UNIVERSIDAD NACIONAL DE CHIMBORAZO

FACULTAD DE INGENIERÍA CARRERA DE INGENIERÍA EN SISTEMAS Y COMPUTACIÓN

Proyecto de Investigación previo a la obtención del título de Ingeniero en Sistemas y Computación.

TITULO DEL TRABAJO DE INVESTIGACIÓN

"ANÁLISIS DE LAS HERRAMIENTAS SLONY-I Y PGPOOL-II, PARA LA IMPLEMENTACIÓN DE REPLICACIÓN DEL SISTEMA DE GESTIÓN DE TUTORÍAS SIGET DE LA UNIVERSIDAD NACIONAL DE CHIMBORAZO, 2017".

AUTOR:

Estuardo Luis Cajilema Guamán

TUTOR

Ing. Diego Bernardo Palacios Campana

RIOBAMBA-ECUADOR

Los miembros del Tribunal de Graduación del proyecto de investigación de título: "ANÁLISIS DE LAS HERRAMIENTAS SLONY-I Y PGPOOL-II, PARA LA IMPLEMENTACIÓN DE REPLICACIÓN DEL SISTEMA DE GESTIÓN DE TUTORÍAS SIGET DE LA UNIVERSIDAD NACIONAL DE CHIMBORAZO, 2017".

Presentado por: Estuardo Luis Cajilema Guamán y dirigido por: Ing. Diego Bernardo Palacios Campana. Una vez escuchada la defensa oral y revisado el informe final del proyecto de investigación con fines de graduación escrito en la cual se ha constatado el cumplimiento de las observaciones realizadas, remite la presente para uso y custodia en la biblioteca de la Facultad de Ingeniería de la UNACH.

Para constancia de lo expuesto firman:

Ing. Diego Bernardo Palacios Campana

Director del Proyecto

Ing. Pamela Alexandra Buñay Guisñan

Miembro del Tribunal

Ing. Lida Barba Maggi

Miembro del Tribunal

Firma

Firma

Firma

INFORME TUTOR

En calidad de tutor del proyecto de investigación cuyo título es: "ANÁLISIS DE LAS HERRAMIENTAS SLONY-I Y PGPOOL-II, PARA LA IMPLEMENTACIÓN DE REPLICACIÓN DEL SISTEMA DE GESTIÓN DE TUTORÍAS SIGET DE LA UNIVERSIDAD NACIONAL DE CHIMBORAZO, 2017"; luego de haber revisado el desarrollo de la investigación por el Sr. Estuardo Luis Cajilema Guamán, tengo a bien informar que el trabajo de investigación indicado, cumple los requisitos exigidos para que pueda ser expuesto al público, luego de ser evaluado por el tribunal designado.

Riobamba; 2018

Ing. Diego Palacios

CI: 060309451-7

AUTORÍA DE LA INVESTIGACIÓN

"La responsabilidad del contenido de este Proyecto de Graduación corresponde exclusivamente a: Estuardo Luis Cajilema Guamán con la dirección del Ing. Diego Bernardo Palacios Campana y el patrimonio intelectual de la misma a la Universidad Nacional de Chimborazo UNACH"

UNACII

Estuardo Luis Cajilema Guamán

060493608-8

AGRADECIMIENTOS

Agradecer primeramente a Dios por bendecirme, por darme gracia y haberme guiado para terminar los estudios.

A la UNIVERSIDAD NACIONAL DE CHIMBORAZO, por haberme brindado la oportunidad de iniciar mis estudios y la preparación prestada para ser un profesional.

A mis padres Antonio Cajilema Lluilema y Zoila Guamán Yaguachi quienes son una gran bendición en mi vida, y por el apoyo incondicional durante todo este transcurso de preparación.

Finalmente agradecer a mi tutor de tesis Ing. Diego Palacios por su apoyo en el desarrollo de la misma.

Estuardo Luis Cajilema Guamán

DEDICATORIA

Dedico este proyecto de investigación a mis padres quienes siempre me han apoyado incondicionalmente, han sido una guía y de gran bendición durante los años de estudio.

Estuardo Luis Cajilema Guamán

ÍNDICE GENERAL

ΑU	TORÍA I	DE LA INVESTIGACIÓNl	V
AG	RADECI	MIENTOS	.V
DE	DICATO	RIA	VΙ
RE	SUMEN.	XI	[V
ΑB	STRACT	X	V
IN	ΓRODUC	CIÓN	. 1
Pro	blema		. 2
Jus	tificación		. 2
OB	JETIVOS	S	. 3
		neral	
Ob	jetivos Es	pecíficos	. 3
CA	PITULO	I	. 4
ES'	ΓADO D	EL ARTE	. 4
1.	Replicac	ción	. 4
2.	Compor	nentes básicos de la replicación	. 5
		Objeto de replicación	
	2.1	Grupo de replicación	. 5
	2.2 S	itio de replicación	. 5
3.	Clasifica	ación en función del momento de replicación	. 6
		Replicación sincrónica	
	3.2 R	Replicación asíncrona	. 6
4.	Clasifica	ación en función del funcionamiento	. 7
•••		Propiedad maestra/esclavo	
		Propiedad flujo de trabajo	
	4.3 P	ropiedad de replicación simétrica o ubicua	. 7
5.	Servido	r	. 8
6.	Sistema	s Gestores de Base de Datos y las Bases de Datos	. 8
7.	Ajuste y	monitoreo de rendimiento	. 9
8.	Slony-I.		. 9
	8.1	Racimo	10
	8.2	Nodo	10

	8.3	Conjunto de replicación	. 10
	8.4	Origen, proveedores y suscriptores	. 11
	8.5	Slon Daemon	. 11
	8.6	Procesador de configuración slonik	. 11
	8.7	Comunicaciones de ruta Slony-I	. 11
	8.8	Túneles SSH	. 12
9.	PgPool	-II	. 12
	9.1	Agrupación de conexiones	. 12
	9.2	Replicación	. 12
		Equilibrio de carga	
		Limitar el exceso de conexiones	
	10.	Modo de ejecución de PgPool-II	. 13
	10.1	Modo de replicación de transmisión	
	10.2	Modo de replicación lógica	. 13
	10.3		
	10.4	Modo de replicación nativo	. 13
11.	Com	paración con otras herramientas de alta disponibilidad	. 14
CA	PITULO) II	. 15
ME	TODOI	.OGÍA	. 15
2.	HIPÓT	`ESIS	. 15
	2.1	Hipótesis General	. 15
	2.2	Hipótesis Específicas	. 15
3.	IDENT	TIFICACIÓN DE VARIABLES	. 16
	3.1	Variable Independiente	. 16
	3.2	Variable Dependiente	. 16
4.	TIPO I	DE ESTUDIO	. 16
5.	POBL	ACIÓN Y MUESTRA	. 16
6.	OPERA	ACIONALIZACIÓN DE LAS VARIABLES	. 18
7.	PROC	EDIMIENTOS	. 19
7.1	TÉC	NICA DE INVESTIGACIÓN	. 19
7.2	INST	TRUMENTOS DE RECOLECCIÓN DE DATOS	. 19
8.	PROC	ESAMIENTO Y ANÁLISIS	. 19
	8.1	Prueba estadística	. 20
	8.2	Prueba U de Mann-Whitney	. 20
CA.	PITULO) III	. 21
DEG		DOS A DISCRISIÓN	21

2	Resultados	21
	2.1 Análisis de métodos de replicación Slony-I frente PgPool-II	21
	2.2 Características y funcionalidades de Slony-I frente PgPool-II	22
	2.3 Análisis Comparativo Slony-I frente PgPool-II	23
	2.4 Comprobación de la hipótesis	24
	2.5 Análisis de Indicadores	25
3	Discusión	26
CA	APITULO IV	29
CC	ONCLUSIONES Y RECOMENDACIONES	29
4.	Conclusiones	29
5.	Recomendaciones	30
BII	IBLIOGRAFÍA	31
ΑN	NEXOS	32
AN	NEXO I	32
1.	Insumos para la implementación de replicación de datos	32
	1.1 Esquema de base de datos	
2.	Características del Servidor	33
	2.1 Servidor CentOS 6.5 Maestro	
	2.2 Servidor CentOS 6.5 Esclavo	33
3.	Arquitectura de implementación Slony-I y PgPool-II	33
	3.1 Arquitectura Slony-I	
	3.2 Arquitectura PgPool-II	
ΑN	NEXO II	35
	Instalación y Configuración Slony-II y PgPool-II	
	1.1 Instalación Slony-I	
	1.2 Configuración Slony-I	39
	1.2.1 Configuración preliminar Slony-I	39
	1.2.2 Configuración de archivos PostgreSQL	40
	1.2.3 Creación de archivo para Servidor Maestro	42
	1.2.4 Creación de archivo para Servidor Esclavo	44
	1.3 Ejecución Slony-I	44
	1.4 Instalación PgPool-II	45
	1.5 Configuración PgPool-II	
	1.5.1 Configuración de archivo pgpool.conf	47
	1.5.2 Configuración de archivo pool_hba.conf	
	1.5.3 Configuración de archivo pool_passwd	
	1.5.4 Configuración de archivo pcp.conf	50
	1.5.5 Configuración de archivo pg_hba.conf	50

1.6	Ejecución PgPool-II	51
ANEXO II	II	52
	mienta de medición	
ANEXO I	V	52
Medic	ciones de los indicadores	52

ÍNDICE DE TABLAS

Tabla 1: Comparación entre Opciones de Alta Disponibilidad para PostgreSQL	14
Tabla 2: Operacionalización de variables	18
Tabla 3: Análisis de métodos de replicación Slony-I frente PgPool-II	21
Tabla 4: Características y funcionalidades de Slony-I frente PgPool-II	22
Tabla 5: Análisis Comparativo Slony-I frente PgPool-II	23
Tabla 6: Objetos que puede replicar Slony-I frente PgPool-II	23
Tabla 7: Tiempo de respuesta y porcentaje de usos de recursos Slony-I y Pgpool-II	25
Tabla 8: Insumos para la implementación de replicación de datos	32
Tabla 9: Características del servidor maestro	33
Tabla 10: Características del servidor esclavo	33
Tabla 11: Comandos para inicializar PgPool-II	51
Tabla 12: Herramienta de medición y complementos	52
Tabla 13: Mediciones de los indicadores tiempo de respuesta, cpu, ram, disco	53
Tabla 14: Transacciones realizadas correctamente Slony-I, PgPool-II	76

ÍNDICE DE ILUSTRACIONES

Ilustración 1: Clasificación de tipos de replicación	8
Ilustración 2: Procesamiento y análisis	. 19
Ilustración 3: Prueba estadístico U de Mann-Whitney	. 24
Ilustración 4: Tiempo de respuesta y porcentaje de uso de recursos Slony-I y PgPool-II	25
Ilustración 5: Tiempo de respuesta Slony-I, PgPool-II	. 26
Ilustración 6: Uso de recurso de CPU Slony-I y PgPool-II	. 26
Ilustración 7: Uso de recurso de RAM Slony-I y PgPool-II	. 27
Ilustración 8: Uso de recurso de DISCO Slony-I y PgPool-II	. 27
Ilustración 9: Eficacia de Slony-I y PgPool-II	. 28
Ilustración 10: Modelo relacional base de datos tutorías	. 32
Ilustración 11: Arquitectura Slony-I	. 33
Ilustración 12: Arquitectura PgPool-II	. 34
Ilustración 13: Aplication Stack Builder selección de versión PostgreSQL	. 35
Ilustración 14: Aplication Stack Builder selección Replication Solutions	. 36
Ilustración 15: Aplication Stack Builder ubicación descarga Slony-I	. 36
Ilustración 16: Aplication Stack Builder instalar Slony-I	. 37
Ilustración 17: Aplication Stack Builder finalizar instalación Slony-I	. 37
Ilustración 18: Instalación Slony-I desde archivo .bin	. 38
Ilustración 19: Venta de bienvenida instalación Slony-I archivo .bin	. 38
Ilustración 20: Venta de instalación Slony-I archivo .bin	. 39
Ilustración 21: Venta de instalación completa Slony-I archivo .bin	. 39
Ilustración 22: Venta PostgreSQL habilitación lenguages	. 40
Ilustración 23: Venta PostgreSQL dirección Slony-I archivo .bin	. 40
Ilustración 24: Asignación de IP servidor maestro, esclavo archivo pg_hba.conf	. 41
Ilustración 25: Configuración de escucha PostgreSQL archivo postgresql.conf	. 41
Ilustración 26: Configuración de zona horaria PostgreSQL archivo postgresql.conf	. 42
Ilustración 27: Ejecución de archivo plano maestro.txt	. 44
Ilustración 28: Ejecución base de datos a replicar	. 45
Ilustración 29: Ejecución de archivo plano suscriptor.txt	. 45
Ilustración 30: Ejecución base de datos a replicar	. 45
Ilustración 31: Versión de PgPool-II a descargar, versión de CentOS	. 46
Ilustración 32: Instalación de PgPool-II archivo. rpm	. 46
Ilustración 33: Configuración de escucha, puerto de PgPool-II archivo pgpool.conf	. 47

Ilustración 34: Configuración de backend host archivo pgpool.conf	. 47
Ilustración 35: Configuración de autenticación PgPool-II archivo pgpool.conf	. 48
Ilustración 36: Configuración de modo de replicación PgPool-II archivo pgpool.conf	. 48
Ilustración 37: Configuración balanceo de carga PgPool-II archivo pgpool.conf	. 49
Ilustración 38: Asignación de IP red archivo pool_hba.conf	. 49
Ilustración 39: Encriptación md5 contraseña PostgreSQL	. 50
Ilustración 40: Contraseña encriptada de PostgreSQL archivo pcp.conf	. 50
Ilustración 41: Asignación IP, usuario del servidor PgPool-II archivo pg_hba. conf	. 51
Ilustración 42: Ejecución de PgPool-II	. 51

RESUMEN

Se efectúo un estudio de rendimiento con respecto a tiempo de respuesta, usos de recursos en CPU, RAM y DISCO de las herramientas de replicación Slony-I y PgPool-II sobre la base de datos del Sistema de Gestión de Tutorías SIGET de la Universidad Nacional de Chimborazo para corroborar si existe una diferencia significativa de rendimiento. Se realizó un estudio transversal descriptiva, de grupos independientes (Slony-I, PgPool-II). Posteriormente se desarrolló un plan de pruebas con la herramienta Apache JMeter partiendo de una consulta de tipo insert con 282 usuarios durante 10 minutos, se trabajó con una muestra de 384 datos por grupo de carácter no aleatoria, con los siguientes resultados: Empleando el software estadístico SPSS se realizó la prueba estadística U de Mann-Whitney; se concluyó que existe diferencias de rendimientos en las herramientas de replicación Slony-I y PgPool-II dado que el valor sig. asintótica(bilateral) es menor al valor de significancia (alfa) α= 0,05% por lo cual se rechaza la hipótesis nula(H_o) y se acepta la hipótesis alternativa(H_a). Slony-I presentó un tiempo de respuesta de 2,22 segundos; PgPool-II de 0,87; Slony-I presentó en uso de CPU el 10,37%, y PgPool-II el 3,27%; Slony-I en uso de memoria RAM presentó el 14,49% y PgPool-II el 5,05%; Slony-I en uso de DISCO el 0,25% y PgPool-II el 0,00% aproximadamente. Se concluye que PgPool-II consume menos recursos en un promedio de 2, 77% en CPU, RAM y DISCO, finalmente Slony-I es eficaz con un 0% de error al realizar las transacciones al servidor PostgreSQL, mientras PgPool-II es menos eficaz con un error de 1,56%.

Palabras Clave: PostgreSQL, replicación de datos, rendimiento, Slony-I, PgPool-II.

ABSTRACT

SUMMARY

A performance study was carried out related to response time, CPU, RAM and DISCO resource uses of the Slony-I and PgPool-II replication tools on the basis of data from the SIGET Tutorial Management System at the Universidad Nacional of Chimborazo in order to corroborate, if there is a significant difference in yield. A descriptive cross-sectional study of independent groups (Slony-I, PgPool-II) was carried out. Subsequently, a planning test was developed under Apache JMeter tool, which is based on an insert type query with 282 users for 10 minutes. We worked with a sample of 384 data per group of non-random nature, with the following results: Using statistical software SPSS, Mann-Whitney U statistical test was employed; it was concluded that there are differences in yields in the replication tools Slony-I and PgPool-II given that the sig value. A symptotic (bilateral) is less than the significance value (alpha) $\alpha = 0.05\%$, so the null hypothesis (Ho) is rejected and the alternative hypothesis (Ha) is accepted. Slony-I presented a response time of 2.22 seconds; PgPool-II of 0.87; Slony-I presented in CPU usage 10.37%, and PgPool-II 3.27%; Slony-I in RAM usage presented 14.49% and PgPool-II 5.05%; Slony-I in use of DISCO 0.25% and PgPool-II approximately 0.00%. It is concluded that PgPool-II consumes less resources by an average of 2, 77% in CPU, RAM and DISK. Finally Slony-I is effective with a 0% error, when making transactions to the PostgreSQL server; meanwhile PgPool-II is less effective with an error of 1.56%.

Key words: PostgreSQL, data replication, performance, Slony-I, PgPool-II.

Reviewed and corrected by: Lic. Armijos Jacqueline, MsC.

INTRODUCCIÓN

En la actualidad grandes, medianas y pequeñas empresas, organizaciones e instituciones manejan cierta cantidad de información la cual es almacenada en motores de base de datos sean libres o privados de acuerdo a sus necesidades, la información tiene un valor muy importante, por ende, debe ser salvaguardada. La información que se genere desde el inicio de la empresa u organización, así como toda la información recolectada constituye a la de tomar decisiones, otro de los aspectos importantes es la disponibilidad de los datos, en su mayoría los motores de base de datos integran o brindan mecanismos de backup y recuperación clasificados en backups físicos y los backups lógicos. Los backups físicos es la operación en la que los archivos físicos de la base de datos se copian en un medio cualquiera, generalmente discos duros externos de backup que tienen una gran capacidad de almacenamiento y que "físicamente" podrán ser repuestos en cualquier momento. Mientras que el backup lógico se realiza a través de una utilidad de la propia base de datos, responsables por leer las tablas/tablespaces indicadas y grabarlas en otro lugar. (Miguel Ángel Benítez, 2017). Dando lugar la replicación de datos por medio de herramientas de replicación. La replicación de los datos puede ser síncrona o asíncrona. En el caso de la replicación síncrona, la transacción se da como completa cuando todos los nodos confirman que la transacción local se ha realizado correctamente. En la replicación asíncrona, en nodo maestro realiza la transacción enviando confirmación al solicitante y a continuación, reenvía la transacción a los otros nodos. (Arias, 2014)

En el entorno privado DBMoto responde la replicación de datos en tiempo real y captura de datos de cambio, compatible con la mayoría de base de datos.

