFICO: que el informe final del trabajo investigativo ha sido revisado y corregido, razón por la cual autorizo a la Señor Daniel Ismael Pesantez Pesantez para que se presente ante el tribunal de defensa respectivo para que se lleve a cabo la sustentación de su Tesis.

Atentamente,

DIEGO HERNAN Fecha: HIDALGO 2021.06.17 ROBALINO 18:26:24 -05'00'

Ing. Diego Hidalgo, MSc

Tutor de tesis

Autoría de la Investigación

Declaro que la responsabilidad del contenido de este proyecto de graduación corresponde exclusivamente a: Daniel Ismael Pesantez Pesantez y al Ing. Diego Hernán Hidalgo Robalino, MSc. y el patrimonio intelectual de la misma a la Universidad Nacional del Chimborazo.

Sr. Daniel Ismael Pesantez Pesantez

C.I. 1900827609

Agradecimiento

Agradezco a los docentes de la carrera de Ingeniería Civil de la UNACH y en particular a mi docente tutor Ing., Diego Hidalgo, que gracias a sus conocimientos y experiencias profesionales me han formado académicamente con sólidos conocimientos técnicos y buenos principios morales. Así mismo, a mis compañeros y amigos que han estado presentes en mi proceso académico apoyándome y motivándome a siempre buscar la excelencia personal y académica.

Dedicatoria

El presente trabajo les dedico a mis padres: Leonardo y Teresa que siempre han estado incondicionalmente apoyándome tanto emocional y económicamente a largo de mi vida y formación universitaria. A mis hermanos: Rebeca, Tatiana y José Luis que han sido mi motivación personal para sobresalir y demostrar mis destrezas personales y académicas.

Índice General

CAPÍTULO I PLANTEAMIENTO DEL PROBLEMA 3
1.1 Planteamiento del Problema
1.2 Objetivos
1.2.1 Objetivo General
1.2.2 Objetivos Específicos 4
2 CAPITULO II MARCO TEÓRICO
2.1 Muros con Placas de Acero
2.2 Bases de diseño AISC 341_16 6
2.2.1 Análisis
2.2.2 Requerimientos del sistema
2.2.3 Miembros
2.2.4 Conexiones
2.3 Modelación de la Placa de Acero (Método de las Franjas)
2.4 Requerimientos de Diseño Sismorresistente NEC-15 11
2.4.1 Zonificación Sísmica 11
2.4.2 Geología Local 12
2.4.2.1 Sismo de diseño 12
2.4.3 Índice de estabilidad 12
2.4.4 Derivas de piso
2.5 Criterios de diseño 13
2.6 Capacidad Estructural 14

	2.6	6.1 Análisis estático no lineal (Pushover)	. 14
	2.6	6.2 Curva de capacidad	. 14
	2.7	El Método AHP	. 17
	2.7	7.1 Metodología AHP	. 17
3	CA	.PÍTULO III METODOLOGÍA	. 19
	3.1	Tipo de investigación	. 19
	3.2	Selección del caso de estudio	. 19
	3.3	Descripción del caso de estudio	. 19
	3.4	Esquema metodológico	20
	3.5	Plan de recolección de información de las bases teóricas	21
	3.6	Plan de Prediseño, Modelación, Diseño y Chequeo.	21
	3.7	Plan de Obtención de la Capacidad Estructural	. 22
	3.8	Plan de Comparación Multicriterio AHP	. 23
	3.9	Limitaciones de la investigación	. 24
4	CA	.PÍTULO IV RESULTADOS Y DISCUSIÓN	. 25
	4.1	Resultados de Cuantificación de Cargas	. 25
	4.1	1.1 Cargas Gravitacionales	. 25
	4.1	1.2 Resultados de Cargas Sísmicas	. 25
	4.2	Prediseño, Modelación, Controles y Chequeos.	. 27
	4.2	2.1 Resultados del Prediseño Cargas Gravitacionales	. 27
	4.2	2.2 Prediseño del Sistema Muros de Corte de Placa de Acero	. 28
		4.2.2.1 Prediseño Placa de Acero	. 28

	4.2.2.2	Prediseño de los Elementos de Borde	29
	4.2.3 Re	esultados modelación	30
	4.2.4 Re	esultados Controles Normativos	30
	4.2.4.1	Control de Excentricidad	31
	4.2.4.2	Control de Modos de Vibración	32
	4.2.4.3	Control de Derivas de Piso	32
	4.2.4.4	Control de Estabilidad de Piso	33
	4.2.5 Re	esultados de chequeos	33
	4.2.5.1	Chequeo a compresión de columnas gravitacionales	33
	4.2.5.2	Chequeo a flexión	34
	4.2.5.3	Chequeo a Corte	35
	4.3 Result	tados Capacidad Estructural	35
	4.4 Anális	sis de curvas de capacidad	41
	4.5 Result	tados Comparación Multicriterio AHP	41
	4.6 Comp	paración Muros de Corte Vs Pórticos Resistentes a Momento.	44
5	CONCLU	SIONES	47
6	RECOME	NDACIONES	49
7	REFEREN	ICIAS BIBLIOGRÁFICAS	50
8	ANEXOS		53

Índice de Anexos

Anexo	1 Planos caso de estudio residencial	. 53
Anexo	2 Cuantificación de cargas	. 55
Anexo	3 Cálculo Tipo del Espectro de Diseño	. 58
Anexo	4 Prediseño tipo de viguetas	. 59
Anexo	5 Prediseño Tipo de Vigas	. 61
Anexo	6 Prediseño Tipo de Columnas	. 63
Anexo	7 Análisis Sísmico Estático Normativo (Prediseño)	. 66
Anexo	8 Distribución Fuerzas Sísmicas Equivalentes	. 68
Anexo	9 Prediseño tipo de la placa de acero	. 69
Anexo	10 Prediseño Tipo de los Elementos de Borde	. 71
Anexo	11 Resumen de prediseño de elementos de borde	. 72
Anexo	12 Modelación en ETABS	. 73
Anexo	13 Cálculo Tipo del Control de Excentricidad	. 75
Anexo	14 Cálculo Tipo Control de Índice de Estabilidad	. 76
Anexo	15 Chequeo Compresión Columnas Gravitacionales	. 78
Anexo	16 Chequeo a Flexión	. 80
Anexo	17 Chequeo por criterios de capacidad elementos de borde muros de co	orte
de placa de ac	eero	. 82
Anexo	18 Modelo no Lineal Placas de Acero	. 85
Anexo	19 Proceso de Comparación Multicriterio AHP	. 91

Índice de tablas

Tabla 1 Requerimientos de Conexiones Muros de Corte de Placa de Acero 9
Tabla 2 Criterios de Índice de Estabilidad 12
Tabla 3 Escala de Comparación del Método AHP 17
Tabla 4 Valores RI Método AHP 18
Tabla 5 Parámetros para la obtención del espectro de diseño
Tabla 6 Resumen de cuantificación de cargas gravitacionales
Tabla 7 Resumen de Prediseño Viguetas y Vigas
Tabla 8 Resumen de Prediseño de Columnas
Tabla 9 Disposición y Geometría de los Muros de Corte 29
Tabla 10 Resumen del Prediseño de Placas de Acero
Tabla 11 Resumen del Método de las Franjas
Tabla 12 Resumen de Control de Excentricidad
Tabla 13 Resumen del Control de Modos de Vibración 32
Tabla 14 Factores Para Determinación Derivas de Piso Inelásticas 33
Tabla 15 Resumen de Control Final de Derivas de Piso
Tabla 16 Resumen de Chequeo a Compresión
Tabla 17 Resumen de Chequeo a Flexión
Tabla 18 Chequeo a Corte 35
Tabla 19 Resultados de Curva de Capacidad Zona Sísmica I
Tabla 20 Resultados de Curva de Capacidad Zona Sísmica III
Tabla 21 Resultados de Curva de Capacidad Zona Sísmica VI
Tabla 22 Análisis Factor R 41
Tabla 23 Matriz General de Comparación Multicriterio AHP 42
Tabla 24 Resultado Final AHP en Base Factor R

Tabla 25	Resultado Final AHP Criterios Globales 4	3
Tabla 26	Comparación Muros de Corte Placa de Acero con Pórticos a Moment	<i>:</i> 0
(Con Secciones d	e Prediseño) 4	4
Tabla 27	Comparación Curvas de Capacidad Sistema con Muros y Pórticos	а
Momento con Sec	ciones de Prediseño4	5
Tabla 28	Análisis del Factor R y ductilidad 4	6

Índice de Figuras

Figura 1 Componentes del Sistema Muros de Corte con Placas de Acero 5
Figura 2 Solicitaciones de un muro de corte
Figura 3 Modelo de las Franjas10
Figura 4 Zonas Sísmicas asociados al Valor de Factor de Zona Z 11
Figura 5 Curva de Capacidad15
Figura 6 Curva Bilineal Método Tangente Horizontal16
Figura 7 Esquema metodológico de la investigación
Figura 8 Espectro de Diseño, Zona sísmica I (Lago Agrio)
Figura 9 Espectro de Diseño, Zona sísmica III (Cañar)
Figura 10 Espectro de Diseño, Zona sísmica VI (Guayaquil) 27
Figura 11 Curva de Capacidad Zona Sísmica I
Figura 12 Curva de Capacidad Zona Sísmica III
Figura 13 Curva de Capacidad Zona Sísmica VI
Figura 14 Mecanismo de Disipación de Energía Sentido X 40
Figura 15 Comparación Curvas de Capacidad, Sistema Placas de Acero vs
Pórtico a Momento con Secciones de Prediseño

Resumen

En el presente trabajo de investigación se realiza una comparación multicriterio AHP en base a los factores de ductilidad y sobrerresistencia obtenidos a partir de las curvas de capacidad para diferentes zonas sísmicas según NEC-15 del sistema estructural muros de corte de placa de acero para un caso de estudio con un plano arquitectónico residencial.

El prediseño, diseño y chequeo del sistema muros de corte de placa de acero se realiza mediante los requerimientos sísmicos del AISC 341_16 y NEC_15, se utiliza el método de las franjas convencional para modelar la placa de acero en un software estructural (ETABS), la curva de capacidad obtenida corresponde al primer modo de vibración siguiendo las recomendaciones de los códigos de desempeño sísmico.

Al finalizar la investigación se obtiene que el sistema estructural muros de corte de placa de acero es una gran alternativa para rigidizar a la estructura obteniéndose una reducción de derivas de piso en un 61% y la reducción en un 40% del periodo fundamental de la estructura si se compara con el sistema habitual de pórticos a momento. Adicionalmente se obtiene un factor de sobrerresistencia promedio de 3.21 y un factor de ductilidad promedio de 2.307 para el sistema estructural muros de corte de placa de acero.

Palabras Clave: Placas de acero, curva de capacidad, método de las franjas, factor de ductilidad, sobrerresistencia.

Abstract

In this research work, a multicriteria AHP comparison is making. The ductility and over-resistance factors were obtained from the capacity curves for different seismic zones according to NEC-15 of the structural system with steel plate shear wall for a case study with a residential architectural plan.

The pre-design, design, and check of the system with steel plate shear wall perform through seismic requirements of AISC 341_16 and NEC_15. The conventional strip method is used to model the steel plate is structural software (ETABS). The capacity curve obtained corresponds to the first vibration mode following the recommendations of the seismic performance codes.

At the end of the investigation, the structural system with a steel plate shear wall is a great alternative to stiffen the structure and obtaining a 61% reduction of floor drifts and a 40% reduction of the fundamental period of the structure if compared to the usual frame system. Additionally, it got an average over-resistance factor of 3.21 and an average ductility factor of 2.307 for the steel plate shear walls structural system.

Keywords: Steel plates, capacity curve, strip method, ductility factor, overstrength.

Reviewed by: Ms.C. Ana Maldonado León ENGLISH PROFESSOR C.I.0601975980

Introducción

El Ecuador tiene una amenaza sísmica alta en todo su territorio a excepción del nororiente que presenta una amenaza sísmica intermedia y del litoral que presenta una amenaza sísmica muy alta (NEC-SE-DS, 2015). Esto se debe a que el territorio ecuatoriano está ubicado en una franja donde se libera la mayor cantidad de energía sísmica del planeta conocida como cinturón de fuego del Pacífico. Adicionalmente, debido a la interacción convergente de la placa de Nazca con la placa Sudamericana se registran diariamente sismos de magnitud leve y existe una alta probabilidad que ocurran eventos de magnitudes mayores a los ya ocurridos en la historia. Los sismos registrados en: Esmeraldas en 1906 (8.8 Mw), 1942 Manabí (7.8Mw), 1958 Manabí (7.8Mw), 1979 Esmeraldas (8.1 Mw), 2016 Manabí (7.8 Mw) son considerados los más destructivos asociados al fenómeno de subducción en el territorio ecuatoriano (Instituto Geofísico, 2019).

Diseñar estructuras para que resistan el sismo de diseño (evento sísmico de periodo de retorno de 475 años) sin ningún daño resulta muy costoso, por lo que se opta, diseñar para que las estructuras trabajen en el rango no lineal, es decir se espera daño en las mismas pero nunca van a colapsar disipando así mayor cantidad de energía, esto se logra dividiendo el espectro elástico para un valor de reducción de fuerzas sísmicas (R) según la tipología estructural (Aguiar, 2007a). El factor R depende varias variables como: tipo de estructura, tipo de suelo y de los factores de: ductilidad, sobre resistencia, redundancia y amortiguamiento (NEC-SE-DS, 2015). Según estudios experimentales y analíticos señalan que los factores de desempeño sísmico son los medios más efectivos para evitar el colapso y prevenir daños excesivos, por lo que es vital de importancia realizar una verificación de los mismos, mediante un análisis inelástico para asegurar un adecuado desempeño sísmico de la estructura (Bonnet, 1997).

En estructuras metálicas existen diferentes sistemas sismorresistentes que se diferencian entre sí por su: comportamiento estructural, forma de construcción, funcionalidad y aspectos económicos; esta gran variedad de alternativas permite al Ingeniero estructural seleccionar la opción más adecuada según la naturaleza y requerimientos del proyecto, cumpliendo así con criterios de resistencia, rigidez, ductilidad y estabilidad (F. J. Crisafulli, 2018).

La Norma Ecuatoriana de la Construcción - Estructuras de Acero NEC-SE-AC (2015) propone requerimientos para el de diseño de: pórticos especiales a momento, pórticos especiales con arriostramiento concéntrico y pórticos arriostrados excéntricos; además detalla de manera indirecta otros tipos de sistemas estructurales como muros especiales con placa de cortante (MEPC) para lo cual se debe revisar los requerimientos de la normativa americana ANSI/AISC 341-10. El comportamiento del sistema (MEPC) genera una gran capacidad para resistir cargas cíclicas extremas las cuales representan severas solicitaciones sísmicas mediante la fluencia de la placa asegurando una gran ductilidad y redundancia del sistema estructural.

La presente investigación tiene por finalidad investigar los requerimientos de diseño de los miembros del sistema estructural muros de corte con placa de acero (MEPC) según la ANSI/AISC 341-16, realizar el predimensionamiento, modelación, diseño y chequeo del sistema ante diversas solicitaciones sísmicas (variando la zona sísmica de diseño) para un caso de estudio tipo residencial, obtener la curva de capacidad para cada zona sísmica analizada mediante un análisis estático no lineal (Pushover) y compararlas mediante el método AHP en base a los factores de sobre resistencia y ductilidad, proporcionando así información técnica para la implementación del sistema estructural en el contexto nacional según la zona sísmica de diseño.

CAPÍTULO I.- PLANTEAMIENTO DEL PROBLEMA

1.1 Planteamiento del Problema

En el Ecuador el uso de muros de corte como sistema sismorresistente en edificaciones es muy limitado y el único sistema implementado en contexto nacional son los muros de corte de hormigón armado (Larrea, 2011). Adicionalmente mediante una investigación bibliográfica personal se evidencia que actualmente no existe registros de la implementación del sistema estructural muros de corte con placa de acero en edificaciones metálicas, que en comparación con países desarrollados (EEUU, Japón) a las placas de acero las usan como alternativa del sistema tradicional (muros de corte de hormigón armado) y en la rehabilitación de estructuras debido a su rápida construcción y una masa significativamente menor (F. J. Crisafulli, 2018). Los factores que podrían influir a la poca o casi nula implementación del sistema son: escaza información técnica local para realizar un adecuado predimensionamiento, modelación y diseño de los miembros y conexiones según los requerimientos normativos nacionales e internacionales, así como también, una poca experiencia a nivel local del montaje y comportamiento estructural del mismo en la disipación de energía ante un evento sísmico por lo que es necesario determinar la curva de capacidad de la estructura para conocer el comportamiento real del sistema en el contexto nacional.

El Ecuador al dividirse geográficamente en seis zonas sísmicas, es importante que los estudios se enfoquen en comparar y analizar el comportamiento de los factores de ductilidad y sobrerresistencia obtenidos mediante la curva de capacidad ante diversas solicitaciones sísmicas con la finalidad de que los diseñadores cuenten con mayor información técnica local y así poder escoger el mejor sistema estructural según la zona sísmica a desarrollar el proyecto, generando bases para una posible implementación del sistema estructural muros de corte de placa de acero en el territorio ecuatoriano.

