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Abstract: For many control systems in real life, impulses and delays are intrinsic phenomena that
do not modify their controllability. So we conjecture that, under certain conditions,
perturbations of the system caused by abrupt changes and delays do not affect certain
properties such as controllability. In this regard, we show that under certain conditions,
the impulses and delays as perturbations do not destroy the controllability of systems
governed by evolution equations. As application, we consider a semi-linear wave
equation with impulses and delays.

Keywords: Controllability, impulsive semilinear evolution equations, semilinear wave equation,
strongly continuous semigroup

Resumen: Para muchos sistemas de control en la vida real, impulsos y retardos son fenómenos
intrínsecos que no modifican su controlabilidad. Así conjeturamos que, bajo ciertas
condiciones, perturbaciones del sistema causadas por cambios abruptos y retardos no
afectan ciertas propiedades como la controlabilidad. A este respecto, mostramos que
bajo ciertas condiciones, los impulsos y retardos como perturbaciones no destruyen la
controlabilidad de sistemas gobernados por ecuaciones de evolución. Como aplicación
consideramos una ecuación de ondas semilineal con impulsos y retardos.

Palabras clave: Controlabilidad, ecuaciones de evolución semilineales, ecuación de onda semilineal,
semigrupos fuertemente continuos

1 Introduction

There are several practical examples of control
systems with impulses and delays: a chemical
reactor system with the quantities of different
chemicals serving as the state, a financial system

with two state variables being the amount of money
in a market and the saving rates of a central bank,
and the growth of a population diffusing throughout
its habitat, often modeled by reaction-diffusion
equation. However, one may easily visualize
situations in nature where abrupt changes such as
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harvesting, disasters, or instantaneous stoking may
occur.
This paper has been motivated by the works done
by Hugo Leiva in Leiva (2015a,c,b) where the
approximate controllability of Semilinear Evolution
Equation with impulses was proved in the case of
non necessarily compact semigroup and bounded
non linear perturbation.
In this paper, we study a more general problem since
we consider the following semilinear evolution
equation with impulses and delays simultaneously




z′ = Az+Bu(t)+F(t,zt ,u), z ∈ Z, t ∈ (0,τ],
z(s) = φ(s), s ∈ [−r,0],
z(t+k ) = z(t−k )+ Ik(tk,z(tk),u(tk)), k = 1, . . . , p.

(1)
where 0 < t1 < t2 < t3 < · · · < tp < τ, Z and U
are Hilbert Spaces, u ∈ L2(0,τ;U), B : U −→ Z
is a bounded linear operator, standard notation zt
defines a function from [−r,0] to Z by zt(s) = z(t +
s),−r ≤ s ≤ 0, Ik : [0,τ]× Z×U → Z, F : [0,τ]×
C(−r,0;Z)×U → Z are smooth functions, and A :
D(A) ⊂ Z → Z is an unbounded linear operator in
Z which generates a strongly continuous semigroup
{T (t)}t≥0 ⊂ Z non necessarily compact.
We assume the following hypotheses:

(H1) The linear system without impulses (6) is
approximately controllable on [τ−δ,τ] for all
0 < δ < τ.

(H2) The functions F, Ik smooth enough and

‖F(t,φ,u)‖Z ≤ a‖φ(−r)‖+b,
u ∈U, φ ∈C(−r,0;Z). (2)

DEFINITION 1.1 (Approximate Controllability).
The system (1) is said to be approximately
controllable on [0,τ] if for every φ ∈ C(−r,0;Z),
z1 ∈ Z, ε > 0 there exists u ∈ L2(0,τ;U) such that
the solution z(t) of (1) corresponding to u satisfies:

‖z(τ)− z1‖Z < ε.

To address this problem we use a characterization
dense range linear operator from Leiva et al.
(2013), the approximate controllability of the
linear equation on [τ − δ,τ] for all τ > 0 and
the ideas presented in Bashirov et al. (2007),
Bashirov & Ghahramanlou (2013) and Bashirov
& Ghahramanlou (2014). The controllability of
impulsive evolution equations has been studied
recently by several authors, but most them study
the exact controllability only, e.g. in Chalishajar
(2011), studied the exact controllability of
impulsive partial neutral functional differential

equations with infinite delay, Radhakrishnan &
Blachandran (2012) studied the exact controllability
of semilinear impulsive integro–differential
evolution systems with nonlocal conditions,
and Selvi & Arjunan (2012) studied the exact
controllability for impulsive differential systems
with finite delay. To the best of our knowledge,
there are a few works on approximate controllability
of impulsive semilinear evolution equations,
worth mentioning: Chen & Li (2010) studied
the approximate controllability of impulsive
differential equations with nonlocal conditions,
using measure of noncompactness and Monch’s
Fixed Point Theorem, and assuming that the
nonlinear term f (t,z) does not depend on the
control variable; Leiva & Merentes (2015) studied
the approximate controllability of the semilinear
impulsive heat equation using the fact that the
semigroup generated by ∆ is compact.