Double-Take Share avala la replicación entre varias bases de datos, sistemas operativos y plataformas físicas, virtuales y en la nube. (Vision Solutions Inc, 2017)

En el entorno libre Slony-I trabaja con el método de replicación Maestro/Esclavo asíncrono mientras que PgPool-II Maestro/Esclavo síncrono soportados para plataformas Linux, compatible con el sistema de gestión de bases de datos relacional orientado a objetos PostgreSQL.

Problema

En la actualidad todas las aplicaciones independientemente de su plataforma, sistemas informáticos trabajan con base de datos libres o privados, estructuradas o no estructuradas, unos de los aspectos que no se considera es la accesibilidad de los datos ante fallos sea por razones de riesgos físicos o lógicos. El Sistema de Gestión de Tutorías SIGET de la Universidad Nacional de Chimborazo, no dispone de replicación de datos ante riesgos o fallos u otros mecanismos de respaldo de la información manejada en la base de datos tutorías exponiendo a pérdida total o parcial de la información. El SIGET de la Universidad Nacional de Chimborazo cuenta con un sistema de base de datos, en el que se almacena la información correspondiente a las tutorías de las asignaturas impartidas por el docente a los estudiantes de la comunidad universitaria durante los transcursos de los periodos académicos de las cuatro facultades existentes y sus respectivas carreras, es de importancia garantizar la accesibilidad de la información, así como la fiabilidad, y seguridad de datos.

Justificación

En los últimos años se ha experimentado un notable desarrollo y avance en las investigaciones sobre sistemas distribuidos, especialmente en lo referente a flujo de información y bases de datos, esto ha dado un considerable impacto en aspectos de desarrollos tecnológicos y sociales. (Jirón, 2012)

La replicación brinda la capacidad de sincronizar la información de una base de datos, a través de varios servidores. Este proceso permite mantener los servicios informáticos disponibles como una tarea fundamental en la implementación de sistemas informáticos. (Marqués, 2011) La replicación resulta útil para mejorar la disponibilidad de los datos notablemente por que el sistema puede seguir operando mientras exista una base de datos operativa, también mejora el rendimiento de la recuperación de consultas globales, tiempo de acceso. La replicación va permitir disponer de copias de toda la base de datos de SIGET, en un itinerario configurado así en caso de falla se podrá tener toda la información salva, por medio de replicación garantizando la disponibilidad.

La base de datos del Sistema de Gestión de Tutorías SIGET, esta realiza en PostgreSQL que es un sistema de gestión de bases de datos relacional orientado a objetos, por ende se indago las herramientas de replicación de datos existentes para PostgreSQL, por consiguiente se optó por Slony-I y PgPool-II los cuales trabajan particularmente para sistema de gestión de bases de datos relacional orientado a objetos PostgreSQL, cabe mencionar se optó realizar análisis de

dichas herramientas respectivamente con versiones distintas, en caso de Slony-I no existe un Slony-II, lo cual existe sus mejoras en versión.

OBJETIVOS

Objetivo General

 Analizar las herramientas Slony-I frente PgPool-II, para la implementación de replicación del sistema de gestión de tutorías SIGET de la Universidad Nacional de Chimborazo.

Objetivos Específicos

- Analizar los métodos de replicación usadas por las herramientas Slony-I frente PgPool II.
- Comparar las características, funcionalidad de las herramientas Slony-I frente PgPool-II.
- Implementar replicación para el sistema de gestión de tutorías SIGET de la Universidad
 Nacional de Chimborazo.
- Verificar el rendimiento de las herramientas Slony-I y PgPool-II.

CAPITULO I

ESTADO DEL ARTE

1. Replicación

La Replicación es un conjunto de tecnologías destinadas a la copia y distribución de datos y objetos de base de datos de una base de datos a otra, para luego sincronizar amabas bases de datos con el fin de mantener su coherencia. La réplica permite distribuir datos a diferentes ubicaciones y a usuarios remotos o móviles mediante redes de área local y de área extensa, conexiones de acceso telefónico, conexiones inalámbricas e internet. (Marqués, 2011)

La replicación de datos es el proceso de copiar una parte de una base de datos de un entorno a otro y mantener las copias posteriores de los datos en sincronismo con la fuente original. Los cambios hechos en la fuente original se propagan a las copias de los datos en otros entornos. (Aguilar, 2016)

En ocasiones puede ser útil tener copias de una tabla o parte de ella repartidas por varios servidores. Estas copias se llaman réplicas. (Rivero Cornelio, Guardia Rivas, & Reig Hernández, 2004)

El objetivo de la replicación es mejorar la disponibilidad de los datos, de forma que, si una ubicación de los datos distribuidos quedase fuera de servicio, los datos podrán seguir disponibles siempre que estén replicados en otra ubicación. (Caballero González & Clavero García, 2016)

Entre las ventajas que da la replicación de información destacan:

Disponibilidad: Si algún nodo deja de funcionar los demás pueden seguir trabajando con la base actualizada.

Fiabilidad: Al haber copias en muchos sitios el sistema se recupera rápido.

Rendimiento: las consultas se hacen cerca en cada nodo y se acede rápidamente a los datos.

Menor Carga: Se disminuye el tráfico de la red.

Procesamiento desconectado: la replicación funciona por instantáneas, que son copias completas de la relación que se necesita en un momento determinado. Estas permiten a los sitios trabajar sobre un conjunto de datos, aunque no estén conectados al servidor principal. Cuando vuelva tendrá que sincronizarse.

Un incremento del rendimiento, ya que, al estar los datos repetidos en diversos nodos, hay una mayor probabilidad de que las operaciones puedan operar sobre datos o réplicas locales evitando tener que comunicarse con otros nodos.

Mayor disponibilidad, ya que un elemento de datos estará disponible para su proceso siempre que éste disponible a menos una réplica, es decir, siempre que al menos uno de los nodos que contenga una réplica de mismo esté accesible. (Gómez, 2013)

En cuanto a los **inconvenientes**, hay que mencionar los siguientes:

Las técnicas de control de concurrencia y recuperación son más cotosas que en un sistema que no está replicado.

Se trasmiten muchos datos en el momento de actualizar la replicación, lo que implica ocupar las líneas de comunicaciones.

La replicación es óptima para muchas aplicaciones, pero con la característica común de que se necesita un conjunto de todos los datos en los nodos. (González E. S., 2014)

La actualización de un dato replicado debe llevarse acabo sobre todas las réplicas del mismo para mantener la consistencia de la base de datos.

Realizar las operaciones de consulta y de actualización de datos es más costoso en cuanto a consumo de recursos puesto que, por un lado, las consultas se deben dirigir a la replicación más cercana disponible. (Gómez, 2013)

2. Componentes básicos de la replicación

2.1 Objeto de replicación

Es un objeto de la base de datos, un índice, una vista, etc., que existen en múltiples ubicaciones del sistema distribuido. Cualquier actualización realizada por un nodo al objeto se aplicará a las copias del mismo en los restantes nodos donde se encuentre ese objeto.

2.1 Grupo de replicación

Es un conjunto de objetos de replicación que tiene alguna relación lógica.

2.2 Sitio de replicación

Son los nodos donde se encuentra cada grupo de replicación. Hay dos tipos de sitios: **maestros y esclavos**. Un sitio puede ser maestro para un grupo de replicación como esclavo para otro de replicación distinto. El sitio maestro controla a un grupo de replicación y a los

objetos que pertenecen a ese grupo de replicación. Para hacer esto se mantiene una copia completa de todos los objetos del grupo de replicación y se propagan los cambios realizados en el grupo a las demás copias que están en los sitios esclavos. Cada sitio esclavo puede contener todos o solo parte de los objetos de replicación, pero solo pueden contener una instantánea del grupo de replicación. Estas instantáneas se refrescan periódicamente con el sitio maestro. (González E. S., 2014)

3. Clasificación en función del momento de replicación

En función del momento en que se realiza la replicación esta puede ser sincrónica o asincrónica.

3.1 Replicación sincrónica

Los datos replicados se actualizan a la vez en toda la base como en el momento de actualizarse en el sitio donde se originó la transacción. Normalmente usa el protocolo de compromiso de dos fases.

Tiene la ventaja que se actualiza al instante, y es necesaria para casos en que los que haya que tener los datos actualizados constantemente.

Tiene el inconveniente de que no podrá confirmarse si en alguno de los nodos en que está la replicación no puede comprometer. Recarga mucho la red ya que tiene que estar constantemente enviando mensajes entre los nodos.

Es más óptimo en ambientes en los que la base de datos se consulta mucho, pero se actualiza poco.

3.2 Replicación asíncrona

En este procedimiento las demás bases de datos replicadas se actualizan más tarde de la réplica que se modificó. El retardo puede variar, se puede establecer el tiempo de cuándo hay que actualizarla, pero al final se sincronizará; aunque eso viola el principio de independencia de los datos distribuidos.

Es más óptimo para aplicaciones en las que los nodos no necesitan las réplicas actualizadas en el momento en que se produzca la actualización de la base. (González E. S., 2014)

4. Clasificación en función del funcionamiento

La sincronización según su funcionamiento a la hora de actualizar los datos puede ser de tres formas: propiedad maestro/esclavo, propiedad flujo de trabajo y propiedad de replicación simétrica o ubicua.

4.1 Propiedad maestra/esclavo

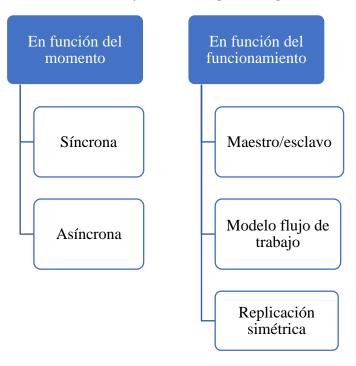
En este funcionamiento los datos asíncronamente replicados son propiedad del sitio maestro, y este es el único que puede actualizarlos. Los esclavos solamente reciben copias de lectura de esos datos.

Cada sitio puede ser maestro de una serie de conjunto de datos no solapados. Pero solo puede existir un único sitio que actualice la copia maestra de unos datos, porque si no se cumple esto podría dar lugar a conflictos.

Puede haber varios sitios que sean propietarios de distintos fragmentos de la relación y los demás sitios recibirán copias de solo lectura de esos fragmentos (replicación asimétrica).

En este modelo de funcionamiento no hay conflictos de actualización de la réplica.

4.2 Propiedad flujo de trabajo


También impide conflictos, y aquí se pueden actualizar los datos replicados en un sitio a otro, pero en cada momento solo hay un sitio que pueda actualizar los datos; se siguen un flujo ordenadamente.

Aquí las aplicaciones se distribuyen entre los sitios y cuando los datos se modifican se reenvían al siguiente nodo de flujo y también envían el derecho a actualizados.

4.3 Propiedad de replicación simétrica o ubicua

Aquí, a diferencia de los dos anteriores, se permite a todos los nodos el derecho de actualizar los datos. Tiene la ventaja de que, aunque uno caiga, los otros podrían funcionar, lo que le da mayor autonomía a los nodos. El sistema tiene que equilibrar la carga de trabajo entre unos nodos y otros. Puede llevar a conflictos de actualización. (González E. S., 2014)

Ilustración 1: Clasificación de tipos de replicación

Fuente: (González E. S., 2014)

5. Servidor

Los servidores son equipos informáticos que brindan un servicio en la red. Dan información a otros servidores y a los usuarios. Son equipos de mayores prestaciones y dimensiones que una PC de escritorio. (Marchionni, 2011)

Un servidor, es un dispositivo que ofrece sus recursos a la red para que sean compartidos, por lo tanto, deberá poseer una alta velocidad de proceso, un disco duro de gran capacidad con acceso rápido y una gran cantidad de memoria RAM. (Villar, 2004)

6. Sistemas Gestores de Base de Datos y las Bases de Datos

No debemos confundir una base de datos con un Sistema Gestor de Base de Datos. Una base de datos es la información almacenada, que cumple una serie de características y restricciones, pero para que la información puede ser almacenada y el acceso a la misma satisfaga las características exigidas a una base de datos, es necesario que exista una serie de procedimientos, un sistema software, que sea capaz de llevar a cabo tal labor. A este sistema software es lo que llamamos Sistema Gestor de Base de Datos(SGBD). (Cabello, 2010)

Base de datos

Un sistema de base de datos es un recipiente donde es almacenada la información. Este recipiente tiene las características de ser: Compartido (varios usuarios pueden tener acceso a la vez a éste), integrado (es visto como una unidad, aun cuando esté formado por varios archivos de diferentes tipos de datos), proporciona independencia de datos y de programas. (González J. L., 2013)

7. Ajuste y monitoreo de rendimiento

El administrador de base de datos debe verificar que la base de datos es rápida y que la performance del servidor no afectará negativamente a su disponibilidad y usabilidad. El ajuste de la base de datos es un trabajo que exige ser sensato y tener experiencia. Existe algunas reglas generales, pero muchas son aprendidas con el uso, en la base de datos de la tentativa y error.

El ajuste de base de datos se puede dividir en cuatro partes:

Proyecto: El proyecto lógico de una base de datos apenas elaborado dará como resultado, obviamente, un proyecto físico mal elaborado, lo que generalmente degradará el rendimiento.

Sistema Operativo: El sistema operativo debe ser ajustado de acuerdo con la documentación del fabricante.

Base de Datos: El ajuste de la base de datos comprende la memoria alojada, el uso del disco, CPU, E/S y los procesos de la base de datos.

Aplicación: El ajuste de la aplicación está directamente relacionado a los códigos SQL almacenados en los sistemas. (Garrido, 2016)

8. Slony-I

Slony-I es un sistema de replicación "maestro a múltiples esclavos" para PostgreSQL que admite la conexión en cascada. La gran idea para el desarrollo de Slony-I es que es un sistema de replicación maestro-esclavo que incluye todas las características y capacidades necesarias para replicar grandes bases de datos a un número razonablemente limitado de sistemas esclavos. Slony-I es un sistema diseñado para su uso en centros de datos y sitios de respaldo, donde el modo normal de operación es que todos los nodos están disponibles. (slony, 2010)

Para configurar un conjunto de réplicas de Slony-I, es necesario comprender las siguientes abstracciones principales que utiliza.

- Racimo
- Nodo
- Conjunto de replicación
- Origen, proveedores y suscriptores
- Daemons slon
- Procesador de configuración slonik

8.1 Racimo

En términos de Slony-I, un "clúster" es un conjunto nombrado de instancias de base de datos PostgreSQL; la replicación tiene lugar entre esas bases de datos.

El nombre del clúster se especifica en todas y cada una de las secuencias de comandos de Slonik a través de la directiva:

```
nombre del clúster = algo;
```

Si el nombre del clúster es algo, entonces Slony-I creará, en cada instancia de base de datos en el clúster, el espacio de nombres / esquema algo.

8.2 Nodo

Un nodo Slony-I es una base de datos denominada PostgreSQL que participará en la replicación. (Browne, 2017)

Se define, cerca del comienzo de cada script de Slonik, utilizando la directiva:

```
NODE 1 ADMIN CONNINFO = 'dbname = testdb host = servidor1 usuario =
slony';
```

La información SLONIK ADMIN CONNINFO indica información de conexión de base de datos que finalmente se pasará a la PQconnectdb()función libpq.

Por lo tanto, un clúster Slony-I se compone de:

- Un nombre de grupo.
- Un conjunto de nodos Slony-I, cada uno de los cuales tiene un espacio de nombres basado en ese nombre de clúster.

8.3 Conjunto de replicación

Un conjunto de replicación se define como un conjunto de tablas y secuencias que se replicarán entre nodos en un clúster Slony-I.

Puede tener varios conjuntos, y el "flujo" de replicación no necesita ser idéntico entre esos conjuntos.

8.4 Origen, proveedores y suscriptores

Cada conjunto de replicación tiene un nodo de origen, que es el único lugar donde las aplicaciones de los usuarios pueden modificar los datos en las tablas que se replican. Esto también podría denominarse el "proveedor principal"; es el lugar principal desde el que se proporcionan los datos.

Otros nodos del clúster se suscriben al conjunto de replicación, lo que indica que desean recibir los datos.

El nodo de origen nunca se considerará un "suscriptor". (Ignorando el caso donde se reorganiza el clúster, y el origen se desplaza expresamente a otro nodo). Pero Slony-I admite la noción de suscripciones en cascada, es decir, un nodo que está suscrito a algún conjunto también puede comportarse como un "proveedor " a otros nodos en el clúster para ese conjunto de replicación.

8.5 Slon Daemon

Para cada nodo en el clúster, habrá un proceso slon para administrar la actividad de replicación para ese nodo.

Slon es un programa implementado en C que procesa eventos de replicación. Hay dos tipos principales de eventos:

Eventos de configuración

Normalmente, esto ocurre cuando se ejecuta un script slonik y envía actualizaciones a la configuración del clúster.