1.2 Objetivos

1.2.1 Objetivo General

 Comparar mediante el método multicriterio AHP, las curvas de capacidad obtenidas de diferentes zonas sísmicas según la NEC-15 del sistema estructural con muros de corte de placa de acero para un caso de estudio residencial.

1.2.2 Objetivos Específicos

- Investigar los requerimientos normativos NEC-15 y ANSI/AISC 341-16 para el diseño del sistema estructural pórticos con muros de corte con placa de acero sin rigidizar.
- Realizar el predimensionamiento, modelación, diseño y chequeo del sistema estructural muros de corte de placas de acero sin rigidizar en diferentes zonas sísmicas acuerdo a la normativa vigente para un caso de estudio residencial.
- Obtener mediante un análisis estático no lineal (Pushover) las curvas de capacidad de diferentes zonas sísmicas según NEC-15 del sistema estructural muros de corte de placa de acero para un caso de estudio y calcular los factores globales de: sobre resistencia y ductilidad.
- Comparar mediante el método AHP las curvas de capacidad generadas para diferentes zonas sísmicas establecidas en la NEC-15 en base a los factores de ductilidad y sobre resistencia.

2 CAPITULO II.- MARCO TEÓRICO

2.1 Muros con Placas de Acero

Un muro de corte de placa de acero sin rigidizar es un sistema estructural compuesto por una o varias placas planas de acero en sentido vertical de elevada esbeltez, conectados adecuadamente por elementos de borde: horizontales EBH (vigas) y verticales EBV (columnas) como se muestra en la Figura 1.Una elevada rigidez y resistencia son las principales características de los muros de corte de placas de acero. (Totter & Crisafulli, 2016).

Figura 1

Componentes del Sistema Muros de Corte con Placas de Acero

Fuente: (Totter & Crisafulli, 2019)

Ante fuerzas laterales (acción sísmica) se generan solicitaciones de corte y momento como se muestra en **Figura 2**. La placa de acero disipa energía por la fluencia del alma de la placa a través del mecanismo de acción de campo diagonal de tracciones; adicionalmente debido a su elevada esbeltez la placa pandea en su dirección perpendicular ante pequeñas solicitaciones de carga (F. Crisafulli, 2018).

Figura 2

Solicitaciones de un muro de corte

Fuente: (F. Crisafulli, 2018)

2.2 Bases de diseño AISC 341_16

En el alma de la placa se espera que fluya disipando gran cantidad de energía, en los extremos de las vigas se espera la formación de rotulas plásticas y en las columnas no se espera que fluya por corte ni flexión excepto en la base de la estructura siguiendo la filosofía sismo resistente (Taranath, 2016).

2.2.1 Análisis

Se considera que las placas de acero no forman parte del sistema resistente por carga gravitacional. Se debe realizar un análisis estructural de acuerdo con las combinaciones de carga detallas en el código de construcción aplicable. El alma de la placa debe resistir el 100 % del cortante de piso que le corresponde al muro según el análisis correspondiente. Se debe verificar que la resistencia requerida del pórtico, formado solamente por vigas y columnas (sin la placa de acero) debe ser mayor que el 25% de la fuerza de corte correspondiente a dicho análisis (Taranath, 2016).

La resistencia en los elementos de borde verticales y horizontales y de las conexiones se deben determinar mediante las combinaciones de cargas normativas que incluyan el efecto de acción sísmica limitada por capacidad la cual se debe determinar a partir de las siguientes hipótesis:

El alma placa resiste a tracción con un ángulo α (detallado en la sección 2.2.3)

 Los extremos de las vigas de borde a la placa desarrollan su resistencia a flexión igual a 1.1 *Ry*Mp donde:

Mp= Momento plástico a flexión, ksi.in (N.mm)

Ry= Relación entre la tensión de fluencia esperada y la tensión de fluencia especificada, Fy

Fy= Tensión mínima especificada en fluencia, ksi (Mpa)

2.2.2 Requerimientos del sistema.

La rigidez de los elementos verticales y horizontales será tal que toda la placa fluya a la deriva de la historia del diseño y que cumplan con lo siguiente:

En las columnas (elementos de borde vertical) el momento de inercia con respecto a un eje perpendicular a la placa debe ser mayor:

$$I_c \ge \frac{0.0031 t_w h^4}{L}$$

Así mismo el momento de inercia en las vigas (elementos de borde horizontal) requiere en el caso que haya diferencia de espesores del alma de la placa.

$$I_b \ge \frac{0.0031 \ L^4}{h} |t_i - t_{i-1}|$$

Donde:

L= Distancia entre centros de los elementos de borde horizontal, in. (mm) h= Distancia entre centros de los elementos de borde vertical, in (mm) t_w= espesor del alma de la placa, in (mm).

 $|t_i - t_{i-1}|$ = Diferencia de espesores entre las placas del alma vinculadas al elemento.

2.2.3 Miembros

Los elementos de borde horizontales y verticales deberán satisfacer los requisitos para miembros altamente dúctiles (Taranath, 2016).

La resistencia de diseño a corte (V_d) de la placa de acero debe cumplir:

$$V_d = \emptyset V_n$$
; $\emptyset = 0.9$
 $V_n = 0.42 F_y t_w L_{cf} sen(2\alpha)$

Donde:

t_w= Espesor del alma de la placa, in (mm).

L_{cf}= Distancia libre entre los elementos de borde vertical, in (mm).

 α = Ángulo de inclinación de fluencia, respecto a la vertical, es permitido tomar el valor de 40° ó se puede calcular:

$$tan^{4}(\alpha) = \frac{1 + \frac{t_{w}L}{2A_{C}}}{1 + t_{w}h\left(\frac{1}{A_{b}} + \frac{h^{3}}{360I_{C}L}\right)}$$

Donde:

Ac = Sección transversal de los elementos verticales, $in^2 (mm^2)$.

Ab = Sección transversal de los elementos horizontales, $in^2 (mm^2)$.

2.2.4 Conexiones

Tabla 1

Requerimientos de Conexiones Muros de Corte de Placa de Acero

Conexión	Requerimiento de	Detalle		
	Conexión			
Placa de acero –	Resistir toda la tracción			
Elementos de borde	de la placa.			
Elemento de borde:	Conexión a momento	Transmitir el momento flector		
horizontal - vertical	totalmente restringida	con una rotación despreciable		
	para pórticos ordinarios	(conexión no precalificada).		
Zona panel elemento	Pórtico especial no	Resistencia a corte calculada		
de borde vertical	arriostrado especial.	como mínimo a partir la		
		sumatoria de momentos en la		
		cara de la columna.		

Las soladuras de empalmes de columnas, base columna, elementos de borde se deben diseñar como soldadura de demanda crítica

Fuente: Adaptado de Crisafulli (2018)

2.3 Modelación de la Placa de Acero (Método de las Franjas)

El desarrollo de la técnica de modelado de múltiples tiras o franjas para el sistema muros de corte de placa de acero delgadas no reforzadas fue el primer gran avance hacia el diseño sísmico de edificios que incorporan muros de corte de placa de acero. Basado en la teoría del campo de tensión diagonal propuesta por Wagner (1931) y modificada posteriormente por varios otros, Thorburn et al. (1983). Los elementos de borde (viga y columna) son representados con las mismas propiedades geométricas y mecánicas según el prediseño de estas. La placa de relleno es representada por barras biarticuladas con una sección transversal igual al producto del espesor de la placa y el ancho tributario. Este modelo asume que las "barras birrotuladas" actúan solo a tracción con un ángulo de inclinación (α) según el campo diagonal de tracciones. Para una representación adecuada de la placa de acero se recomienda utilizar como mínimo 10 barras por panel. Adicionalmente Elgaaly y col. (1998), se determinó que una pequeña variación en el ángulo de inclinación tiene un efecto insignificante sobre la rigidez inicial.

Figura 3

Modelo de las Franjas

Fuente: (Rezai et al., 2004)

La guía de diseño 20 AISC propone una fórmula para calcular el área transversal de la biela correspondiente a cada panel:

$$A_{S} = \frac{[L\cos(\alpha) + h\,sen((\alpha)]t_{w}]}{n}$$

Donde: L es la longitud de los elementos de borde horizontales (eje a eje), α es el ángulo de inclinación del campo diagonal de tracciones (puede ser el promedio de todos

los ángulos de cada panel de cada piso), h longitud de los elementos de borde vertical, tw espesor de placa y n número franjas se recomienda mínimo 10 (Sabelli & Bruneau, 2006).

En la *Figura 3* se detalla el análisis para sólo un sentido (positvo), para considerar la influencia de la placa en el otro sentido (negativo) se debe debe realizar el mismo procedimiento, formando una "malla" con barras birrotuladas (bielas) sólo a tensión.

2.4 Requerimientos de Diseño Sismorresistente NEC-15

El objetivo de la filosofía de desempeño busca evitar la pérdida de vidas a través de impedir el colapso de todo tipo de estructura. Para estructuras de ocupación especial y esencial se añade el objetivo de protección de vida en mayor medida y la garantía de funcionalidad después de un evento sísmico extremo (NEC-SE-DS, 2015).

2.4.1 Zonificación Sísmica

El Ecuador cuenta con seis zonas sísmicas asociadas a un valor de factor de zona Z dependiente del sitio de construcción de la estructura (Figura 4), según el mapa de zonificación sísmica del Ecuador (NEC-SE-DS, 2015).

Figura 4

Zonas Sísmicas asociados al Valor de Factor de Zona Z

Zona sísmica	1	II		IV	V	VI
Valor factor Z	0.15	0.25	0.30	0.35	0.40	≥ 0.50
Caracterización del peligro sísmico	Intermedia	Alta	Alta	Alta	Alta	Muy alta

Fuente: (NEC-SE-DS, 2015)

2.4.2 Geología Local

A nivel nacional se definen seis perfiles de suelos: A,B,C,D,E y F; clasificados de acuerdos parámetros geotécnicos cómo: velocidad de onda de corte promedio del suelo (Vs), número de golpes medios del ensayo SPT (N), resistencia al corte no drenado (Su), entre otros. La NEC-SE-DS (2015) propone los parámetros de clasificación para la determinación del perfil de suelo según características geotécnicas del lugar del proyecto.

2.4.2.1 Sismo de diseño

Solicitación sísmica con un periodo de retorno de 475 años y una probabilidad de 10% de ser excedido en 50 años. Según los niveles de desempeño sísmico para estructuras de ocupación normal bajo la ocurrencia del sismo de diseño (severo) se espera un nivel de prevención de colapso (NEC-SE-DS, 2015).

2.4.3 Índice de estabilidad

Relación entre el momento de segundo orden y el momento de primer orden (Q_i) , en la Tabla 2 se detalla los criterios de aceptación del índice de estabilidad.

Tabla 2

Índice Qi	Criterio	Observaciones
Qi ≥ 0.3	Estructura potencialmente inestable	Rigidizar
0.1 < Qi < 0.3	Considerar los efectos P- Δ	Calcular un factor de
		mayoración.
Qi ≤ 0.1	No considerar efectos P- Δ	

Criterios de Índice de Estabilidad

Fuente: Adaptado de NEC-SE-DS (2015)

2.4.4 Derivas de piso

Se realizará un control de deriva de piso utilizando la respuesta máxima inelástica de desplazamientos Δ_m de la estructura, causada por el sismo de diseño.

$$\Delta_m = 0.75 * R * \Delta_E$$

Dónde: Δ_m , corresponde a la deriva de piso máxima inelástica, Δ_E , es la deriva de piso debido a la fuerzas laterales de diseño reducido, **R**, factor de reducción de resistencia.

$$\Delta_m \leq \Delta_{m \Delta x}$$

Dónde: $\Delta_{máx}$ es igual a 0.02 para estructuras de: hormigón armado, estructuras metálicas y madera y $\Delta_{máx}$ es igual a 0.01 para estructuras de mampostería.

2.5 Criterios de diseño

- La disposición de las placas de acero puede seguir distintas configuraciones, según el criterio del diseñador para modificar o ajustar el comportamiento global de la estructura, se recomienda ubicarlas simétricamente (similar a los muros de corte de hormigón armado) para evitar problemas de torsión en planta.
- 2. El proceso de diseño del sistema de muros de corte de placa de acero consiste en determinar el espesor de las placas de acero de acuerdo con la solicitación sísmica impuesta para posteriormente diseñar por capacidad los elementos de borde y sus conexiones, para el presente trabajo se verifica los requerimientos normativos que incluyen criterios de diseño por capacidad.
- 3. Según Ghosh & Kharmale (2010), para modelar la placa de acero existen diferentes métodos: método de las tiras convencional, modelo de tiras de

múltiples ángulos, membrana ortotrópica, método de los elementos finitos. En el presente trabajo se utiliza el método de tiras convencional.

2.6 Capacidad Estructural.

Para determinar la capacidad de una estructura más allá del rango elástico, es necesario algún tipo de análisis no lineal (estático ó dinámico). La resistencia y deformación máxima de los componentes individuales de una estructura son los principales factores que influyen en la capacidad final de la misma (Bonnet, 1997).

2.6.1 Análisis estático no lineal (Pushover)

Es una técnica simple y eficiente donde a la estrucutura se le somete a un patrón de cargas laterales F_i que representan las fuerzas inerciales que se inducen en la estructura ante un sismo. Las cargas F_i se aplican desde un valor de 0 y aumentan gradualmente hasta que la estructura colapse ó alcance un desplazamiento lateral establecido. Una vez finalizado el procedimiento se puede identificar la secuencia de: agrietamiento, cedencia y fallo, estados límites de servicio y la curva de capacidad (López, 2014).

2.6.2 Curva de capacidad. -

Es una curva que relaciona cortante basal (V) con el desplazamiento del centro de masas del ultimo nivel del edificio (Δ) ver Figura 5; la curva representa la respuesta predominante de los modos de vibración de la estructura que por lo general es el primero. (López, 2014).

Figura 5

Curva de Capacidad

Fuente: Aguiar (2007).

Analizando la Figura 5, un análisis elástico representado por la línea entrecortada asume que así la estructura experimente desplazamientos considerables la rigidez del sistema nunca va a cambiar. Al considerar un análisis no lineal (línea continua) se evidencia que la rigidez de la estructura va cambiando en función del grado de deformación que experimente la misma (Aguiar, 2007).

Una vez obtenido la curva de capacidad (análisis no lineal) es recomendable simplificarla obteniendo una curva bilineal (idealizada) con la finalidad de identificar el punto de fluencia (Y) que indica un cambio importante en la rigidez y resistencia lateral de la estructura, es decir, existe un cambio considerable en la pendiente de la curva de capacidad que representa que la estructura deja de trabajar en el rango lineal e incursiona en el rango no lineal (Aguiar, 2003). Existen varios criterios para determinar la curva bilineal: rigidez tangente horizontal, rigidez de tangente, áreas iguales y ajuste por mínimos cuadrados. En el presente trabajo se emplea el criterio de rigidez de tangente horizontal (Figura 6) que consiste en trazar una tangente a la curva en el rango elástico para seguidamente, a partir del cortante basal máximo de la curva de capacidad trazar una recta horizontal, la intersección de estas dos rectas se determina Dyt, con este punto se le proyecta a la curva de capacidad obteniéndose el cortante de fluencia Vy (Aguiar, 2003).

Figura 6

Curva Bilineal Método Tangente Horizontal

Fuente: (Aguiar, 2003)

Adicionalmente en la Figura 5 también se representa la definición de los factores de: ductilidad (R_u) y sobre resistencia (R_Ω)

$$R_{\mu} = \frac{V_e}{V_y}$$
$$R_{\Omega} = \frac{V_y}{V_d}$$

Donde: Ve es el cortante elástico y Vd es el cortante de diseño.

2.7 El Método AHP

Las metodología desarrollada por Saaty es una herramienta que permite analizar los aspectos críticos de un problema en una estructura jerárquica, reduciendo las decisiones complejas a una serie de comparaciones que permiten la jerarquización de los diferentes criterios evaluados (Taoufikallah, 1990).

2.7.1 Metodología AHP

- Definir el problema y estructurar la jerarquía de decisión normalmente organizada en tres niveles: (a) Meta u objetivo, (b) Criterios y subcriterios de decisión y (c) Alternativas.
- Evaluar los diferentes criterios, subcriterios y alternativas a partir de la importancia de cada nivel. Para la comparación pareada se pueden utilizar juicios informales que son trasladados a una escala de puntuación (ver Tabla 3), obteniendo así los pesos y las prioridades de cada comparación realizada. Saaty recomienda diseñar un método de priorización consistente para criterios cuantitativos.