When it comes to the wave equation, the situation
is totally different: the semigroup generated by
the linear part is not compact; it is in fact a
group, which can never be compact. Furthermore,
if the control acts on a portion ω of the domain
Ω for the spatial variable, then the system is
approximately controllable only on [0,τ] for τ ≥ 2,
which was proved by Leiva & Merentes (2010).
More precisely, the following system governed by
the wave equations was studied.




ytt = ∆y+1ωu(t,x), on (0,τ)×Ω;
y = 0, on (0,τ)×∂Ω;
y(0,x) = y0(x), yt(0,x) = y1(x), in Ω.

(3)
where Ω is a bounded domain in Rn, ω is an open
nonempty subset of Ω, 1ω denotes the characteristic
function of the set ω, the distributed control u ∈
L2([0,τ];L2(Ω)) and y0 ∈ H2(Ω)∩H1

0 ,y1 ∈ L2(Ω).
However, if the control acts on the whole domain Ω,
it was proved in Larez et al. (2011) that the system
is controllable [0,τ], for all τ > 0. More specifically,
the authors studied the following system




ytt = ∆y+u(t,x), on (0,τ)×Ω;
y = 0, on (0,τ)×∂Ω;
y(0,x) = y0(x), yt(0,x) = y1(x), in Ω,

(4)
where Ω is a bounded domain in Rn, the distributed
control u ∈ L2([0,τ];L2(Ω)) and y0 ∈ H2(Ω) ∩
H1

0 ,y1 ∈ L2(Ω).
To justify the use of this new technique (Bashirov
& Ghahramanlou, 2014), we consider as an
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application the following semilinear wave equation
with impulses, delays and controls acting on the
whole domain Ω, so that the hypotheses (H1) and
(H2) hold:





∂2y
∂2t

=

∆y+u(t,x)

+ f (t,y(t− r),
∂y
∂t
(t− r),u(t)),

on (0,τ)×Ω;

y = 0, on (0,τ)×∂Ω;
y(s,x) = φ

0(s,x),
∂y
∂t
(s,x) = φ

1(s,x),
s ∈ [−r,0], x ∈Ω;

yt(t+k ,x) =
yt(t−k ,x)
+ Ik(t,y(tk,x),yt(tk,x),u(tk,x)),

x ∈Ω,

where 0 < t1 < t2 < t3 < · · · < tp < τ, Ω is a
bounded domain in Rn, the distributed control u ∈
L2([0,τ];L2(Ω)), φ0 ∈ C(−r,0;H2(Ω) ∩H1

0 ),φ
1 ∈

C(−r,0;L2(Ω)) and the nonlinear functions f , Ik :
[0,τ]×R×R×R→ R are smooth enough and

| f (t,y,v,u)| ≤ a0
√

y2 + v2 +b0, y,v,u ∈ R. (5)

2 Controllability of the Linear
Equation

In this section we present some characterization of
the approximate controllability of the corresponding
linear equations without impulses and delays. To
this end, we note that for all z0 ∈ Z and u ∈
L2(0,τ;U) the initial value problem{

z′ = Az+Bu(t), z ∈ Z;
z(t0) = z0,

(6)

admits only one mild solution given by

z(t) = z(t, t0,z0,u) =

T (t)z0+
∫ t

t0
T (t−s)Bu(s)ds, t ∈ [t0,τ], 0≤ t0≤ τ.

(7)
(See for example (Curtain & Zwart, 1995; Leiva,
2003)).
DEFINITION 2.1. For system (6) we define the
following concept: The controllability map Gτδ :
L2(τ−δ,τ;U))→ Z defined by

Gτδu =
∫

τ

τ−δ

T (τ− s)Bu(s)ds, u ∈ L2(τ−δ,τ;U),

(8)

The adjoint of this operator G∗
τδ

: Z→ L2(τ−δ,τ;U)
is given by

(G∗
τδ

z)(t) = B∗T ∗(τ− t)z, t ∈ [τ−δ,τ].