Eventos SYNC

Las actualizaciones de las tablas que se replican se agrupan en SYNC s; estos grupos de transacciones se aplican juntos a los nodos del suscriptor. (Browne, 2017)

8.6 Procesador de configuración slonik

El procesador de comandos slonik procesa las secuencias de comandos en un "pequeño lenguaje" que se utiliza para enviar eventos para actualizar la configuración de un clúster Slony-I. Esto incluye cosas como agregar y eliminar nodos, modificar rutas de comunicación, agregar o eliminar suscripciones. (Browne, 2017)

8.7 Comunicaciones de ruta Slony-I

Slony-I utiliza PostgreSQL DSN en tres contextos para establecer el acceso a las bases de datos:

- 2 Slonik admin conninfo: Controla cómo un script slonik accede a los distintos nodos. Estas conexiones son las que van desde su "estación de trabajo administrativa" a todos los nodos en un clúster Slony-I.
- **3** El parámetro slon DSN: El parámetro DSN que se pasa a cada slon indica qué ruta de red se debe usar para llegar desde el proceso slon a la base de datos que administra.
- **4 Ruta de la tienda SLONIK:** Controlando cómo los daemons slon se comunican con los nodos remotos. Estas rutas se almacenan en sl_path.

8.8 Túneles SSH

Si no se puede establecer una conexión directa con PostgreSQL debido a un firewall, entonces puede establecer un túnel ssh sobre el cual Slony-I pueda operar.

9. PgPool-II

PgPool-II es un software intermedio que se ubica entre los servidores PostgreSQL y un cliente de base de datos PostgreSQL. Proporciona las siguientes características:

9.1 Agrupación de conexiones

PgPool-II mantiene conexiones establecidas con los servidores PostgreSQL y las reutiliza cada vez que entra una nueva conexión con las mismas propiedades (es decir, nombre de usuario, base de datos, versión de protocolo). Reduce la sobrecarga de conexión y mejora el rendimiento general del sistema.

9.2 Replicación

PgPool-II puede administrar varios servidores PostgreSQL. Al activar la función de replicación, es posible crear una copia de seguridad en tiempo real en 2 o más clústeres de PostgreSQL, de modo que el servicio pueda continuar sin interrupción si uno de esos clústeres falla.

9.3 Equilibrio de carga

Si se replica una base de datos (porque se ejecuta en modo de replicación o en modo maestro / esclavo), la realización de una consulta SELECT en cualquier servidor devolverá el mismo resultado. PgPool-II aprovecha la función de replicación para reducir la carga en cada servidor de PostgreSQL. Lo hace mediante la distribución de consultas SELECT entre los servidores disponibles, mejorando el rendimiento general del sistema. En un escenario ideal, el rendimiento de lectura podría mejorar proporcionalmente al número de servidores PostgreSQL. El equilibrio de carga funciona mejor en un escenario en el que hay muchos usuarios que ejecutan muchas consultas de solo lectura al mismo tiempo.

9.4 Limitar el exceso de conexiones

Hay un límite en el número máximo de conexiones simultáneas con PostgreSQL, y las nuevas conexiones se rechazan cuando se alcanza este número. Sin embargo, aumentar este número máximo de conexiones aumenta el consumo de recursos y tiene un impacto negativo en el rendimiento general del sistema. PgPool-II.

10. Modo de ejecución de PgPool-II

Hay cuatro modos de ejecución diferentes en PgPool-II: modo de replicación de transmisión, modo de replicación lógica, modo maestro de esclavo (modo slony), modo de replicación nativo y modo raw. En cualquier modo, PgPool-II proporciona agrupación de conexiones, conmutación por error automática y recuperación en línea.

10.1 Modo de replicación de transmisión

El modo de replicación de transmisión se puede usar con servidores PostgreSQL que operan la replicación de transmisión. En este modo, PostgreSQL es responsable de sincronizar las bases de datos. El equilibrio de carga es posible en el modo.

10.2 Modo de replicación lógica

El modo de replicación lógica se puede usar con servidores PostgreSQL que operan con replicación lógica. En este modo, PostgreSQL es responsable de sincronizar las tablas. El equilibrio de carga es posible en el modo.

10.3 Modo maestro de modo esclavo

El modo maestro de modo esclavo (modo slony) se puede usar con servidores PostgreSQL que operan Slony. En este modo, Slony / PostgreSQL es responsable de sincronizar las bases de datos. El equilibrio de carga es posible en el modo.

10.4 Modo de replicación nativo

En el modo de replicación nativo, PgPool-II es responsable de sincronizar las bases de datos. La ventaja para el modo es que la sincronización se realiza de forma síncrona: la escritura en la base de datos no se devuelve hasta que todos los servidores de PostgreSQL finalizan la operación de escritura. El equilibrio de carga es posible en el modo. (pgpool, 2016)

11. Comparación con otras herramientas de alta disponibilidad

Tabla 1: Comparación entre Opciones de Alta Disponibilidad para PostgreSQL

Programa	Licencia	Madurez	Método de Replicación	Sincronización	Pool de Conexión	Balanceo de la Carga	Posicionamiento de Consultas
PGCluster	BSD	En Espera	Maestro/Maestro	Síncrono	NO	SI	NO
Pgpool-I	BSD	Estable	Maestro/Esclavo	Síncrono	SI	SI	NO
PgPool-II	BSD	Liberada Recientemente	Maestro/Esclavo	Síncrono	SI	SI	SI
Slony-I	BSD	Estable	Maestro/Esclavo	Asíncrono	NO	NO	NO
Bucardo	BSD	Estable	Maestro/Maestro Maestro/Esclavo	Asíncrono	NO	NO	NO
Londiste	BSD	Estable	Maestro/Esclavo	Asíncrono	NO	NO	NO
Mammoth	BSD	Estable	Maestro/Esclavo	Asíncrono	NO	NO	NO
Rubyrep	MIT	Liberada Recientemente	Maestro/Maestro Maestro/Esclavo	Asíncrono	NO	NO	NO

Fuente: Comparación entre Opciones de Alta Disponibilidad para PostgreSQL. (Hernández, 2014)

CAPITULO II

METODOLOGÍA

2. HIPÓTESIS

2.1 Hipótesis General

H₀= No existe una diferencia de rendimiento en las herramientas de replicación Slony-I y PgPool-II.

$$H_0: M_x = M_y$$

H_{a=} Existe una diferencia de rendimiento en las herramientas de replicación Slony-I y PgPool-II.

$$\mathbf{H_a}: \mathbf{M_x} \neq \mathbf{M_y}$$

2.2 Hipótesis Específicas

Hipótesis Específica 1:

 $\mathbf{H}_{0=}$ No existe una diferencia de rendimiento de tiempo de respuesta en las herramientas de replicación Slony-I y PgPool-II.

H_{a=}Existe una diferencia de rendimiento de tiempo de respuesta en las herramientas de replicación Slony-I y PgPool-II.

Hipótesis Específica 2:

H₀= No existe una diferencia de rendimiento de cpu en las herramientas de replicación Slony-I y PgPool-II.

$$\mathbf{H_o}$$
: $\mathbf{M}_{cpu1} = \mathbf{M}_{cpu2}$

H_{a=}Existe una diferencia de rendimiento de cpu en las herramientas de replicación Slony-I y PgPool-II.

Ha:
$$M_{cpu1} \neq M_{cpu2}$$

Hipótesis Específica 3:

H₀= No existe una diferencia de rendimiento de memoria en las herramientas de replicación Slony-I y PgPool-II.

$$\mathbf{H_0}$$
: $\mathbf{M}_{ram1} = \mathbf{M}_{ram2}$

H_a=Existe una diferencia de rendimiento de memoria en las herramientas de replicación Slony-I y PgPool-II.

Ha:
$$M_{ram1} \neq M_{ram2}$$

Hipótesis Específica 4:

H₀= No existe una diferencia de rendimiento de disco en las herramientas de replicación Slony-I y PgPool-II.

H_{a=}Existe una diferencia de rendimiento de disco en las herramientas de replicación Slony-I y PgPool-II.

$$\mathbf{H_a}$$
: $\mathbf{M}_{\text{disco1}} \neq \mathbf{M}_{\text{disco2}}$

3. IDENTIFICACIÓN DE VARIABLES

3.1 Variable Independiente

Herramientas de replicación Slony-I.

Herramientas de replicación PgPool-II.

3.2 Variable Dependiente

Rendimiento sobre la base de datos en el Sistema de Gestión de Tutorías de SIGET de la Universidad Nacional de Chimborazo.

4. TIPO DE ESTUDIO

El diseño de investigación a aplicarse es de tipo transversal descriptiva, bibliográfico y aplicativo y se utilizara el método deductivo.

5. POBLACIÓN Y MUESTRA

Población se considera infinita, por lo que se recolectará los datos de rendimiento durante el trascurso de periodo académico octubre 2017-marzo 2018 durante un tiempo en base a la herramienta de recolección de datos, y la muestra se obtendrá mediante la fórmula de muestreo de población no conocida; el método de muestreo es no probabilística (no aleatoria) de tipo intencional.

Ecuación 1: Tamaño de muestra población infinita

$$n = \frac{Z^2 * p * q}{e^2}$$

donde:

n=Muestra

p=Probabilidad de éxito

q=Probabilidad de fracaso

Z=Nivel de confianza 95%

e=Error de muestra 5%

$$n = \frac{1,96^2 * 0.5 * 0.5}{0.05^2}$$

$$n = 384.16$$

6. OPERACIONALIZACIÓN DE LAS VARIABLES

Tabla 2: Operacionalización de variables

VARIABLE Slony-I	TIPO Independiente	DEFINICIÓN CONCEPTUAL Slony-I es un sistema de replicación "maestro a múltiples esclavos" para PostgreSQL que admite la conexión en cascada. (slony, 2010)	DIMENSIÓN Número de tareas realizadas satisfactoriamente	INDICADORES Eficacia
PgPool-II	Independiente	PgPool-II es un middleware que funciona entre servidores PostgreSQL y un cliente de base de datos PostgreSQL. Está licenciado bajo la licencia BSD. (pgpool, 2016)	Número de tareas realizadas satisfactoriamente	Eficacia
Rendimiento sobre la base de datos del Sistema de Gestión de Tutorías SIGET.	Dependiente	Cantidad de trabajo realizado por un sistema informático, servidor.	Desempeño	Consumo de recursos. CPU MEMORIA DISCO Tiempo de respuesta.

Fuente: Estuardo Cajilema

7. PROCEDIMIENTOS

7.1 TÉCNICA DE INVESTIGACIÓN

Técnica documental. - Mediante esta técnica se recopilará toda la información de fuentes primarias y secundarias que permitirá enunciar y desarrollar teorías que sustentarán el marco teórico en el cual se basará el análisis e interpretación del proyecto de investigación.

Técnica de campo. - Esta técnica permitirá establecer una relación directa con el objeto de estudio, donde permitirán comprobar la hipótesis planteada para ser confirmada o negada a través de observación.

7.2 INSTRUMENTOS DE RECOLECCIÓN DE DATOS

En base a la técnica de investigación seleccionada, el instrumento de recolección de datos será una escala de valoración.

8. PROCESAMIENTO Y ANÁLISIS

Análisis de herramientas

Implementación de herramientas

Pruebas de rendimiento

Comparación de medias rendimiento

Prueba de hipótesis

Ilustración 2: Procesamiento y análisis

Fuente: Estuardo Cajilema

Las herramientas de replicación Slony-I y PgPool-II, se instalan y configuran en los servidores de la Universidad Nacional de Chimborazo servidor CentOS 6.5, servidor maestro y esclavo contando con un total de dos servidores de las mismas características; se trabaja con el gestor de base de datos PostgreSQL 9.3; base de datos tutorías del sistema SIGET. Para la recolección de datos de los indicadores tiempo de respuesta, uso de cpu, ram y disco se utiliza

la herramienta Apache JMeter con complementos PerfMon Server Agent, y PerfMon (Servers Performance Monitoring). Posteriormente se crea un plan de pruebas con una consulta de tipo insert de 282 usuarios en un mismo tiempo, en un transcurso de 10 minutos.

Los datos recogidos con la herramienta Apache JMeter se ingresa en el software estadístico SPSS, para analizar pruebas de normalidad, dependiendo del resultado se aplica una prueba paramétrica o no paramétrica, finalmente comprobar la hipótesis planteada, emitiendo conclusiones y recomendaciones en base al estudio realizado.

8.1 Prueba estadística

Se efectúa prueba no paramétrica con la asistencia del software estadístico SPSS, dado que los datos de los indicadores de la investigación no cumplen los supuestos normalidad, homogeneidad de varianzas.

Para la verificación de la hipótesis se efectúa la prueba U de Mann-Whitney; estableciendo un nivel de confianza del 95% y un nivel de significancia del 0,05% equivalente al 5% con una muestra de 384 por grupo.

8.2 Prueba U de Mann-Whitney

La hipótesis nula de contraste es que las dos muestras, de tamaño n1 y n2, respectivamente, proceden de poblaciones continuas idénticas: H0: f1(x) = f2(x). La hipótesis alternativa puede ser unilateral o bilateral u únicamente supone que la tendencia central de una población difiere de la otra, pero no una diferencia de forma de dispersión. (Riera, 2001)

CAPITULO III

RESULTADOS Y DISCUSIÓN

2 Resultados

2.1 Análisis de métodos de replicación Slony-I frente PgPool-II

Tabla 3: Análisis de métodos de replicación Slony-I frente PgPool-II

Método de replicación	Herramienta	Características	Ventajas	Desventajas
r		El sitio maestro es	Múltiples	Los sitos esclavos
	Slony-I	el único que realiza	servidores	reciben copias de
	PgPool-II	las actualizaciones,	esclavos en	solo lectura de
avo		mientras los sitios	varios sitios.	datos.
ón Escl		esclavos reciben		
icaci		copias de lectura		
Replicación Maestro/Esclavo		de los datos.		
	Slony-I	Las demás bases de	Proporciona	Viola el principio
0		datos replicadas se	menor	de independencia
Cron		actualizan más	tolerancia a	de los datos
\sin		tarde de la réplica	fallos en	distribuidos.
ón A		que se modificó.	servidores y	
 caci			almacenamiento	
Replicación Asíncrono			en red.	
<u> </u>	PgPool-II	Propaga cualquier	Se actualiza al	Recarga la red,
		cambio realizado	instante los	porque debe enviar
ión		en el maestro a	datos	constantemente las
caci		todos los sitios	replicados.	actualizaciones a
Replicación Síncrono		esclavos.		los sitios esclavos.

Fuente: Estuardo Cajilema

2.2 Características y funcionalidades de Slony-I frente PgPool-II

Tabla 4: Características y funcionalidades de Slony-I frente PgPool-II

Herramientas	Características	Funcionalidad	Limitaciones
SLONY-I	Slony-I es un sistema de replicación maestro a múltiples esclavos. Slony-I puede replicar datos entre las diferentes versiones de PostgreSQL. Slony-I puede replicar datos entre diferentes sistemas operativos.	Slony-I permite replicar solo algunas de las tablas al esclavo. Slony-I permite replicar algunas tablas a un esclavo y otras tablas a otro esclavo. El servidor esclavo es la mejor opción para operaciones de Data-Warehouse y Data-Mining. El servidor esclavo acepta solo consultas de lectura.	Slony-I no se replica automáticamente. Cambios a objetos grandes (BLOBS). Cambios realizados por los comandos DDL. Cambios a usuarios y roles.
PGPOOL-II	Agrupación de conexiones Replicación Balanceo de carga Limitar el exceder de conexiones PgPool-II puede trabajar como un servidor independiente.	PgPool-II permite replicar toda la base de datos, así como esquemas, tablas, funciones. PgPool-II puede ejecutar de cuatro modos, modo replicación nativo, modo de replicación maestroesclavo, modo de replicación de transmisión, modo de replicación lógica.	Modo nativo, PgPool- II admite objetos grandes si el backend es PostgreSQL 8.1 o posterior.

2.3 Análisis Comparativo Slony-I frente PgPool-II

Tabla 5: Análisis Comparativo Slony-I frente PgPool-II

Herramienta	Sistemas Operativos	Licencia	Método de replicación	Sincronización	Pool de Conexión	Balanceo de la Carga	Posicionamiento de Consultas
SLONY-I	Windows Linux	BSD	Maestro/Esclavo	Asíncrono	NO	NO	NO
PGOOL-II	Linux	BSD	Maestro/Esclavo	Síncrono	SI	SI	SI

Fuente: Estuardo Cajilema

Tabla 6: Objetos que puede replicar Slony-I frente PgPool-II

Herramienta	Base de Datos	Esquemas	Tablas	Funciones	Trigger	Datos de Tablas
SLONY-I	NO	NO	NO	NO	NO	SI
PG00L-II	SI	SI	SI	SI	SI	SI

2.4 Comprobación de la hipótesis

Ilustración 3: Prueba estadístico U de Mann-Whitney

Estadísticos de prueba^a

	tiempo_de_re spuesta	сри	ram	disco
U de Mann-Whitney	43615,500	23423,500	,000	71808,000
W de Wilcoxon	117535,500	97343,500	73920,000	145728,000
Z	-9,796	-16,365	-23,985	-3,181
Sig. asintótica (bilateral)	,000	,000	,000	,001

a. Variable de agrupación: Herramienta

Fuente: Software estadístico SPSS

Comprobación de hipótesis general

Aplicando la prueba estadística U de Mann-Whitney se concluye que existe diferencias de rendimientos en las herramientas de replicación Slony-I y PgPool-II, por lo cual se rechaza la hipótesis nula(H_o), y se acepta la hipótesis alternativa(H_a), a un nivel de significancia (alfa) α = 0,05%.

Comprobación de hipótesis específicas

Se rechaza la hipótesis nula(H_0) con respecto a la diferencia de rendimiento *tiempo de respuesta*, y se acepta la hipótesis alternativa(H_a), a un nivel de significancia (alfa) α = 0,05%.

Se rechaza la hipótesis nula(H_0) con respecto a la diferencia de rendimiento CPU, y se acepta la hipótesis alternativa(H_a), a un nivel de significancia (alfa) α = 0,05%.

Se rechaza la hipótesis nula(H_o) con respecto a la diferencia de rendimiento *MEMORIA*, y se acepta la hipótesis alternativa(H_a), a un nivel de significancia (alfa) α = 0,05%.

Se rechaza la hipótesis nula(H_o) con respecto a la diferencia de rendimiento **DISCO**, y se acepta la hipótesis alternativa(H_a), a un nivel de significancia (alfa) α = 0,05%.

