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RESUMEN  

La presente investigación tuvo como objetivo desarrollar un software simulador 

basado en modelos matemáticos y técnicas de machine learning para analizar y optimizar 

redes híbridas de energía renovable en centros educativos rurales del cantón Riobamba. La 

problemática identificada se relaciona con el limitado acceso a energía confiable en zonas 

rurales y la ausencia de herramientas accesibles que permitan planificar sistemas energéticos 

autosuficientes. 

El simulador integra ecuaciones diferenciales y métodos numéricos para modelar la 

generación, almacenamiento y consumo energético; además, incorpora algoritmos de 

predicción como Random Forest, Gradient Boosting, XGBoost y redes neuronales para 

estimar la producción solar/eólica y el consumo eléctrico. También se desarrolló un módulo 

de optimización mediante programación lineal y algoritmos genéticos, orientado a minimizar 

costos y maximizar la eficiencia. 

Los resultados mostraron que las redes híbridas solares-eólicas modeladas alcanzan 

entre un 68% y 82% de autosuficiencia energética, con ahorros de hasta un 40% en 

comparación con el consumo eléctrico tradicional. El modelo Random Forest obtuvo el mejor 

desempeño predictivo, con un R² de 0.936, mostrando robustez frente a datos climáticos 

ruidosos en entornos de altura. 

El simulador constituye una herramienta útil para la planificación energética en zonas 

rurales, contribuyendo a la sostenibilidad, la reducción de costos y la mitigación del impacto 

ambiental.  

PALABRAS CLAVE: Random forest, matemática computacional, machine learning, 

eficiencia energética.    
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INTRODUCCIÓN  

El acceso a una energía confiable y sostenible constituye un desafío recurrente en las 

zonas rurales, especialmente en instituciones educativas que requieren garantizar el 

funcionamiento continuo de sus actividades. En el cantón Riobamba, como en gran parte de 

las áreas rurales del país, las limitaciones de infraestructura eléctrica, los altos costos de 

extensión de redes y la falta de planificación energética contextualizada han generado 

dificultades para asegurar la autosuficiencia energética de los centros educativos. 

Frente a esta problemática, el uso de energías renovables, particularmente la solar y la 

eólica, se presenta como una alternativa viable para suplir las necesidades energéticas, reducir 

costos a largo plazo y mitigar el impacto ambiental. Sin embargo, el diseño e implementación 

de redes híbridas requiere herramientas especializadas que permitan simular escenarios, 

evaluar la factibilidad técnica y económica. 

En este contexto, la presente investigación tiene como propósito el desarrollo de un 

software simulador basado en modelos matemáticos y técnicas de machine learning, que 

posibilite analizar y optimizar redes híbridas de energía renovable en centros educativos 

rurales del cantón Riobamba. Dicho simulador integra ecuaciones diferenciales para modelar 

el comportamiento del sistema energético, algoritmos de predicción para estimar la 

generación y el consumo, y un módulo de optimización para configuraciones costo-efectivas. 

El aporte fundamental de este trabajo radica en proveer una herramienta accesible y 

contextualizada que facilite la planificación energética en entornos rurales,  de esta manera, 

se contribuye no solo a mejorar la eficiencia y la confiabilidad del suministro eléctrico en 

instituciones educativas, sino también a promover el desarrollo sostenible, la reducción de 

emisiones contaminantes y el fortalecimiento de la equidad social en comunidades que 

históricamente han enfrentado limitaciones en el acceso a servicios básicos. 
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CAPITULO I  

GENERALIDADES  

1.1 Planteamiento del problema  

En las zonas rurales del cantón Riobamba, el acceso a una fuente de energía confiable 

y continua sigue siendo un desafío significativo; las instituciones educativas de estas 

comunidades suelen depender de redes eléctricas inestables o inexistentes, lo que limita el 

desarrollo de actividades académicas y tecnológicas. Esta situación afecta la calidad 

educativa y las oportunidades de progreso social y económico de las poblaciones rurales. 

Aunque existen tecnologías de energías renovables —como la solar y la eólica— que 

podrían ofrecer soluciones sostenibles, su implementación óptima requiere un diseño 

adecuado de sistemas híbridos que integren diferentes fuentes energéticas, almacenamiento y 

consumo. Sin embargo, actualmente se carece de herramientas accesibles y contextualizadas 

que permitan simular, analizar y optimizar este tipo de redes energéticas de manera precisa y 

adaptada a las condiciones locales. 

A esto se suma la ausencia de modelos matemáticos aplicados a contextos rurales que 

consideren las particularidades climáticas y geográficas del Canton Riobamba, así como la 

limitada integración de técnicas de machine learning para predecir la generación y el 

consumo energético. La falta de estas herramientas dificulta la toma de decisiones informadas 

en la planificación y dimensionamiento de sistemas energéticos renovables. 

Por lo tanto, surge la necesidad de desarrollar un software simulador que integre 

modelos matemáticos y algoritmos de machine learning para analizar y optimizar redes 

híbridas de energía renovable en centros educativos rurales del cantón Riobamba. Esta 

herramienta permitirá estimar la producción energética, el consumo, los costos y la eficiencia 

del sistema, apoyando la planificación energética sostenible en contextos rurales. 
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1.2 Justificación de la investigación  

El desarrollo de sistemas energéticos sostenibles constituye una necesidad prioritaria 

en los sectores rurales del Ecuador, donde el acceso a energía confiable y asequible continúa 

siendo limitado. En particular, los centros educativos rurales del cantón Riobamba enfrentan 

deficiencias en el suministro eléctrico que afectan el normal desarrollo de sus actividades 

académicas, administrativas y tecnológicas. Esta realidad genera desigualdades en el acceso a 

la educación de calidad y limita la posibilidad de incorporar herramientas digitales o 

laboratorios que requieren energía continua. 

La implementación de redes híbridas de energía renovable (solar y eólica) representa 

una alternativa viable para garantizar el suministro energético en estos entornos. Sin 

embargo, su diseño óptimo requiere un análisis técnico complejo que integre factores como 

disponibilidad de recursos naturales, capacidad de almacenamiento, costos, eficiencia y 

proyección de consumo. En la actualidad, no existen herramientas informáticas accesibles 

que permitan realizar este tipo de análisis de manera integral, adaptadas al contexto 

geográfico y socioeconómico local. 

Por ello, la presente investigación propone el desarrollo de un software simulador 

basado en modelos matemáticos y técnicas de machine learning que permita analizar y 

optimizar redes híbridas de energía renovable en centros educativos rurales del cantón 

Riobamba. Este simulador facilitará la planificación energética sostenible, permitiendo 

estimar la generación, consumo y costos, así como optimizar la configuración de los sistemas 

para maximizar su eficiencia y rentabilidad. 

El aporte científico de esta investigación radica en la integración de modelos 

matemáticos y algoritmos de inteligencia artificial para el análisis energético, generando una 

herramienta novedosa y de gran utilidad práctica. A nivel social, contribuirá al 

fortalecimiento de la educación rural, promoviendo la equidad energética y el uso responsable 
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de los recursos naturales. Finalmente, desde una perspectiva ambiental, la optimización de 

sistemas renovables permitirá reducir la dependencia de fuentes fósiles y disminuir las 

emisiones de dióxido de carbono, alineándose con los objetivos nacionales e internacionales 

de sostenibilidad energética. 

1.3 Objetivos  

1.3.1 Objetivo General  

Desarrollar un software simulador basado en modelos matemáticos y machine 

learning para analizar y optimizar redes híbridas de energía renovable en centros educativos 

rurales del cantón Riobamba. 