Tabla 3

Intensidad de Importancia	Definición	
1	Igual importancia	
3	Importancia moderada	
5	Fuerte importancia	
7	Muy fuerte importancia	
9	Importancia extrema	
2,4,6,8	Valores intermedios entre dos juicios	
	adyacentes	

Escala de Comparación del Método AHP

Fuente: Adaptado de Aristóteles (2015)

- Calcular el vector de prioridad, el cual es usado para comparar los elementos de la matriz. El auto vector normalizado es una buena aproximación de la evaluación de los criterios analizados.
- 4. Estimar el índice de consistencia (CI) de una matriz n x n de juicios.

$$CI = \frac{\lambda_{max} - n}{n - 1}$$

Dónde; $\lambda_{max} = M$ áximo autovalor de la matriz

5. Calcular el radio de inconsistencia (IR) con la finalidad de evaluar la congruencia de los juicios. IR inferiores o iguales a 0.1 son considerados aceptables, en caso de no cumplir la condición mencionada se requiere una mayor investigación de los criterios evaluados.

$$IR = \frac{CI}{RI}$$

Dónde, RI es el valor aleatorio de CI para una matriz n x n. Los valores de CI se obtienen de la Tabla 4.

Tabla 4

Valores RI Método AHP

6. Jerarquizar las alternativas las alternativas y solucionar la problemática planteada.

3 CAPÍTULO III.- METODOLOGÍA

3.1 Tipo de investigación

El presente trabajo de investigación utiliza una metodología cuantitativa con un alcance exploratorio y descriptivo.

3.2 Selección del caso de estudio

Se emplea un muestreo no probabilístico intencional o por conveniencia para la selección del caso de estudio, esto se debe principalmente a que el sistema estructural muros con corte de placa de acero es un sistema relativamente nuevo y actualmente tiene una nula implementación en el contexto nacional. Se selecciona una planta arquitectónica de altura moderada (mayor a 4 pisos) ya que por lo general, para este tipo de edificaciones se requiere utilizar otros sistemas estructurales (arriostramientos concéntricos, muros de corte de hormigón, entre otros) para cumplir con los controles normativos, en nuestro contexto una edificación con estas características habitualmente son destinadas a un uso residencial, en el Anexo 1 se detalla las características arquitectónicas del caso de estudio; a partir de esta configuración se diseña el sistema estructural y se obtiene las curvas de capacidad para diferentes zonas sísmicas según la NEC-15.

3.3 Descripción del caso de estudio.

La selección de la edificación se basará en una planta arquitectónica ya construida en la ciudad de Riobamba para uso residencial multifamiliar de 8 pisos: las dos primeras plantas serán de uso comercial, las plantas: tres, cuatro, cinco, seis, siete son de uso residencial y la última planta es una cubierta accesible con tapa grada. La configuración arquitectónica en elevación es regular mientras que en planta presenta leves irregularidades que deben ser consideradas en el diseño. La estructura cuenta con un área para la implementación del ascensor que no se lo considera en el modelo y diseño de la estructura. Adicionalmente, no se consideran la modelación y diseño de las gradas por los efectos adicionales (torsión en planta) que estas generarían en el modelo estructural y que no son el objetivo del estudio. La grada puede ser considerada como otra estructura que está separada y que tiene su propio periodo como se realizan en las gradas de emergencias de edificios ya construidos.

3.4 Esquema metodológico

Figura 7

Esquema metodológico de la investigación

Fuente: Elaboracion Propia

3.5 Plan de recolección de información de las bases teóricas

Se realiza una revisión bibliográfica de los requerimientos normativos estipulados en: AISC 341-16, ASCE 10, NEC-15 para el sistema estructural muros de corte de placa de acero. Así mismo, con la ayuda de la guía AISC 20 y artículos científicos se conoce comportamiento y métodos de modelación del sistema estructural en softwares estructurales.

3.6 Plan de Prediseño, Modelación, Diseño y Chequeo.

El prediseño, diseño y chequeos del sistema estructural muros de corte de placa de acero se rige estrictamente en los requerimientos normativos de reglamento AISC 341-16 y las normas ecuatorianas de la construcción NEC_15 para los requerimientos sísmicos. El método de diseño empleado en la investigación es de última resistencia LRFD.

La selección de las zonas sísmicas empleados en el proyecto (Tabla 5) se basa en el mapa de zonificación sísmica del Ecuador, que estipula que el territorio ecuatoriano cuenta con 6 zonas sísmicas asociadas a un de factor de zona Z las cuales varían de 0.15 g a 0.50 g, por lo que en el presente trabajo de investigación se utilizarán los factores de zona: máximo (0.50g), mínimo (0.15g) y un intermedio (0.30g); como la investigación se centra en determinar la influencia de la zona sísmica en las curvas de capacidad se utilizará un perfil de suelo referencial constante (Tipo D) al momento de obtener el espectro de diseño elástico, el mismo que es calculado a partir de los requerimientos dispuestos en la norma NEC-SE-DS_15 para una edificación de ocupación normal. El Factor R para la obtención del espectro inelástico se basará en el ASCE-10 que estipula un factor R igual a 7 para el sistema estructural muros de corte de placa de acero.
Tabla 5

Zona Sísmica	Factor de Zona Z	Perfil de Suelo	Ubicación
Ι	0.15	D	Lago Agrio
III	0.30	D	Cañar
VI	0.50	D	Guayaquil

Parámetros para la obtención del espectro de diseño

Nota. - El perfil de suelo D usado, es referencial y es utilizado para fines netamente académicos, se debe realizar un estudio geotécnico para determinar el perfil de suelo real según las condiciones de sitio. Fuente: Elaboracion Propia a partir NEC-SE-DS_2015.

La representación analítica del sistema estructural muros de corte de placa de acero se basará en el método de franjas o bandas propuesto por Thorburn et al. (1983). La modelación y diseño se realiza mediante el software informático ETABS 2018. Los controles y chequeos normativos se realizan mediante la utilización de softwares de cálculo como: Mathcad y Microsoft Excel.

3.7 Plan de Obtención de la Capacidad Estructural

Una vez cumplido los requerimientos AISC-341-16 y NEC 15 del sistema estructural muros de corte de placa de acero según la zona sísmica se comprueba el diseño mediante la metodología Pushover (análisis estático inelástico), la curva de capacidad de la estructura se obtiene siguiendo las recomendaciones de FEMA 440 sección 9.2 que detalla utilizar un único patrón de carga previa verificación de la influencia de los modos altos de vibración, es decir, el primer modo de vibración es predominante en la respuesta estructural; en el presente trabajo se emplea un patrón de carga modal similar al primer modo de vibración siguiendo la recomendación del ATC 40 (sección 8.2.1).

El modelo inelástico para el sistema muros de corte de placa de acero se basa en el modelo de franjas convencional (ver Anexo 18) que estipula: las "bielas" que modelan el comportamiento de la placa de acero se les asigne rótulas plásticas axiales (P) ubicadas a la mitad del elementos, a las columnas se les asignan rótulas de flexo compresión (P,M2,M3) y las vigas rótulas de flexión (M3) ambas ubicadas a una distancia relativa del 5% y 95% de la longitud del elemento. La configuración y parámetros de aceptación de las rótulas se basan ASCE/SEI 41-13 para acero estructural, las cuales vienen por defecto en el software estructural ETABS_2018.

El cálculo de los factores de sobre resistencia y ductilidad se calcularán siguiendo la metodología propuesta en las investigaciones de Roberto Aguiar en la Universidad de la Fuerzas Armadas (ESPE) detallados en la sección 2.6.2 del presente trabajo.

3.8 Plan de Comparación Multicriterio AHP

Finalmente, la comparación multicriterio AHP se realizará siguiendo la metodología propuesta por Saaty. Las curvas de capacidad obtenidas según la zona sísmica serán las alternativas y como criterios de comparación predominantes se utilizarán los valores de ductilidad y sobre resistencia obtenidos anteriormente, adicionalmente como criterios secundarios (menos relevantes) se utilizará el peso propio final de la estructura y desplazamiento máximo de cada curva de capacidad. Los pesos de importancia de los criterios analizados se determinarán determinar a partir del juicio y experiencia del docente tutor fundamentado en el estado del arte relacionado al tema de investigación.

3.9 Limitaciones de la investigación

Se utilizan requerimientos que tienen criterios de diseño por capacidad para el diseño y chequeo de los componentes del sistema estructural muros de corte de placa de acero, es decir, se diseña implícitamente por capacidad y se comprueba las solicitaciones mediante el análisis estático inelástico (Pushover).

El modelo no lineal de las placas de acero ejecutado en el presente trabajo se basa en método de las franjas convencional, es decir, sólo se analiza la influencia del campo diagonal de tracciones ("bielas biarticuladas a tracción"), despreciando la "pequeña" influencia de la resistencia a la compresión inicial de la placa de acero.

La curva de capacidad obtenida no considera la influencia de la mampostería ni levantamiento de las fundaciones.

El modelo inelástico para el sistema estructural no contempla el deterioro de las conexiones debido a las limitaciones del software empleado.

4 CAPÍTULO IV.- RESULTADOS Y DISCUSIÓN

4.1 Resultados de Cuantificación de Cargas

4.1.1 Cargas Gravitacionales

Las cargas muertas se determinan en función del tipo de configuración estructural y arquitectónica de cada piso. Las cargas vivas se determinan según NEC-SE-CG_15 de acuerdo con la funcionalidad de cada piso del proyecto a desarrollar. En el Anexo 2 se puede encontrar más detallas de la cuantificación.

Tabla 6

Piso	Carga Muerta	Carga viva	Carga última
	$({}^{kg}/{m^2})$	$({}^{kg}/{m^2})$	(^{kg} / _{m²})
1-2	422.11	240	890.532
3-7	422.11	200	826.532
Cubierta	338.11	300	885.732
accesible			
Tapa grada	173.17	70	319.804
	Г (

Resumen de cuantificación de cargas gravitacionales

Fuente: Elaboracion Propia

4.1.2 Resultados de Cargas Sísmicas

Las cargas sísmicas se calculan según los requerimientos NEC-SE-DS_15 el procedimiento de cálculo tipo se puede apreciar en el Anexo 3. A continuación, se presentan los espectros de diseño elásticos e inelásticos para los casos de estudios seleccionados en función de la zona sísmica, cabe resaltar que se usa un factor R=7 según ASCE-10 para el sistema estructural muros de corte de placa de acero y se emplea un perfil de suelo referencial tipo D.

Figura 8

Espectro de Diseño, Zona sísmica I (Lago Agrio)

Fuente: Elaboracion Propia

Figura 9

Espectro de Diseño, Zona sísmica III (Cañar)

Figura 10

Espectro de Diseño, Zona sísmica VI (Guayaquil)

Fuente: Elaboracion Propia

4.2 Prediseño, Modelación, Controles y Chequeos.

4.2.1 Resultados del Prediseño Cargas Gravitacionales.

El prediseño se basa en la cuantificación de cargas y en la configuración arquitectónica Anexo 1. El procedimiento tipo de prediseño de viguetas, vigas y columnas se detalla en: Anexo 4, Anexo 5 y Anexo 6 respectivamente. En la Tabla 7 y Tabla 8 se puede apreciar el resumen de las secciones AISC con las propiedades del acero A36 según los requerimientos NEC-SE-AC_15 y AISC-341_16.

Tabla 7

Sentido	Y	Viguetas		Vigas		
	Zx plg ³	Perfil AISC	Zx plg ³	Perfil AISC		
Sentido XX	13.707	W10X19	20.668	W12X16		
Sentido YY	6.29	W10x12	19.897	W10X19		

Resumen de Prediseño Viguetas y Vigas

Fuente: Elaboracion Propia

Tabla 8

Resumen de Prediseño de Columnas

Columna	Ag (plg ²)	Ag (plg²)Sísmicamente	
		Compacta b/t (max)	
Central Piso (1 al 4)	23.12	16	HSS 10x10x5/8
Central Piso (5 al 8)	11.417	16	HSS 9x9x5/8
Medianera Piso (1 al 4)	15.473	16	HSS 9x9x5/8
Medianera piso al 5 al 8	7.641	16	HSS 6x6x3/8

Fuente: Elaboracion Propia

4.2.2 Prediseño del Sistema Muros de Corte de Placa de Acero

4.2.2.1 Prediseño Placa de Acero

En la Tabla 10 se detalla los resúmenes de los espesores (tw) iniciales de las placas de acero para cada uno de los casos estudiados. La selección se la realiza previo a un análisis sísmico estático (Anexo 7), obteniendo así los cortantes de piso normativos (Anexo 8) que luego serán verificados mediante la modelación. La disposición y geometría de los muros (ver Anexo 12 y Tabla 9) se asume por restricciones arquitectónicas y con un enfoque de prevenir efectos torsionales en el caso de estudio.

Tabla 9

Disposición y Geometría de los Muros de Corte

	# Muros	Ancho del	Alto del	Ubicación
	resistentes	muro (m)	muro (m)	
Sentido XX	4	2.20	3.00	Pórticos 1 y 5
Sentido YY	4	2.90	3.00	Pórticos A y F

Fuente: Elaboracion Propia

Tabla 10

Resumen del Prediseño de Placas de Acero

	Zona S	ísmica I	Zona Sí	smica III	Zona Si	ísmica VI
Piso	Lago	Agrio	Ca	nñar	Gua	yaquil
	Sentido xx	Sentido yy	Sentido xx	Sentido yy	Sentido xx	Sentido YY
	tw (mm)					
1	2	1.5	3	2	4	3
2	2	1.5	3	2	4	3
3	2	1.5	3	2	3	3
4	2	1.5	3	2	3	3
5	2	1.5	2	2	3	2
6	1.5	1.5	2	2	2	2
7	1.5	1.5	2	1.5	2	2
8	1.5	1.5	1.5	1.5	1.5	1.5

Fuente: Elaboracion Propia

4.2.2.2 Prediseño de los Elementos de Borde

Para la elección de los perfiles de los elementos de borde verticales se basan en los requerimientos de la AISC 341_16, el procedimiento tipo se lo puede encontrar en el **Anexo 10.** En el Anexo 11 se resume los perfiles seleccionados de todos los modelos considerados; se destaca que los perfiles deben de cumplir con los requerimientos de alta ductilidad.

4.2.3 Resultados modelación

Con las secciones de prediseño se procede a realizar los 3 modelos estructurales en el software ETABS_2018, en el Anexo 12 se detalla los criterios importantes empleados. Se utiliza el método de las franjas para modelar el sistema muros de corte de placa de acero, en la Tabla 11 se presenta el resumen del área transversal de las bielas biarticuladas empleadas para la modelación.

Tabla 11

Panel Piso	Zona Sísmica I Lago Agrio		Zona Sísmica III Cañar		Zona Sísmica VI Guayaquil	
	Biela XX (cm ²)	Biela YY (cm²)	BielaXX (cm ²)	Biela YY (cm ²)	BielaXX (cm ²)	Biela YY (cm ²)
1	7.2273	6.2248	10.8410	8.2998	14.4546	12.4497
2	7.2273	6.2248	10.8410	8.2998	14.4546	12.4497
3	7.2273	6.2248	10.8410	8.2998	10.8410	12.4497
4	7.2273	6.2248	10.8410	8.2998	10.8410	12.4497
5	7.2273	6.2248	7.2273	8.2998	10.8410	8.2998
6	5.4205	6.2248	7.2273	8.2998	7.2273	8.2998
7	5.4205	6.2248	7.2273	6.2248	7.2273	8.2998
8	5.4205	6.2248	5.4205	6.2248	5.4205	6.2248

Resumen del Método de las Franjas

Fuente: Elaboracion Propia

4.2.4 Resultados Controles Normativos

Los controles normativos se rigen estrictamente NEC-SE-DS_15. Una vez realizado la corrección en el ETABS del sismo estático y dinámico se procede a realizar los siguientes controles normativos:

4.2.4.1 Control de Excentricidad

Según la NEC-SE-DS (2015), la masa de cada nivel debe considerarse como concentrada en el centro de masas de cada piso, pero desplazada a una distancia igual al 5% de la máxima dimensión del edificio en ese piso, con la finalidad de considerar posibles problemas de torsión accidental. En Tabla 12, se verifica que la excentricidad máxima en cada piso sea menor que el 5% para todos los casos de estudio, adicionalmente en el Anexo 13 se encuentra el procedimiento tipo del control realizado.