2.5 Análisis de Indicadores

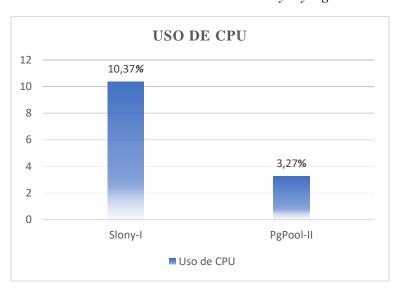
Tabla 7: Tiempo de respuesta y porcentaje de usos de recursos Slony-I y Pgpool-II

Indicadores	Slony-I	PgPool-II	Diferencia
Tiempo de respuesta	2,22s	0,87s	1,35s
Uso de CPU	10,37 %	3,27%	7,1%
Uso de MEMORIA	14,49%	5,05%	9,44%
Uso de DISCO	0,25%	0,00%	0,25%

Fuente: Estuardo Cajilema

Ilustración 4: Tiempo de respuesta y porcentaje de uso de recursos Slony-I y PgPool-II

3 Discusión


Ilustración 5: Tiempo de respuesta Slony-I, PgPool-II

Fuente: Estuardo Cajilema

En la ilustración 5 se asimila los valores respectivos al tiempo de respuesta de la herramienta Slony-I y PgPool-II; Slony-I presenta un tiempo de respuesta de 2,22 segundos y PgPool-II de 0,87 segundos asimilando una diferencia significativa de 1,35 segundos, concluyendo que PgPool-II provee un menor tiempo de respuesta con respecto a Slony-I.

Ilustración 6: Uso de recurso de CPU Slony-I y PgPool-II

Fuente: Estuardo Cajilema

En la Ilustración 6 se asimila una diferencia de uso de recursos de CPU Slony-I ocupa el 10,37%, y PgPool-II el 3,27% con una diferencia de 7,10% concluyendo que PgPool-II ocupa menor porcentaje de recurso de CPU con respecto a Slony-I.

Ilustración 7: Uso de recurso de RAM Slony-I y PgPool-II

En la ilustración 7 se observa que la herramienta de replicación Slony-I ocupa el 14,49% de RAM, y la herramienta PgPool-II el 5,05% asimilando una diferencia de 9,44% en el uso de recurso de RAM concluyendo que PgPool-II ocupa en mejor porcentaje con respecto a Slony-I.

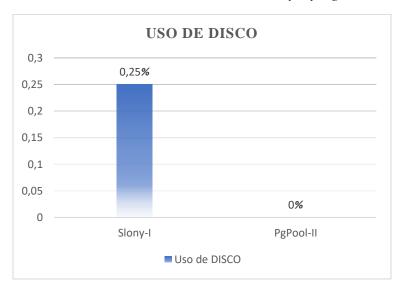


Ilustración 8: Uso de recurso de DISCO Slony-I y PgPool-II

Fuente: Estuardo Cajilema

En la ilustración 8 se observa el uso de recurso de DISCO de la herramienta Slony-I el 0,25% y PgPool-II el 0% asimilando con diferencia de 0,25% y concluyendo que PgPool-II ocupa menor porcentaje con respecto a la herramienta Slony-I.

EFICACIA

101%

100%

100%

100%

99%

98%

98%

Slony-I

Eficacia

Ilustración 9: Eficacia de Slony-I y PgPool-II

Con respecto a eficacia con una consulta de tipo insert de 282 usuarios en un mismo tiempo, en un transcurso de 10 minutos, Slony-I es eficaz con un 0% de error a realizar las transacciones al servidor PostgreSQL, mientras PgPool-II es menos eficaz con un error de 1,56%, concluyendo que Slony-I es más eficaz con respecto al PgPool-II.

La herramienta re replicación Slony-I, consume los recursos en un promedio de 8,37%, mientras PgPool-II en un 2,77%, y en cuanto tiempo de respuesta Slony-I con 2,22 segundos y PgPool-II 0,87 segundos con una diferencia de 1,35 segundos, asimilando las observaciones de las ilustraciones anteriores puedo indicar que la herramienta Slony-I con respecto a eficacia en mejor a PgPool-II, con respecto a uso de recursos CPU, RAM y DISCO PgPool-II consume menos recursos.

CAPITULO IV

CONCLUSIONES Y RECOMENDACIONES

4. Conclusiones

- Se concluye que el método de replicación asincrónica empleada por la herramienta Slony-I, es un método que provee menor carga a la red, por razón que los datos se puede copiar en un momento determinado. Es una herramienta útil a la hora de realizar replicaciones de datos de un servidor maestro a varios esclavos, puede duplicar parte de las tablas a otros servidores esclavos diferentes, su configuración es menos complejo que Pgpool-II.
- El método de replicación síncrona usada por la herramienta PgPool-II, es propenso a sobrecargar la red por razón que el servidor esclavo debe estar en escucha todo el tiempo, a posibles cambios que se realice en servidor maestro; Provee replicar toda una base de datos, así como esquemas y tablas desde el servidor PgPool-II a clientes; su configuración es distinta de acuerdo al modo de ejecución de Pgpool-II, tiene su nivel de complejidad por razón de escaso documentación. PgPool-II está expuesto a tener error con un gestor de base de datos PostgreSQL versión 9.3 o inferior.
- Aplicando la prueba estadística U de Mann-Whitney se concluye que existe diferencias de rendimientos en las herramientas de replicación Slony-I y PgPool-II, por lo cual se rechaza la hipótesis nula(H₀), y se acepta la hipótesis alternativa(Ha), a un nivel de significancia (alfa) α= 0,05%.
- Se concluye referente al uso de recursos del servidor, así como tiempo de respuesta por las herramientas Slony-I y PgPool-II; Slony-I tiempo de respuesta de 2,22 segundos, PgPool-II 0,87 segundos con una diferencia de 1,35 segundos; Slony-I uso de CPU (Unidad central de procesamiento) de 10,37%, PgPool-II 3,27% con una diferencia de 7,1%; Slony-I uso de memoria RAM (Memoria de acceso aleatoria) de 14,49%, PgPool-II 9,44%; Slony-I uso de DISCO duro (Unidad de disco duro) de 0,25%, PgPool-II 0,00% con una diferencia de 0,25%. Respecto a eficacia Slony-I es eficaz con un 0% de error al realizar las transacciones al servidor PostgreSQL, mientras PgPool-II es menos eficaz con un error de 1,56%.

5. Recomendaciones

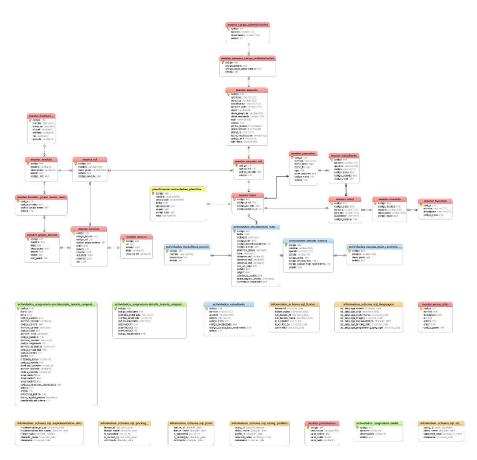
- Se recomienda trabajar con método de replicación síncrona o asíncrona dependiendo del escenario o necesidades que se requiera, si se trabaja con el método de replicación síncrona se debe tomar en cuenta que esta propenso a sobre cargar la red, mientras con el método de replicación asíncrona se debe tomar en cuenta los datos se puede actualizar más tarde desde el servidor maestro a servidores esclavos.
- Se recomienda la implementación de las herramientas de replicación de acuerdo a las necesidades requeridas por organizaciones, empresas o instituciones; en caso de la implementación de Slony-I, el servidor esclavo puede trabajar con operaciones de Data-Warehouse y Data-Mining.
- Se recomienda trabajar con Slony-I en ámbitos donde las transacciones son concurrentes por su eficaz. PgPool-II en ámbitos donde se requiera tener varias copias del servidor PgPool-II a clientes PostgreSQL y equilibrar cargas a los servidores PostgreSQL.
- Se recomienda en caso de trabajar con la herramienta Pgpool-II, implementar bajo el servidor CentOS 7 o posterior, un gestor de base de datos PostgreSQL una versión posterior a 9.3, por error de comunicación de servidor PgPool-II y clientes PostgreSQL.

BIBLIOGRAFÍA

- Aguilar, L. J. (2016). *Big Data, Análisis de grandes volúmenes de datos en organizaciones*. México: Alfaomega Grupo Editor.
- Arias, Á. (2014). Bases de Datos con MySQL: 2ª Edición.
- Browne, C. (2017). Slony-I 2.2.6 Documentation.
- Caballero González, C., & Clavero García, J. A. (2016). *UF1473 Salvaguarda y seguridad de los datos.* España: Paraninfo, S.A.
- Cabello, M. V. (2010). Introduccion a Las Bases de Datos Relacionales. Vision Libros .
- Garrido, M. Á. (2016). *Manual de Supervivencia del Administrador de Bases de Datos: 2ª Edición.* IT Campus Academy.
- Gómez, J. M. (2013). Bases de datos relacionales y modelado de datos. España: Paraninfo, S.A.
- González, E. S. (2014). Salvaguarda y seguridad de los datos. IFCT0310. IC Editorial.
- González, J. L. (2013). Panorama sobre base de datos. Un enfoque práctico.
- Hernández, L. (2014). Alta Dsiponibilidad en PostgreSQL.
- Jirón, J. L. (2012). Solución a problemas de bases de datos distribuidas en sistemas de pequeña y mediana escala.
- Marchionni, E. A. (2011). Administrador de servidores. Buenos Aires: Gradi S.A.
- Marqués, M. P. (2011). SQL Server 2008 R2 Motor de base de datos y administración.
- Maymala, J. (2015). PostgreSQL for Data Architects. Packt Publishing Ltd.
- Miguel Ángel Benítez, Á. A. (2017). *Curso de Introducción a la Administración de Bases de Datos.* IT Campus Academy.
- pgpool. (2016). pgpool. Obtenido de pgpool: http://www.pgpool.net
- Riera, M. V. (2001). Estadística con SPSS v.10.0. Edicions Universitat Barcelona.
- Rivero Cornelio, E., Guardia Rivas, C., & Reig Hernández, J. C. (2004). *Bases de datos relacionales:* diseño físico. España: R.B. Servicios Editoriales S.L.
- slony. (2010). slony. Obtenido de slony: http://www.slony.info/
- Villar, L. G. (2004). *Informatica. Temario A. Volumen Iv. Profesores de Educacion Secundaria.* Editorial Mad, S.L.
- Vision Solutions Inc. (2017). Vision Solutions. Obtenido de http://world.visionsolutions.com

ANEXO I

1. Insumos para la implementación de replicación de datos


Tabla 8: Insumos para la implementación de replicación de datos

Insumo	Descripción	Versión
Sistema Operativo	CentOS	6.5
Sistema de gestión de bases de datos	PostgreSQL	9.3
Herramienta de replicación 1	Slony -I	2.2.3
Herramienta de replicación 2	PgPool-II	3.7.0

Fuente: Estuardo Cajilema

1.1 Esquema de base de datos

Ilustración 10: Modelo relacional base de datos tutorías

2. Características del Servidor

2.1 Servidor CentOS 6.5 Maestro

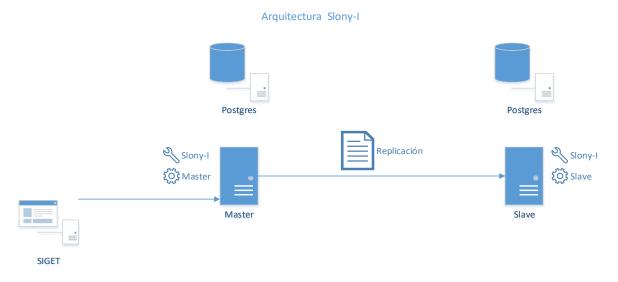
Tabla 9: Características del servidor maestro

Plataforma de virtualización	Proxmox VE 4.2-2
RAM	12 GB
CPU	12 x Intel(R) Xeon(E) CPU
	E5-2620 2GHz (2 sockets, 4
	cores)
DISCO DURO	50 GB

Fuente: Estuardo Cajilema

2.2 Servidor CentOS 6.5 Esclavo

Tabla 10: Características del servidor esclavo

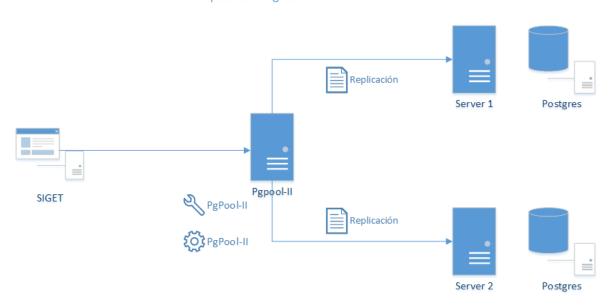

Plataforma de virtualización	Proxmox VE 4.2-2
RAM	12 GB
CPU	12 x Intel(R) Xeon(E) CPU
	E5-2620 2GHz (2 sockets, 4
	cores)
DISCO DURO	50 GB

Fuente: Estuardo Cajilema

3. Arquitectura de implementación Slony-I y PgPool-II

3.1 Arquitectura Slony-I

Ilustración 11: Arquitectura Slony-I


Fuente: Estuardo Cajilema

Para la replicación de datos usando la herramienta Slony-I se requiere tener instalados en ambos servidores Maestro y Esclavo, de igualmente las configuraciones se requiere realizar en ambos servidores.

3.2 Arquitectura PgPool-II

Ilustración 12: Arquitectura PgPool-II

Arquitectura PgPool-II

Fuente: Estuardo Cajilema

Para la replicación de datos usando la herramienta PgPool-II se requiere instalar únicamente en uno de los servidores o a su vez en un servidor independiente, la configuración se realiza únicamente en el servidor donde se instale PgPool-II.

ANEXO II

1. Instalación y Configuración Slony-II y PgPool-II

1.1 Instalación Slony-I

Previamente se debe tener instalado PostgreSQL en ambos servidores Maestro y Esclavo, existe dos modos de instalar Slony-I, en ambos casos se requiere conexión a internet.

- Por el terminal de CentOS
- Por aplicación Stack Builder de PostgreSQL

En esta implementación se instala por aplicación Stack Builder de PostgreSQL.

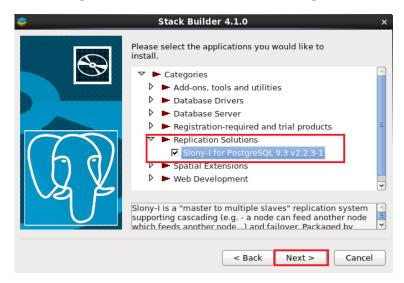

Paso 1.- Abrir Aplication Stack Builder de PostgreSQL.

Ilustración 13: Aplication Stack Builder selección de versión PostgreSQL

Paso 2.- Seleccionar y marcar según la ilustración.

Ilustración 14: Aplication Stack Builder selección Replication Solutions

Paso 3.- Seleccionar ubicación, se recomienda en la siguiente dirección según ilustrado.

Ilustración 15: Aplication Stack Builder ubicación descarga Slony-I

Paso 4.- Marcar Skip installation como se ilustra.

Ilustración 16: Aplication Stack Builder instalar Slony-I

Finalización

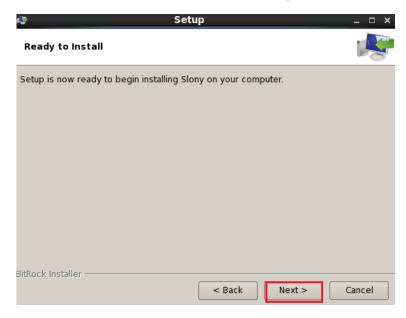
Ilustración 17: Aplication Stack Builder finalizar instalación Slony-I

Paso 5.- Ejecutamos la descarga en caso de que no se instale automáticamente como se ilustra.

Ilustración 18: Instalación Slony-I desde archivo .bin

```
ecajilema@localhost:/opt/PostgreSQL/9.3
 File Edit View Search Terminal Help
 [ecajilema@localhost 9.3]$ su
Password:
[root@localhost 9.3]# ./edb_slony_i_pg93.bin
bash: ./edb_slony_i_pg93.bin: Permission denied
[root@localhost 9.3]# chmod 777 edb_slony_i_pg93.bin
[root@localhost 9.3]# ls
3rd_party_licenses.txt installer
                                                share
                                                stackbuilder
data
                               license.txt
                                                uninstall-postgresql
                               pgAdmin3
                                                uninstall-postgresql.dat
edb_slony_i_pg93.bin
                               pg_env.sh
include
                                scripts
[root@localhost 9.3]# ./edb_slony_i_pg93.bin
```

Paso 6.- Una vez ejecutado la descarga muestra la siguiente ventana.


Ilustración 19: Venta de bienvenida instalación Slony-I archivo .bin

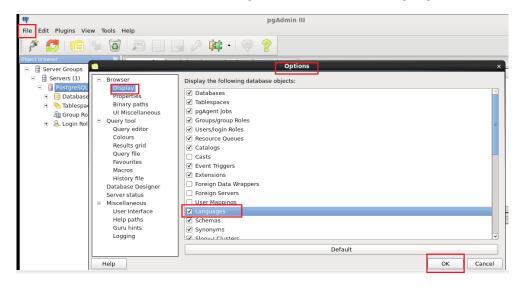
Fuente: Estuardo Cajilema

• Siguiente para completar la instalación.

Ilustración 20: Venta de instalación Slony-I archivo .bin

Finalización de la instalación Slony-I.

Ilustración 21: Venta de instalación completa Slony-I archivo .bin


Fuente: Estuardo Cajilema

1.2 Configuración Slony-I

1.2.1 Configuración preliminar Slony-I

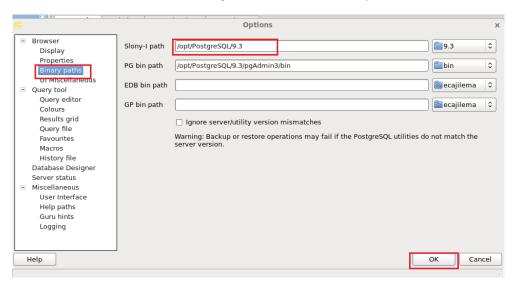

Habilitamos lenguages como lo ilustrado.