1.3.2 Objetivos Específicos 

• Modelar redes híbridas de energía renovable utilizando ecuaciones diferenciales y 

métodos numéricos para representar generación, almacenamiento, y consumo 

energético. 

• Desarrollar algoritmos de predicción usando machine learning para estimar la 

generación energética (solar y/o eólica) y el consumo de los centros educativos. 

• Implementar un módulo de optimización, basado en técnicas como algoritmos 

genéticos o programación lineal, para minimizar costos y maximizar eficiencia. 

• Validar el simulador con datos reales o simulados de centros educativos rurales en el 

canton Riobamba, evaluando su precisión y utilidad. 

1.4 Hipótesis  

La implementación de un software simulador basado en modelos matemáticos y 

técnicas de machine learning permitirá analizar y optimizar de manera precisa las redes 

híbridas de energía renovable (solar y eólica) en centros educativos rurales del cantón 

Riobamba, mejorando la eficiencia energética, reduciendo costos y aumentando la 

autosuficiencia energética de dichas instituciones. 
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1.5 Preguntas de investigación  

• ¿Cómo permiten los modelos matemáticos representar de manera precisa el balance 

energético entre la generación solar y eólica, el almacenamiento en baterías y el 

consumo en los centros educativos rurales del cantón Riobamba? 

• ¿Qué modelo de machine learning ofrece el mejor desempeño en la predicción de la 

generación y el consumo energético en contextos rurales, considerando condiciones 

climáticas variables y de altitud elevada? 

• ¿De qué manera la incorporación de un módulo de optimización basado en 

programación lineal contribuye a definir configuraciones costo-efectivas que 

incrementen la autosuficiencia energética y reduzcan los costos operativos en los 

centros educativos rurales? 
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CAPITULO II  

ESTADO DEL ARTE Y LA PRÁCTICA  

En este estado del arte se revisan los avances en modelos matemáticos y técnicas de 

Machine Learning aplicadas al análisis energético. Entre estas, Random Forest como un 

método que combina muchos árboles de decisión para lograr predicciones más estables y 

precisas, mientras que los enfoques de Boosting construyen modelos de manera gradual, 

mejorando cada vez los errores del anterior. Estas herramientas permiten comprender mejor 

cómo se genera, almacena y consume la energía. Sin embargo, todavía es necesario adaptarlas 

a realidades rurales como la del cantón Riobamba, lo que motiva y orienta el propósito de esta 

investigación. 

 

2.1 Antecedentes Investigativos  

En los últimos años, el desarrollo de sistemas energéticos sostenibles ha cobrado gran 

relevancia como respuesta a los desafíos del cambio climático y al limitado acceso a energía 

confiable en zonas rurales. A nivel internacional, diversos estudios han demostrado la eficacia 

del uso de modelos matemáticos y técnicas de machine learning para el análisis y 

optimización de redes híbridas de energía renovable.  

Abdullah, H. M., & col. (2023) en su estudio de “Modelos híbridos de machine 

learning y optimización de sistemas renovables”, refiere un marco de predicción basado en 

machine learning (CatBoost, LightGBM, XGBoost) y metaheurísticas para optimizar el 

dimensionamiento de sistemas híbridos de energía renovable.  (Abdullah, 2023) 

 

 

Asi también,  Basnet, manifiesta que el incremento de la demanda energética y los 

efectos del cambio climático han impulsado el desarrollo de sistemas híbridos de energía 

renovable como una alternativa sostenible a los combustibles fósiles. combinando fuentes 

renovables y tecnologías de almacenamiento para garantizar un suministro confiable y 
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eficiente,  este enfoque contribuye al diseño de infraestructuras energéticas resilientes y 

adaptadas a diversos contextos y aplicaciones. (Basnet, 2023) 

La revisión de Korovushkin, Blinov & Volochay (2025) ofrece un análisis integral de 

los principales desafíos y soluciones en la modelación y el control de microredes, abordando 

aspectos como la representación matemática de sistemas híbridos, estrategias de control para 

operación estable en modos isla y conectados, y futuras direcciones de investigación que 

incluyen enfoques avanzados para mejorar la confiabilidad y resiliencia de las microredes 

frente a la variabilidad de las fuentes y las demandas.  (Ożadowicz, 2025) 

Por su parte, Dosa, Tsegaye, Daba & Getahun (2025) presenta un estudio comparativo 

de herramientas de optimización y simulación para microredes híbridas, clasificando métodos 

de optimización (como estocásticos y multiobjetivo) y estrategias de respuesta a la demanda, 

enfatizando cómo parámetros de diseño como generación, almacenamiento y control de 

cargas influyen en el rendimiento operativo y resaltando la necesidad de integrar respuestas 

en tiempo real con métodos avanzados para mejorar la flexibilidad y eficiencia de estos 

sistemas. (Dosa, 2025) 

En el contexto nacional, universidades ecuatorianas como la ESPOCH, la ESPE y la 

UTPL han desarrollado investigaciones enfocadas en la implementación de energías 

renovables en zonas rurales, evidenciando la necesidad de herramientas tecnológicas 

adaptadas a las condiciones geográficas y socioeconómicas del país. Sin embargo, la mayoría 

de estos estudios se han centrado en el análisis técnico y económico de sistemas solares o 

eólicos de forma independiente, sin incorporar modelos de simulación integral que integren 

predicción mediante inteligencia artificial, optimización matemática y evaluación de 

sostenibilidad energética.  

Ante esta brecha, la presente investigación propone el desarrollo de un software 

simulador híbrido, que combine modelos matemáticos y algoritmos de machine learning para 
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predecir, analizar y optimizar redes energéticas rurales, contribuyendo así a la planificación 

sostenible y a la reducción de la desigualdad energética en el cantón Riobamba. 

Tema: Desarrollo de un modelo predictivo de consumo energético en zonas 

rurales mediante machine learning. 

Objetivo general: Desarrollar un modelo predictivo para estimar el consumo 

energético en comunidades rurales ecuatorianas usando algoritmos de aprendizaje 

automático. 

Metodología: Se recopilaron datos históricos de consumo eléctrico y variables 

meteorológicas. Se entrenaron modelos Random Forest y XGBoost, evaluando su desempeño 

con métricas estadísticas (Cevallos & Tipán, 2023). 

Conclusión: Podemos concluir que el modelo Random Forest obtuvo un coeficiente 

de determinación (R²) de 0.93, demostrando una alta precisión para predecir la demanda 

energética y apoyar la planificación de proyectos renovables. 

Tema: Análisis técnico-económico de sistemas fotovoltaicos en instituciones 

rurales de la Sierra ecuatoriana. 

Objetivo general: Evaluar la factibilidad técnica y económica de implementar 

sistemas solares fotovoltaicos en instituciones educativas rurales del cantón Colta, provincia 

de Chimborazo. 

Metodología: Se recopilaron datos de radiación solar y consumo energético de las 

escuelas. Se simuló el comportamiento del sistema utilizando HOMER Pro y análisis de 

costos-beneficio (Vásquez, 2021). 

Conclusión: Los sistemas fotovoltaicos cubrieron entre el 60% y 80% de la demanda 

eléctrica, reduciendo significativamente los costos de energía y las emisiones contaminantes. 

Tema: Modelado y simulación de sistemas híbridos renovables mediante 

software especializado. 
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Objetivo general: Diseñar un simulador computacional que permita analizar la 

eficiencia energética de sistemas híbridos solar-eólicos en zonas rurales. 

Metodología: Se desarrolló un software usando Python y MATLAB, integrando 

ecuaciones diferenciales para el modelado energético y validando los resultados con datos 

experimentales (Lalwani, 2020). 