The Gramian controllability operators are given by:

Qτδ = GτδG∗
τδ
=

∫
τ

τ−δ

T (τ− t)BB∗T ∗(τ− t)dt. (9)

The following lemma holds in general for a linear
bounded operator G : W → Z between Hilbert
spaces W and Z (Bashirov et al., 2007; Leiva et al.,
2013; Curtain & Pritchard, 2010; Curtain & Zwart,
1995).
LEMMA 2.1. The following statements are
equivalent to the approximate controllability of the
linear system (6) on [τ−δ,τ].

a) Range(Gτδ) = Z.
b) Ker(G∗

τδ
) = {0}.

c) 〈Qτδz,z〉> 0, z 6= 0 in Z.
d) limα→0+ α(αI +Qτδ)

−1z = 0.
e) For all z ∈ Z, we have Gτδuα = z− α(αI +

QT δ)
−1z, where

uα = G∗
τδ
(αI +Qτδ)

−1z, α ∈ (0,1].

So, limα→0 Gτδuα = z and the error Eτδz of this
approximation is given by the formula

Eτδz = α(αI +Qτδ)
−1z, α ∈ (0,1].

f) Moreover, if we consider for each v ∈ L2(τ−
δ,τ;U)) the sequence of controls given by

uα = G∗
τδ
(αI +Qτδ)

−1z+

(v−G∗
τδ
(αI +Qτδ)

−1Gτδv), α ∈ (0,1],

we get that:

Gτδuα = z−α(αI +QT δ)
−1(z+Gτδv)

and
lim
α→0

Gτδuα = z,

with the error Eτδz of this approximation given
by the formula

Eτδz = α(αI +Qτδ)
−1(z+Gτδv), α ∈ (0,1].

REMARK 2.1. The foregoing lemma implies that the
family of linear operators
Γατδ : Z→W, defined for 0 < α≤ 1 by

Γατδz = G∗
τδ
(αI +Qτδ)

−1z, (10)

is an approximate right inverse of the operator W,
in the sense that

lim
α→0

GτδΓατδ = I. (11)

in the strong topology.
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LEMMA 2.2. Leiva et al. (2013) Qτδ > 0 if and only
if the linear system (6) is controllable on [τ− δ,τ].
Moreover, given an initial state y0 and a final state
z1 we can find a sequence of controls {uδ

α}0<α≤1 ⊂
L2(τ−δ,τ;U)

uα =G∗
τδ
(αI+GτδG∗

τδ
)−1(z1−T (τ)y0), α∈ (0,1],

such that the solutions y(t) = y(t,τ−δ,y0,uδ
α) of the

initial value problem
{

y′ = Ay+Buα(t), y ∈ Z, t > 0;
y(τ−δ) = y0,

(12)

satisfy
lim

α→0+
y(τ,τ−δ,y0,uα) = z1,

i.e.,

lim
α→0+

y(τ) =

lim
α→0+

{
T (δ)y0 +

∫
τ

τ−δ

T (τ− s)Buα(s)ds
}
= z1.

3 Controllability of the Semilinear
Equation

In this section we prove the main result of this
paper, that is, the approximate controllability of the
semilinear impulsive evolution equation given by
(1). To this end, for all φ ∈ C and u ∈ C(0,τ;U)
the initial value problem




z′ = Az+Bu+F(t,zt ,u(t)), z ∈ Z, t ≥ 0;
z(s) = φ(s), s ∈ [−r,0];
z(t+k ) = z(t−k )+ Ik(tk,z(tk),u(tk)), k = 1, . . . , p,

(13)
admits only one mild solution z∈PC(−r,τ;Z) given
by

z(t)=





T (t)φ(0)+
∫ t

0
T (t− s)Bu(s)ds

+
∫ t

0
T (t− s)F(s,zs,u(s))ds

+ ∑
0<tk<t

T (t− tk)Ik(tk,z(tk),u(tk))

t ∈ [0,τ];

φ(t), t ∈ [−r,0].
(14)

Now, we are ready to present and prove the
main result of this paper, which is the interior
approximate controllability of heat equation with
delays (1).

THEOREM 3.1. Under conditions (H1) and (H2),
the semilinear system (1) with impulses and delays
is approximately controllable on [0,τ].

Proof. Given an initial state φ, a final state z1 and
ε > 0, we want to find a control uδ

α ∈ L2(0,τ;U)
steering the system from φ(0) to an ε-neighborhood
of z1 at time τ. In other word, there exists
control uδ

α ∈ L2(0,τ; U) such that corresponding of
solutions zδ,α of (1) satisfies:

‖zδ,α(τ)− z1‖ ≤ ε.