Ilustración 22: Venta PostgreSQL habilitación lenguages

Agregamos la dirección de Slony

Ilustración 23: Venta PostgreSQL dirección Slony-I archivo .bin

Fuente: Estuardo Cajilema

Nota: Previamente se debe tener la base de datos en ambos servidores, en lo que corresponde la base de datos tutorías del SIGET.

1.2.2 Configuración de archivos PostgreSQL

 Configuración de archivo pg_hba.conf en ambos servidores Maestro y Esclavo agregamos las siguientes líneas.

Ilustración 24: Asignación de IP servidor maestro, esclavo archivo pg_hba.conf

#	# TYPE	DATABASE	USER	ADDRESS	METHOD	
# "local" is for Unix domain socket connections only local all all md5 # IPv4 local connections:						
ŀ	nost	all	all	127.0.0.1/32	md5	
ŀ	#Maestr nost #Esclav	all	all	192.168.1.2/24	md5	
	nost	-	all	192.168.1.3/24	md5	
# IPv6 local connections: host all all ::1/128 md						
# Allow replication connections from localhost, by a user with the # replication privilege.						
#	#local #host #host	replication	postgres	127.0.0.1/32	md5 md5 md5	

Fuente: Estuardo Cajilema

• Configuración de archivo *postgresql.conf* en ambos servidores Maestro y Esclavo.

Ilustración 25: Configuración de escucha PostgreSQL archivo postgresql.conf

```
ecajilema@localhost:/opt/PostgreSQL/9.3/data
 File Edit View Search Terminal Help
  - Connection Settings
 isten_addresses = '*'
                                       # what IP address(es) to listen on;
                                                  # comma-separated list of addresses;
                                                 # defaults to 'localhost'; use '*' for
u
                                                  # (change requires restart)
port = 5432
                                                 # (change requires restart)
# (change requires restart)
max connections = 100
#superuser_reserved_connections = 3
#unix_socket_directories = '/tmp'
                                                  # (change requires restart)
                                                 # comma-separated list of directories
                                                 # (change requires restart)
# (change requires restart)
# begin with 0 to use octal notation
#unix_socket_group = ''
#unix_socket_permissions = 0777
                                                  # (change requires restart)
                                                 # advertise server via Bonjour
# (change requires restart)
#bonjour = off
#bonjour_name = ''
                                                  # defaults to the computer name
                                                 # (change requires restart)
# - Security and Authentication -
#authentication_timeout = 1min
                                                 # 1s-600s
                                                                             78.1
```

Ilustración 26: Configuración de zona horaria PostgreSQL archivo postgresql.conf

```
ecajilema@localhost:/opt/PostgreSQL/9.3/data
File Edit View Search Terminal Help
#gin fuzzy search limit = 0
# - Locale and Formatting
datestyle = 'iso, mdy'
#intervalstyle
                 postgres'
timezone = 'GMT-5'
          abbreviations = 'Default'
                                      # Select the set of available time zone
                                      # abbreviations. Currently, there are
                                          Default
                                          Australia (historical usage)
                                          India
                                      # You can create your own file in
                                      # share/timezonesets/.
#extra_float_digits = 0
                                      # min -15, max 3
                                      # actually, defaults to database
#client encoding = sql ascii
                                      # encoding
# These settings are initialized by initdb, but they can be changed.
                                              # locale for system error messag
lc messages = 'en US.UTF-8'
                                      lc monetary = 'en US.UTF-8'
                                                           525,1
                                                                         87%
```

Fuente: Estuardo Cajilema

1.2.3 Creación de archivo para Servidor Maestro

Creamos un archivo plano .txt y guardamos en la ruta /opt/PostgreSQL/9.3/bin/, con las siguientes configuraciones. Le asignamos el nombre de maestro.

```
cluster name = tutorias;
node 1 admin conninfo = 'dbname = tutorias host = 192.168.1.2 user = postgres password = 12345';
node 2 admin conninfo = 'dbname = tutorias host = 192.168.1.3 user = postgres password = 12345';
init cluster (id=1, comment = 'nodo maestro');
create set (id=1, origin=1, comment= 'tablas');
set add table (set id=1, origin=1, id=1, fully qualified name = 'actividades.causas bajo rendimiento',
comment= 'tabla causas bajo rendimiento');
set add table (set id=1, origin=1, id=2, fully qualified name = 'actividades.detalle tutoria', comment=
'tabla detalle tutoria');
set add table (set id=1, origin=1, id=3, fully qualified name = 'actividades.encabezado tutoria',
comment= 'tabla encabezado tutoria');
set add table (set id=1, origin=1, id=4, fully qualified name = 'actividades.estudiante', comment= 'tabla
estudiante');
set add table (set id=1, origin=1, id=5, fully qualified name = 'actividades.modalidad_tutoria', comment=
'tabla modalidad tutoria');
set add table (set id=1, origin=1, id=6, fully qualified name = 'actividades asignatura.ambitos',
comment= 'tabla ambitos');
       add
                table
set
                          (set
                                  id=1,
                                            origin=1,
                                                          id=7,
                                                                    fully
                                                                             qualified
                                                                                          name
```

```
'actividades_asignatura.detalle_tutoria_asignatura', comment= 'tabla detalle_tutoria_asignatura');

set add table (set id=1, origin=1, id=8, fully qualified name =
'actividades_asignatura.encabezado_tutoria_asignatura', comment= 'tabla
encabezado_tutoria_asignatura');
```

set add table (set id=1, origin=1, id=9, fully qualified name = 'master.accion', comment= 'tabla accion');

set add table (set id=1, origin=1, id=10, fully qualified name = 'master.cargo_administrativo', comment= 'tabla cargo_administrativo');

set add table (set id=1, origin=1, id=11, fully qualified name = 'master.escuela', comment= 'tabla escuela');

set add table (set id=1, origin=1, id=12, fully qualified name = 'master.estudiante', comment= 'tabla estudiante');

set add table (set id=1, origin=1, id=13, fully qualified name = 'master.facultad', comment= 'tabla facultad');

set add table (set id=1, origin=1, id=14, fully qualified name = 'master.funcion', comment= 'tabla funcion');

set add table (set id=1, origin=1, id=15, fully qualified name = 'master.grupo_menus', comment= 'tabla grupo_menus');

set add table (set id=1, origin=1, id=16, fully qualified name = 'master.institucion', comment= 'tabla institucion');

set add table (set id=1, origin=1, id=17, fully qualified name = 'master.menu_sitio', comment= 'tabla menu sitio');

set add table (set id=1, origin=1, id=18, fully qualified name = 'master.modulo', comment= 'tabla modulo');

set add table (set id=1, origin=1, id=29, fully qualified name = 'master.modulo_grupo_menu_cero', comment= 'tabla modulo_grupo_menu_cero');

set add table (set id=1, origin=1, id=20, fully qualified name = 'master.nivel', comment= 'tabla nivel'); set add table (set id=1, origin=1, id=21, fully qualified name = 'master.parametros', comment= 'tabla parametros');

set add table (set id=1, origin=1, id=22, fully qualified name = 'master.periodos', comment= 'tabla periodos');

set add table (set id=1, origin=1, id=23, fully qualified name = 'master.rol', comment= 'tabla rol');

set add table (set id=1, origin=1, id=24, fully qualified name = 'master.tutor', comment= 'tabla tutor'); set add table (set id=1, origin=1, id=25, fully qualified name = 'master.usuario', comment= 'tabla

```
usuario');

set add table (set id=1, origin=1, id=26, fully qualified name = 'master.usuario_cargo_administrativo',
comment= 'tabla usuario_cargo_administrativo');

set add table (set id=1, origin=1, id=27, fully qualified name = 'master.usuario_rol', comment= 'tabla
usuario_rol');

set add table (set id=1, origin=1, id=28, fully qualified name = 'planificacion.actividades_planificadas',
comment= 'tabla actividades_planificadas');

store node (id = 2, comment = 'nodo esclavo', EVENT NODE=1);

store path (server = 1, client = 2, conninfo = 'dbname = tutorias host = 192.168.1.2 user = postgres
password = 12345');

store path (server = 2, client = 1, conninfo = 'dbname = tutorias host = 192.168.1.3 user = postgres
password = 12345');

store listen (origin = 1, provider = 1, receiver = 2);

store listen (origin = 2, provider= 2, receiver = 1);
```

1.2.4 Creación de archivo para Servidor Esclavo

Creamos un archivo plano .txt y guardamos en la ruta /opt/PostgreSQL/9.3/bin/, con las siguientes configuraciones. Le asignamos el nombre de suscriptor.

```
cluster name = tutorias;
node 1 admin conninfo='dbname=tutorias host=192.168.1.2 user=postgres password=12345';
node 2 admin conninfo='dbname=tutorias host=192.168.1.3 user=postgres password=12345';
subscribe set (id=1, provider=1, receiver=2, forward=yes);
```

1.3 Ejecución Slony-I

Ejecución en servidor Maestro

./slonik maestro.txt

./slon tutorias "dbname = tutorias user = postgres password = 12345"

Ilustración 27: Ejecución de archivo plano maestro.txt

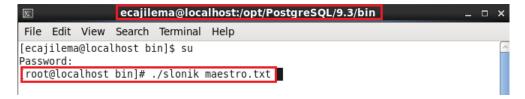
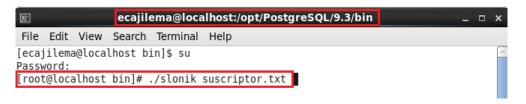


Ilustración 28: Ejecución base de datos a replicar


Fuente: Estuardo Cajilema

Ejecución en servidor Esclavo

./slonik suscriptor.txt

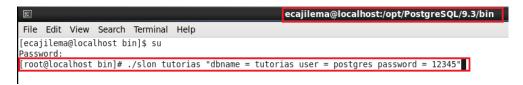

./slon tutorias "dbname = tutorias user = postgres password = 12345"

Ilustración 29: Ejecución de archivo plano suscriptor.txt

Fuente: Estuardo Cajilema

Ilustración 30: Ejecución base de datos a replicar

Fuente: Estuardo Cajilema

1.4 Instalación PgPool-II

Se puede instalar por el terminal de CentOS o directamente descargado el paquete de instalación en la página oficial, este caso descargamos en paquete de instalación para el sistema operativo requerido y versión de PostgreSQL, se requiere conexión a internet.

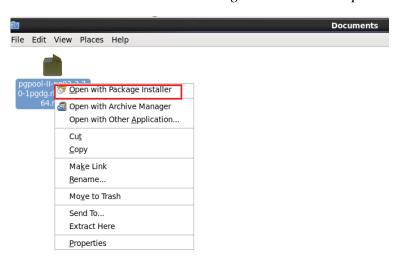

https://pgpool.net/mediawiki/index.php/Downloads

Ilustración 31: Versión de PgPool-II a descargar, versión de CentOS

	pgpool-II version	OS/Arch
	RPM	
١.	3.7₺	CentOS/RHEL 7₺
5	3.7 G	CentOS/RHEL 6ể
	3.6№	CentOS/RHEL 7₺
	3.0g	CentOS/RHEL 6₺
	3.5№	CentOS/RHEL 7₺
	J.JE	CentOS/RHEL 6년
	3 4rP	CentOS/RHEL 7₺
	3.4 <u>6</u>	CentOS/RHEL 6₺
	3 3№	CentOS/RHEL 7₺
	3.36	CentOS/RHEL 6₺
	Old release ₽	CentOS/RHEL 6년
	SRPM	
		055400/DUEL 7-9

Abrir el paquete de instalación como se ilustra y procedemos instalar el paquete, por de defecto se instalará en la dirección /etc/.

Ilustración 32: Instalación de PgPool-II archivo. rpm

Fuente: Estuardo Cajilema

1.5 Configuración PgPool-II

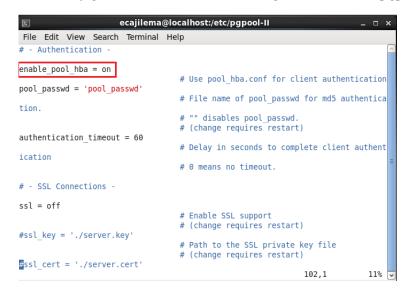
La configuración de PgPool-II únicamente se realiza en el servidor donde se va ejecutar PgPool-II.

1.5.1 Configuración de archivo pgpool.conf

Modo replicación

El archivo de configuración ubicamos en la ruta /etc/PgPool-II/, configuramos los parámetros, como se ilustra.

Ilustración 33: Configuración de escucha, puerto de PgPool-II archivo pgpool.conf


```
ecajilema@localhost:/etc/pgpool-II
 File Edit View Search Terminal Help
# CONNECTIONS
# - pgpool Connection Settings -
listen addresses = '*'
                                          # Host name or IP address to listen on:
# '*' for all, '' for no TCP/IP connections
                                          # (change requires restart)
port = 9999
                                          # Port number
                                          # (change requires restart)
socket dir = '/tmp'
                                          # Unix domain socket path
# The Debian package defaults to
                                          # /var/run/postgresql
# (change requires restart)
listen backlog multiplier = 2
                                          # Set the backlog parameter of listen(2) to
<u>i</u>ldren * listen_backlog_multiplier
                                          # (change requires restart)
```

Fuente: Estuardo Cajilema

Ilustración 34: Configuración de backend host archivo pgpool.conf

```
ecajilema@localhost:/etc/pgpool-II
 File Edit View Search Terminal Help
 # - Backend Connection Settings
backend hostname0 = '192.168.1.4'
                                        # Host name or IP address to connect to for b
backend port0 = 5432
                                        # Port number for backend 0
backend_weight0 = 1
                                        # Weight for backend 0 (only in load balancin
backend_data_directory0 = '/var/lib/pgsql/data'
                                        # Data directory for backend 0
backend flag0 = 'ALLOW TO FAILOVER'
                                        # Controls various backend behavior
# ALLOW_TO_FAILOVER, DISALLOW_TO_FAILOVER
                                        # or ALWAYS MASTER
backend hostname1 = '192.168.1.5
backend port1 = 5432
backend weight1 = 1
backend_data_directory1 = '/data1'
backend_flag1 = 'ALLOW_TO_FAILOVER'
# - Authentication -
                                                                       82.1
                                                                                        8%
```

Ilustración 35: Configuración de autenticación PgPool-II archivo pgpool.conf

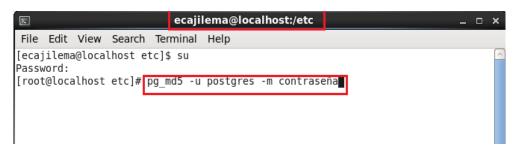
Ilustración 36: Configuración de modo de replicación PgPool-II archivo pgpool.conf

Ilustración 37: Configuración balanceo de carga PgPool-II archivo pgpool.conf

1.5.2 Configuración de archivo pool_hba.conf

El archivo de configuración ubicamos en la ruta /etc/PgPool-II/. Agregar la IP de red.

Ilustración 38: Asignación de IP red archivo pool_hba.conf


```
ecajilema@localhost:/etc/pgpool-II
File Edit View Search Terminal Help
# characters must be quoted. Quoting one of the keywords "all" or
# makes the name lose its special character, and just match a database or
# username with that name.
# This file is read on pgpool startup. If you edit the file on a running
# system, you have to restart the pgpool for the changes to take effect.
# Put your actual configuration here
# If you want to allow non-local connections, you need to add more
# "host" records. In that case you will also need to make pgpool listen
# on a non-local interface via the listen_addresses configuration parameter.
# TYPE DATABASE
                     USER
                                  CIDR-ADDRESS
                                                           METHOD
# "local" is for Unix domain socket connections only
local
        all
                      all
# IPv4 local connections:
                                   127.0.0.1/32
host
        all
                     all
                                                           trust
                                   192.168.1.1/24
ost
                      postgres
```

Fuente: Estuardo Cajilema

1.5.3 Configuración de archivo pool_passwd

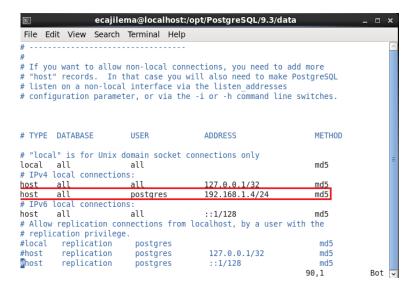
El archivo de configuración ubicamos en la ruta /etc/. Encriptamos la contraseña de PostgreSQL método md5 con la siguiente línea de código pg_md5 -u postgres -m contraseña, automáticamente nos genera la contraseña encriptada en el archivo pool_passwd.

Ilustración 39: Encriptación md5 contraseña PostgreSQL

1.5.4 Configuración de archivo *pcp.conf*

El archivo de configuración ubicamos en la ruta /etc/PgPool-II/. Copiamos la contraseña encriptada, lo encontramos en el archivo pool_passwd.

Ilustración 40: Contraseña encriptada de PostgreSQL archivo pcp.conf



Fuente: Estuardo Cajilema

1.5.5 Configuración de archivo pg_hba.conf

El archivo de configuración ubicamos en la ruta /opt/PostgreSQL/9.3/data/. En ambos nodos agregamos la siguiente línea.

Ilustración 41: Asignación IP, usuario del servidor PgPool-II archivo pg_hba. conf

1.6 Ejecución PgPool-II

En el servidor donde se aloja PgPool-II ejecutamos la siguiente línea para iniciar pgpool.

pgpool -n &

Ilustración 42: Ejecución de PgPool-II

```
File Edit View Search Terminal Help

[ecajilema@localhost etc]$ su

Password:
[root@localhost etc]# pgpool -n &

[1] 2624

[root@localhost etc]# 2018-02-10 15:41:23: pid 2624: LOG: Setting up socket for 0.0.0.0:9999

2018-02-10 15:41:23: pid 2624: LOG: Setting up socket for :::9999

2018-02-10 15:41:23: pid 2624: LOG: pgpool-II successfully started. version 3.7

.0 (amefuriboshi)
[root@localhost etc]#
```

Fuente: Estuardo Cajilema

Nota: En caso de no iniciar normalmente PgPool-II, use los siguientes comandos para iniciar.