Tema: Modelo para la predicción de consumo energético mediante métodos de 

inteligencia artificial. 

Objetivo general: 

Desarrollar un modelo de predicción del consumo energético utilizando métodos actuales de 

inteligencia artificial, como redes Transformers y redes LSTM, para mejorar la confiabilidad 

y precisión de las estimaciones de demanda eléctrica. 

Metodología: Se emplearon datos históricos de consumo energético como series 

temporales, los cuales fueron procesados y analizados mediante técnicas de inteligencia 

artificial modernas (redes neuronales tipo LSTM y Transformers). Se realizaron 

comparaciones entre distintos enfoques para determinar cuál logra mejor desempeño 

predictivo (González Eras, 2023). 

Conclusión: Los métodos basados en inteligencia artificial (Transformers y LSTM) 

permitieron generar modelos de predicción con mayor precisión sobre el consumo energético. 

Este enfoque ofrece una herramienta valiosa para anticipar la demanda eléctrica en diferentes 

contextos, contribuyendo a una mejor planificación energética. 

Conclusión: El simulador permitió comprender los flujos de energía, optimizar la 

combinación de recursos y mejorar la sostenibilidad energética en comunidades rurales. 

 

 Además, se pueden referenciar los siguientes estudios a nivel nacional que aportaran 

al estado del arte: 
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El estudio de Arcos–Avilés et al. (2024) se centra en el desarrollo de un sistema de 

gestión energética (EMS) para una microred electro-térmica aislada ubicada en la región 

amazónica del Ecuador, caracterizada por limitaciones de acceso a la red eléctrica 

convencional y alta dependencia de recursos renovables locales. El objetivo principal de la 

investigación es mejorar la eficiencia operativa, la confiabilidad del suministro energético y 

la estabilidad del sistema ante la variabilidad inherente de la generación renovable y de la 

demanda eléctrica y térmica. 

Desde el punto de vista metodológico, los autores implementan un Modelo de Control 

Predictivo (Model Predictive Control – MPC) basado en modelos matemáticos dinámicos del 

sistema eléctrico y térmico. La metodología integra predicción de demanda, restricciones 

operativas y optimización multiobjetivo, permitiendo la toma de decisiones anticipadas en 

tiempo real. Los resultados de simulación demuestran que el enfoque MPC reduce costos 

operativos, mejora el balance energético y aumenta la resiliencia del sistema, evidenciando su 

aplicabilidad en microredes aisladas de regiones rurales y ambientalmente sensibles. (Diego 

Arcos–Aviles, 2024) 

 Para Mariño et al. (2023) realizan un análisis óptimo de microredes renovables en las 

zonas de El Aromo y Villonaco, regiones estratégicas del Ecuador por su elevado potencial 

solar y eólico. El objetivo del estudio es identificar la configuración óptima de una microred 

híbrida que permita maximizar el aprovechamiento de los recursos renovables disponibles, 

garantizando simultáneamente viabilidad técnica, sostenibilidad ambiental y rentabilidad 

económica. 

La metodología empleada se fundamenta en el uso del software HOMER, herramienta 

ampliamente validada para simulación y optimización de sistemas híbridos de energía 

renovable. A través de simulaciones tecnoeconómicas, los autores comparan múltiples 

escenarios de combinación entre generación solar, eólica, almacenamiento y respaldo, 
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evaluando indicadores como el costo del ciclo de vida, la confiabilidad del sistema y la 

reducción de emisiones. El estudio aporta resultados relevantes para la planificación 

energética regional y demuestra la utilidad de herramientas de simulación en la toma de 

decisiones estratégicas.  (Mariño, 2023) 

El trabajo de Andrade et al. (2024) analiza la factibilidad técnica y económica de 

nanorredes mediante un caso de estudio localizado en , provincia de Chimborazo, lo que le 

otorga un alto valor de contextualización territorial. El objetivo del estudio es evaluar la 

viabilidad de sistemas energéticos descentralizados como alternativa sostenible para 

satisfacer la demanda local, especialmente en contextos urbanos, educativos y de pequeña 

escala. En cuanto a la metodología, los autores aplican un enfoque de análisis 

tecnoeconómico basado en datos reales de consumo energético, costos de infraestructura y 

disponibilidad de recursos renovables. Se consideran distintos escenarios de generación 

distribuida y autoconsumo, evaluando indicadores de costo, eficiencia y retorno de inversión.  

(Andrade, 2024) 

2.2 Fundamentos Legales  

El marco legal ecuatoriano promueve de manera explícita el desarrollo, uso y fomento 

de las energías renovables como parte de su política nacional de sostenibilidad y transición 

energética. La Constitución de la República del Ecuador (Ecuador, Constitución de la 

República del Ecuador., 2008), en sus artículos 15 y 413, establece el derecho de la población 

a vivir en un ambiente sano y ecológicamente equilibrado, así como la obligación del Estado 

de promover el uso de tecnologías limpias y energías alternativas que reduzcan la 

contaminación.  

De igual forma, el artículo 275 reconoce que el desarrollo debe garantizar la 

sostenibilidad ambiental, económica y social, fomentando la soberanía energética y el 

aprovechamiento responsable de los recursos naturales. Estas disposiciones constitucionales 
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constituyen la base legal que sustenta la implementación de proyectos de energías renovables 

en zonas rurales, especialmente en el sector educativo, donde el acceso a la energía es un 

factor determinante para la equidad y el desarrollo comunitario. 

Complementariamente, la Ley Orgánica del Servicio Público de Energía Eléctrica 

(LOSPEE, 2015) regula la generación y uso de energías renovables no convencionales, 

estableciendo incentivos para proyectos que promuevan la eficiencia y diversificación de la 

matriz energética nacional. A su vez, el Plan Nacional de Eficiencia Energética 2016–2035 

(Minas, 2016) y (Ecuador, Código Orgánico del Ambiente, 2017) respaldan la 

implementación de sistemas híbridos sustentables, priorizando su aplicación en comunidades 

rurales y sectores estratégicos como la educación. Estas normativas impulsan la innovación 

tecnológica mediante el desarrollo de herramientas digitales y modelos predictivos que 

optimicen la gestión energética.  

En este sentido, la presente investigación se enmarca en el cumplimiento de las 

políticas públicas nacionales y contribuye a los Objetivos de Desarrollo Sostenible (ODS) 

como son energía asequible y no contaminante - ODS 7 (ONU, 2015) y acción por el clima 

ODS 13 (ONU, 2015), orientados a garantizar energía asequible, no contaminante y la acción 

climática, promoviendo así la sostenibilidad y el bienestar de las comunidades educativas 

rurales del cantón Riobamba. 

 

Tabla 1-2- Matriz de fundamentos legales 

Ley / Norma Año Artículo(s) 

relevante(s) 

Contenido o 

propósito principal 

Relación con la 

investigación 

Impacto 

esperado 

Constitución de 

la República del 

Ecuador 

2008 Art. 15, 275 

y 413 

Reconoce el derecho 

a vivir en un ambiente 

sano; promueve el uso 

de energías limpias y 

tecnologías 

sostenibles; fomenta 

Sustenta el uso de 

fuentes renovables y 

tecnologías limpias 

en instituciones 

rurales para 

garantizar la 

sostenibilidad 

Promueve el 

desarrollo 

sostenible y el 

bienestar social a 

través de la 

energía renovable 
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el desarrollo 

sustentable. 

ambiental y el 

acceso equitativo a 

la energía. 

en el sector 

educativo rural. 