Tabla 12

	Zona Si	Zona Sísmica I		ísmica III	Zona Sísmica VI	
Piso	Lago	Agrio	Ca	añar	Gua	yaquii
	Excen. X (%)	Excen. Y (%)	Excen. X (%)	Excen. Y (%)	Excen. X (%)	Excen. Y (%)
1	0.237%	0.44%	0.307%	0.41%	0.312%	0.50%
2	0.003%	0.18%	0.050%	0.20%	0.004%	0.22%
3	0.116%	0.12%	0.192%	0.16%	0.134%	0.11%
4	0.184%	0.17%	0.260%	0.22%	0.204%	0.07%
5	0.184%	0.18%	0.248%	0.25%	0.209%	0.01%
6	0.168%	0.28%	0.221%	0.35%	0.187%	0.09%
7	0.144%	0.47%	0.191%	0.51%	0.174%	0.18%
8	0.091%	0.57%	0.133%	0.61%	0.153%	0.23%
9	0.005%	4.19%	0.004%	4.28%	0.003%	3.94%

Resumen de Control de Excentricidad

Fuente: Elaboracion Propia

4.2.4.2 Control de Modos de Vibración

En la Tabla 13, se verifica que los dos primeros modos de vibración sean traslacionales, para el control se emplea el siguiente criterio:

Si:
$$\frac{Rz}{Max(Ux, Uy)} \le 0.3 \rightarrow Traslacional$$

Tabla 13

Zona Sísmica I Lago Agrio							
Modo	T (seg)	Ux	Uy	Rz	Control		
1	1.488	0.72210	0.00002	0.00000	Traslacional		
2	1.208	0.00003	0.74070	0.00002	Traslacional		
3	0.899	0.00000	0.00002	0.72870	Torsión		
		Zona Sísr	nica III Cañar				
Modo	T (seg)	Ux	Uy	Rz	Control		
1	1.379	0.71130	0.00003	0.00000	Traslacional		
2	1.119	0.00003	0.71640	0.00003	Traslacional		
3	0.825	0.00000	0.00003	0.70560	Torsión		
		Zona Sísmi	ca VI Guayaquil				
Modo	T (seg)	Ux	Uy	Rz	Control		
1	1.158	0.733300	0.000001	0.000013	Traslacional		
2	0.953	0.000001	0.736700	0.000030	Traslacional		
3	0.718	0.000022	0.000034	0.725500	Torsión		
		D		•			

Resumen del Control de Modos de Vibración

Fuente: Elaboracion Propia

4.2.4.3 Control de Derivas de Piso

Según la NEC-SE-DS (2015), la deriva de piso inelástica final de la estructura debe ser menor que el 2%. En la Tabla 14 se detalla los factores que se utilizarán para determinar las derivas inelásticas a partir de las derivas elásticas obtenidos de ETABS, así también en la **Tabla 15** se resume la deriva crítica (mayor) para ambos sentidos (X,Y) para cada uno de los casos estudiados.

Tabla 14

R	фр	фр	Factor Normativa		
7	0.9	1	0.75		
Fuente: Elaboracion Propia					

Factores Para Determinación Derivas de Piso Inelásticas

Tabla 15

Resumen de Control Final de Derivas de Piso

Zona Sí Lago	Zona Sísmica I Zon Lago Agrio		ona Sísmica III Cañar		Zona Sísmica VI Guayaquil	
Δ_inel. Max. (%)	Control	Δ_inel. Max. (%)	Control	Δ_inel. Max. (%)	Control	
1.256%	<2% OK	1.99%	<2% OK	1.892	<2% OK	

Fuente: Elaboracion Propia

4.2.4.4 Control de Estabilidad de Piso

En el Anexo 14 se detalla el procedimiento tipo del control de estabilidad, así como también el resumen del control para los casos estudiados.

4.2.5 Resultados de chequeos

4.2.5.1 Chequeo a compresión de columnas gravitacionales.

En el Anexo 15 se comprueba los estados límites a compresión (Pandeo General y Pandeo Local) con las solicitaciones máximas (envolventes) según las combinaciones de carga estipuladas en la NEC-SE-CG_2015. En la Tabla 16 se muestra la relación Demanda – Capacidad y se denota que cumple el perfil escogido satisface aproximadamente en un 42% la demanda axial solicitada. Esta relación es relativamente baja debido a que se debe cumplir con el requerimiento de secciones sísmicamente compactas.

Tabla 16

Caso	Perfil Crítico	Carga última	Carga Diseño	Pu/Pd	Chequeo		
		(ETABS)	(Anexo 15)				
		Pu (Kg)	Pd (Kg)				
Zona Sísmica	HSS	111307.00	269611.509	0.4128	OK		
I_Lago	10X10X5/8						
Zona Sísmica	HSS	112862.00	269611.509	0.4186	OK		
III_Cañar	10X10X5/8						
Zona Sísmica	HSS	114596.76	269611.509	0.4250	OK		
VI_Guayaquil	10X10X5/8						
Evente: Eleboracion Dropia							

Resumen de Chequeo a Compresión

Fuente: Elaboración Propia

4.2.5.2 Chequeo a flexión

Se analiza los estados límites a flexión: fluencia, pandeo lateral torsional (LTB) y pandeo local (alma y patín) obteniendo así la resistencia de diseño del perfil elegido para luego compararlo con la resistencia última obtenido de las combinaciones de carga a través del software ETABS. En el Anexo 16 se encuentra el procedimiento tipo del chequeo, así mismo en la Tabla 17 se presenta el resumen del control para las secciones críticas.

Tabla 17

Caso	Perfil Crítico	Momento último (ETABS) Mu (ton.m)	Momento Diseño Md (ton.m)	Mu/Md	Chequeo
Zona Sísmica	W10X30	7.73866	15.113	0.512	OK
I_Lago					
Zona Sísmica	W10X30	7.959	15.113	0.527	OK
III_Cañar					
Zona Sísmica	W10X30	7.986	15.113	0.528	OK
VI_Guayaquil					
	F	to Elsterne in D	. .		

Resumen de Chequeo a Flexión

Fuente: Elaboracion Propia

4.2.5.3 Chequeo a Corte

En la Tabla 18 se presenta el resumen del chequeo a corte, los cortantes de diseño se obtienen a partir de una hoja de cálculo para un perfil sin rigidizadores; los cortantes últimos se obtiene a partir de las combinaciones de carga de ETABS.

Tabla 18

Zona Sísmica W10X30 9.013 30.86 0.292 OK I_Lago Zona Sísmica W10X30 10.227 30.86 0.331 OK III. Cañar Cañar Canar Cañar Canar Canar Canar OK	Caso	Perfil Crítico	Cortante último (ETABS) Vu (ton)	Cortante de Diseño Vd (ton)	Vu/Vd	Chequeo (Vu/Vd)<1
I_Lago Zona Sísmica W10X30 10.227 30.86 0.331 OK UL Cañar	Zona Sísmica	W10X30	9.013	30.86	0.292	OK
Zona Sísmica W10X30 10.227 30.86 0.331 OK	I_Lago					
III Cañar	Zona Sísmica	W10X30	10.227	30.86	0.331	OK
	III_Cañar					
Zona Sísmica W10X30 11.773 30.86 0.382 OK	Zona Sísmica	W10X30	11.773	30.86	0.382	OK
VI_Guayaquil	VI_Guayaquil					

Chequeo a Corte

Fuente: Elaboracion Propia

4.3 Resultados Capacidad Estructural

Las curvas de capacidad globales en el sentido X presentadas en las Figura 11, Figura 12, Figura 13 son obtenidas a partir del patrón de carga modal similar al primer modo de vibración, en el Anexo 18 se detalla el procedimiento realizado en ETABS. Es preciso detallar, que las bases de diseño del sistema estructural muros de corte de placa de acero manifiesta que se ante acción sísmica las "bielas" que representan a la placa deben fluir; en el software utilizado (ETABS) se esperaba que realice el análisis incluso luego de que las "bielas" hayan fallado, pero, al emplear el mecanismo de plastificación detallado en el modelo de franjas (Anexo 18) la curva de capacidad obtenida presenta una falla elástica con alta rigidez inicial y poca incursión en el rango inelástico, debido a que, el software (ETABS) suspende el análisis cuando existe una degradación excesiva de la rigidez de un elemento, en este caso las barras birrotuladas (bielas). Medina (2010), afirma que una repentina perdida de resistencia de un elemento dificulta el análisis en SAP2000 y ETABS; debido a las limitaciones del software y que la falla de la una biela no representa problemas a la rigidez global de la estructura porque las placas no forman parte del sistema resistente a carga gravitacional y en vista de que el reglamento AISC 341-16 permite realizar un análisis para comprobar la resistencia del modelo sin la placa (sin las bielas) se realiza otro análisis, sólo con los componentes de borde (sin la placa) ya que son los elementos que en mayor medida aporta resistencia al sistema debido a sus grandes dimensiones, obteniéndose una curva de capacidad similar al modelo de las placas pero con menor rigidez inicial y con incursión en el rango inelástico.

La curva de capacidad final se obtiene a partir de la resistencia elástica inicial del modelo con la placa de acero con la incursión en el rango inelástico del modelo formado solamente por los elementos de borde, esto se fundamenta, por lo anteriormente mencionado y por la interpretación de que una vez que la placa de acero haya presentado fallas, lo que resiste son los componentes de borde y los miembros diseñados gravitacionalmente también aporta resistencia al colapso.

El procedimiento de cálculo de los factores se basa por la metodología propuesta por Aguiar (2007), detallado en la sección 2.6.2.

Figura 11.-

Curva de Capacidad Zona Sísmica I

Fuente: Elaboracion Propia a partir de ETABS

Tabla 19

Resultados de Curva de Capacidad Zona Sísmica I

Curva de Canacidad					
Cui va ut Capacidad					
Cortante de fluencia Vy (Ton)	Desplazamiento de fluencia dy (cm)	Cortante máximo (Ton)	Desplazamiento máximo (cm)		
440.82	26.3	586.590	56.49		
Resultados					
Cortante elástico Ve (ton)	Cortante de diseño Vd (ton)	Factor de ductilidad R μ	Factor de sobrerresistencia R _Ω		
912.673	113.736	2.0703	3.8758		
	Fuente: El	aboracion Propia			

Figura 12.-

Curva de Capacidad Zona Sísmica III

Fuente: Elaboracion Propia a partir de ETABS

Tabla 20

Resultados de Curva de Capacidad Zona Sísmica III

1						
Cortante de	Desplazamiento de	Cortante máximo	Desplazamiento			
fluencia Vy (Ton)	fluencia dy (cm)	(Ton)	máximo (cm)			
464.8702	23.75	586.256	56.4			
Resultados						
Cortante elástico	Cortante de diseño	Factor de	Factor de			
Ve (ton)	Vd (ton)	ductilidad R μ	sobrerresistencia			
			R_{Ω}			
1621.405	225.195	3.488	2.064			

Curva de Capacidad

Fuente: Elaboracion Propia

Figura 13.-*Curva de Capacidad Zona Sísmica VI*

Fuente: Elaboracion Propia a partir de ETABS

Tabla 21

Resultados de Curva de Capacidad Zona Sísmica VI

Curva de Capacidad

Cortante de fluencia Vy (Ton)	Desplazamiento de fluencia dy (cm)	Cortante máximo (Ton)	Desplazamiento máximo (cm)
739.577	25.1	937.476	51.27
	Resul	tados	
Cortante elástico	Cortante de diseño	Factor de	Factor de
Ve (ton)	Vd (ton)	ductilidad R μ	sobrerresistencia
			R_{Ω}
2061.009	323.905	2.7867	2.2833
	Fuente: El	aboración Propia	

En la **Figura 14** se muestra el mecanismo de disipación de energía, se comprueba las bases de diseño del sistema estructural muros de corte de placa de acero que estipula que se debe presentar fluencia en la placa y que los elementos de borde permanezcan en el rango elástico. Se observa que ante acción sísmica las bielas se encuentran en el rango inelástico, la Figura 14 detalla parámetros de aceptación según el ASCE/SEI 41-13 de las rótulas axiales: azul (ocupación inmediata), celeste (seguridad de vida) y verde (prevención de colapso).

Figura 14

Mecanismo de Disipación de Energía Sentido X

Fuente: Elaboracion Propia a partir de ETABS

4.4 Análisis de curvas de capacidad

Según NEC-SE-DS (2015), el factor R depende varias variables como: tipo de estructura, tipo de suelo y de los factores de: ductilidad, sobre resistencia, redundancia y amortiguamiento, sin embargo, Mwafy & Elnashai (2002), proponen estimar el factor R a partir del factor de ductilidad (R μ) y sobrerresistencia (R $_{\Omega}$), es decir, R= R μ x R $_{\Omega}$, en la Tabla 22 se calcula los factores según la zona sísmica.

Tabla 22

Análisis Factor R

Zona Sísmica	Rμ	R_{Ω}	R Calculado	RASCE-10
Zona Sísmica I_Lago	2.071	3.876	8.023	
Zona Sísmica III_Cañar	2.064	3.488	7.20	7
		• • • • •	6.9.6	
Zona Sísmica VI_Guayaquil	2.786	2.283	6.36	
			R 107	
Promedio	2.307	3.216	7.196	

Fuente: Elaboración Propia

Se obtiene un factor R promedio 7.196 que si le compara con el de diseño ASCE-10 (R=7) se verifica que los diseños realizados cumplen con el comportamiento esperado para el sistema estructural muros de corte de placa de acero. Se obtienen factores de ductilidad promedio de 2.307 y sobrerresistencia de 3.216 lo que implica una alta resistencia inicial del sistema muros de corte de placa de acero.

4.5 Resultados Comparación Multicriterio AHP

Con los resultados obtenidos de las curvas de capacidad se realiza la comparación multicriterio AHP, se considera dos análisis uno en donde sólo se toma en cuenta los factores de ductilidad y sobrerresistencia enfocado en analizar el factor R según la zona sísmica y otro análisis que tiene una finalidad más global e involucra otros aspectos adicionales como: el peso propio final y el desplazamiento máximo. En la Tabla 23 se detalla los parámetros generales de comparación multicriterio AHP, en la Tabla 24 se encuentra los resultados finales del primer análisis (Factor R) y en la Tabla 25 la comparación global según las zonas sísmicas, el procedimiento de cálculo tipo AHP se detalla en el Anexo 19

Tabla 23

Matriz General de Comparación Multicriterio AHP

Alternativas	Criterio 1 Rµ	Criterio 2 RΩ	Criterio 3 Peso Final	Criterio 4 Desplazamiento
Criterios			(Ton)	máximo (cm)
Zona Sísmica I	2.071	3.876	995.892	56.4
(Lago Agrio)				
Zona Sísmica III	2.064	3.488	1014.389	56.49
(Cañar)				
Zona Sísmica VI	2.786	2.283	1124.623	51.27
(Guayaquil)				
		Fuente: Elab	oración Propia	

Fuente: Elaboración Propia

Tabla 24

Resultado Final AHP en Base Factor R

	Vector		
	Normalización	Vector Normalización	
Alternativas / Criterios	Rμ	RΩ	Priorización
Zona Sísmica I_Lago Agrio	0.429	0.140	28.425%
Zona Sísmica III_Cañar	0.429	0.574	50.110%
Zona Sísmica VI_Guayaquil	0.143	0.286	21.465%
Vector Normalización			_
Global	0.500	0.500	
	Fuente: Elaboracio	ón Propia	_

Análisis. - Según la priorización AHP detalla que el diseño en la Zona Sísmica III mejor se ajusta (con un error aprox. de 3%) al factor R de diseño (R=7 ASCE-10), seguidamente la Zona Sísmica I y Zona Sísmica VI. La razón de obtener una R más alto (R=8.02) en la Zona Sísmica I, se puede atribuir a la etapa de prediseño, ya que al tener menor solicitación sísmica se requiere menor espesor de las placas; en el cálculo del espesor requerido para esta zona sísmica no se cumplía con los espesores mínimos de los catálogos comerciales de las placas de acero, por lo que en cierto grado se "sobredimensionó", lo que conllevó, a tener un factor de sobrerresistencia alto afectando al R global. En la zona sísmica VI se obtuvo un valor R menor que el ASCE-10, que se puede atribuir a que en la etapa diseño y controles normativos depende en cierto porcentaje del criterio y experticia del diseñador para cumplir con los requerimientos estipulados, cabe destacar que se obtiene un R menor al de diseño (conservador), lo que implica, que se tiene una estructura con un comportamiento estructural más rígido en comparación con el factor R de diseño.

Tabla 25

	Vector	Vector	Vector	Vector	
	Normalización	Normalización	Normalización	Normalización	
Alternativas / Criterios	Rμ	RΩ	PP	δt	Priorización
Zona Sísmica I_Lago Agrio	0.429	0.140	0.649	0.400	33.23%
Zona Sísmica III_Cañar	0.429	0.574	0.295	0.400	47.03%
Zona Sísmica VI_Guayaquil	0.143	0.286	0.057	0.200	19.74%
					_
Vector Normalización Global	0.400	0.400	0.100	0.100	

Resultado Final AHP Criterios Globales

Fuente: Elaboración Propia

Análisis. - La priorización AHP determina que el diseño de la zona sísmica III tiene un mejor comportamiento global debido a que el factor R calculado se aproxima en mayor medida al de diseño y por su peso propio final moderado. En cuanto al desplazamiento máximo no se obtuvo diferencias significativas entre los 3 modelos analizados. Los resultados de este análisis resaltan que a mayor demanda sísmica mayor peso propio final de estructura involucrando mayor costo económico.

4.6 Comparación Muros de Corte Vs Pórticos Resistentes a Momento

Adicionalmente se realiza una comparación del sistema muros de corte de placa de acero vs el sistema sin incluir los componentes de la placa de acero (sin elementos de borde ni placa), es decir, solo pórticos a momento. En la Tabla 26 se detalla el comportamiento estructural, así mismo en manera de comparación en la Figura 15 se presenta la curva de capacidad obtenida para la Zona Sísmica I (Lago Agrio) con el patrón de cargas al primer modo de vibración (Sentido X).