In fact, consider any u ∈ L2(0,τ;U) and the
corresponding solution z(t) = z(t,0,z0,u) of the
initial value problem (13). For α ∈ (0,1] we define
the control uδ

α ∈ L2(0,τ;U) as

uδ
α(t) =

{
u(t), if 0≤ t ≤ τ−δ;
uα(t), if τ−δ < t ≤ τ,

where

uα(t) =

B∗T ∗(τ− t)(αI +GτδG∗
τδ
)−1(z1−T (δ)z(τ−δ)),

τ−δ < t ≤ τ.

Now, assume that 0 < δ < τ − tp. Then the
corresponding solution zδ

α(t) = z(t,0,z0,uδ
α) of the

initial value problem (13) at time τ can be written as
follows:

zδ,α(τ) =

T (τ)φ(0)+
∫

τ

0
T (τ− s)Buδ

α(s)ds

+
∫

τ

0
T (τ− s)F(s,zδ,α

s ,uδ
α(s))ds

+ ∑
0<tk<τ

T (τ− tk)Ik(zδ,α(tk),uδ
α(tk))

= T (δ)
{

T (τ−δ)φ(0)+
∫

τ−δ

0
T (τ−δ− s)Buδ

α(s)ds

+
∫

τ−δ

0
T (τ−δ− s)F(s,zδ,α

s ,uδ
α(s))ds

+ ∑
0<tk<τ−δ

T (τ−δ− tk)Ik(zδ,α(tk),uδ
α(tk))

}

+
∫

τ

τ−δ

T (τ− s)Buδ
α(s)ds

+
∫

τ

τ−δ

T (τ− s)F(s,zδ,α
s ),uδ

α(s))ds

= T (δ)z(τ−δ)+
∫

τ

τ−δ

T (τ− s)Buα(s)ds

+
∫

τ

τ−δ

T (τ− s)F(s,zδ,α
s ,uα(s))ds.
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Thus,

zδ,α(τ) = T (δ)z(τ−δ)+
∫

τ

τ−δ

T (τ− s)Buα(s)ds

+
∫

τ

τ−δ

T (τ− s)F(s,zδ,α
s ,uα(s))ds.

The corresponding solution yδ
α(t) = y(t,τ−δ,z(τ−

δ),uα) of the initial value problem (12) at time τ is
given by:

yδ
α(τ) = T (δ)z(τ−δ)+

∫
τ

τ−δ

T (τ− s)Buα(s)ds.

Therefore,

‖zδ,α(τ)− yδ
α(τ)‖

≤
∫

τ

τ−δ

‖T (τ− s)‖{a‖zδ,α(s− r)‖+b}ds.

If we take 0 < δ < r and τ−δ≤ s≤ τ, then s− r ≤
τ− r < τ−δ and

zδ,α(s− r) = z(s− r).

Thus, there exists δ small enough such that 0 < δ <
min{r,τ− tp} and

‖zδ,α(τ)− yδ,α(τ)‖

≤
∫

τ

τ−δ

‖T (τ− s)‖{a‖z(s− r)‖+b}ds <
ε

2
.

Hence,

‖zδ,α(τ)− z1‖

≤
∫

τ

τ−δ

‖T (τ− s)‖{a‖zδ,α(s− r)‖+b}ds

+‖yδ,α(τ)− z1‖

=
∫

τ

τ−δ

‖T (τ− s)‖{a‖z(s− r)‖+b}ds

+‖yδ,α(τ)− z1‖
<

ε

2
+

ε

2
< ε.

Geometrically, the proof goes as follows:

CONTROLLABILITY OF EVOLUTION EQUATIONS WITH IMPULSES AND DELAY. 7

if we take 0 < δ < r and τ − δ ≤ s ≤ τ , then s− r ≤ τ − r < τ − δ and

zδ,α(s− r) = z(s− r).

Therefore, there exists δ small enough such that 0 < δ < min{r, τ − tp} and

‖zδ,α(τ) − yδ,α(τ)‖ ≤
∫ τ

τ−δ

‖T (τ − s)‖{a‖z(s− r)‖ + b}ds < ǫ

2
.

Hence,

‖zδ,α(τ)− z1‖ ≤
∫ τ

τ−δ

‖T (τ − s)‖{a‖zδ,α(s− r)‖ + b}ds+ ‖yδ,α(τ)− z1‖

=

∫ τ

τ−δ

‖T (τ − s)‖{a‖z(s− r)‖ + b}ds+ ‖yδ,α(τ) − z1‖

<
ǫ

2
+

ǫ

2
< ǫ.