Ley Orgánica del 

Servicio Público 

de Energía 

Eléctrica 

(LOSPEE) 

2015 Art. 3, 4, 6 y 

7 

Regula la generación, 

transmisión, 

distribución y uso de 

energía eléctrica, 

incentivando el 

aprovechamiento de 

fuentes renovables no 

convencionales. 

Brinda respaldo 

legal para 

implementar y 

optimizar sistemas 

híbridos solares y 

eólicos en centros 

educativos. 

Permite integrar 

sistemas híbridos 

dentro de la red 

eléctrica y 

acceder a 

incentivos 

energéticos 

nacionales. 

Código Orgánico 

del Ambiente 

(COA) 

2017 Art. 19, 20 y 

28 

Regula la gestión 

ambiental y el uso 

responsable de los 

recursos naturales; 

fomenta tecnologías 

sostenibles y medidas 

de mitigación de 

emisiones. 

Apoya el uso de 

herramientas 

tecnológicas 

(software 

simulador) para 

reducir impactos 

ambientales y medir 

emisiones de CO₂ 

evitadas. 

Contribuye al 

cumplimiento de 

estándares 

ambientales y a la 

reducción de la 

huella ecológica 

en las 

instituciones. 

Plan Nacional de 

Eficiencia 

Energética 2016–

2035 

2016 Ejes 2 y 3 Establece estrategias 

para mejorar la 

eficiencia energética 

y diversificar la 

matriz energética 

mediante energías 

renovables. 

Sirve de marco 

técnico y político 

para el desarrollo 

del simulador 

orientado a 

optimizar el 

consumo energético 

rural. 

Fomenta el uso 

racional de la 

energía, 

optimización de 

recursos y 

reducción de 

costos eléctricos 

en instituciones 

rurales. 

Plan Nacional de 

Desarrollo “Toda 

una Vida” 

(SENPLADES) 

2017 Objetivo 7.4 Busca garantizar la 

sostenibilidad 

ambiental y el acceso 

equitativo a recursos 

energéticos. 

Respalda la 

aplicación de 

tecnologías que 

mejoren la calidad 

de vida y reduzcan 

la desigualdad 

energética. 

Favorece la 

equidad 

territorial y la 

inclusión 

energética en 

zonas rurales de 

Riobamba . 

Objetivos de 

Desarrollo 

Sostenible (ODS) 

2015 ODS 7 y 

ODS 13 

ODS 7: Garantizar 

energía asequible, 

segura y sostenible. 

ODS 13: Adoptar 

Enmarca la 

investigación dentro 

de los compromisos 

internacionales del 

Alinea el 

proyecto con 

políticas globales 

de sostenibilidad 
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– Naciones 

Unidas 

medidas urgentes 

contra el cambio 

climático. 

Ecuador para 

promover energías 

limpias y resiliencia 

climática. 

y desarrollo 

comunitario 

rural. 

Elaborado por: Autor    

Fuente: Normativa legal vigente Ecuador  

2.3 Fundamentos Teóricos   

El desarrollo de sistemas híbridos de energía renovable se fundamenta en la 

integración de múltiples fuentes de generación, tales como la energía solar fotovoltaica y la 

energía eólica, con el fin de garantizar un suministro eléctrico continuo y sostenible en zonas 

donde el acceso a la red eléctrica convencional es limitado. Según (Koutroulis, 2025), los 

modelos matemáticos aplicados a este tipo de sistemas permiten representar el balance 

energético, considerando la generación, almacenamiento y consumo mediante ecuaciones 

diferenciales que describen el flujo dinámico de energía. Estos modelos son esenciales para 

dimensionar correctamente la capacidad de los paneles solares, aerogeneradores y bancos de 

baterías, optimizando la eficiencia del sistema bajo condiciones reales de irradiancia, 

velocidad del viento y demanda energética.  

La implementación práctica de sistemas híbridos de energía solar y eólica, evaluando 

cómo la combinación de ambas fuentes puede satisfacer necesidades energéticas locales de 

manera sostenible. Aunque especialmente centrado en contextos con acceso limitado a redes 

convencionales, destaca el uso de datos reales de recursos renovables (radiación solar y 

velocidad del viento) para dimensionar componentes y prever el rendimiento y promover la 

importancia de integrar almacenamiento energético para garantizar continuidad del 

suministro frente a la intermitencia. mostrando que estos sistemas pueden reducir costos y 

mejorar la confiabilidad en zonas rurales o aisladas.  (Angel, 2024) 

De igual forma, (Lalwani, 2020) destacan que las simulaciones computacionales de 

sistemas híbridos posibilitan evaluar escenarios diversos y prever el comportamiento del 
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sistema ante variaciones climáticas o de carga, contribuyendo a una mejor planificación 

energética. 

Por otro lado, las técnicas de aprendizaje automático (machine learning) han emergido 

como herramientas clave en la predicción y optimización energética, al permitir procesar 

grandes volúmenes de datos climáticos y operativos para identificar patrones de 

comportamiento. (Zhao, 2021) demostraron que los modelos basados en algoritmos como 

Random Forest, Gradient Boosting y XGBoost alcanzan altos niveles de precisión en la 

estimación de generación solar y eólica, superando los métodos tradicionales de regresión 

lineal. En esta línea, (González Eras, 2023) aplicaron redes neuronales LSTM y arquitecturas 

Transformers para mejorar la predicción del consumo energético, confirmando la relevancia 

del uso de inteligencia artificial en la planificación de redes híbridas.  

Adicionalmente, (Cevallos & Tipán, 2023) evidenciaron que la incorporación de 

modelos predictivos en entornos rurales del Ecuador permite anticipar la demanda energética 

y optimizar el dimensionamiento de los sistemas, reduciendo costos operativos y mejorando 

la sostenibilidad. 

Finalmente, la combinación de modelos matemáticos con técnicas de machine 

learning constituye la base conceptual del presente estudio. Esta integración permite analizar 

los sistemas energéticos desde un enfoque físico matemático y, simultáneamente, optimizar 

su desempeño mediante algoritmos inteligentes. De esta manera, el software propuesto busca 

representar de forma precisa el comportamiento de redes híbridas en centros educativos 

rurales, optimizando los recursos disponibles y apoyando la toma de decisiones en proyectos 

de electrificación sostenible. 

2.3.1 Simulador híbrido (solar-eólico) para centros educativos rurales 

Se describe en detalle la metodología científica y computacional para desarrollar un 

simulador híbrido (solar–eólico) aplicado a centros educativos rurales. El software integra 
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modelos matemáticos físicos y de aprendizaje automático para modelar generación, consumo 

y almacenamiento, y optimizar el dimensionamiento de paneles fotovoltaicos y 

aerogeneradores.  

Los objetivos son:  

1) modelar las redes híbridas con ecuaciones diferenciales y métodos numéricos,  

2) prever generación y demanda con ML,  

3) optimizar costos mediante programación matemática o metaheurísticas, y  

4) validar los datos  

El enfoque se justifica estadísticamente pese a usar solo 5 instituciones si son 

representativas: varianza moderada y patrones de consumo similares permiten extrapolar 

resultados a la población objetivo. 

2.3.2 Modelado matemático generación y almacenamiento 

El modelado matemático de la generación fotovoltaica constituye una herramienta 

fundamental para estimar, con un nivel adecuado de precisión, la potencia y la energía que 

puede producir un sistema solar bajo condiciones reales de operación. (Guerrero, 2023) 

 Este modelo se basa en la relación directa entre la irradiancia solar incidente sobre el 

plano de los módulos y la potencia eléctrica entregada por el arreglo fotovoltaico en un 

determinado instante de tiempo. (Lund, 2024) 

Es decir, a través de un modelado físico para cada recurso utilizado y ecuaciones 

diferenciales se pueden estimar variables criticas como la potencia instantánea, la energía 

acumulada y las pérdidas del sistema, lo cual constituye una herramienta fundamental para el 

análisis, la simulación y la optimización de redes híbridas en entornos rurales.   