Tabla 26

Comparación Muros de Corte Placa de Acero con Pórticos a Momento (Con Secciones de Prediseño)

Parámetro	Modelo CON	Modelo SIN	
	Componentes Placa de	Componentes Placa de	
	Acero	Acero	
Periodo fundamental (seg)	1.49 seg	2.48 seg	
Deriva inelástica max. (X)	1.26 %	3.25 %	

Fuente: Elaboración Propia

Análisis. - Se comprueba que el sistema estructural muros de corte de placa de acero es alternativa muy eficiente para rigidizar la estructura, es decir menor periodos y derivas, ésta alta rigidez se debe principalmente por el aporte de los elementos de borde verticales y horizontales ya que se necesitan secciones relativamente grandes para cumplir los requerimientos normativos.

Según Aguiar (2003), el límite elástico se obtiene a un 60% del cortante de fluencia obtenido a partir de la curva de capacidad, este criterio se utilizará para analizar las curvas de capacidad entre los dos sistemas estructurales.

Figura 15

Comparación Curvas de Capacidad, Sistema Placas de Acero vs Pórtico a Momento

con Secciones de Prediseño

Fuente: Elaboración Propia a partir de ETABS

Tabla 27

Comparación Curvas de Capacidad Sistema con Muros y Pórticos a Momento con

Secciones de Prediseño.

Sistema	Limite elástico (Ton)	Desplazamiento elástico (cm)	Límite de Fluencia (Ton)	Desplazamiento de Fluencia (cm)
Sistema CON Placa de Acero	264.492	11.81	440.82	26.3
Sistema SIN Placa de Acero	202.65	19.5	337.753	40.78

Fuente: Elaboración Propia

Análisis. - Se observa un incremento del 23 % del cortante elástico del sistema estructural con la placa de acero en comparación con el modelo formado solo con los pórticos a momento. Adicionalmente se observa que el sistema con la placa de acero alcanza un cortante elástico de 264.492 ton, ante un desplazamiento de techo de 11.81 cm, lo que implica, un comportamiento más rígido en comparación con el sistema formado por los pórticos a momento que alcanza un cortante elástico de 202.65 ton , ante un desplazamiento de 19.5 cm.

Tabla 28

Sistema	Rμ	RΩ	R calculado	Ductilidad
	(Ve/Vy)	(Vy/Vd)	$(\mathbf{R}\boldsymbol{\mu} \ ^{*}\mathbf{R}\boldsymbol{\Omega})$	$(\Delta max/\Delta y)$
Con Placa de Acero	2.07	3.88	8.03	2.14
Sin Placa de Acero	2.70	2.97	8.02	2.65

Análisis del Factor R y ductilidad

Fuente: Elaboración Propia

En la *Tabla 28* se comprueba que el sistema muros de corte de placa de acero tiene una mayor sobrerresistencia (23 %) en comparación con el sistema sin las placas de acero, así mismo, se observa que el factor de ductilidad del sistema sin la placa es mayor en un 23% al modelo con la placa de acero. En base a la ductilidad se puede deducir que el sistema con la placa de acero es más dúctil (19 %) que el sistema con la placa de acero. El Factor R para este caso de estudio no presente una variación significativa, pero se observa que cada sistema tiene su propio comportamiento: rígido (con las placas de acero) y dúctil (sin la placa de acero) según los factores calculados. Cabe destacar que para el sistema sin las placas de acero se requiere colocar mayores secciones de los miembros estructurales (mayor peso) para poder cumplir los controles normativos.

5 CONCLUSIONES

Según la investigación realizada y partir de los resultados obtenidos para el caso de estudio se puede concluir lo siguiente:

Requerimientos Normativos

Los requerimientos AISC 341-16 para el sistema estructural muros de corte de placa de acero se desarrollan bajo criterios de capacidad y que complementados con investigaciones experimentales y analíticas detalladas en el estado del arte aseguran que la placa de acero desarrolle fluencia disipando energía ante acción sísmica y que los elementos de borde horizontales y verticales del sistema no presenten fallas por corte ni flexión brindando una elevada rigidez a la estructura.

Prediseño, modelación, diseño y chequeo

A mayor solicitación sísmica mayor espesor de las placas de acero y mayores secciones de los elementos de borde. Así mismo, el espesor de la placa de acero aumenta conforme incrementa el cortante de piso, por lo que en los pisos inferiores se requiere mayor espesor de placas en comparación con los pisos superiores.

El sistema estructural muros de corte de placa de acero modelado mediante el método de las franjas convencional es una gran alternativa estructural para rigidizar la estructura, según los resultados obtenidos los periodos disminuyen en un 40% y las derivas de piso se reducen en un 61% si se compara con el sistema estructural pórticos a momento. Esto se debe principalmente, a la gran rigidez que aportan los elementos de borde horizontales y verticales del sistema estructural.

Curvas de capacidad

Las curvas de capacidad obtenidas indican que el sistema estructural muros de corte de placa de acero no incursionan en medidas significativas en el rango inelástico, pero brinda una alta resistencia inicial con pequeños desplazamientos, mediante la investigación se obtiene un factor de sobrerresistencia promedio de 3.21 y un factor de ductilidad promedio de 2.307 para el sistema estructural muros de corte de placa de acero.

Comparación Multicriterio AHP de Curvas de Capacidad

La comparación AHP permite establecer que el sistema estructural muros de corte de placa de acero tiene un comportamiento similar si esta sometido diferentes solicitaciones sísmicas y cumple con las bases de diseño del sistema estructural según el ASCE-10 (R=7) obteniéndose un factor R promedio de 7.19, ya que el criterio predominante para el diseño es cumplir con la deriva de piso máxima normativa incrementando el espesor de la placa según la solicitación sísmica. Cabe destacar que existe leve una variación en los factores R según la zona sísmica de diseño, pero puede ser atribuida a criterios constructivos y factores inherentes al diseño estructural. Adicionalmente se verifica que a mayor demanda sísmica mayor peso propio final de estructura involucrando mayor costo económico.

6 RECOMENDACIONES

Profundizar la investigación en el rango no lineal utilizando métodos de modelación más complejos como el método de elementos finitos, para conocer el comportamiento del sistema estructural muros de corte de placa de acero si se le incorpora como parte del sistema sismorresistente de un edificio como es el caso de la presente investigación, ya que, las investigaciones en el estado del arte solo se centran en el comportamiento individual de la placa de acero, así mismo, se recomienda realizar el análisis no lineal en softwares especializados como OpenSes, Perform 3D e incorporar en el análisis la influencia de la mampostería, levantamiento de fundaciones y deterioro de las conexiones.

Los resultados obtenidos en la presente investigación corresponden solamente para el caso de estudio y son un punto de partida para futuras investigaciones, se recomienda realizar una investigación a partir de un análisis probabilístico con un alcance correlacional o inferencial para validar los resultados obtenidos y poder establecer conclusiones generales del comportamiento inelástico global del sistema estructural muros de corte con placa de acero.

Realizar el prediseño acorde con los requerimientos normativos AISC 341-16, NEC-SE-AC_2015 para cumplir los controles y chequeos del sistema estructural muros de corte de placa de acero de manera eficaz. Así mismo, se recomienda realizar el prediseño con criterios constructivos para asegurar que el diseño final sea constructible según la disponibilidad de los proveedores referente a los espesores de las placas de acero.

7 REFERENCIAS BIBLIOGRÁFICAS

Acosta, J. (2010). *Comportamiento de edificios con muros de corte de placas de acero* [Universidad de Chile]. http://repositorio.uchile.cl/bitstream/handle/2250/103959/cfacosta_jr.pdf?sequence=3&isAllowed=y

- Aguiar, R. (2003). Análisis Sísmico por Desempeño (CEINCI (ed.); 1^a ed.). Escuela Superior Politéctica del Ejército.
- Aguiar, R. (2007a). Análisis del factor de reducción de las fuerzas sísmicas. 3, 101–119. https://doi.org/10.5335/rsee.v3i1.319
- Aguiar, R. (2007b). Factor de reducción de las fuerzas sísmicas en edificios de hormigón armado sin muros de corte (A. Barbat (ed.); 1ª ed., Número June). Monografias de Ingeniería Sísmica.
- Aristóteles, C. (2015). Comparison of multicriteria methods AHP and Fuzzy AHP in selecting the best technology for the production of electricity from coal. *Scientia et Technica Año XX*, 20(3), 255–260.
- Bonnet, R. (1997). Desempeño sísmico de edificios: binomio capacidad-demanda (1^a ed.). Universidad Nacional de Colombia.
- Crisafulli, F. (2018). *Diseño sismorresistente de construcciones de acero* (5^a ed.). Asociación Latinoamericana del Acero. http://www.alacero.org/es/page/publicaciones/diseno-sismorresistente-deconstrucciones-de-acero
- Crisafulli, F. J. (2018). Diseño sismorresistente de construcciones de acero. En Asociación Latinoamericana del Acero. ALACERO. Chile. http://www.alacero.org/es/page/publicaciones/diseno-sismorresistente-de-

- FEMA- 440. (2005). Improvement of Nonlinear Static Seismic Analysis Procedures. FEMA 440, Federal Emergency Management Agency, Washington DC, June.
- Ghosh, S., & Kharmale, S. B. (2010). Research on steel plate shear wall: Past, present and future. *Structural Steel and Castings: Shapes and Standards, Properties and Applications, July*, 57–106.

Instituto Geofísico. (2019). Sismología Ecuador. 1. https://doi.org/10.1785/0120120270

- Larrea, P. (2011). Análsis comparativo entre muros de corte de placas de acero no rigidizadas y muros de corte de hormigon armado para estructuras de edificios sismo-resistentes. Universidad San Francisco de Quito.
- López, O. A. (2014). Guía para la evaluación de edificiaciones existentes con fines de adecuación sísmica.
- Medina, E. (2010). Tesis de Maestría: "Evaluación de métodos de análisis inelástico en SAP para estructuras de hormigón armado" [Universidad Católica de Chile]. https://repositorio.uc.cl/handle/11534/1399
- Mwafy, A. M., & Elnashai, A. S. (2002). Calibration of force reduction factors of RC buildings. En *Journal of Earthquake Engineering* (Vol. 6, Número 2). Taylor & Francis. https://doi.org/10.1080/13632460209350416
- NEC-SE-AC. (2015). Norma Ecuatoriana de la Construcción Estructuras de Acero (1^a
 ed.). Minisiterio de Desarrollo Urbano y Vivienda.
 https://online.portoviejo.gob.ec/docs/nec3.pdf
- NEC-SE-DS. (2015). *Peligro sísmico, diseño sismo resistente* (1^a ed.). Minisiterio de Desarrollo Urbano y Vivienda.

Rezai, M., Ventura, C. E., & Prion, H. (2004). Simplified and detailed finite element models of steel plate shear walls. *13th World Conference on Earthquake Engineering*, 2804.

Sabelli, R., & Bruneau, P. M. (2006). Steel Plate Shear Walls. AISC.

8 ANEXOS

Anexo 1

Planos caso de estudio residencial

Fuente: Elaboración Propia

Elevación del caso de estudio

Fuente: Elaboracion Propia

Anexo 2

Cuantificación de cargas

PREDISEÑO DE LOSA

1. Carga Muerta

$$qD = qLosa + qsobrecarga$$

1.1.Peso propio de la losa (qLosa)

Espesor de la placa = 0.65 mm

Peso propio placa = $6.37 kg/m^2$ (Catálogo Kubilosa)

1.1.2. Carga hormigón (Ch)

Espesor losa hormigón $(E_h) = 5 \text{ cm}$ (mínimo) Volumen de hormigón $(V_h) = 0.0695 \frac{m^3}{m^2}$ (Catálogo Kubilosa $E_h = 5 \text{ cm}$) Peso específico del hormigón $(\gamma_h) = 2400 \text{ kg/m}^3$

$$C_h\left(\frac{Kg}{m^2}\right) = V_h * \gamma_h \rightarrow C_h = 166.8 \ kg/m^2$$

qLosa = qPlaca + qHormigón

$$qLosa = 6.37 \frac{kg}{m^2} + 166.8 \frac{kg}{m^2} = 173.17 \frac{kg}{m^2}$$

$$qLosa = 173.17 \frac{kg}{m^2}$$

2. Cargas de servicio.

Piso	1-7
------	-----

Carga Muerta Piso 1-7						
Descripción	Carga $(\frac{kg}{m^2})$	Observaciones				
Peso propio placa con	173.17	Catálogo Placa Colaborante				
hormigón						
Peso paredes (ladrillos	164.94	Cálculos				
artesanales)						
Peso masillado	44	Espesor 2cm				
Peso cielo raso	20	Asumido en función de catálogo				
Acabados	20	Recomendados				
Total carga muerta	422.11 $\frac{kg}{m^2}$					
Carga viva						
Carga viva (oficinas) Piso	$240 \frac{kg}{2}$					
1 y 2	m^2	Apéndice NEC_SE_CG_15				
Carga viva (residencia)	$200 \frac{kg}{2}$					
Piso 3 -	m^2					

Piso 8 Cubierta Accesible

	Carga Mu	ierta				
Descripción	Carga $\left(\frac{kg}{m^2}\right)$	Observaciones				
Peso propio placa con	173.17	Catálogo Placa Colaborante				
hormigón						
Peso paredes (ladrillos	164.94	Cálculos				
artesanales)						
Total carga muerta	$338.11 \frac{kg}{m^2}$					
Carga viva						
Carga viva (cubierta propósitos especiales)	$300 \frac{kg}{m^2}$ Apéndice NEC_SE_CG_15					
Tapa grada						
	Carga Mu	ierta				
Descripción	Carga ($\frac{kg}{n^2}$ Observaciones				
Peso propio placa con	173.17	Catálogo Placa Colaborante				
hormigón						
Total carga muerta	$422.11 \frac{kg}{m^2}$					
Carga viva						
Carga viva (cubierta inaccesible)	$70 \frac{kg}{m^2}$	Apéndice NEC_SE_CG_15				

3. Cargas últimas

Piso	Carga Muerta	Carga viva	Carga última
	$({}^{\kappa g}/{m^2})$	$({}^{\kappa g}/{m^2})$	$({}^{\kappa g}/{m^2})$
1-2	422.11	240	890.532
3-7	422.11	200	826.532
Cubierta	338.11	300	885.732
accesible			
Tapa grada	173.17	70	319.804

qu = 1.2 * qD + 1.6 * qL	
--------------------------	--
Cálculo Tipo del Espectro de Diseño

ESPECTRO ELÁSTICO DE DISEÑO

Región Ubicación	Sier	ra	Lugar del proyecto
Zona Sísmica	III	ai	NEC-SE-DS Sección 10.2
Factor Z	0.3 §		NEC-SE-DS_Sección_10.2
Perfil de suelo (asumido por el objetivo de investigación)	D		Características geotécnicas lugar del proyecto
Coeficientes de amplificación d	el suelo		
"Amplificación de aceleracion "Amplificación de desplazami	es" entos"	$F_a \coloneqq 1.3 \\ F_d \coloneqq 1.36$	NEC-SE-DS_Tabla_3 NEC-SE-DS_Tabla_4
"Comportamiento no lineal" "Relación de amplificación		$F_s\!\coloneqq\!1.11$	NEC-SE-DS_Tabla_5
espectral"		$\eta \coloneqq 2.48$	NEC-SE-DS_Sección_3.3.1
Factor de espectro elástico		$r \coloneqq 1$	NEC-SE-DS_Sección_3.3.1

Periodos límites del espectro elástico de diseño NEC-SE-DS_Sección_3.3.1

$T_0(s) \coloneqq 0.1 \cdot F_s \cdot \frac{F_d}{F_a}$	$T_0(s) = 0.116$
$T_c(s) \coloneqq 0.55 \cdot F_s \cdot \frac{F_d}{F_a}$	$T_c(s) = 0.639$
$T_L(s) \coloneqq 2.4 \cdot F_d$	$T_L(s) = 3.264$

PARÁMETROS DEL ESPECTRO INELÁSTICO DE DISEÑO

Importancia estructura	$I \coloneqq 1$	NEC-SE-DS_ Tabla 6
Coeficientes configuración planta	$\phi_p \coloneqq 1$	NEC-SE-DS_ Tabla 13
Coeficientes configuración elevación	$\phi_e = 0.9$	NEC-SE-DS_ Tabla 14
Factor de reducción resistencia	$R \coloneqq 7$	ASCE-7-10_ Tabla 12.1-1

Fuente: Elaboración Propia

Prediseño tipo de viguetas

Se escoge un panel de losa crítico (mayor área); con las cargas ya mayoradas en la cuantificación de cargas se asume una longitud de arrostramiento Lp para controlar vibraciones y LTB. El modelo estructural para el predimensionamiento se asume como una viga simplemente apoyada debido a que es una conexión simple.