Tabla 11: Comandos para inicializar PgPool-II

-c	clear-cache	Borra la caché de consultas
-f config_file	config-file config-file	Especifica pgpool.conf.
-a hba_file	hba-file hba_file	Especifica pool_hba.conf.
-F pcp_config_file	pcp-password-file	Especifica pcp.conf.

-n	no-daemon	Modo no daemon (no se desconecta la terminal).
-D	discard-status	Descartar el archivo pgpool_status y no restaura el estado anterior.
-C	clear-oidmaps	Descartar mapas OID en memqcache_oiddir de el caché de consultas en memoria.
-d	debug	Modo debug.

ANEXO III

Herramienta de medición

Para la medición de los indicadores tiempo de respuesta, uso de cpu, memoria y disco utilizamos Apache JMeter herramienta de carga y prueba de estrés en aplicaciones web, así como en Base de Datos. Se realiza una transacción al servidor de PostgreSQL con una consulta de tipo insert. Base de datos tutorías, tabla institución.

Se realizar una transacción con 282 usuarios.

Tabla 12: Herramienta de medición y complementos

Herramienta	Versión	Complemento	Versión
Apache JMeter	3.3	PerfMon (Servers Performance Monitoring)	2.1
		PerfMon Server Agent	2.2.3

Fuente: Estuardo Cajilema

ANEXO IV

Mediciones de los indicadores

- Tiempo de Respuesta
- Uso de recursos

CPU

MEMORIA

DISCO

Tabla 13: Mediciones de los indicadores tiempo de respuesta, cpu, ram, disco

N.º	Herramienta	Tiempo de respuesta s	CPU%	RAM%	DISCO%
1	Slony-I	4,896	0,157	8,437	0
2	Slony-I	4,799	0,374	9,186	0
3	Slony-I	4,925	1,758	11,105	0
4	Slony-I	4,797	8,03	11,501	0
5	Slony-I	4,834	3,136	10,796	0
6	Slony-I	4,803	7,017	12,183	0
7	Slony-I	4,799	13,979	12,552	0
8	Slony-I	4,791	10,513	13,105	0
9	Slony-I	4,784	20,202	13,165	0
10	Slony-I	4,773	13,005	13,165	0
11	Slony-I	4,812	6,649	13,167	0
12	Slony-I	4,779	3,513	13,18	0
13	Slony-I	4,766	3,517	13,203	0
14	Slony-I	4,749	6,163	13,202	0
15	Slony-I	4,742	2,631	13,205	0
16	Slony-I	4,738	4,654	13,211	0
17	Slony-I	4,799	9,445	13,251	0
18	Slony-I	4,755	14,142	13,247	0
19	Slony-I	4,76	5,764	13,254	0
20	Slony-I	4,814	4,505	13,262	0
21	Slony-I	4,773	8,816	13,265	0
22	Slony-I	4,755	4,38	13,269	0
23	Slony-I	4,765	1,129	13,273	0
24	Slony-I	4,821	1,754	13,273	0
25	Slony-I	4,797	2,377	13,279	0
26	Slony-I	4,773	2,503	13,277	0
27	Slony-I	4,776	6,015	13,295	0
28	Slony-I	4,78	8,564	13,292	0
29	Slony-I	4,655	6,532	13,293	0
30	Slony-I	4,751	2,506	13,293	0

31	Slony-I	4,723	0,877	13,294	0
32	Slony-I	4,733	1,5	13,308	0
	·		,		
33	Slony-I	4,809	4,265	13,32	0
34	Slony-I	4,774	15,849	13,338	0
35	Slony-I	4,726	16,329	13,334	0
36	Slony-I	4,69	3,132	13,339	0
37	Slony-I	4,792	7,151	13,355	0
38	Slony-I	4,622	10,466	13,372	0
39	Slony-I	4,759	4,899	13,373	0
40	Slony-I	4,693	2,132	13,37	0
41	Slony-I	4,753	3,003	13,393	0
42	Slony-I	4,657	17,789	13,4	0
43	Slony-I	4,704	6,415	13,401	0
44	Slony-I	4,665	14,465	13,405	0
45	Slony-I	4,714	18,631	13,425	0
46	Slony-I	4,647	17,067	13,44	0
47	Slony-I	4,735	19,721	13,457	0
48	Slony-I	4,682	18,654	13,484	0
49	Slony-I	4,663	23,135	13,497	0
50	Slony-I	4,82	20,632	13,5	0
51	Slony-I	4,759	14,448	13,522	0
52	Slony-I	4,67	16,793	13,53	0
53	Slony-I	4,643	12,296	13,536	0
54	Slony-I	4,721	9,673	13,543	0
55	Slony-I	4,744	15,471	13,702	0
56	Slony-I	4,639	10,327	13,705	0
57	Slony-I	4,618	10,062	13,729	0
58	Slony-I	4,638	10,606	13,742	0
59	Slony-I	4,634	21,132	13,587	0
60	Slony-I	4,687	5,897	13,588	0
61	Slony-I	4,662	1,754	13,59	0
62	Slony-I	4,599	0,751	13,597	0
63	Slony-I	4,596	6,132	13,595	0

64	Slony-I	4,615	7,547	13,594	0
65	Slony-I	4,567	10,97	13,623	10,676
66	Slony-I	4,638	16,264	13,635	0
67	Slony-I	4,603	12,216	13,636	0
68	Slony-I	4,744	4,654	13,638	0
69	Slony-I	4,644	8,301	13,654	0
70	Slony-I	4,61	10,262	13,647	0
71	Slony-I	4,684	2,631	13,645	0
72	Slony-I	4,608	6,03	13,654	0
73	Slony-I	4,624	12,704	13,66	0
74	Slony-I	4,542	11,883	13,677	0
75	Slony-I	4,648	7,286	13,674	0
76	Slony-I	4,576	2,261	13,677	0
77	Slony-I	4,607	1,253	13,676	0
78	Slony-I	4,655	4,271	13,681	0
79	Slony-I	4,669	5,283	13,682	0
80	Slony-I	4,651	2,512	13,684	0
81	Slony-I	4,669	1,376	13,683	0
82	Slony-I	4,623	1,25	13,69	0
83	Slony-I	4,664	0,501	13,69	0
84	Slony-I	4,696	0,125	13,69	0
85	Slony-I	4,622	0,25	13,689	0
86	Slony-I	4,629	0,25	13,691	0
87	Slony-I	4,6	0	13,691	0
88	Slony-I	4,607	0,125	13,691	0
89	Slony-I	4,638	0,25	13,691	0
90	Slony-I	4,64	0	13,691	0
91	Slony-I	4,657	0,249	13,691	0
92	Slony-I	4,618	0,125	13,691	0
93	Slony-I	4,636	0,375	13,69	0
94	Slony-I	4,633	2,5	13,686	0
95	Slony-I	4,663	1,627	13,684	0
96	Slony-I	4,659	1,251	13,687	0

97	Slony-I	0,231	1,126	13,687	0
98	Slony-I	4,605	1,629	13,669	0
99	Slony-I	4,565	2,007	13,67	0
100	Slony-I	4,652	1,997	13,67	0
101	Slony-I	4,598	0,125	13,671	0
102	Slony-I	4,602	0,25	13,67	0
103	Slony-I	4,646	0,874	13,67	0
104	Slony-I	4,601	0,375	13,67	0
105	Slony-I	4,606	1,126	13,672	0
106	Slony-I	4,6	0,877	13,675	0
107	Slony-I	4,614	1,752	13,672	0
108	Slony-I	4,618	4,755	13,68	0
109	Slony-I	4,586	8,69	13,679	0
110	Slony-I	4,61	6,281	13,679	0
111	Slony-I	4,565	4,761	13,696	0
112	Slony-I	4,583	5,256	13,696	0
113	Slony-I	4,595	6,171	13,699	0
114	Slony-I	0,212	5,15	13,701	0
115	Slony-I	4,555	2,503	13,791	0
116	Slony-I	4,56	4,396	13,793	0
117	Slony-I	4,553	3,003	13,798	0
118	Slony-I	0,209	2,255	13,8	0
119	Slony-I	4,59	1,879	13,801	0
120	Slony-I	0,209	1,627	13,802	0
121	Slony-I	0,21	3,125	13,81	0
122	Slony-I	4,573	5,395	13,813	0
123	Slony-I	4,579	6,909	13,747	0
124	Slony-I	4,583	10,552	13,76	0
125	Slony-I	4,599	3,383	13,768	0
126	Slony-I	4,553	2,509	13,769	0
127	Slony-I	4,585	4,135	13,771	0
128	Slony-I	4,597	5,296	13,777	0
129	Slony-I	4,591	5,388	13,778	0

130	Slony-I	4,583	3,754	13,778	0
131	Slony-I	0,202	3,879	13,785	0
132	Slony-I	4,578	14,447	13,793	0
133	Slony-I	4,6	12,185	13,811	0
134	Slony-I	0,203	12,232	13,812	0
135	Slony-I	4,595	17,067	13,822	0
136	Slony-I	4,591	14,375	13,84	0
137	Slony-I	0,203	14,646	13,864	0
138	Slony-I	0,203	15,51	13,866	0
139	Slony-I	0,202	13,693	13,872	0
140	Slony-I	0,203	11,838	13,877	0
141	Slony-I	0,203	15,569	13,885	0
142	Slony-I	0,204	13,141	13,889	0
143	Slony-I	0,204	2,506	13,911	0
144	Slony-I	0,204	1,877	13,913	0
145	Slony-I	4,605	3,638	13,909	0
146	Slony-I	0,202	5,006	13,934	14,273
147	Slony-I	0,203	21,158	13,935	0
148	Slony-I	4,57	17,128	13,952	0
149	Slony-I	4,556	13,979	13,969	0
150	Slony-I	0,181	13,78	13,969	0
151	Slony-I	0,179	14,81	13,975	0
152	Slony-I	0,179	9,86	13,979	0
153	Slony-I	0,179	4,271	13,989	0
154	Slony-I	0,18	2,756	13,987	0
155	Slony-I	0,181	3,504	13,995	0
156	Slony-I	0,18	8,585	14,007	0
157	Slony-I	0,18	15,452	14,012	0
158	Slony-I	0,181	14,81	14,01	0
159	Slony-I	0,18	14,303	14,005	0
160	Slony-I	0,179	9,261	14,022	0
161	Slony-I	0,178	13,476	14,029	0
162	Slony-I	0,179	15,151	14,049	0

163	Slony-I	0,179	12,358	14,051	0
164	Slony-I	0,18	7,277	14,047	0
165	Slony-I	0,178	16,876	14,066	0
166	Slony-I	0,179	18,331	14,085	0
167	Slony-I	0,181	17,045	14,093	0
168	Slony-I	0,181	11,572	14,095	0
169	Slony-I	0,182	16,267	14,104	0
170	Slony-I	0,169	16,329	14,126	0
171	Slony-I	0,168	11,32	14,149	0
172	Slony-I	0,168	15,471	14,146	0
173	Slony-I	0,167	11,742	14,174	0
174	Slony-I	0,169	18,686	14,175	0
175	Slony-I	4,552	17,067	14,341	1,303
176	Slony-I	4,441	21,799	14,349	0
177	Slony-I	4,405	16,519	14,362	0
178	Slony-I	0,182	17,848	14,4	0
179	Slony-I	0,173	24,905	14,26	0
180	Slony-I	0,174	29,937	14,265	0
181	Slony-I	0,173	20,253	14,27	0
182	Slony-I	0,173	19,469	14,301	0
183	Slony-I	0,173	11,898	14,335	0
184	Slony-I	0,173	17,766	14,326	0
185	Slony-I	0,172	17,803	14,351	0
186	Slony-I	0,173	16,498	14,353	0
187	Slony-I	0,172	16,687	14,369	0
188	Slony-I	0,232	18,447	14,381	0
189	Slony-I	0,232	14,698	14,395	0
190	Slony-I	0,233	12,468	14,411	0
191	Slony-I	0,233	11,278	14,42	0
192	Slony-I	4,223	13,567	14,417	0
193	Slony-I	4,217	7,914	14,415	0
194	Slony-I	0,226	6,918	14,415	0
195	Slony-I	0,226	3,889	14,425	0

196	Slony-I	0,226	10,664	14,444	0
197	Slony-I	4,475	10,957	14,445	0
198	Slony-I	4,392	9,673	14,455	0
199	Slony-I	4,52	7,528	14,461	0
200	Slony-I	0,228	6,524	14,475	0
201	Slony-I	0,23	9,685	14,475	0
202	Slony-I	0,23	10,732	14,477	5,5
203	Slony-I	4,481	11,533	14,483	0
204	Slony-I	4,216	4,38	14,498	0
205	Slony-I	0,23	9,823	14,51	0
206	Slony-I	4,419	8,542	14,497	0
207	Slony-I	0,232	14,683	14,514	0
208	Slony-I	0,233	20,075	14,528	0
209	Slony-I	0,233	17,402	14,552	0
210	Slony-I	4,405	19,065	14,559	0
211	Slony-I	0,234	9,673	14,569	0
212	Slony-I	0,235	18,411	14,588	0
213	Slony-I	0,235	14,917	14,599	0
214	Slony-I	0,235	17,11	14,605	0
215	Slony-I	0,236	16,959	14,627	0
216	Slony-I	4,513	19,595	14,636	0
217	Slony-I	4,191	20,253	14,651	0
218	Slony-I	4,452	22,348	14,675	0
219	Slony-I	4,408	18,639	14,692	0
220	Slony-I	4,256	15,974	14,715	0
221	Slony-I	4,43	16,331	14,717	0
222	Slony-I	4,243	14,52	14,717	0
223	Slony-I	0,223	6,801	14,729	0
224	Slony-I	4,528	5,646	14,727	0
225	Slony-I	0,217	12,988	14,749	0
226	Slony-I	4,281	13,366	14,738	0
227	Slony-I	0,237	15,189	14,766	0
228	Slony-I	4,459	16,729	14,782	14,957

229	Slony-I	4,51	17,193	14,803	0
230	Slony-I	4,499	10,592	14,809	0
231	Slony-I	4,251	10,957	14,816	0
232	Slony-I	4,281	6,775	14,821	0
233	Slony-I	4,24	3,894	14,829	0
234	Slony-I	0,231	7,865	14,829	0
235	Slony-I	4,275	7,43	14,915	0
236	Slony-I	4,237	9,056	14,929	0
237	Slony-I	4,459	11,194	14,933	0
238	Slony-I	4,441	5,15	14,936	0
239	Slony-I	0,233	4,528	14,953	0
240	Slony-I	4,216	8,575	14,942	0
241	Slony-I	4,222	7,412	14,943	0
242	Slony-I	4,457	13,299	14,964	0
243	Slony-I	4,23	9,798	14,981	0
244	Slony-I	4,559	8,712	14,986	0
245	Slony-I	4,225	18,308	15,077	0
246	Slony-I	4,25	23,018	15,075	0
247	Slony-I	0,163	16,498	15,104	0
248	Slony-I	0,162	19,546	15,109	0
249	Slony-I	4,292	17,906	14,961	0
250	Slony-I	0,164	24,811	14,975	0
251	Slony-I	4,288	9,685	14,977	0
252	Slony-I	4,254	14,88	14,982	0
253	Slony-I	4,267	12,075	15,015	0
254	Slony-I	4,235	10,998	15,02	0
255	Slony-I	0,158	15,365	15,074	0
256	Slony-I	0,152	13,299	15,091	0
257	Slony-I	0,153	14,917	15,101	0
258	Slony-I	0,152	13,979	15,1	0
259	Slony-I	0,153	8,908	15,092	0
260	Slony-I	0,158	11,237	15,113	0
261	Slony-I	0,157	7,653	15,116	0

262	Slony-I	0,155	3,136	15,173	13,955
263	Slony-I	0,162	16,331	15,161	0,421
264	Slony-I	0,16	11,194	15,156	0
265	Slony-I	0,163	10,101	15,165	0
266	Slony-I	0,162	2,893	15,158	0
267	Slony-I	0,162	9,774	15,168	0
268	Slony-I	0,162	6,407	15,168	0
269	Slony-I	0,162	12,155	15,175	0
270	Slony-I	0,163	14,664	15,199	0
271	Slony-I	0,164	11,306	15,2	0
272	Slony-I	0,161	13,836	15,207	0
273	Slony-I	0,155	9,068	15,224	0
274	Slony-I	0,163	7,421	15,228	0
275	Slony-I	0,16	11,237	15,231	0
276	Slony-I	0,164	13,619	15,257	0
277	Slony-I	0,172	16,035	15,263	0
278	Slony-I	0,168	17,506	15,272	0
279	Slony-I	0,174	16,497	15,289	0
280	Slony-I	0,168	17,632	15,305	0
281	Slony-I	0,166	16,161	15,311	0
282	Slony-I	0,175	18,686	15,316	0
283	Slony-I	0,168	9,068	15,318	0
284	Slony-I	0,171	3,652	15,321	0
285	Slony-I	0,176	15,869	15,339	0
286	Slony-I	0,169	14,735	15,349	0
287	Slony-I	0,17	15,423	15,363	0
288	Slony-I	0,171	20,302	15,387	0
289	Slony-I	4,249	15,929	15,393	0
290	Slony-I	0,174	17,654	15,39	0
291	Slony-I	0,176	15,316	15,411	10,585
292	Slony-I	0,18	18,734	15,438	0
293	Slony-I	0,18	12,201	15,442	0
294	Slony-I	0,175	13,299	15,45	0