2.3.2.1 Modelado de generación fotovoltaica  

La potencia instantánea generada por el sistema se expresa mediante la ecuación: 

Generación de potencia eléctrica 
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𝑃!"(𝑡) = 	h!" . 𝐴!" . 𝐺(𝑡)	 

Donde: 

𝑃!"(𝑡)[w]: Potencia generada por el arreglo en el instante t. 

h!"[-]: Eficiencia global del sistema fotovoltaico (incluye perdidas por temperatura, 

inversor, cableado) 

𝐴!"[𝑚#]: Área total de paneles instalados. 

𝐺(𝑡)[w/𝑚#]: Irradiancia solar incidente sobre el plano de los paneles en t 

energía en un intervalo delta T 

Para determinar la energía producida en un intervalo de tiempo Δt, se integra la 

potencia instantánea obtenida: 

𝐸!" = , 𝑃!"(𝑡)𝑑𝑡
$!%∆$

$!
 

Donde  

𝐸!" [Wh O Kwh]: energía acumulada en el periodo Δt 

Este modelo resulta esencial en procesos de dimensionamiento, simulación y 

evaluación del desempeño de sistemas fotovoltaicos, pues permite estimar su producción 

energética a partir de series temporales de irradiancia y parámetros técnicos del arreglo. 

Además, facilita la comparación entre diferentes configuraciones, la identificación de 

pérdidas y la predicción del comportamiento del sistema bajo diversas condiciones 

climáticas. Su utilización en estudios técnicos y académicos está ampliamente reconocida, ya 

que proporciona una base sólida para la toma de decisiones asociada al diseño y optimización 

de sistemas de generación renovable, especialmente en contextos donde la disponibilidad de 

datos solares es variable o donde se requiere validar la factibilidad energética de proyectos 

fotovoltaicos (Villalva, 2023) 
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2.3.2.2 Modelado de generación eólica 

El modelado de la generación eólica se fundamenta en la conversión de la energía 

cinética contenida en la masa de aire en movimiento en energía eléctrica aprovechable 

mediante un aerogenerador. Desde la perspectiva teórica, el límite máximo de energía que 

puede extraerse del viento está definido por la ley de Betz, la cual establece que ninguna 

turbina eólica puede convertir en energía mecánica más del 59,3 % de la energía cinética 

disponible en la corriente de aire. (Manwell, 2023) 

Este límite surge del análisis del flujo a través del rotor y constituye una referencia 

fundamental para evaluar el desempeño real de los aerogeneradores modernos. 

La potencia en un aerogenerador se modela con la ley de Betz: establece que una 

turbina eólica, como máximo, puede capturar el 59.3% de la energía cinética. 

𝑃'((𝑡) =
1
2𝜌	𝐴)*$*)𝐶+(𝜆)𝑣(𝑡)

, 

𝑃'((𝑡)[w]: Potencia instantanea del aerogenerador. 

𝜌[𝑘𝑔 𝑚,6 ]: Densidad del aire (@1.225𝑘𝑔 𝑚,6  a nivel del mar) 

𝐴)*$*)[𝑚#]: Area barrida por las palas (p𝑅#) 

𝐶+(𝜆)[-]: coeficiente de potencia (depende de la velocidad de punta l; <= 0,59). 

𝑣(𝑡),[m/s]: velocidad del viento en la altura de las palas 

Este modelo evidencia que la potencia eólica no crece linealmente con la velocidad 

del viento, sino de manera cúbica, en consecuencia, incrementos aparentemente pequeños en 

la velocidad del viento generan aumentos proporcionalmente mucho mayores en la potencia 

capturada. Por ejemplo, duplicar la velocidad del viento puede multiplicar por ocho la 

potencia disponible, lo cual tiene implicaciones directas en el diseño, ubicación y análisis de 

desempeño de aerogeneradores, así, la caracterización precisa del recurso eólico, 
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particularmente mediante series temporales de velocidad registradas a la altura del buje, 

resulta esencial para estimar adecuadamente la producción energética de un sistema eólico. 

 Entonces este modelo expresa que la potencia aumenta con el cubo de la velocidad 

del viento, lo que explica por qué pequeños aumentos en la velocidad generan incrementos 

significativos en la energía disponible. 

2.3.3 Modelo almacenamiento en baterías 

El modelado del comportamiento de los sistemas de almacenamiento electroquímico 

constituye un componente esencial en el análisis, diseño y operación de microrredes y 

sistemas híbridos de generación renovable. La batería actúa como un elemento regulador 

capaz de almacenar energía cuando existe excedente de producción e inyectarla cuando la 

generación es insuficiente para cubrir la demanda. (Yang, 2024) 

Para representar matemáticamente este comportamiento dinámico, se utilizan dos 

formulaciones complementarias: el balance de energía y el modelo del Estado de Carga 

(SOC, por sus siglas en inglés -State of Charge). 

 

1. Balance de energía 

El modelo matemático para describir el comportamiento de una batería en un 

sistema de energía renovable (como energía solar y eólica) 

-."#$
-$

=	𝑃!"(𝑡) + 𝑃'((𝑡) − 𝑃/*0-(𝑡) − 𝑃123(𝑡)            

Donde : 

-."#$
-$

(t)[Wh]: Energía almacenada en la batería en el tiempo t 

𝑃!"(𝑡)[W]: Potencia generada por los paneles solares  

𝑃'((𝑡)[W]: Potencia generada por los aerogeneradores 

𝑃/*0-(𝑡)[W]: Demanda de la carga en el tiempo t 

𝑃123(t)[W]: Potencia de excedente o perdidas (cortos circuitos, fugas) 
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2. Estado de carga SOC 

Este enfoque continuo permite describir la dinámica del SOC bajo diferentes 

condiciones de operación, considerando los flujos de energía y las pérdidas asociadas. En la 

práctica, este modelo es ampliamente empleado en sistemas híbridos de generación 

renovable, algoritmos de gestión energética y simulaciones de desempeño, ya que permite 

evaluar la capacidad de la batería para sostener la demanda durante periodos de baja 

generación o almacenar excedentes durante picos de producción. 

El Estado de Carga (SOC) varía según balance entre carga/descarga. Un modelo 

continuo es la EDO: 

𝑆𝑂𝐶(𝑡) =
𝐸40$(𝑡)
𝐸40$,607

 

 

𝑑𝑆𝑂𝐶
𝑑𝑡 =

1
𝐸40$,607

(𝜂3𝑃38(𝑡) −
𝑃-92(𝑡)
𝜂-

) 

Esta formulación considera las perdidas por eficiencia en los procesos de carga y 

descarga donde: 

𝑠𝑜𝑐[−]: Grado de carga (cero= descarga, 1= carga) 

𝐸40$,607[Wh]: Capacidad nominal de la bateria. 