Fuente: Elaboración Propia

Viguetas sentido XX

Longitud vigueta Longitud viga principal Carga última	$L_{vx} \coloneqq 6.2 \ m$ $L_{Vx} \coloneqq 4.2 \ m$ $q_u \coloneqq 890.532 \ \frac{kg}{2}$
Longitud arriostramiento prom.	
Carga lineal última	$W_{ux} \coloneqq \frac{(q_u \cdot L_{Vx} \cdot L_p)}{L_{Vx}}$ $W_{ux} \equiv 1068.64 \frac{kg}{m}$
Momento último viga simplemente apoyada	$M_{ux} \coloneqq \frac{W_{ux} \cdot L_{vx}^{2}}{8}$ $M_{ux} = 513480.75 \ kg \cdot cm$
Fluencia del Acero A36	$F_{y_A36} \coloneqq 2540 \ \frac{kg}{cm^2}$
Factor reducción flexión	$\phi \coloneqq 0.9$
Módulo seccional plástico	$Z_{x_vigueta} \! \coloneqq \! \frac{M_{ux}}{\phi \! \cdot \! F_{y_\!A36}}$
	$Z_{x_vigueta}$ =224.62 cm^3

Adicionalmente la normativa propone trabajar con perfiles compactos para que se pueda desarrollar la plastificación total de los elementos para lo cual se debe trabajar con los limites de la Tabla B4.1b AISC 360.

Viguetas	h/tw max	bf/tf max	Zx plg ³	h vigueta	Perfil
	(Compactas)	(Compactas)		servicialidad	AISC
				(plg)	
Sentido xx	106.64	10.77	13.707	12	W10X19
Sentido yy	106.64	10.77	6.29	8.27	W10x12

Prediseño Tipo de Vigas

Longitud vigueta izquierda

Longitud vigueta derecha Reacción de la vigueta izq.

Carga lineal última (en este caso más crítica)

Reacciones Viguetas que llegan a las vigas en este caso es el mas desfavorable $L_{vig_izq} \coloneqq 4.2 \ m$ $L_{vig_der} \coloneqq 3.85 \ m$

$$W_{ult} \coloneqq 1068.64 \ \frac{kg}{m}$$

$$\begin{aligned} R_{vigueta_izq} &\coloneqq \frac{W_{ult} \cdot L_{vig_izq}}{2} = 2244.14 \ \textit{kg} \\ R_{vigueta_dere} &\coloneqq \frac{W_{ult} \cdot L_{vig_der}}{2} = 2057.13 \ \textit{kg} \end{aligned}$$

Carga Puntual en la viga (CP) en la viga llegan dos viguetas

$$CP_{total} \coloneqq \frac{R_{vigueta_izq} + R_{vigueta_dere}}{2}$$
$$CP_{total} = 2150.64 \ kg$$

Número aproximado de cargas puntuales en la viga

$$\#CP \coloneqq \frac{L_{Vx}}{L_p} - 1 = 4.17$$

Resolver la viga simplemente apoya con el número de cargas puntales CP

Momento último (análisis
estructural)
$$M_{ultimo} = 7742.30 \ kg \cdot m$$
Fluencia del Acero A36 $F_{y_A36} = 2540 \ \frac{kg}{cm^2}$ Factor reducción flexión $\phi := 0.9$ Módulo seccional plástico $Z_{x_viga} := \frac{M_{ultimo}}{\phi \cdot F_{y_A36}}$ Zriterio de servicialidad $Z_{x_viga} = 338.68 \ cm^3$ Criterio de la viga $L_{viga} := 6.2 \ m$

Altura de la viga recom.

 $L_{viga} \coloneqq 6.2 \ \mathbf{m}$ $h_viga \coloneqq \frac{L_{viga}}{20} = 0.31 \ \mathbf{m}$

SENTIDO	h/tw max	bf/tf max	Zx (plg ³)	h_viga (plg)	Perfil
	(Compactas)	(Compactas)	Resistencia	Servicialidad	
Vigas_XX	106.64	10.77	20.668	12	W12X16
Vigas_YY	106.64	10.77	19.897	8.27	W10X19

Prediseño Tipo de Columnas

Con la carga última de cada piso (demanda) y con el criterio de áreas tributarias se procede a escoger el panel de losa más crítico (mayor área cooperante y mayor número de pisos) para determinar la carga ultima axial (P_u) en función del tipo de columna (central, medianera, esquinera) a diseñar. Seguidamente con los criterios de diseño a compresión se determina el área nominal del perfil y el radio de giro requerido del elemento y miembro estructural.

DEMANDA

Piso 1 y 2

Área tributaria columna central		
Luz Sentido X Izq. $L_{izg 1} = 6.2 m$	Luz Sentido Y Arriba	$L_{arr_1} \coloneqq 4.2 \ m$
Luz Sentido X Der. $L_{der_1} = 6.2 m$	Luz Sentido Y Abajo	$L_{aba_1} \coloneqq 3.85 \ m$

#Pisos	$\#Pisos_1 \coloneqq 2$
Área tributaria 1	$A_{trib_1} \coloneqq \left(\frac{L_{izq_1} + L_{der_1}}{2}\right) \cdot \left(\frac{L_{arr_1} + L_{aba_1}}{2}\right) \cdot \#Pisos_1$
	$A_{trib_1} = 49.91 \ m^2$

Cargas

Carga Muerta

Carga Viva

Factor Mayoración Peso Propio Elementos_ 30% CM $CM_1 \coloneqq 422.11 \frac{kg}{m^2}$ $CV_1 \coloneqq 240 \frac{kg}{m^2}$ $f \coloneqq 1.3$

Carga Última

$$q_{ult_1} \coloneqq A_{trib_1} \cdot (1.2 \ CM_1 \cdot f + 1.6 \cdot CV_1)$$

$$q_{ult_{-1}} = 52030.76 \ kg$$

Piso 3 al 7

Área tributaria columna central

Luz Sentido X Izq. $L_{izq_2} \coloneqq 6.2 \ m$ Luz Sentido Y Arriba $L_{arr_2} \coloneqq 4.2 \ m$ Luz Sentido X Der. $L_{der_2} \coloneqq 6.2 \ m$ Luz Sentido Y Abajo $L_{aba_2} \coloneqq 3.85 \ m$

#Pisos#Pisos2:=5Área tributaria_2
$$A_{trib_2}:=\left(\frac{L_{izq_2}+L_{der_2}}{2}\right)\cdot\left(\frac{L_{arr_2}+L_{aba_2}}{2}\right)\cdot$$
 #Pisos2 $A_{trib_2}:=124.78 \ m^2$ Cargas
Carga Muerta $CM_2:=422.11 \ \frac{kg}{m^2}$ Carga Viva $CV_2:=200 \ \frac{kg}{m^2}$ Factor Mayoración Peso
Propio Elementos_30% CM $f:=1.3$

Carga Última

$$\begin{array}{l} q_{ult_2} \coloneqq A_{trib_2} \cdot \left(1.2 \ CM_2 \cdot f + 1.6 \cdot CV_2 \right) \\ q_{ult_2} = 122091.29 \ \mathbf{kg} \end{array}$$

Piso 8_Cubierta accesible

Área tributaria columna central		
Luz Sentido X Izq. $L_{izg 3} = 6.2 m$	Luz Sentido Y Arriba	$L_{arr 3} \coloneqq 4.2 \ m$
Luz Sentido X Der. $L_{der,3} = 6.2 m$	Luz Sentido Y Abajo	L_{aba} $= 3.85 m$

 $\#Pisos_3 \coloneqq 1$

#Pisos

$$\begin{array}{lll} & \text{ Area tributaria 1 } & A_{trib_3} \coloneqq \left(\frac{L_{izq_3} + L_{der_3}}{2} \right) \cdot \left(\frac{L_{arr_3} + L_{aba_3}}{2} \right) \cdot \#Pisos_3 \\ & & A_{trib_3} = 24.96 \ m^2 \\ & \text{ Cargas } \\ & \text{ Carga Muerta } & & CM_3 \coloneqq 338.11 \ \frac{kg}{m^2} \\ & \text{ Carga Viva } & & CV_3 \coloneqq 300 \ \frac{kg}{m^2} \\ & \text{ Factor Mayoración Peso } & & f \coloneqq 1.3 \end{array}$$

Propio Elementos_ 30% CM

Carga Última

$$\begin{array}{l} q_{ult_3}\!\coloneqq\!\!A_{trib_3}\!\cdot\!\left(\!1.2\ CM_3\!\cdot\!f\!+\!1.6\!\cdot\!CV_3\!\right) \\ \\ q_{ult_3}\!=\!25140.95\ \textit{kg} \end{array}$$

Carga Última Total

$$\begin{array}{l} q_{ult_T}\!\coloneqq\!\left(q_{ult_1}\!+\!q_{ult_2}\!+\!q_{ult_3}\right)\!\cdot\!1.5\\ \\ q_{ult_T}\!=\!298894.5 \ \textit{kg} \end{array}$$

DISEÑO LRFD

PARÁMETROS DE SELECCIÓN PERFIL	$Ag = 23.12 \ in$ $r = 9.9 \ cm$	2
Radio de Giro		$r \coloneqq \frac{K \cdot L}{Esbeltez} = 9.9 \ cm$
Coeficiente de longitud efectiva se recomienda 1.65 para prediseño		$K \! \coloneqq \! 1.65$
		$Ag = 149.17 \ cm^2$
Área nominal		$Ag \coloneqq \frac{q_{ult_T}}{\phi \cdot F_{cr}}$
Factor de Reducción resistencia		$\phi \coloneqq 0.9$
Esfuerzo Crítico según esbeltez A36 (tablas o programas)		$F_{cr} = 2226.325738 \ \frac{kg}{cm^2}$
Fluencia Acero A36		$F_y = 2540 \frac{kg}{cm^2}$
Longitud de la columna		$L \coloneqq 3 m$
Esbeltez (KL/r) recomendada column	nas 40-60	Esbeltez = 50

Columna	Ag (plg ²)	Sísmicamente	Perfil AISC
		Compacta b/t (max)	
Central Piso (1 al 4)	23.12	16	HSS 10x10x5/8
Central Piso (5 al 8)	11.417	16	HSS 9x9x5/8
Medianera Piso (1 al 4)	15.473	16	HSS 9x9x5/8
Medianera piso al 5 al 8	7.641	16	HSS 6x6x3/8

Análisis Sísmico Estático Normativo (Prediseño)

Descripción	# Pisos	Área piso	Sobrecarga + Peso	Carga
		(m2)	propio aprox. (kg/m²)	reactiva (kg)
Piso 1 al 7	7	507.18	548.743	1948180.323
Piso 8	1	507.18	439.543	222927.419
Tapa grada	1	27.713	225.121	6238.778
Total				2177346.52

Sismo Estático

Carga Reactiva Sísmica W	reactiva ≔2177346.52 kg	NEC-SE-DS_Sección 6.1.7
(Sobrecarga + Peso propio		
vigas y columnas aprox.)		
Importancia estructura	$I \coloneqq 1$	NEC-SE-DS_ Tabla 6
Coeficientes configuración pla	inta $\phi_p \coloneqq 1$	NEC-SE-DS_ Tabla 13
Coeficientes configuración ele	vación $\phi_e = 0.9$	NEC-SE-DS_ Tabla 14
Factor de reducción resistenci	a $R = 7$	ASCE-7-10_ Tabla 12.1-1

Periodo de vibración aproximado de la estructura NEC-SE-DS_Sección_6.3.3

Altura de edificio hn(m) = 29 Planos del edificio Coeficientes (se asume el caso de estructuras de acero sin arriostramiento que es una aproximación válida en la etapa de prediseño, luego se debe verificar con el periodo real de la estructura)

$$Ct \coloneqq 0.072$$
 $\alpha \coloneqq 0.8$

Periodo aprox.

 $T_1(s) \coloneqq Ct \cdot hn(m)^{\alpha}$ $T_1(s) = 1.065$

 $T_2(s) \coloneqq 1.3 \cdot T_1(s)$ $T_2(s) = 1.384$ Nota.- Con el periodo aproximado se ingresa al espectro de diseño elástico y se obtiene la aceleración espectral $S_a(T)$

Espectro de diseño en aceleración

 $S_a(T) = 0.583$

Cortante basal mínimo

$$V basal_{min} \coloneqq \frac{I \cdot S_a(T)}{\phi_p \cdot \phi_e \cdot R} \cdot W_{reactiva}$$

$$Vbasal_{min} = 201490.956 \ kg$$
$$Factor \coloneqq \frac{I \cdot S_a(T)}{\phi_p \cdot \phi_e \cdot R}$$

Factor Etabs

Factor = 0.093

Distribución Fuerzas Sísmicas Equivalentes

La distribución de la fuerzas verticales se asemeja a una distribución lineal (triangular), similar la modo fundamental de vibración. NEC-SE-DS_Sección_6.3.5

 $V basal = 201490.956 \, kg$

Piso Altura del wi*hi^k **Fuerzas** Cortantes Carga reactiva entrepiso (m) de piso de piso (**kg**) (**kg**) (**kg**) 201490.956 278311.4747 3 3829.89548 1 1102218.383 2 6 9126.76123 278311.4747 2626621.025 197661.06 3 9 278311.4747 4365200.411 15167.8303 188534.299 12 4 278311.4747 6259320.398 21749.3587 173366.469 5 278311.4747 15 8278198.762 28764.3869 151617.11 6 278311.4747 18 10402409.68 36145.4159 122852.723 7 278311.4747 21 12618413.52 43845.3991 86707.3073 8 24 41515.3397 42861.9082 222927.4187 11947837.95 27 tapa grada 6238.778273 387533.422 1346.56845 1346.56845 Total 57987753.55 201490.956

 $k = 0.75 + 0.5T_1 \rightarrow k = 1.25$

Prediseño tipo de la placa de acero

Con los cortantes de cada piso y aplicando los requerimientos del AISC, que dispone que muros de placas de acero deben soportar todo el cortante de piso se procede a calcular el espesor tentativo de las dichas placas, se ajusta a espesores comerciales que van desde 1,50 mm a 12 mm.

La disposición de los muros de corte va a depender de las características arquitectónicas del proyecto, se recomienda que la ubicación sea lo más simétrica posible para evitar problemas de torsión en planta. Para este proyecto en la etapa de prediseño para luego modelar con secciones aproximadas se decide colocar 4 muros es decir, dos en cada sentido (X,Y). Luego en la etapa de controles y diseño se verificará con valores reales o si es necesario incrementar el espesor de los muros para cumplir con los controles normativos.

$$t_w = \frac{V_u}{\emptyset \ 0.42 \ F_y L_{cf} \ sen(2\alpha)}$$

t_w= espesor del alma de la placa, in (mm). L_{cf}= distancia libre entre los elementos de borde vertical, in (mm). V_u= Cortante de piso que le corresponde al muro α = Ángulo de inclinación de fluencia F_y= Esfuerzo de fluencia del acero utilizado A36

		Prediseño	o placa XX		
	Facto	or de reducció	n resistencia	0.9	
		Fy A36 (kg/	cm2)	2540	
		Lcf (cm)	220	
	Ángulo	campo diago	nal asumido(°)	40	
Piso	Cortantes últimos de Piso (kg)	tw (cm)	tw (mm)	tw comercial IPAC (mm)	Capacida última rea (kg)
1	53107.818	0.255	2.553	3	62405.21
2	52098.357	0.250	2.505	3	62405.21
3	49692.778	0.239	2.389	3	62405.21
4	45694.929	0.220	2.197	3	62405.21
F	39962.359	0.192	1.921	2	41603.47
5				2	11602 17
6	32380.809	0.156	1.557	Z	41005.47
6 7	32380.809 22853.810	0.156 0.110	1.557 1.099	2	41603.47

Prediseño placa YY	
Factor de reducción resistencia	0.9
Fy A36 (kg/cm2)	2540
Lcf (cm)	290
Ángulo campo diagonal (°) asumido	45

Piso	Cortantes últimos de Piso (kg)	tw (cm)	tw (mm)	tw comercial IPAC (mm)	Capacidad última real (kg)
1	53107.81837	0.194	1.937	2	41603.479
2	52098.35671	0.190	1.900	2	41603.479
3	49692.77788	0.181	1.812	2	41603.479
4	45694.92909	0.167	1.666	2	41603.479
5	39962.35918	0.146	1.457	2	41603.479
6	32380.80878	0.118	1.181	2	41603.479
7	22853.80954	0.083	0.833	1.5	31202.609
8	11297.29335	0.041	0.412	1.5	31202.609

Prediseño Tipo de los Elementos de Borde

$$I_{c} \geq \frac{0.0031 t_{w} h^{4}}{L}$$
$$I_{v} \geq \frac{0.0031 L^{4}}{h} |t_{i} - t_{i-1}|$$

Donde:

L= Distancia entre centros de los elementos de borde vertical, in. (mm)

h= Distancia entre centros de los elementos de borde horizontal, in (mm)

t_w= espesor del alma de la placa, in (mm).

 $|t_i - t_{i-1}|$ = Diferencia de espesores entre las placas del alma vinculadas al elemento.