295	Slony-I	0,171	18,158	15,617	0
296	Slony-I	0,175	14,683	15,617	0
297	Slony-I	0,174	10,957	15,627	0
298	Slony-I	0,173	9,056	15,633	0
299	Slony-I	0,186	12,704	15,651	0
300	Slony-I	0,176	24,528	15,487	0
301	Slony-I	0,175	11,668	15,511	0
302	Slony-I	0,178	12,736	15,512	0
303	Slony-I	0,171	10,275	15,523	0
304	Slony-I	0,185	15,063	15,527	0
305	Slony-I	0,174	12,955	15,531	0
306	Slony-I	0,175	10,957	15,527	0
307	Slony-I	0,18	7,954	15,563	0
308	Slony-I	0,177	13,274	15,564	0
309	Slony-I	0,178	7,884	15,575	0
310	Slony-I	0,177	12,907	15,574	0
311	Slony-I	0,183	8,301	15,575	0
312	Slony-I	0,181	5,025	15,582	0
313	Slony-I	0,179	4,02	15,585	0
314	Slony-I	0,185	2,885	15,606	0
315	Slony-I	4,267	8,125	15,604	0
316	Slony-I	0,184	9,205	15,603	0
317	Slony-I	0,181	12,578	15,604	0
318	Slony-I	0,192	9,673	15,627	0
319	Slony-I	0,189	9,056	15,624	0
320	Slony-I	0,186	11,742	15,64	0
321	Slony-I	0,182	12,311	15,668	0
322	Slony-I	0,186	12,626	15,668	0
323	Slony-I	0,184	4,271	15,668	0
324	Slony-I	0,183	7,017	15,669	0
325	Slony-I	0,184	5,025	15,679	15,387
326	Slony-I	0,189	18,686	15,685	0
327	Slony-I	0,197	11,237	15,684	0

328	Slony-I	0,201	5,031	15,685	0
329	Slony-I	0,204	12,437	15,694	0
330	Slony-I	0,204	10,075	15,711	0
331	Slony-I	0,199	16,729	15,738	0
332	Slony-I	0,201	10,915	15,736	0
333	Slony-I	4,296	6,926	15,736	0
334	Slony-I	0,204	3,003	15,744	0
335	Slony-I	0,204	14,267	15,761	0
336	Slony-I	0,205	10,886	15,759	0
337	Slony-I	0,196	7,672	15,762	0
338	Slony-I	0,206	10,858	15,768	0
339	Slony-I	0,207	19,138	15,791	0
340	Slony-I	0,197	18,86	15,788	0
341	Slony-I	0,207	15,802	15,823	0
342	Slony-I	0,206	15,345	15,828	0
343	Slony-I	0,206	12,185	15,837	0
344	Slony-I	0,207	16,202	15,846	0
345	Slony-I	0,209	17,128	15,87	0
346	Slony-I	0,208	18,56	15,885	0
347	Slony-I	0,222	20,807	15,895	0
348	Slony-I	0,223	14,861	15,901	0
349	Slony-I	0,214	13,51	15,914	0
350	Slony-I	0,214	9,319	15,911	0
351	Slony-I	0,21	12,373	15,932	0
352	Slony-I	0,213	10,314	15,942	0
353	Slony-I	0,21	10,314	15,953	0
354	Slony-I	0,212	13,224	15,955	10,751
355	Slony-I	0,213	19,771	16,07	0
356	Slony-I	0,212	17,254	16,074	0
357	Slony-I	0,212	21,265	16,092	0
358	Slony-I	0,211	17,825	16,106	0
359	Slony-I	0,213	11,083	16,126	0
360	Slony-I	0,215	10,353	16,137	0

361	Slony-I	0,214	14,303	16,145	0
362	Slony-I	0,215	16,246	16,15	0
363	Slony-I	0,211	10,998	16,161	0
364	Slony-I	0,215	10,327	16,18	0
365	Slony-I	0,213	15,365	16,246	0
366	Slony-I	0,158	17,128	16,256	0
367	Slony-I	0,158	12,704	16,254	0
368	Slony-I	0,159	11,904	16,271	0
369	Slony-I	0,158	10,288	16,111	0
370	Slony-I	0,188	8,531	16,099	0
371	Slony-I	0,187	3,625	16,106	0
372	Slony-I	0,187	12,358	16,107	0
373	Slony-I	0,188	3,889	16,113	0
374	Slony-I	0,187	2,258	16,116	0
375	Slony-I	0,188	5,52	16,115	0
376	Slony-I	0,188	11,349	16,119	0
377	Slony-I	0,187	7,779	16,123	0
378	Slony-I	0,186	2,258	16,123	0
379	Slony-I	0,187	10,678	16,131	0
380	Slony-I	0,186	7,169	16,136	0
381	Slony-I	0,185	9,068	16,134	0
382	Slony-I	0,187	12,105	16,146	0
383	Slony-I	0,185	8,176	16,149	0
384	Slony-I	0,185	10,552	16,147	0
385	PgPool-II	6,654	1	4,123	0
386	PgPool-II	6,664	5,729	4,24	0
387	PgPool-II	6,665	1,997	4,248	0
388	PgPool-II	6,669	1,376	4,25	0
389	PgPool-II	6,696	1,627	4,251	0
390	PgPool-II	6,704	0,25	4,251	0
391	PgPool-II	6,706	0,624	4,251	0
392	PgPool-II	6,661	0,625	4,964	0
393	PgPool-II	0,047	8,646	4,971	0

394	PgPool-II	0,049	0,998	4,971	0
395	PgPool-II	0,051	2,007	4,971	0
396	PgPool-II	0,053	4,505	4,971	0
397	PgPool-II	6,822	1,631	4,972	0
398	PgPool-II	6,815	0,5	4,96	0
399	PgPool-II	6,823	0,739	4,96	0
400	PgPool-II	6,851	3,495	4,96	0
401	PgPool-II	6,86	7,259	4,961	0
402	PgPool-II	0,07	5,778	4,96	0
403	PgPool-II	6,791	1,25	4,96	0
404	PgPool-II	6,891	0,25	4,965	0
405	PgPool-II	0,133	1,752	4,964	0
406	PgPool-II	0,224	2,386	4,963	0
407	PgPool-II	0,227	3,262	4,962	0
408	PgPool-II	0,216	3,262	4,961	0
409	PgPool-II	0,222	1,882	4,962	0
410	PgPool-II	0,219	3,128	4,963	0
411	PgPool-II	0,22	3,647	4,962	0
412	PgPool-II	6,94	3,125	4,961	0
413	PgPool-II	7,019	4,671	4,961	0
414	PgPool-II	7,003	6,633	4,964	0
415	PgPool-II	6,944	11,363	4,963	0
416	PgPool-II	0,195	10,745	4,963	0
417	PgPool-II	0,185	11,46	4,965	0
418	PgPool-II	0,184	10,579	4,964	0
419	PgPool-II	0,213	10,025	4,963	0
420	PgPool-II	0,21	9,386	4,963	0
421	PgPool-II	0,21	10,101	4,969	0
422	PgPool-II	6,992	11,152	4,975	0
423	PgPool-II	6,983	11,557	4,977	0
424	PgPool-II	6,985	11,772	4,975	0
425	PgPool-II	0,196	7,412	4,976	0
426	PgPool-II	6,986	10,831	4,982	0

427	PgPool-II	0,161	6,809	4,991	0
428	PgPool-II	0,152	6,918	4,992	0
429	PgPool-II	0,059	7,964	4,987	0
430	PgPool-II	0,061	9,159	4,994	0
431	PgPool-II	0,056	9,547	4,993	0
432	PgPool-II	0,058	6,792	4,999	0
433	PgPool-II	0,057	5,778	4,996	0
434	PgPool-II	0,059	2,383	4,995	0
435	PgPool-II	0,06	1,126	5,001	0
436	PgPool-II	0,06	3,136	5	0
437	PgPool-II	7,112	5,771	4,996	0
438	PgPool-II	0,071	1,375	5,005	0
439	PgPool-II	0,101	5,137	5,002	0
440	PgPool-II	0,1	6,148	5,004	0
441	PgPool-II	0,099	4,26	5,001	0
442	PgPool-II	0,1	4,385	5,003	0
443	PgPool-II	0,1	4,522	5,005	0
444	PgPool-II	7,123	6,39	5,003	0
445	PgPool-II	0,076	8,02	5,004	0
446	PgPool-II	0,074	4,02	5,005	0
447	PgPool-II	0,076	3,375	5,013	0
448	PgPool-II	0,075	9,796	5,011	0
449	PgPool-II	0,086	6,516	5,015	0
450	PgPool-II	0,068	4,005	5,014	0
451	PgPool-II	0,082	9,331	5,018	0
452	PgPool-II	0,077	7,026	5,025	0
453	PgPool-II	0,081	5,653	5,023	0
454	PgPool-II	0,081	8,542	5,021	0
455	PgPool-II	0,092	7,402	5,025	0
456	PgPool-II	0,092	5,415	5,02	0
457	PgPool-II	0,092	4,14	5,022	0
458	PgPool-II	0,095	3,258	5,022	0
459	PgPool-II	0,096	6,398	5,023	0

460	PgPool-II	0,113	5,422	5,022	0
461	PgPool-II	0,111	4,761	5,028	0
462	PgPool-II	7,215	5,276	5,01	0
463	PgPool-II	0,163	8,805	5,009	0
464	PgPool-II	0,167	5,157	5,009	0
465	PgPool-II	0,162	2,506	5,009	0
466	PgPool-II	0,171	4,755	5,01	0
467	PgPool-II	0,172	5,388	5,008	0
468	PgPool-II	0,172	3,245	5,008	0
469	PgPool-II	0,172	0,75	4,995	0
470	PgPool-II	0,169	6,792	4,997	0
471	PgPool-II	0,171	5,897	4,994	0
472	PgPool-II	0,172	7,954	4,995	0
473	PgPool-II	0,171	3,128	5,001	0
474	PgPool-II	0,174	5,395	5,001	0
475	PgPool-II	0,179	5,388	5	0
476	PgPool-II	0,261	5,52	5,005	0
477	PgPool-II	0,249	1,001	5,006	0
478	PgPool-II	0,266	1,375	5,006	0
479	PgPool-II	0,393	4,396	5,005	0
480	PgPool-II	0,431	3,25	5,005	0
481	PgPool-II	0,431	4,13	5,006	0
482	PgPool-II	0,593	7,808	5,005	0
483	PgPool-II	0,65	3,764	5,006	0
484	PgPool-II	0,702	6,163	5,005	0
485	PgPool-II	0,824	2,506	5,005	0
486	PgPool-II	7,916	4,391	5,006	0
487	PgPool-II	0,858	7,914	5,005	0
488	PgPool-II	0,879	5,52	5,09	0
489	PgPool-II	0,781	8,782	5,012	0
490	PgPool-II	0,783	11,639	5,011	0
491	PgPool-II	0,784	6,398	5,013	0
492	PgPool-II	0,786	5,289	5,016	0

493	PgPool-II	0,775	5,256	5,013	0
494	PgPool-II	0,779	3,03	5,012	0
495	PgPool-II	0,776	2,506	5,017	0
496	PgPool-II	0,774	2,38	5,016	0
497	PgPool-II	0,775	2,885	5,016	0
498	PgPool-II	0,775	2,377	5,018	0
499	PgPool-II	0,775	2,255	5,017	0
500	PgPool-II	0,774	1,126	5,018	0
501	PgPool-II	8,124	1,625	5,02	0
502	PgPool-II	0,779	1,5	5,021	0
503	PgPool-II	0,779	1,378	5,022	0
504	PgPool-II	0,692	1,381	5,023	0
505	PgPool-II	0,692	1,248	5,023	0
506	PgPool-II	0,672	0,375	5,022	0
507	PgPool-II	0,544	0,751	5,021	0
508	PgPool-II	0,592	2,628	5,022	0
509	PgPool-II	0,642	1,889	5,025	0
510	PgPool-II	0,579	2,644	5,022	0
511	PgPool-II	0,528	2,634	5,021	0
512	PgPool-II	0,429	1,631	5,02	0
513	PgPool-II	0,432	2,509	5,02	0
514	PgPool-II	0,387	1,625	5,022	0
515	PgPool-II	0,392	1,254	5,021	0
516	PgPool-II	0,384	1,75	5,021	0
517	PgPool-II	0,371	2,005	5,021	0
518	PgPool-II	0,372	1,752	5,019	0
519	PgPool-II	0,374	2,377	5,021	0
520	PgPool-II	8,066	2,893	5,022	0
521	PgPool-II	0,374	3,517	5,023	0
522	PgPool-II	0,457	2,372	5,023	0
523	PgPool-II	0,485	1,877	5,022	0
524	PgPool-II	0,137	1,253	5,025	0
525	PgPool-II	0,14	0,998	5,024	0

526	PgPool-II	0,486	0,751	5,025	0
527	PgPool-II	0,489	0,875	5,025	0
528	PgPool-II	0,483	1,761	5,026	0
529	PgPool-II	0,514	1,251	5,024	0
530	PgPool-II	0,174	1	5,022	0
531	PgPool-II	0,173	1,752	5,024	0
532	PgPool-II	0,175	1,503	5,026	0
533	PgPool-II	0,471	1,754	5,025	0
534	PgPool-II	0,98	2,377	5,03	0
535	PgPool-II	8,178	1,875	5,025	0
536	PgPool-II	8,171	2,141	5,025	0
537	PgPool-II	8,182	1,503	5,027	0
538	PgPool-II	8,177	0,876	5,029	0
539	PgPool-II	0,187	1,503	5,028	0
540	PgPool-II	0,572	1,5	5,031	0
541	PgPool-II	0,577	2,252	5,03	0
542	PgPool-II	0,574	1,501	5,029	0
543	PgPool-II	0,561	1,254	5,028	0
544	PgPool-II	0,576	1,622	5,03	0
545	PgPool-II	0,576	2,386	5,033	0
546	PgPool-II	0,577	2,625	5,034	0
547	PgPool-II	0,564	3,638	5,031	0
548	PgPool-II	0,195	2,889	5,13	0
549	PgPool-II	0,112	9,737	5,033	0
550	PgPool-II	0,199	11,904	5,033	0
551	PgPool-II	0,2	2,503	5,039	0
552	PgPool-II	0,115	3,894	5,032	0
553	PgPool-II	0,205	2,625	5,039	0
554	PgPool-II	0,21	3,136	5,034	0
555	PgPool-II	8,339	4,255	5,038	0
556	PgPool-II	0,256	2,767	5,034	0
557	PgPool-II	0,252	2,756	5,035	0
558	PgPool-II	0,262	2,506	5,039	0

559	PgPool-II	0,285	4,761	5,039	0
560	PgPool-II	0,278	8,553	5,043	0
561	PgPool-II	0,325	6,439	5,047	0
562	PgPool-II	0,318	7,384	5,042	0
563	PgPool-II	0,325	6,766	5,044	0
564	PgPool-II	0,24	7,16	5,046	0
565	PgPool-II	0,267	6,775	5,045	0
566	PgPool-II	0,442	6,407	5,045	0
567	PgPool-II	0,423	7,16	5,054	0
568	PgPool-II	0,429	5,889	5,049	0
569	PgPool-II	0,439	8,646	5,049	0
570	PgPool-II	0,444	5,289	5,05	0
571	PgPool-II	0,439	8,281	5,05	0
572	PgPool-II	0,57	2,503	5,07	0
573	PgPool-II	0,6	3,526	5,071	0
574	PgPool-II	0,63	5,395	5,074	0
575	PgPool-II	0,55	4,03	5,072	0
576	PgPool-II	0,616	8,301	5,074	0
577	PgPool-II	0,639	3,4	5,075	0
578	PgPool-II	0,625	2,247	5,075	0
579	PgPool-II	0,623	1,254	5,074	0
580	PgPool-II	0,915	2,506	5,078	0
581	PgPool-II	0,591	1,503	5,069	0
582	PgPool-II	0,591	3,889	5,077	0
583	PgPool-II	0,588	8,03	5,081	0
584	PgPool-II	0,829	6,423	5,079	0
585	PgPool-II	0,83	3,266	5,083	0
586	PgPool-II	0,581	3,634	5,084	0
587	PgPool-II	0,561	4,14	5,083	0
588	PgPool-II	0,837	1,627	5,082	0
589	PgPool-II	0,836	1,882	5,082	0
590	PgPool-II	0,841	1,378	5,086	0
591	PgPool-II	0,837	7,798	5,085	0

592	PgPool-II	0,836	4,75	5,106	0
593	PgPool-II	0,838	3,759	5,104	0
594	PgPool-II	0,405	5,15	5,103	0
595	PgPool-II	0,405	4,511	5,106	0
596	PgPool-II	0,424	4,01	5,106	0
597	PgPool-II	0,43	3,007	5,108	0
598	PgPool-II	0,42	2,127	5,108	0
599	PgPool-II	0,408	1,503	5,108	0
600	PgPool-II	0,424	0,876	5,106	0
601	PgPool-II	0,379	0,25	5,101	0
602	PgPool-II	0,341	1,127	5,099	0
603	PgPool-II	0,173	1,378	5,101	0
604	PgPool-II	0,131	0,875	5,102	0
605	PgPool-II	0,114	0,625	5,1	0
606	PgPool-II	0,109	0,878	5,1	0
607	PgPool-II	0,111	1,125	5,1	0
608	PgPool-II	0,107	1,879	5,207	0
609	PgPool-II	0,106	9,09	5,206	0
610	PgPool-II	0,105	12,765	5,105	0
611	PgPool-II	0,1	1,501	5,1	0
612	PgPool-II	0,1	0,873	5,103	0
613	PgPool-II	0,098	0,25	5,103	0
614	PgPool-II	0,095	3,132	5,104	0
615	PgPool-II	0,103	2,252	5,107	0
616	PgPool-II	0,102	3,404	5,105	0
617	PgPool-II	0,104	4,015	5,111	0
618	PgPool-II	0,104	2,996	5,108	0
619	PgPool-II	0,102	2,878	5,105	0
620	PgPool-II	0,108	3,266	5,105	0
621	PgPool-II	0,108	4,26	5,106	0
622	PgPool-II	0,108	2,76	5,107	0
623	PgPool-II	0,075	1,625	5,106	0
624	PgPool-II	0,078	1,126	5,11	0