𝑃38(𝑡),	𝑃38(𝑡)	[W]: Potencia de carga y descarga instantáneas 

𝜂3 , 𝜂-[-]: Eficinecias de carga y descarga 

Esta ecuación refleja que la variación de energía en la batería depende directamente 

del balance entre la energía entrante (generación) y la energía saliente (carga y pérdidas). Si 

el término resultante es positivo, la batería se encuentra en proceso de carga; si es negativo, 

se encuentra en descarga, asi, este planteamiento constituye la base del modelado dinámico 

de sistemas híbridos y permite integrar la batería dentro del análisis energético global del 

sistema. 
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2.4 Modelo de Balance energético 

El principio de conservación de la energía constituye la base fundamental para la 

formulación del modelo de balance energético en sistemas híbridos de generación. Bajo este 

enfoque, se establece que, en cada instante 𝑡t, la potencia total generada por las fuentes 

renovables, junto con el posible aporte de la red eléctrica, debe ser suficiente para satisfacer 

simultáneamente la demanda del sistema y los flujos de energía asociados al proceso de 

almacenamiento 

La conservación de energía exige que en cada instante la suma de generación más 

aporte de red (si existe) iguale la demanda más carga de baterías. Esquemáticamente: 

En cada instante t, la suma de las entradas debe cubrir la demanda y la carga de las 

baterias. 

𝑃!"(𝑡) + 𝑃'((𝑡) + 𝑃:)9-(𝑡) = 𝑃/*0-(𝑡) + 𝑃38(𝑡) − 𝑃-92(𝑡) 

𝑃:)9-(𝑡)[t]: potencia tomada de la red eléctrica  

Los términos en el lado derecho incluyen tanto la demanda como la dinámica de las 

baterías (carga y descarga). 

Al discretizar en pasos temporales, este balance se traduce en un sistema de 

EDO/ecuaciones algebraicas resueltas numéricamente (por ejemplo, con Runge Kutta o 

esquemas implícitos) 

Al discretizar en pasos de tiempo Dt, cada deriva se aproxima por diferencias finitas, y 

la integral de energía por sumas acumuladas. 

2.5 Análisis estadístico de la muestra 

Aunque solo se dispone de 5 centros educativos, su selección aleatoria en el cantón  

Riobamba permite una muestra representativa si presentan características homogéneas. El 

análisis estadístico apoya esta generalización: 
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Datos descriptivos: De los datos reales analizados, las medias de consumo diario por 

institución varían moderadamente (por ejemplo, entre ~4 y 21 kWh) y las desviaciones 

estándar asociadas no son excesivamente altas (coeficientes de variación cercanos a 1.0). Esto 

indica que no hay datos extremos y que las instituciones tienen consumos comparables en 

magnitud. 

Correlaciones: Se observa correlación elevada entre algunos centros (coeficiente de 

Pearson ~0.9 entre ciertas parejas), lo que sugiere patrones temporales de demanda similares 

(p.ej. escolares con horarios análogos). La existencia de correlaciones moderadas indica que, 

aunque cada centro tiene su perfil, comparten tendencias estacionales o semanales. 

Intervalos de confianza: Con n=5 instituciones, se puede estimar la media 

poblacional de consumo con un intervalo de confianza (IC) del 85% al 90% usando la 

distribución t de Student: 

𝐼𝐶 = 	𝑥̄	 ±
𝑡;
2 , 𝑛 − 1

𝑆
√𝑛

 

𝐼𝐶<=%:	𝑥̄	 ± 𝑡?.<A=,B	
𝑆
√5

 

Aunque el IC es relativamente amplio debido al pequeño n, cubre la variabilidad 

observada. 

A mayores n, el IC se estrecharía, pero en este contexto se considera aceptable dado 

que los colegios estudiados conforman una población acotada y representativa. 

En conjunto, la muestra de 5 instituciones es válida pues su varianza entre consumos 

no es extrema y sus patrones energéticos son comparables por el sector y provincia ubicados. 

Además, los análisis descriptivos y de correlación indican homogeneidad suficiente para 

extrapolar al conjunto de colegios rurales del cantón Riobamba . 

https://www.google.com/search?client=firefox-b-d&sca_esv=193255194e7c12f9&sxsrf=AE3TifOmeTUd5K9PJUzxZl2xuKM-u_TJTw%3A1759829541044&q=x%CC%84&sa=X&ved=2ahUKEwjr2aL145GQAxXambAFHWyxDnEQxccNegQILRAB&mstk=AUtExfDvnBPwG6XcL2tNavoC_OTRDHYl-KzNH_VOJ3lVIOt8bKh2_QIGCOykeP6TWZFNoUzN6pMwXnwo_jm1mtNW5lGJRHs6vfwvPMHTR1jiSaS0Scs5_texvRthNCOQxjGHJHgDpAawfklh5Eyppw7YnpKSkZwGERl5MyYA307hR3OU3UB1EzT9-xm8dC6AtJ6YypHuFIPNCbwWJNpG5Ko_66dcJ4D_tfl41CGtLxBbfN6meFKq7MEhCiQ5a_m8i8dPa5GlIBfQ4ZjVxkwaJlXvfjPc&csui=3
https://www.google.com/search?client=firefox-b-d&sca_esv=193255194e7c12f9&sxsrf=AE3TifOmeTUd5K9PJUzxZl2xuKM-u_TJTw%3A1759829541044&q=x%CC%84&sa=X&ved=2ahUKEwjr2aL145GQAxXambAFHWyxDnEQxccNegQILRAB&mstk=AUtExfDvnBPwG6XcL2tNavoC_OTRDHYl-KzNH_VOJ3lVIOt8bKh2_QIGCOykeP6TWZFNoUzN6pMwXnwo_jm1mtNW5lGJRHs6vfwvPMHTR1jiSaS0Scs5_texvRthNCOQxjGHJHgDpAawfklh5Eyppw7YnpKSkZwGERl5MyYA307hR3OU3UB1EzT9-xm8dC6AtJ6YypHuFIPNCbwWJNpG5Ko_66dcJ4D_tfl41CGtLxBbfN6meFKq7MEhCiQ5a_m8i8dPa5GlIBfQ4ZjVxkwaJlXvfjPc&csui=3
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2.6 Predicción de generación y consumo con ML 

Se utilizan modelos de Machine Learning entrenados con datos históricos para prever 

la generación solar/eólica y la demanda. Las características de entrada incluyen irradiancia, 

velocidad del viento, fecha (estacionalidad) y consumo energético.  

2.6.1 Random Forest (bosques aleatorios) 

Es un ensamble de árboles de decisión, que reduce varianza mediante bagging. Es 

robusto ante outliers y maneja relaciones no lineales. Estudios muestran que RF, SVM o 

XGBoost suelen superar a la regresión lineal en la predicción de generación renovable, al 

capturar patrones complejos 

Por ejemplo, un modelo RF puede predecir la potencia PV del día siguiente usando 

como entradas irradiancia histórica, ángulo solar y temperaturas. 

2.6.2 Redes neuronales (ANN/RNN) 

Las redes profundas o recurrentes (LSTM) capturan dinámicas temporales. Ensayos 

recientes (por ejemplo, un equipo de Texas A&M) han utilizado redes neuronales para 

predecir la velocidad del viento y la densidad de energía solar con alta precisión diaria/hora 

(engineering.tamu.edu) 

En consumo eléctrico escolar, se puede usar una red de creencias profundas que tome 

como entrada datos de consumo pasados más variables socio-temporales. Los modelos se 

entrenan minimizando el error de predicción (MSE) en datos de entrenamiento y se validan 

con series separadas. 