Geometrically, the proof goes as follows:

z0

z(
τ
−
δ)

z
δ,
α (s

−
r)
=
z(
s
−
r) z(τ)

zδ
α(τ)

yδ
α(τ)

z1

ε

This completes the proof of the theorem.

�

This completes the proof of the theorem.

4 Applications

As an application, we prove the approximate
controllability of the following control system
governed by the semilinear wave equation with
impulses and delays




∂2y
∂2t

=

∆y+u(t,x)

+ f (t,y(t− r),
∂y
∂t
(t− r),u(t)),

on (0,τ)×Ω;

y = 0, on (0,τ)×∂Ω;
y(s,x) = φ

0(s,x),
∂y
∂t
(s,x) = φ

1(s,x),
s ∈ [−r,0], x ∈Ω;

yt(t+k ,x) =
yt(t−k ,x)
+ Ik(t,y(tk,x),yt(tk,x),u(tk,x)),

x ∈Ω,

(15)
where 0 < t1 < t2 < t3 < · · · < tp < τ, Ω is a
bounded domain in Rn, the distributed control u ∈
L2([0,τ];L2(Ω)), φ0 ∈ C(−r,0;H2(Ω) ∩H1

0 ),φ
1 ∈

C(−r,0;L2(Ω)) and the nonlinear functions f , Ik :
[0,τ]×R×R×R→ R are smooth enough and f
satisfies (5).

4.1 Abstract Formulation of the
Problem

First we choose the space where this problem will
be set up as an abstract control system in a Hilbert
space. Let X = L2(Ω) = L2(Ω,R) and consider
the linear unbounded operator A : D(A) ⊂ X → X
defined by Aφ =−∆φ, where

D(A) = H2(Ω,R)∩H1
0 (Ω,R). (16)

Then the eigenvalues λ j of A have finite multiplicity
γ j equal to the dimension of the corresponding
eigenspace and 0 < λ1 < λ2 < · · · < λn → ∞.
Moreover,

a) there exists a complete orthonormal set {φ j,k} of
eigenvectors of A;

b) for all x ∈ D(A) we have

Ax =
∞

∑
j=1

λ j

γ j

∑
k=1

< x,φ j,k > φ j,k =
∞

∑
j=1

λ jE jx,

(17)
where < ·, · > is the usual inner product in L2

and

E jx =
γ j

∑
k=1

< x,φ j,k > φ j,k, (18)

http://novasinergia.unach.edu.ec 41



which means the set {E j}∞
j=1 is a complete

family of orthogonal projections in X and x =
∞

∑
j=1

E jx, x ∈ X ;

c) −A generates an analytic semigroup {e−At}
given by

e−Atx =
∞

∑
j=1

e−λ jtE jx; (19)

d) the fractional powered spaces X r are given by:

X r =D(Ar)= {x∈X :
∞

∑
n=1

λ
2r
n ‖Enx‖2 <∞}, r≥ 0,

with the norm

‖x‖r = ‖Arx‖=
{

∞

∑
n=1

λ
2r
n ‖Enx‖2

}1/2

,x∈X r, and

Arx =
∞

∑
n=1

λ
r
nEnx. (20)

Also, for r ≥ 0 we define Zr = X r×X , which is
a Hilbert space endowed with the norm:

∥∥∥∥
[

y
v

]∥∥∥∥
Zr

=
√
‖y‖2

r +‖v‖2.

Then, the equations (1) can be written as an abstract
second order ordinary differential equations in Z1/2
as follows




y′′ =
−Ay+u
+ f e(t,y(t− r),y′(t− r),u),

t ∈ (0,τ], t 6= tk,

y(s) = φ0(s), y′(s) = φ1(s), s ∈ [−r,0],
y′(t+k ) =

y′(t−k )+ Ie
k (tk,y(tk),y

′(tk),u(tk)),
k = 1, . . . , p,

(21)
where

Ie
k : [0,τ]×Z1/2×U → Z1/2

and
f e : [0,τ]×C0×C1×U → Z1/2

with C0 = C(−r,0;Z1/2) and C1 = C(−r,0;Z) are
defined by

Ie
k (t,y,v,u)(x) =
Ik(t,y(x),v(x),u(x)), ∀x ∈Ω, k = 1,2, . . . , p,

f e(t,φ0,φ1,u)(x) =

f (t,φ0(−r,x),φ1(−r,x),u(x)),

∀x ∈Ω,

[
φ0
φ1

]
∈C0×C1.