		Prediseño e	elementos de borde	e XX	
		Lcf borde H	Iorizontal (mm)	2200	
		h borde	vertical (mm)	3000	
Piso	tw usado (mm)	lc min (plg^4)	Perfil AISC	lv min (plg^4)	Perfil AISC
1	3	822.641	HSS 14X14*5/8	-	
2	3	822.641	HSS 14X14*5/8	2.636	W12X26
3	3	822.641	HSS 14X14*5/8	6.282	W12X26
4	3	822.641	HSS 14X14*5/8	10.440	W12X26
5	2	548.427	HSS 12X12X5/8	14.970	W12X26
6	2	548.427	HSS 12X12X5/8	19.799	W12X26
7	1.5	411.321	HSS 12X12X1/2	24.879	W12X40
8	1.5	411.321	HSS 12X12X1/2	30.180	W12X40

		Prediseño	Prediseño elementos de borde YY						
		Lcf borde I	Horizontal (mm)	2900					
		h borde	vertical (mm)	3000					
Piso	tw usado	lc min	Perfil AISC	ly min (nlg^4)	Perfil AISC				
	(mm)	(plg^4)	r erni / lise	14 mm (p.8 - 1)					
1	2	416.048	HSS12X12X1/2	-					
2	2	416.048	HSS12X12X1/2	6.038	W12X26				
3	2	416.048	HSS12X12X1/3	14.389	W12X26				
4	2	416.048	HSS12X12X1/4	23.913	W12X40				
5	1.5	312.036	HSS12X12X3/8	34.289	W12X40				
6	1.5	312.036	HSS12X12X3/8	45.349	W12X53				
7	1.5	312.036	HSS12X12X3/8	56.986	W12X54				
8	1.5	312.036	HSS12X12X3/8	69.125	W12X55				

Resumen de prediseño de elementos de borde

Zona I Lago Agrio			Zona III Cañar				Zona VI Guayaquil					
	Sentido	XX	Sentido	YY	Sentido XX		Sentido YY		Sentido XX		Sentido YY	
Piso	EBV	EVH	EBV	EVH	EBV	EVH	EBV	EVH	EBV	EVH	EBV	EVH
Base	HSS 14X14x5/8	W12X40	HSS12X12X5/8	W12X40	HSS 14X14x5/8	W12X50	HSS12X12X5/8	W12X53	HSS 16X16x5/8	W12X50	HSS14X14X5/8	W12X53
1	HSS 14X14x5/8	W12X40	HSS12X12X5/8	W12X40	HSS 14X14x5/8	W12X50	HSS12X12X5/8	W12X53	HSS 16X16x5/8	W12X50	HSS14X14X5/8	W12X53
2	HSS 14X14x5/8	W12X40	HSS12X12X5/8	W12X40	HSS 14X14x5/8	W12X50	HSS12X12X5/8	W12X53	HSS 14X14x5/8	W12X50	HSS14X14X5/8	W12X53
3	HSS 14X14x5/8	W12X40	HSS12X12X5/8	W12X40	HSS 14X14x5/8	W12X50	HSS12X12X5/8	W12X53	HSS 14X14x5/8	W12X50	HSS14X14X5/8	W12X53
4	HSS 14X14x5/9	W12X40	HSS12X12X5/8	W12X40	HSS 12X12X5/8	W12X50	HSS12X12X5/8	W12X53	HSS 12X12X5/8	W12X50	HSS12X12X5/8	W12X53
5	HSS 12X12X5/8	W12X40	HSS12X12X5/8	W12X40	HSS 12X12X5/8	W12X50	HSS12X12X5/8	W12X53	HSS 12X12X5/8	W12X50	HSS12X12X5/8	W12X53
6	HSS 12X12X5/8	W12X40	HSS12X12X5/8	W12X40	HSS 12X12X5/8	W12X50	HSS12X12X5/8	W12X53	HSS 12X12X5/8	W12X40	HSS12X12X5/8	W12X53
7	HSS 12X12X5/8	W12X40	HSS12X12X5/8	W12X40	HSS 12X12X5/8	W12X40	HSS12X12X5/8	W12X53	HSS 12X12X5/8	W12X40	HSS12X12X5/8	W12X54
8		W12X40		W12X40		W12X40		W12X53		W12X40		W12X55

Modelación en ETABS

A continuación, se detalla los aspectos más importantes para la modelación en ETABS:

- 1. El material utilizado es acero estructural A36.
- 2. Con las secciones de prediseño se importa los perfiles AISC.
- 3. La placa colaborante se configura según los parámetros del catálogo.
- 4. A las "bielas" que simulan la placa, se les restringe que solo trabajen a carga axial, es decir, se libera M22 y M33 (Pinned), adicional a eso, se anula la resistencia a compresión, es decir que, sólo resista a tensión.
- 5. Se recomienda dividir los elementos horizontales en segmentos Δ_x la para ubicar las franjas

$$\Delta_x = \frac{1}{n} [L + h * \tan(\alpha)]$$

Donde: L= longitud panel del muro, h= altura del panel de muro, α = ángulo de inclinación campo de tracciones (40 ó promedio de todos los α) y n= número de franjas (mínimo 10).

Captura del modelo en 3D

Ubicación en planta de los muros de corte

		# Muros resistentes	Ancho del muro (m)	Alto del muro (m)	Ubicación
Sentido (rojo)	XX	4	2.20	3.00	Pórticos 1 y 5
Sentido (rosado)	YY	4	2.90	3.00	Pórticos A y F

Fuente: Elaboración propia a partir de ETABS

Vista en elevación modelo de franjas (Sentido Y)

Fuente: Elaboración propia a partir de ETABS

Anexo 13

				CONTROL	FINAL EXCEN	TRICIDAD				
	Centro de Masas Centro de Rigidez Control Normativo									
Piso	ХСМ	YCM	XCR	YCR	ex (m)	ex calc. (%)	Control x	ey (m)	ey calc. (%)	Control y
Story1	15.0157	8.0336	14.5804	8.1485	0.4353	1.344%	Cumple	-0.1149	0.62%	Cumple
Story2	15.016	8.0331	14.91	8.1184	0.106	0.327%	Cumple	-0.0853	0.46%	Cumple
Story3	15.016	8.0331	15.0121	8.1291	0.0039	0.012%	Cumple	-0.096	0.52%	Cumple
Story4	14.995	8.004	15.0576	8.1335	-0.0626	0.193%	Cumple	-0.1295	0.70%	Cumple
Story5	14.996	7.9983	15.0779	8.1307	-0.0819	0.253%	Cumple	-0.1324	0.72%	Cumple
Story6	14.993	7.9975	15.0853	8.1089	-0.0923	0.285%	Cumple	-0.1114	0.61%	Cumple
Story7	14.9916	7.9984	15.0936	8.0737	-0.102	0.315%	Cumple	-0.0753	0.41%	Cumple
Story8	14.9976	7.9933	15.0898	8.045	-0.0922	0.285%	Cumple	-0.0517	0.28%	Cumple
Story9	14.9916	11.6297	14.9915	12.4802	1E-04	0.000%	Cumple	-0.8505	4.62%	Cumple

Cálculo Tipo Control de Índice de Estabilidad

	Deriva de Piso	Piso					
Piso	elásticas X	inelásticas X	Vix (kg)	Pi X (kg)	Qix	Control	Factor
9	0.001388	0.00655830	1594.48	8692.310	0.0357526	Cumple	-
8	0.002718	0.01284255	50163.4	300150.840	0.0768429	Cumple	-
7	0.002943	0.01390568	98398.21	632526.960	0.0893890	Cumple	-
6	0.003023	0.01428368	138230.7	965927.380	0.0998113	Cumple	-
5	0.002995	0.01415138	169989.25	1299275.510	0.1081629	Factor	1.12128104
4	0.002841	0.01342373	194036.93	1633160.990	0.1129842	Factor	1.12737561
3	0.002546	0.01202985	210828.71	1966929.290	0.1122326	Factor	1.12642124
2	0.002049	0.00968153	220944.1	2300697.590	0.1008140	Factor	1.11211697
1	0.001028	0.00485730	225195.14	2634312.350	0.0568203	Cumple	-

Control Sentido X

Control Sentido Y

Piso	Deriva de Piso elásticas Y	Deriva de Piso inelásticas Y	Viy (kg)	Pi (kg)	QiY	Control	Factor
9	0.000586	0.00	1594.48	8692.31	0.0151	Cumple	-
8	0.001768	0.01	50163.40	300150.84	0.0500	Cumple	-
7	0.002	0.01	98398.21	632526.96	0.0607	Cumple	-
6	0.002084	0.01	138230.70	965927.38	0.0688	Cumple	-
5	0.002097	0.01	169989.25	1299275.51	0.0757	Cumple	-
4	0.001935	0.01	194036.93	1633160.99	0.0770	Cumple	-
3	0.001726	0.01	210828.71	1966929.29	0.0761	Cumple	-
2	0.001384	0.01	220944.10	2300697.59	0.0681	Cumple	-
1	0.000769	0.00	225195.14	2634312.35	0.0425	Cumple	-

Resumen de Chequeo de Índice de Estabilidad

	Zona Sísmica I - Lago Agrio						
	Sentido X			Sentido Y			
Qix	Control	Factor	Qiy	Control	Factor		
0.040587	Cumple	-	0.008847	Cumple	-		
0.069382	Cumple	-	0.044730	Cumple	-		
0.092813	Cumple	-	0.056444	Cumple	-		
0.110574	Factor	1.1243	0.066102	Cumple	-		
0.108448	Factor	1.1216	0.074048	Cumple	-		
0.110905	Factor	1.1247	0.079846	Cumple	-		
0.114748	Factor	1.1296	0.082147	Cumple	-		
0.110262	Factor	1.1239	0.078513	Cumple	-		
0.067921	Cumple	-	0.054166	Cumple	-		

Zona Sísmica III - Cañar							
	Sentido X			Sentido Y			
Qix	Control	Factor	Qiy	Control	Factor		
0.0357526	Cumple	-	0.0151	Cumple	-		
0.0768429	Cumple	-	0.0500	Cumple	-		
0.0893890	Cumple	-	0.0607	Cumple	-		
0.0998113	Cumple	-	0.0688	Cumple	-		
0.1081629	Factor	1.12128104	0.0757	Cumple	-		
0.1129842	Factor	1.12737561	0.0770	Cumple	-		
0.1122326	Factor	1.12642124	0.0761	Cumple	-		
0.1008140	Factor	1.11211697	0.0681	Cumple	-		
0.0568203	Cumple	-	0.0425	Cumple	-		
		Zona Sísmica	VI - Guayaquil				
	Sentido X			Sentido Y			
Qix	Control	Factor	Qiy	Control	Factor		
0.016196	Cumple	-	0.004063	Cumple	-		
0.057344	Cumple	-	0.029260	Cumple	-		
0.063631	Cumple	-	0.035326	Cumple	-		
0.072509	Cumple	-	0.041239	Cumple	-		
0.082128	Cumple	-	0.046552	Cumple	-		
0.089784	Cumple	-	0.050370	Cumple	-		
0.090733	Cumple	-	0.051277	Cumple	-		
0.079425	Cumple	-	0.047412	Cumple	-		
0.048604	Cumple	-	0.030948	Cumple	-		

Nota.- El factor de mayoración calculado según el índice de estabilidad es considerado en las derivas y en los esfuerzos, amplificándolas según corresponda. Cabe señalar que los factores obtenidos son relativamente bajos, pero si se les considera en los controles, diseño y chequeo.

Chequeo Compresión Columnas Gravitacionales

Pandeo General

```
Datos Material
                          Acero A36
```

Esfuerzo de fluencia

Módulo de elasticidad

Módulo de corte

Datos de la sección HSS 10X10X5/8

Área nominal $A_g = 21 \ in^2$	Esbeltez elemento b/t	$\psi = 14.2$
Inercia $I_x := 304 \ in^4 \ I_y := 304 \ in^4$	Torsión Simple	$J \coloneqq 498 \ in^4$
Radio de Giro $r \coloneqq 3.8 in$	Constante por alabeo	$C_w \coloneqq 0 \ in^6$

$$\begin{split} F_y &\coloneqq 2540 \ \frac{kg}{cm^2} \\ E &\coloneqq 2043000 \ \frac{kg}{cm^2} \\ G &\coloneqq 789100 \ \frac{kg}{cm^2} \end{split}$$

Cálculos

Longitud de columna		$L \coloneqq 3 \mathbf{m}$		
Condiciones de borde en		$K_x \coloneqq 1$	$K_y \coloneqq 1$	$K_z \coloneqq 1$
todas direcciones			5	
Sección doble simetría			K.L	
	Esbeltez XX	$Esbeltez_{xx}$	$=\frac{\pi_x}{r}=3$	1.082
			$K'_{y} \cdot L$	
	Esbeltez YY	$Estellez_{yy}$	$=\frac{s}{r}=3$	1.082

Esbeltez equivalente Z

$$\begin{split} F_{ez} \coloneqq & \frac{1}{I_x + I_y} \cdot \left(G \cdot J + \frac{E \cdot C_w \cdot \pi^2}{\left(K_z \cdot L\right)^2} \right) = 6463351973.684 \frac{kg}{m^2} \\ & Esbeltez_{zz} \coloneqq \pi^2 \sqrt{\frac{E}{F_{ez}}} = 5.585 \end{split}$$

 $\text{Esbeltez Crítica (KL/r)} \quad \lambda_{critica} \coloneqq \max\left(Esbeltez_{xx}, Esbeltez_{yy}, Esbeltez_{zz} \right)$

$$\lambda_{critica} = 31.082$$

Limite de esbeltez (rango elástico e inelástico) $\lambda_{limite} = 4.71 \cdot \sqrt[2]{\frac{E}{F_y}} = 133.579$

 $\mathrm{if}\left(\lambda_{critica}\!\leq\!\lambda_{limite}, \mathrm{``inel}\mathrm{\acute{a}stico''}, \mathrm{``el}\mathrm{\acute{a}stico''}\right)\!=\!\mathrm{``inel}\mathrm{\acute{a}stico''}$

Esfuerzo elástico

$$F_{e} \coloneqq \frac{\pi^{2} \cdot E}{\lambda_{critica}^{2}} = 20871.816 \frac{kg}{cm^{2}}$$

$$\mathbf{F_{cr}} \coloneqq \mathbf{if} \left(\lambda_{critica} \leq \lambda_{limite}, \left(0.658^{\frac{F_{y}}{F_{e}}} \cdot F_{y} \right), 0.877 \cdot F_{e} \right)$$

$$F_{cr} = 24138633.3656 \frac{kg}{m^2}$$

Chequeo Final (LRFD)

Carga última (ETABS) - Demanda $P_{\hat{u}ltima} \coloneqq 111307 \ kg$ Resistencia nominal - Capacidad $P_{nom} \coloneqq \mathbf{F_{cr}} \cdot A_g = (3.27 \cdot 10^5) \ kg$ Factor de reducción $\phi \coloneqq 0.9$ Carga de diseño $P_{diseño} \coloneqq \phi \cdot P_{nom} = 294335.005 \ kg$

if $(P_{diseño} \ge P_{iltima}, "Cumple", "No Cumple") = "Cumple"$

Chequeo Pandeo Local (PL)

Columna HSS sólo elementos rigidizados

Límite (b/t) esbelto - no esbelto AISC Tabla B4.1a Caso 6

$$\psi_{limite} \coloneqq 1.4 \cdot \sqrt[2]{\frac{E}{F_y}} = 39.705$$

 $Q_s \coloneqq 1$

Chequeo := if ($\psi \le \psi_{limite}$, "Rigidizados no compactos", "Rigidizados esbeltos")

Chequeo = "Rigidizados no compactos"

if $(\psi \le \psi_{limite}, \text{``Qa=1''}, \text{``Calcular Qa''}) = \text{``Qa=1''} \qquad Q_a := 1$ $Q := Q_s \cdot Q_a = 1$

Resistencia de diseño

 $\mathbf{P}_{\text{diseño}} \coloneqq \text{if} \left(\psi \leq \psi_{\text{limite}}, \text{"Resistencia Pandeo General"}, \text{"Calcular AISC 360 Capitulo E"} \right)$

 $P_{diseño} =$ "Resistencia Pandeo General"

Chequeo a Flexión

Perfil AISC	W10x30	$E \coloneqq 2043000 \frac{k}{cn}$	$\frac{g}{n^2}$
Módulo de Eluencia A36	E := 2540 kg	Esbeltez ala	$\lambda_{f}\!\coloneqq\!5.70$
	$F_y = 2540 \frac{1}{cm^2}$	Esbeltez alma	$\lambda_w\!\coloneqq\!29.5$
Módulo seccional plástico	$Z_x = 36.6 \ in^3$		

Pandeo Lateral torsional (LTB)

Límites longitudes arriostramiento		
Longitud arriostrada	$Lb \coloneqq 1.2 \ m$	Asumida Prediseño
Limite Plástico-Inelástico	$Lp \coloneqq 2.49 \ m$	Calculada según AISC
Limite Inelástico - Elástico	$Lr \coloneqq 9.53 \ m$	Calculada según AISC