La calidad de la predicción se evalúa con métricas como el MAPE (Error Porcentual 

Absoluto Medio): 

𝑀𝐴𝑃𝐸 = 	
100%
𝑛 NO

𝑦9 − Ȳ
𝑦9

O
D

9EF
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Por ejemplo, si la demanda real diaria fue 10,15,20,25,30 kWh y el modelo predijo 

12,14,19,26,29 kWh, entonces: 

𝑀𝐴𝑃𝐸 ≈
100%
5 S

10 − 12
10 S + S

15 − 14
15 S + ⋯…… = 7.8% 

Valores bajos de MAPE (<10%) indican buen ajuste 

Finalmente, se pueden integrar modelos mixtos o ensemble (p.ej. combinar RF con 

LSTM) para mejorar la precisión. Los modelos resultantes proveen pronósticos que alimentan 

al simulador de forma horaria para optimizar el despacho y verificar cumplimiento de 

demanda. 

2.7 Optimización del diseño híbrido 

El simulador incluye un módulo de optimización para determinar el 

dimensionamiento óptimo de paneles, aerogeneradores y baterías que minimicen costos y/o 

maximicen la confiabilidad. Se plantean modelos de decisión con variables de diseño 

anteriores, (modelo solar, eólico, número de baterías, etc). El software me mostrara los datos 

de energía que se podría obtener y también según el nivel de energía requerido recomendar 

los kits solares, eólicos con sus equipos inversores, numero de baterías, etc. 

2.7.1 Programación Lineal Entrera Mixta:  

Si se linealizan los costos y restricción de balance energético (por ejemplo. Número de 

unidades discretas), se puede formular: 

 

𝑚𝑖𝑛
𝑁!"𝑁'(𝑁40$

	𝐶!"𝑁!" + 𝐶'(𝑁'( + 𝐶40$𝑁40$ 

Sujeto a demandas minimas: 

𝑁!"𝐸!"GD9$ + 𝑁'(𝐸'(GD9$ + 𝐸:)9- ≥ 𝐸-(𝑡)∀𝑡 
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Junto con límites de capacidad y cargas. son costos unitarios anuales (incluyendo 

amortización), y producción anual de cada unidad. Un modelo MILP optimiza los recursos a 

emplear minimizando costos totales, como en estudios previos de dimensionamiento 

renovable 

2.7.1 Algoritmos Genéticos u otros metaheurísticos 

Los problemas de dimensionamiento HES suelen abordarse con algoritmos evolutivos 

cuando la relación costo-confiabilidad es compleja o no lineal. Por ejemplo, un algoritmo 

genético (AG) codifica en cromos poblacionales los tamaños de PV, WT y batería, y 

evoluciona la población maximizando la eficiencia energética y minimizando el costo 

nivelado (LCOE). La literatura muestra que técnicas metaheurísticas han sido aplicadas 

exitosamente para optimizar sistemas híbridos complejos. Estos métodos pueden manejar 

funciones objetivo multicriterio (costo versus confiabilidad) obteniendo un frente de Pareto 

(p. ej. minimizando costo anualizado y pérdida de carga). 

 

CAPITULO III  

DISEÑO METODOLÓGICO  

3.1 Enfoque de la investigación  

La presente investigación adopta un enfoque cuantitativo, ya que se basa en la 

medición y el análisis numérico de variables energéticas, climáticas y operativas relacionadas 

con el comportamiento de redes híbridas de energía renovable. Este enfoque permite 

recolectar datos reales y simulados para ser procesados estadísticamente, con el fin de 

construir modelos predictivos, validar ecuaciones matemáticas y determinar la precisión de 

los algoritmos de machine learning.  

De este modo, se busca establecer relaciones causales entre las variables (irradiancia, 

velocidad del viento, consumo energético, capacidad instalada, entre otras) y evaluar el 
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impacto del simulador desarrollado en la eficiencia y sostenibilidad energética de los centros 

educativos rurales del cantón Riobamba. 

3.2 Diseño de la investigación  

El diseño adoptado es no experimental, de tipo transversal y correlacional-predictivo, 

ya que no se manipulan las variables de estudio de manera intencional, sino que se observan 

tal como ocurren en su contexto natural.  

El propósito es analizar la relación entre las variables climáticas y energéticas, así 

como evaluar el desempeño de los modelos de predicción y optimización implementados en 

el simulador. Los datos se recopilan en un único periodo de tiempo (2021–2025), permitiendo 

establecer patrones y correlaciones a partir de mediciones históricas y simuladas de consumo 

y generación energética. 

3.3 Tipo de investigación  

El estudio corresponde a una investigación aplicada y tecnológica, orientada a la 

solución de un problema práctico: la falta de herramientas de análisis y planificación 

energética adaptadas a zonas rurales. Además, tiene un componente descriptivo, predictivo y 

explicativo, ya que describe el comportamiento energético de los centros educativos, predice 

su demanda y generación, y explica los factores que influyen en la eficiencia de los sistemas 

híbridos. 

3.3.1 Enfoque cuantitativo  

El enfoque cuantitativo permite el uso de herramientas matemáticas, estadísticas y 

computacionales para representar los fenómenos energéticos. Se aplican modelos numéricos 

y técnicas de machine learning (como Random Forest, Gradient Boosting y XGBoost), 

evaluando su precisión mediante indicadores como el coeficiente de determinación (R²), el 

error absoluto medio (MAE) y la raíz del error cuadrático medio (RMSE). Estos valores 
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permiten comparar el rendimiento de los modelos y seleccionar el algoritmo más eficiente 

para la predicción energética. 

3.3.2 Enfoque no experimental 

En esta investigación no se manipulan las variables independientes de manera directa, 

sino que se observan en su entorno natural mediante la recopilación de datos históricos y 

mediciones reales. Los valores de irradiancia, velocidad del viento y consumo energético se 

obtienen de fuentes oficiales (EERSA, INAMHI) y registros locales de los centros educativos 

rurales, asegurando que los resultados reflejen el comportamiento real del sistema sin 

intervención externa. 

3.3.3 Diseño transversal correlacional  

El diseño es transversal porque la recolección de datos se realiza en un periodo 

específico para establecer relaciones entre las variables estudiadas, y es correlacional porque 

busca determinar la fuerza y dirección de las asociaciones entre factores climáticos, técnicos 

y económicos. Este tipo de diseño permite validar los modelos propuestos y analizar cómo las 

variables influyen en la eficiencia y autosuficiencia energética. 

3.4 Nivel de investigación 

La investigación se desarrolla en tres niveles: predictivo, descriptivo y explicativo, los 

cuales se complementan entre sí para proporcionar una visión integral del fenómeno 

energético en estudio. 

3.4.1 Nivel Predictivo  

En este nivel se aplican algoritmos de machine learning para estimar la generación 

energética (solar y eólica) y el consumo eléctrico de los centros educativos rurales. Los 

modelos se entrenan con datos climáticos y energéticos históricos, permitiendo anticipar 

escenarios futuros de producción y demanda. El modelo Random Forest, con un R² de 0.936, 

se identifica como el más preciso para la predicción. 
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3.4.2 Nivel Descriptivo  

Este nivel describe el comportamiento energético de las instituciones rurales mediante 

indicadores cuantitativos como consumo anual, capacidad instalada, eficiencia del sistema, 

ROI y CO₂ evitado. Además, permite caracterizar las condiciones climáticas locales y el uso 

de los recursos energéticos, proporcionando un panorama completo del estado actual del 

sistema. 

3.4.3 Nivel Explicativo 

El nivel explicativo busca comprender las causas que determinan la variación del 

rendimiento energético. A través del análisis correlacional, se examina la influencia de 

variables como irradiancia, viento, altitud y temperatura sobre la generación y la eficiencia 

del sistema híbrido. También se evalúa cómo el uso de técnicas de inteligencia artificial 

mejora la precisión y sostenibilidad de la planificación energética. 