625 PgPool-II 0,069 1,754 5,111 0 626 PgPool-II 0,084 1,629 5,111 0 627 PgPool-II 0,089 2,007 5,11 0 628 PgPool-II 0,086 2,002 5,109 0 629 PgPool-II 0,088 3,768 5,11 0 630 PgPool-II 0,09 3,379 5,111 0 631 PgPool-II 0,062 4,271 5,122 0 632 PgPool-II 0,062 4,271 5,122 0 633 PgPool-II 0,05 6,407 5,12 0 634 PgPool-II 0,053 4,391 5,121 0 635 PgPool-II 0,053 2,005 5,122 0 636 PgPool-II 0,052 2,644 5,124 0 637 PgPool-II 0,053 2,638 5,12 0 639	
627 PgPool-II 0,089 2,007 5,11 0 628 PgPool-II 0,086 2,002 5,109 0 629 PgPool-III 0,088 3,768 5,11 0 630 PgPool-III 0,09 3,379 5,111 0 631 PgPool-III 0,062 4,271 5,122 0 632 PgPool-III 0,158 9,937 5,12 0 633 PgPool-III 0,05 6,407 5,12 0 634 PgPool-III 0,053 4,391 5,121 0 635 PgPool-III 0,054 1,872 5,124 0 636 PgPool-III 0,053 2,644 5,124 0 637 PgPool-III 0,052 2,644 5,124 0 639 PgPool-III 0,052 2,746 5,122 0 640 PgPool-III 0,052 2,25 5,121 0 641<	
628 PgPool-II 0,086 2,002 5,109 0 629 PgPool-II 0,088 3,768 5,11 0 630 PgPool-II 0,09 3,379 5,111 0 631 PgPool-II 0,062 4,271 5,122 0 632 PgPool-II 0,158 9,937 5,12 0 633 PgPool-II 0,05 6,407 5,12 0 634 PgPool-II 0,053 4,391 5,121 0 635 PgPool-II 0,054 1,872 5,124 0 636 PgPool-II 0,053 2,605 5,122 0 637 PgPool-II 0,052 2,644 5,124 0 638 PgPool-II 0,053 2,638 5,12 0 639 PgPool-II 0,052 2,746 5,122 0 641 PgPool-II 0,052 2,25 5,121 0 642	
629 PgPool-II 0,088 3,768 5,11 0 630 PgPool-II 0,09 3,379 5,111 0 631 PgPool-II 0,062 4,271 5,122 0 632 PgPool-II 0,158 9,937 5,12 0 633 PgPool-II 0,05 6,407 5,12 0 634 PgPool-II 0,053 4,391 5,121 0 635 PgPool-II 0,053 2,005 5,122 0 636 PgPool-II 0,053 2,644 5,124 0 637 PgPool-II 0,052 2,644 5,124 0 638 PgPool-II 0,052 2,746 5,122 0 640 PgPool-II 0,052 2,746 5,122 0 641 PgPool-II 0,052 2,25 5,121 0 642 PgPool-II 0,054 2,506 5,122 0 643	
630 PgPool-II 0,09 3,379 5,111 0 631 PgPool-II 0,062 4,271 5,122 0 632 PgPool-II 0,158 9,937 5,12 0 633 PgPool-II 0,05 6,407 5,12 0 634 PgPool-II 0,053 4,391 5,121 0 635 PgPool-II 0,054 1,872 5,124 0 636 PgPool-II 0,053 2,005 5,122 0 637 PgPool-II 0,052 2,644 5,124 0 638 PgPool-II 0,053 2,638 5,12 0 639 PgPool-II 0,052 2,746 5,122 0 640 PgPool-II 0,053 1,378 5,124 0 641 PgPool-II 0,054 2,506 5,122 0 642 PgPool-II 0,043 1,385 5,123 0 644	
631 PgPool-II 0,062 4,271 5,122 0 632 PgPool-II 0,158 9,937 5,12 0 633 PgPool-II 0,05 6,407 5,12 0 634 PgPool-II 0,053 4,391 5,121 0 635 PgPool-II 0,054 1,872 5,124 0 636 PgPool-II 0,053 2,005 5,122 0 637 PgPool-II 0,052 2,644 5,124 0 638 PgPool-II 0,053 2,638 5,12 0 639 PgPool-II 0,052 2,746 5,122 0 640 PgPool-II 0,053 1,378 5,124 0 641 PgPool-II 0,052 2,25 5,121 0 642 PgPool-II 0,043 1,385 5,122 0 643 PgPool-II 0,043 2,002 5,122 0 645	
632 PgPool-II 0,158 9,937 5,12 0 633 PgPool-II 0,05 6,407 5,12 0 634 PgPool-II 0,053 4,391 5,121 0 635 PgPool-II 0,054 1,872 5,124 0 636 PgPool-II 0,053 2,005 5,122 0 637 PgPool-II 0,052 2,644 5,124 0 638 PgPool-II 0,053 2,638 5,12 0 639 PgPool-II 0,052 2,746 5,122 0 640 PgPool-II 0,052 2,2746 5,122 0 641 PgPool-II 0,052 2,25 5,121 0 642 PgPool-II 0,054 2,506 5,122 0 643 PgPool-II 0,043 1,385 5,123 0 644 PgPool-II 0,043 2,002 5,122 0 645	
633 PgPool-II 0,05 6,407 5,12 0 634 PgPool-II 0,053 4,391 5,121 0 635 PgPool-II 0,054 1,872 5,124 0 636 PgPool-II 0,053 2,005 5,122 0 637 PgPool-II 0,052 2,644 5,124 0 638 PgPool-II 0,053 2,638 5,12 0 639 PgPool-II 0,052 2,746 5,122 0 640 PgPool-II 0,053 1,378 5,124 0 641 PgPool-II 0,052 2,25 5,121 0 642 PgPool-II 0,054 2,506 5,122 0 643 PgPool-II 0,043 1,385 5,123 0 644 PgPool-II 0,043 2,002 5,122 0 645 PgPool-II 0,044 2,002 5,124 0 646	
634 PgPool-II 0,053 4,391 5,121 0 635 PgPool-II 0,054 1,872 5,124 0 636 PgPool-II 0,053 2,005 5,122 0 637 PgPool-II 0,052 2,644 5,124 0 638 PgPool-II 0,053 2,638 5,12 0 639 PgPool-II 0,052 2,746 5,122 0 640 PgPool-II 0,053 1,378 5,124 0 641 PgPool-II 0,052 2,25 5,121 0 642 PgPool-II 0,054 2,506 5,122 0 643 PgPool-II 0,043 1,385 5,123 0 644 PgPool-II 0,043 2,002 5,124 0 645 PgPool-II 0,044 2,002 5,124 0 646 PgPool-II 0,042 2,638 5,121 0	
635 PgPool-II 0,054 1,872 5,124 0 636 PgPool-II 0,053 2,005 5,122 0 637 PgPool-II 0,052 2,644 5,124 0 638 PgPool-II 0,053 2,638 5,12 0 639 PgPool-II 0,052 2,746 5,122 0 640 PgPool-II 0,053 1,378 5,124 0 641 PgPool-II 0,052 2,25 5,121 0 642 PgPool-II 0,054 2,506 5,122 0 643 PgPool-II 0,043 1,385 5,123 0 644 PgPool-II 0,043 2,002 5,122 0 645 PgPool-II 0,044 2,002 5,124 0 646 PgPool-II 0,042 2,638 5,121 0	
636 PgPool-II 0,053 2,005 5,122 0 637 PgPool-II 0,052 2,644 5,124 0 638 PgPool-II 0,053 2,638 5,12 0 639 PgPool-II 0,052 2,746 5,122 0 640 PgPool-II 0,053 1,378 5,124 0 641 PgPool-II 0,052 2,25 5,121 0 642 PgPool-II 0,054 2,506 5,122 0 643 PgPool-II 0,043 1,385 5,123 0 644 PgPool-II 0,043 2,002 5,122 0 645 PgPool-II 0,044 2,002 5,124 0 646 PgPool-II 0,042 2,638 5,121 0	
637 PgPool-II 0,052 2,644 5,124 0 638 PgPool-II 0,053 2,638 5,12 0 639 PgPool-II 0,052 2,746 5,122 0 640 PgPool-II 0,053 1,378 5,124 0 641 PgPool-II 0,052 2,25 5,121 0 642 PgPool-II 0,054 2,506 5,122 0 643 PgPool-II 0,043 1,385 5,123 0 644 PgPool-II 0,043 2,002 5,122 0 645 PgPool-II 0,044 2,002 5,124 0 646 PgPool-II 0,042 2,638 5,121 0	
638 PgPool-II 0,053 2,638 5,12 0 639 PgPool-II 0,052 2,746 5,122 0 640 PgPool-II 0,053 1,378 5,124 0 641 PgPool-II 0,052 2,25 5,121 0 642 PgPool-II 0,054 2,506 5,122 0 643 PgPool-II 0,043 1,385 5,123 0 644 PgPool-II 0,043 2,002 5,122 0 645 PgPool-II 0,044 2,002 5,124 0 646 PgPool-II 0,042 2,638 5,121 0	
639 PgPool-II 0,052 2,746 5,122 0 640 PgPool-II 0,053 1,378 5,124 0 641 PgPool-II 0,052 2,25 5,121 0 642 PgPool-II 0,054 2,506 5,122 0 643 PgPool-II 0,043 1,385 5,123 0 644 PgPool-II 0,043 2,002 5,122 0 645 PgPool-II 0,044 2,002 5,124 0 646 PgPool-II 0,042 2,638 5,121 0	
640 PgPool-II 0,053 1,378 5,124 0 641 PgPool-II 0,052 2,25 5,121 0 642 PgPool-II 0,054 2,506 5,122 0 643 PgPool-II 0,043 1,385 5,123 0 644 PgPool-II 0,043 2,002 5,122 0 645 PgPool-II 0,044 2,002 5,124 0 646 PgPool-II 0,042 2,638 5,121 0	
641 PgPool-II 0,052 2,25 5,121 0 642 PgPool-II 0,054 2,506 5,122 0 643 PgPool-II 0,043 1,385 5,123 0 644 PgPool-II 0,043 2,002 5,122 0 645 PgPool-II 0,044 2,002 5,124 0 646 PgPool-II 0,042 2,638 5,121 0	
642 PgPool-II 0,054 2,506 5,122 0 643 PgPool-II 0,043 1,385 5,123 0 644 PgPool-II 0,043 2,002 5,122 0 645 PgPool-II 0,044 2,002 5,124 0 646 PgPool-II 0,042 2,638 5,121 0	
643 PgPool-II 0,043 1,385 5,123 0 644 PgPool-II 0,043 2,002 5,122 0 645 PgPool-II 0,044 2,002 5,124 0 646 PgPool-II 0,042 2,638 5,121 0	
644 PgPool-II 0,043 2,002 5,122 0 645 PgPool-II 0,044 2,002 5,124 0 646 PgPool-II 0,042 2,638 5,121 0	
645 PgPool-II 0,044 2,002 5,124 0 646 PgPool-II 0,042 2,638 5,121 0	
646 PgPool-II 0,042 2,638 5,121 0	
647 PgPool-II 0.043 1.752 5.123 0	
1,752 3,125	
648 PgPool-II 0,04 1,75 5,123 0	
649 PgPool-II 0,049 0,998 5,127 0	
650 PgPool-II 0,051 4,659 5,126 0	
651 PgPool-II 0,051 1,877 5,126 0	
652 PgPool-II 0,051 3,007 5,123 0	
653 PgPool-II 0,041 2,753 5,124 0	
654 PgPool-II 0,05 3,557 5,127 0	
655 PgPool-II 0,04 3,156 5,126 0	
656 PgPool-II 0,039 0,998 5,125 0	
657 PgPool-II 0,038 2,125 5,126 0	

658	PgPool-II	0,041	0,877	5,126	0
659	PgPool-II	0,039	0,876	5,126	0
660	PgPool-II	0,039	0,5	5,125	0
661	PgPool-II	0,037	0,75	5,125	0
662	PgPool-II	0,038	0,375	5,126	0
663	PgPool-II	0,04	1,123	5,125	0
664	PgPool-II	0,039	0,626	5,132	0
665	PgPool-II	0,064	2,882	5,131	0
666	PgPool-II	0,079	5,018	5,128	0
667	PgPool-II	0,08	5,137	5,129	0
668	PgPool-II	0,079	4,5	5,138	0
669	PgPool-II	0,078	7,375	5,136	0
670	PgPool-II	0,08	1,501	5,136	0
671	PgPool-II	0,08	2,247	5,134	0
672	PgPool-II	0,091	1,126	5,134	0
673	PgPool-II	0,08	1,253	5,14	0
674	PgPool-II	0,081	2,007	5,138	0
675	PgPool-II	0,082	1,5	5,136	0
676	PgPool-II	0,077	0,877	5,136	0
677	PgPool-II	0,066	0,876	5,136	0
678	PgPool-II	0,067	0,881	5,138	0
679	PgPool-II	0,065	1,5	5,137	0
680	PgPool-II	0,07	3,909	5,136	0
681	PgPool-II	0,07	7,017	5,136	0
682	PgPool-II	0,07	2,5	5,136	0
683	PgPool-II	0,07	3,132	5,135	0
684	PgPool-II	0,07	2,38	5,135	0
685	PgPool-II	0,07	1,38	5,137	0
686	PgPool-II	0,073	1,505	5,135	0
687	PgPool-II	0,069	0,75	5,138	0
688	PgPool-II	0,069	1,251	5,141	0
689	PgPool-II	0,071	1,248	5,138	0
690	PgPool-II	0,069	1,505	5,138	0

691	PgPool-II	0,067	0,75	5,136	0
692	PgPool-II	0,084	0,876	5,131	0
693	PgPool-II	0,057	1,127	5,138	0
694	PgPool-II	0,044	1	5,141	0
695	PgPool-II	0,046	1,001	5,141	0
696	PgPool-II	0,045	0,878	5,141	0
697	PgPool-II	0,047	0,625	5,139	0
698	PgPool-II	0,045	1,13	5,137	0
699	PgPool-II	0,042	1,373	5,138	0
700	PgPool-II	0,045	0,875	5,142	0
701	PgPool-II	0,044	1,376	5,141	0
702	PgPool-II	0,047	3,132	5,144	0
703	PgPool-II	0,048	0,874	5,147	0
704	PgPool-II	0,054	1,256	5,149	0
705	PgPool-II	0,059	1,756	5,149	0
706	PgPool-II	0,055	1,889	5,152	0
707	PgPool-II	0,05	1,749	5,151	0
708	PgPool-II	0,05	1,875	5,149	0
709	PgPool-II	0,047	1,25	5,148	0
710	PgPool-II	0,05	0,501	5,145	0
711	PgPool-II	0,044	0,873	5,146	0
712	PgPool-II	0,049	0,375	5,146	0
713	PgPool-II	0,045	0,998	5,147	0
714	PgPool-II	0,046	1,498	5,15	0
715	PgPool-II	0,046	1,253	5,145	0
716	PgPool-II	0,048	1,129	5,146	0
717	PgPool-II	0,055	1,627	5,148	0
718	PgPool-II	0,075	0,75	5,147	0
719	PgPool-II	0,037	1,127	5,146	0
720	PgPool-II	0,056	1,254	5,148	0
721	PgPool-II	0,038	0,876	5,146	0
722	PgPool-II	0,038	2,125	5,145	0
723	PgPool-II	0,036	1,253	5,148	0

724	PgPool-II	0,038	1,25	5,148	0
725	PgPool-II	0,033	1,378	5,148	0
726	PgPool-II	0,035	2,13	5,15	0
727	PgPool-II	0,033	2,882	5,147	0
728	PgPool-II	0,039	2,252	5,15	0
729	PgPool-II	0,046	1,385	5,15	0
730	PgPool-II	0,136	2,002	5,15	0
731	PgPool-II	0,133	2,634	5,152	0
732	PgPool-II	0,122	2,882	5,147	0
733	PgPool-II	0,124	1,884	5,146	0
734	PgPool-II	0,124	1,75	5,155	0
735	PgPool-II	0,127	1,882	5,154	0
736	PgPool-II	0,123	2,125	5,154	0
737	PgPool-II	0,127	1,378	5,156	0
738	PgPool-II	0,128	0,751	5,154	0
739	PgPool-II	0,127	0,876	5,152	0
740	PgPool-II	0,126	1,375	5,155	0
741	PgPool-II	0,128	2,13	5,156	0
742	PgPool-II	0,13	1,75	5,156	0
743	PgPool-II	0,139	1,001	5,153	0
744	PgPool-II	0,21	0,626	5,155	0
745	PgPool-II	0,211	0,751	5,16	0
746	PgPool-II	0,51	1,125	5,155	0
747	PgPool-II	0,566	0,751	5,158	0
748	PgPool-II	0,565	1,248	5,156	0
749	PgPool-II	0,564	0,877	5,155	0
750	PgPool-II	0,568	1,251	5,156	0
751	PgPool-II	0,57	1,5	5,159	0
752	PgPool-II	0,564	2,258	5,155	0
753	PgPool-II	0,57	1,625	5,156	0
754	PgPool-II	0,569	1,254	5,16	0
755	PgPool-II	0,578	1,251	5,16	0
756	PgPool-II	0,568	1,38	5,162	0

757	PgPool-II	0,475	1,376	5,157	0
758	PgPool-II	0,476	1,875	5,162	0
759	PgPool-II	0,476	1,376	5,162	0
760	PgPool-II	0,507	1,501	5,161	0
761	PgPool-II	0,517	1,378	5,16	0
762	PgPool-II	0,516	1,248	5,163	0
763	PgPool-II	0,516	1,5	5,161	0
764	PgPool-II	0,519	1,002	5,159	0
765	PgPool-II	0,514	1,501	5,162	0
766	PgPool-II	0,521	1,622	5,16	0
767	PgPool-II	0,517	1,503	5,162	0
768	PgPool-II	0,517	1,376	5,162	0

Fuente: Estuardo Cajilema

Tabla 14: Transacciones realizadas correctamente Slony-I, PgPool-II

Dimisión	Indicador	Slony-I	PgPool-II
Numero de tareas	Eficacia	100%	98,44%
realizadas			
satisfactoriamente			

Fuente: Estuardo Cajilema