Momento Nominal

$$\begin{split} M_{nom_LTB} \coloneqq & \left\| \begin{array}{c} \text{if } Lb \leq Lp \\ & \left\| M_{nom_LTB} \leftarrow F_y \cdot Z_x \\ \text{else if } Lb \geq Lr \\ & \left\| M_{nom_LTB} \leftarrow \text{``Calcular Momento Elástico''} \\ \text{else} \\ & \left\| M_{nom_LTB} \leftarrow \text{``Calcular Momento Inelástico''} \\ \end{array} \right\| \end{split} \right\|$$

Momento de diseño

$$M_{dis_LTB} \coloneqq 0.9 \cdot M_{nom_LTB} = 15.113 \text{ ton} \cdot m$$

Pandeo Local

Pandeo Local Ala FLB

Límites esbeltez Tabla B4.1b (Caso 10) Esbeltez ala perfil λ_f

 $\lambda_f = 5.7$ Perfil

Límite Compacto/No compacto

$$\lambda_{p_{f}} := 0.38 \cdot \sqrt[2]{\frac{E}{F_{y}}} = 10.777$$
$$\lambda_{r_{f}} := \sqrt[2]{\frac{E}{F_{y}}} = 28.361$$

Límite No Compacto/Esbelto

$$\begin{split} M_{nom_FLB} \coloneqq \left\| \begin{array}{c} \text{if } \lambda_{f} \leq \lambda_{p_f} \\ \left\| M_{nom_FLB} \leftarrow F_{y} \cdot Z_{x} \\ \text{else if } \lambda_{f} \geq \lambda_{p_f} \\ \left\| M_{nom_FLB} \leftarrow \text{``Calcular Momento Elástico''} \\ \text{else} \\ \left\| M_{nom_FLB} \leftarrow \text{``Calcular Momento Inelástico''} \right\| \end{split} \right\| \end{split}$$

Momento de diseño

$$M_{dis_FLB} \coloneqq 0.9 \cdot M_{nom_FLB} = 15.113 \ ton \cdot m$$

Pandeo Local Alma WLB

Límites esbeltez Tabla B4.1bEsbeltez alma perfil $\lambda_w = 29.5$

Límite Compacto/No compacto Límite No Compacto/Esbelto

$$\begin{split} \lambda_{p_f} &\coloneqq 3.76 \bullet \sqrt[2]{\frac{E}{F_y}} = 106.636 \\ \lambda_{r_f} &\coloneqq 5.7 \bullet \sqrt[2]{\frac{E}{F_y}} = 161.656 \end{split}$$

Perfil

$$\begin{split} M_{nom_WLB} \coloneqq & \left| \begin{array}{c} & \text{if } \lambda_f \leq \lambda_{p_f} \\ & \left\| M_{nom_WLB} \leftarrow F_y \cdot Z_x \\ & \text{else if } \lambda_f \geq \lambda_{p_f} \\ & \left\| M_{nom_WLB} \leftarrow \text{``Calcular Momento Elástico''} \\ & \text{else} \\ & \left\| M_{nom_WLB} \leftarrow \text{``Calcular Momento Inelástico''} \right| \\ \end{split} \right|$$

Momento de diseño

$$M_{dis_WLB} \coloneqq 0.9 \cdot M_{nom_FLB} = 15.113 \text{ ton} \cdot m$$

Momento último (ETABS) - Demanda

 $M_{\mathit{última}} \coloneqq 7.738 \ \textit{ton} \cdot \textit{m}$

Resistencia diseño - Capacidad

 $M_{\textit{diseño}}\!\coloneqq\!\min\left(\!M_{\textit{dis_LTB}},\!M_{\textit{dis_FLB}},\!M_{\textit{dis_WLB}}\!\right)$

$$M_{diseño} = 15.113 \text{ ton} \cdot m$$

$$\text{if}\left(M_{dise\tilde{n}o} \geq M_{\textit{última}}, \text{``Cumple''}, \text{``No Cumple''}\right) = \text{``Cumple''}$$

CONTROL DE SERVICIALIDAD

Longitud de la viga	
Deformación máxima permitida	

 $L \coloneqq 6.2 \, \mathbf{m}$

 $\Delta_{max} \coloneqq \frac{L}{240} = 0.026 \ m$ Vigas que soportan materiales no frágiles

Deformación ETABS

 $\Delta_{cal} \coloneqq 0.003462 \ m$

$$if(\Delta_{cal} \leq \Delta_{max}, "OK", "NO CUMPLE") = "OK"$$

Anexo 17

Chequeo por criterios de capacidad elementos de borde muros de corte de placa de acero

El mecanismo de falla plásticos de los elementos de borde se describen a continuación:

- Fluencia a lo largo de las placas de relleno en cada panel de piso. ٠
- Rotulas plásticas en los extremos de los elementos de borde horizontal • intermedios.
- Rótulas plasticas en los elementos de borde horizontal de la planta baja ó en la base en los en los elementos de borde verticales.

Una opción para que el mecanismo de falla se presente según lo anterior, es diseñar por capacidad los elementos de borde y conexiones (Acosta, 2010). Sin embargo, Vian y Bruneau (2005), proponen requerimientos mínimos con criterios de capacidad en base a investigaciones experimentales para diseñar los elementos de borde horizontales en función del módulo plástico mínimo cuando las vigas no tienen seccion reducida, los mismos que será utilizados en la presente investigación.

• Módulo minimo elemento de borde horizontal intermedio (entre dos placas).

$$Z_{xi} \ge \frac{(\delta_{11_i} - \delta_{11_i+1} + wu) * L_h^2}{4 * F_v}$$

• Módulo minimo elemento de borde horizontal anclaje (viga en la nivel 0).

$$Z_{xi} \ge \frac{(\delta_{11_i} + wu) * L_h^2}{4 * F_v}$$

Donde: δ_{11_i} componente vertical del campo de tracciones sobre elemento Horizontal en el piso analizado, δ_{11_i+1} componente vertical del campo de tracciones sobre elemento Horizontal en el superior al piso analizado, wu carga gravitacional sobre la viga, L_h separacion entre las posibles rotulas plásticas (0.90L) y F_y =Fluencia del acero.

Para los elementos de borde verticales se utiliza los criterios dispuestos por la AISC-341_16.

Componentes del campo diagonal de tracciones

Fuente: (Sabelli & Bruneau, 2006)

 $\sigma 11 = RyFyT_w \cos^2\alpha$ $\sigma 12 = RyFyT_w (1/2 \sin 2\alpha)$ $\sigma 21 = RyFyT_w (1/2 \sin 2\alpha)$ $\sigma 22 = RyFyT_w \sin^2\alpha$

Componente del campo diagonal de tracciones sentido XX, Prediseño Zona

Sismica III

Piso		tw usado (cm)	δ11 (kg/cm)	δ12 (kg/cm)	δ21 (kg/cm)	δ22 (kg/cm)
	1	0.3	447.1599557	375.2117539	375.2117539	314.8400443
	2	0.3	30470.7162	375.2117539	375.2117539	314.8400443
	3	0.3	30470.7162	375.2117539	375.2117539	314.8400443
	4	0.3	30470.7162	375.2117539	375.2117539	314.8400443
	5	0.2	20313.8108	250.1411693	250.1411693	209.8933629
	6	0.2	20313.8108	250.1411693	250.1411693	209.8933629
	7	0.2	20313.8108	250.1411693	250.1411693	209.8933629
	8	0.15	15235.3581	187.6058769	187.6058769	157.4200222

Componente del campo diagonal de tracciones sentido YY, Prediseño Zona Sismica

-		 -
-	-	

Piso		tw usado (cm)	δ11 (kg/cm)	δ12 (kg/cm)	δ21 (kg/cm)	δ22 (kg/cm)
	1	0.2	298.1066371	250.141169	250.141169	209.893363
	2	0.2	298.1066371	250.141169	250.141169	209.893363
	3	0.2	298.1066371	250.141169	250.141169	209.893363
	4	0.2	298.1066371	250.141169	250.141169	209.893363
	5	0.2	298.1066371	250.141169	250.141169	209.893363
	6	0.2	298.1066371	250.141169	250.141169	209.893363
	7	0.15	223.5799778	187.605877	187.605877	157.420022
	8	0.15	223.5799778	187.605877	187.605877	157.420022

Con las componentes del campo diagonal de tracciones de cada placa y de cada caso de estudio (diferentes zonas sísmicas) se verfica las secciones, cabe detallar que las secciones de los elementos de borde determinadas en el prediseño ya cuentan con criterios de capacidad para lo cual, solo se realiza una breve verifiación mediante hojas electrónicas de cálculo cumpliendo todas las secciones con los requerimientos.

Modelo no Lineal Placas de Acero

El mecanismo de falla plásticos de los elementos de borde se describen a continuación:

- Fluencia a lo largo de las placas de relleno en cada panel de piso.
- Rotulas plásticas en los extremos de los elementos de borde horizontal intermedios.
- Rótulas plasticas en los elementos de borde horizontal de la planta baja ó en la base en los en los elementos de borde verticales

A continuación se presenta el mecanismo de colapso obtenido desde ETABS.

Paso 1. Fluencia en las bielas, se comprueba que los elementos de borde (vigas y columnas) no presentan fallas por flexion ni por corte.

Fuente: Elaboración propia a partir de ETABS

Paso 2. Luego de que la placa haya fallado se realiza el análisis sin la resistencia de la placa (como se detalla en la seccion 4.3). En la imagen se comprueba el mecanismo de colapso de la filosofía sismoresitente (columna fuerte – viga debil).

Fuente: Elaboración propia a partir de ETABS

IMPLEMENTACIÓN DEL MÉTODO PUSHOVER EN ETABS

Analisis previo

Según Purca R (2012), detalla que para implementar el análisis Pushover se debe verficar la influencia de los modos altos de vibración mediante un análisis modal espectral siguiendo el siguiente criterio:

Sí el cortante de cualquier piso obtenido a partir del análisis considerando el suficiente número de modos que involucren al menos el 90 % de la participación de la masa, es mayor que un 30% del cortante obtenido mediante un analisis modal considerando sólo el primer modo de vibración, entonces se considera que si existe la influencia del efecto de modos altos de vibración, caso contrario, no existe ninguna restricción implementar el análisis Pushover convencional.

Desplazamiento objetivo (δt).-

Representa el máximo desplazamiento probable que experimentará la estructura durante el sismo de diseño. La curva de capacidad será obtenida para desplazamientos que prodrían variar de entre 0 a 1.5 δt .

Cargas Gravitacionales (Q_G)

El presente trabajo utiliza la recomendación del código referente a las cargas de gravedad detallando:

$$Q_G = 1.1(Q_D + 0.25 Q_L)$$

Q_D= Carga Muerta y permanente ; Q_L= Carga Viva

Nudo de control.-

Se ubicará en el centro de masas del diafragma de techo ó un nodo que pertenezca a dicho difragma. El control del desplazamiento empleado en la presente investigacion es del 4% de la altura de la edificación según recomienda FEMA 273.

Patrones de Carga.-

El ATC-40 recomienda usar el primer modo de vibración como patrón para el vector de carga monotónicas. Sin embargo, también se pueden usar los siguientes vectores en el siguiente orden jerárquico: Carga Concentrada, Distribución por Código, Primer Modo, Adaptativa, Pushover Multimodal. Para el presente trabajo se utilizará un único patrón de carga similar al primer modo de vibración sin considerar los efectos P- Δ (se usa las herramientas de ETBAS para obtener vector de desplazamiento normalizado). Cabe resaltar, que la distribución de fuerzas en la estructura cambia continuamente durante un terremoto y la distribución real es difícil de evaluar, ya que las características dinámicas del movimiento del suelo tiene una influencia importante y la inelasticidad complica aún más la situación (FEMA- 440, 2005).

Configuración de los patrones de carga.-

Se debe tener un parámetro de control para el monitoreo de la carga aplicada creciente, que indica al software hasta cuando realizar el análisis. Se empleó las siguientes:

 Para cargas gravitacionales no lineales se emplea full load, es decir, se conoce la carga que debe resistir la edificación por lo tanto el programa incrementará gradualmente las cargas desde 0 hasta la magnitud de carga muerta establecida. Para las cargas no lineales según los patrones de carga seleccionados (patrón modal) se emplea el monitoreo por desplazamiento controlado, es decir, cuando se desea conocer la carga que produce un desplazamiento a la estructura, este desplazamiento objetivo el programa (ETABS) por defecto recomienda el 4% de la altura del edificio según FEMA 273, estas cargas se aplicaran luego de haber realizado el caso de carga no lineal gravitacional.

Rótulas plásticas.-

Cada rótula representa el comportamiento concentrado de postfluencia en uno o más grados de libertad. Según el modelo de franjas detallado se requieren dos tipos tipos de rótulas plasticas: axiales para cada franja (ubicada en el punto medio de la biela) y de flexión para los elementos de borde (ubicados en la zona de panel). Adicionalmente si se tiene una conexión rigida en la base de la columna se deben incluir una rótula en la base de la columna del primer piso ubicado a una distancia igual a la mitad de la altura de la seccion transversal.

Para cada grado de libertad de fuerza (Axial o corte), se puede especificar un comportamiento plástico de fuerza desplazamiento. Para cada grado de libertad de momento (Flexión o torsión) se puede especificar un comportamiento plástico de momento rotación, las deformaciones características deben ser determinadas a partir del comportamiento uniaxial del material que se está considerando.. Los parámetros de aceptación y requeriemintos de cada rótula (axial, flexión) que se aplicaron el presente trabajo se basan en las tablas del ASCE/SEI 41-13 para acero estructural, las cuales vienen por defecto en el programa.

Para las rótulas axiales en la literatura no se encuentra un procedimiento establecido para su configuración. Acosta (2010), recomienda usar una deformación axial

(deformación ingenieril) para una determinada franja, que conjugada con la deformacion de fluencia del material determinar la deformacion unitaria para indicar la activacion de la correspondiente rótula

Para los elementos de borde horizontales se utilizó una rotula de flexión (M3), para las columnas se utiliza una rótula con los parámetros (P, M2, M3); ambas rótulas se ubicaron a una distancia relativa de 0.05 y 0.95 de la longitud del elemento. Así mismo, las rótulas de axiales para las "bielas" que reperesentan analíticamnete la placa se de acero se ubicaron en la mitad del elemento. A continuacion se presenta una breve descripción y comportamiento de una rótula tipica (Acosta, 2010).

(Medina, 2010)

El Punto A siempre está en el origen el punto B representa la fluencia, el punto C representa la capacidad última en el análisis de Pushover. Sin embargo, es necesario especificar una pendiente positiva desde C hasta D, para cualquier otro propósito, el punto D representa la resistencia residual para el análisis de pushover. Sin embargo, necesario especificar una pendiente positiva desde D hasta E, para cualquier otro propósito, el punto E representa la falla total (Medina, 2010).

Proceso de Comparación Multicriterio AHP

Descripción de alternativas y Criterios a analizar

Alternativas / Criterios	Rμ	RΩ
Zona Sísmica I_Lago Agrio	2.071	3.876
Zona Sísmica III_Cañar	2.064	3.488
Zona Sísmica VI_Guayaquil	2.786	2.283

Vector Normalización General

Vector Normalización	Factor Rµ	Factor	C1	C2	Vector de
General		RΩ			Normalization
Factor Rµ	1	1	0.5000	0.5000	0.5
Factor RΩ	1	1	0.5000	0.5000	0.5
Σ	2.000	2.000			

Vector Normalización Factor Ductlidad

Factor de Ductilidad	Zona Sísmica I_Lago Agrio	Zona Sísmica III_Cañar	Zona Sísmica	A1	A2	A3	Vector de Normalización
Zona Sísmica							
I_Lago Agrio	1	1	3	0.429	0.429	0.429	0.429
Zona Sísmica							
III_Cañar	1	1	3	0.429	0.429	0.429	0.429
Zona Sísmica							
VI_Guayaquil	1/3	1/3	1	0.143	0.143	0.143	0.143
Σ	2 1/3	2 1/3	7				

Vector Normalización Factor Sobrerresistencia

Factor Sobreresistencia	Zona Sísmica I_Lago Agrio	Zona Sísmica III_Cañar	Zona Sísmica VI_Guayaquil	A1	A2	A3	Vector de Normalización
Zona Sísmica							
I_Lago Agrio	1	1/3	1/3	0.143	0.200	0.077	0.140
Zona Sísmica							
III_Cañar	3	1	3	0.429	0.600	0.692	0.574
Zona Sísmica							
VI_Guayaquil	3	1/3	1	0.429	0.200	0.231	0.286
Σ	7	1 2/3	4 1/3				

Resultado Final

	Vector		
	Normalización	Vector Normalización	
	Rμ	RΩ	Priorización
Zona Sísmica I_Lago Agrio	0.429	0.140	28.425%
Zona Sísmica III_Cañar	0.429	0.574	50.110%
Zona Sísmica VI_Guayaquil	0.143	0.286	21.465%
Vector Normalización			-
Global	0.500	0.500	_