With the change of variables y′= v, we can write the
second order equation (21) as a first order system of
ordinary differential equations in the Hilbert space
Z1/2 = X1/2×X as follows:




z′ =
Az+Bu
+F(t,z(t− r),u(t)),

z ∈ Z1/2, t ∈ (0,τ], t 6= tk;

z(s) = φ(s), s ∈ [−r,0];
z(t+k ) =

z(t−k )+ Jk(tk,z(tk),u(tk)),
k = 1, . . . , p,

(22)
where u ∈ L2([0,τ];U) and C = C0 × C1 =
C(−r,0;Z1/2),

φ=

[
φ0
φ1

]
∈C, z=

[
y
v

]
, B=

[
0
I

]
z and A =

[
0 IX
−A 0

]

(23)
is an unbounded linear operator with domain
D(A) = D(A)×D(A1/2) and
Jk : [0,τ]× Z1/2 ×U → Z1/2, F : [0,τ]×C×U →
Z1/2 are defined by:

F(t,φ,u) =
[

0
f e(t,φ0,φ1,u)

]

and Jk(t,z,u) =
[

0
Ie
k (t,y,v,u)

]
. (24)

The following result follows from condition (5)
PROPOSITION 4.1. Under the conditions (5) the
functions F satisfy:

‖F(t,φ,u)‖Z1/2 ≤ ã0‖φ(−r)‖Z1/2 +b0. (25)

It is well known that the operator A generates a
strongly continuous group {T (t)}t≥0 in the space
Z = Z1/2 = X1/2 × X (Chen & Triggiani, 1989).
Now, using Lemma 2.1 from Leiva (2003) or
Lemma 3.1 from Carrasco & Leiva (2007), one can
get the following representation for this group.
PROPOSITION 4.2. The group {T (t)}t≥0 generated
by the operator A has the following representation

T (t)z =
∞

∑
n j=1

eA jtPjz, z ∈ Z1/2, t ≥ 0, (26)

where
{

Pj
}

j≥0 is a complete family of orthogonal
projections in the Hilbert space Z1/2 given by

Pj =

[
E j 0
0 E j

]
, j ≥ 1, (27)

and

A j = R jPj, R j =

[
0 1
−λ j 0

]
, j ≥ 1. (28)
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4.2 Approximate Controllability

Now, we are ready to formulate and prove the main
result of the this section, which is the approximate
of the semilinear impulsive wave equation with
bounded nonlinear perturbation.
THEOREM 4.1. The semilinear wave equation
(15) with impulses and delays is approximately
controllable on [0,τ].

Proof. From Larez et al. (2011), we know that the
corresponding linear system without impulses

{
z′ = Az+Bu, z ∈ Z1/2, t ∈ (0,τ];
z(0) = z0,

(29)

is controllable on [τ− δ,τ] for all 0 < δ < τ. On
the other hand, the hypothesis (H1) and (H2) in
Theorem 3.1 are satisfied, and we get the result.

5 Final Remark

This technique can be applied to those systems
where the linear part does not generate a compact
semigroup, are controllable on any [0,δ] for δ >
0, and the nonlinear perturbation is bounded. An
example of such systems is the following controlled
thermoelastic plate equation whose linear part was
studied in Larez et al. (2011).





ytt +∆
2y+α∆θ

=u1(t,x)+ f1(t,y,yt ,θ,u(t)),
on (0,τ)×Ω,

θt −β∆θ−α∆yt

= u2(t,x)+ f2(t,y,yt ,θ,u(t)),
on (0,τ)×Ω,

θ = y = ∆y = 0, on (0,τ)×∂Ω,

yt(t+k ,x) =
yt(t−k ,x)

+ I1
k (t,y(tk,x),yt(tk,x),u(tk,x)),

x ∈Ω,

θ(t+k ,x) =

θ(t−k ,x)+ I2
k (tk,θ(tk,x),u(tk,x)),

x ∈Ω,

(30)
in the space Z = X1 × X × X , where Ω is a
bounded domain in Rn, the distributed controls
u1,u2 ∈ L2([0,τ];L2(Ω)) and Ii

k, fi are smooth
functions with fi, i = 1,2 bounded. Of course,
for finite-dimensional control systems, all these
results are valid for exact controllability; so from
the point of view of applications, we can study
real life control systems governed by ordinary
differential equations in finite-dimensional spaces,
with impulses and delays.
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