3.5 Técnicas e instrumentos de recolección de datos  

Se utilizaron técnicas documentales y experimentales. En la parte documental, se 

recopilaron datos históricos de consumo energético proporcionados por la Empresa Eléctrica 

Riobamba S.A. (EERSA), y variables meteorológicas obtenidas del Instituto Nacional de 

Meteorología e Hidrología (INAMHI). En la parte experimental, se emplearon sensores IoT 

para medir irradiancia solar, velocidad del viento, temperatura y consumo eléctrico. 

Los instrumentos principales incluyen: 

- Bases de datos meteorológicas y energéticas. 

- Hojas de registro y software de simulación (Python, Flask, HOMER Pro, Excel). 

- Formularios digitales para la validación del simulador con los técnicos de las 

instituciones rurales. 
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3.6 Técnicas para el procesamiento e interpretación de los datos  

El procesamiento de datos se realizó mediante técnicas de análisis estadístico y 

computacional. Los datos se organizaron y depuraron en Python y Excel, aplicando métodos 

de normalización y limpieza. Posteriormente, se entrenaron y evaluaron los modelos 

predictivos (Random Forest, XGBoost, Gradient Boosting, Redes Neuronales) usando 

bibliotecas como Scikit-learn. 

La interpretación se apoyó en métricas de desempeño (R², MAE, RMSE) y en el 

análisis de correlaciones (Pearson y determinación R²) para establecer relaciones entre 

variables técnicas, económicas y ambientales. Finalmente, los resultados se representaron 

mediante gráficos comparativos y reportes automáticos generados por el software simulador. 

3.7 Población y muestra  

3.7.1 Población  

La población está conformada por los centros educativos rurales del cantón  

Riobamba que presentan limitaciones de acceso a energía confiable. Se consideran aquellas 

instituciones que han registrado consumo eléctrico medido por EERSA entre enero de 2021 y 

junio de 2025, y que poseen condiciones favorables para la implementación de sistemas 

híbridos solares y eólicos. 

3.7.2 Tamaño de la muestra  

La muestra está compuesta por cinco instituciones educativas rurales seleccionadas 

mediante muestreo intencional, basándose en criterios de representatividad geográfica, 

disponibilidad de datos, nivel de consumo energético y factibilidad técnica. Estas 

instituciones son:  

 

1. Unidad Educativa Dr. Alfredo Pérez Guerrero 

Cantón: Riobamba 



45 
 

Provincia: Chimborazo 

Zona: Rural 

Parroquia rural: Calpi 

Referencia territorial: Comunidad del sector Calpi – vía Riobamba–Guaranda 

Entorno: Andino rural, población indígena y mestiza, actividad agrícola y ganadera 

2. Unidad Educativa Lic. Eduardo Salazar Gómez 

Cantón: Riobamba 

Provincia: Chimborazo 

Zona: Rural 

Parroquia rural: Licto 

Referencia territorial: Centro parroquial de Licto y comunidades aledañas 

Entorno: Rural indígena, economía agrícola familiar, acceso vial secundario 

3. Unidad Educativa Pedro Vicente Maldonado 

Cantón: Riobamba 

Provincia: Chimborazo 

Zona: Rural 

Parroquia rural: Pungalá 

Referencia territorial: Sector Pungalá Bajo / comunidades periféricas 

Entorno: Rural andino, producción agrícola, cercanía a la zona urbana de Riobamba 

4. Unidad Educativa Dr. Homero Valencia 

Cantón: Riobamba 

Provincia: Chimborazo 

Zona: Rural 

Parroquia rural: Flores 

Referencia territorial: Centro parroquial Flores y comunidades rurales dispersas 



46 
 

Entorno: Rural, población mestiza e indígena, acceso limitado a servicios 

5. Unidad Educativa Carlos Julio Arosemena Tola 

Cantón: Riobamba 

Provincia: Chimborazo 

Zona: Rural 

Parroquia rural: San Juan 

Referencia territorial: Comunidades rurales del sector San Juan 

Entorno: Rural altoandino, actividad agropecuaria, clima fríoCada institución se 

analizó como un caso de estudio independiente dentro del simulador, permitiendo evaluar el 

comportamiento de las variables y validar la precisión del modelo propuesto. 

3.8 Simulación  

En este contexto, la presente tesis ha sido implementado utilizando el lenguaje de 

programación Python, el cual actúa como servidor principal, gracias a su robustez, 

flexibilidad y amplio ecosistema de bibliotecas especializadas en ciencia de datos y Machine 

Learning. 

Para la construcción del entorno web, se ha utilizado Flask, un microframework 

ligero y potente que permite integrar modelos de machine learning en aplicaciones web de 

forma ágil y modular. Flask facilita el enrutamiento, la gestión de peticiones HTTP y la 

renderización de páginas dinámicas, permitiendo así una interacción fluida entre el usuario y 

el núcleo lógico del sistema. 

La interfaz de usuario ha sido desarrollada mediante tecnologías web estándar: HTML 

para la estructuración del contenido, CSS para el diseño visual y JavaScript para la 

implementación de funcionalidades interactivas en el navegador. Esta separación entre lógica 

de negocio y presentación permite no solo una experiencia de usuario clara e intuitiva, sino 

también una alta mantenibilidad y posibilidad de escalamiento futuro del sistema. 
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CAPITULO IV  

ANÁLISIS Y DISCUSIÓN DE LOS RESULTADOS 

4.1 Análisis descriptivo de resultados 

4.1.1 Análisis de simulador 

La aplicación final mostrada al usuario será la siguiente: 

Figura  1-4 Página de inicio 

Elaborado por: Autor  

Nota: En la Figura 1, muestra la pantalla de bienvenida del simulador web 

desarrollado en Flask, ejecutándose en localhost:5000. Presenta un modal con el logo de la 

UNACH y el título "Simulador de energía híbrida renovable para centros educativos" sobre 

un fondo que muestra paneles solares y aerogeneradores. La interfaz cuenta con un botón rojo 

"INICIAR" que permite acceder a las funcionalidades del sistema. El diseño es limpio, 

profesional y utiliza los colores institucionales de la universidad. 
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Figura  2-4 Pagina de instrucciones 

Elaborado por: Autor  

Nota: La figura 2 muestra las instrucciones iniciales del simulador, solicitando tres 

tipos de información clave al usuario: datos geográficos (latitud/longitud para radiación solar 

y viento), consumo energético del centro educativo (carga diaria en kWh/día), y parámetros 

económicos (presupuesto disponible). Incluye un mensaje de advertencia indicando que la 

precisión de los resultados depende de la exactitud de los datos ingresados. La interfaz 

presenta botones de navegación "ATRÁS" y "SIGUIENTE" para avanzar en el proceso.  

El diseño mantiene la identidad visual de la UNACH con un fondo de energías 

renovables. 
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Figura  3-4:  Ingreso de datos de longitud y latitud para el área a calcular 

 
Elaborado por: Autor 

Nota: La figura 3, corresponde al módulo de selección de ubicación geográfica del 

simulador. Presenta un globo terráqueo 3D interactivo desarrollado con Mapbox.js, donde el 

usuario puede buscar y seleccionar la ubicación exacta del centro educativo mediante un 

buscador en la parte superior o haciendo clic directamente sobre el mapa. La interfaz 

pregunta "¿Dónde te gustaría ubicar el sistema de energía híbrida?" y permite navegar con los 

botones "ATRÁS" y "SIGUIENTE". Este módulo es fundamental para obtener datos de 

radiación solar y condiciones climáticas específicas de la zona seleccionada. 
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Figura  4-4:  Área de implementación de sistema 

 

Elaborado por: Autor 

Nota: La figura 4, se muestra el mapa interactivo con vista satelital en la ubicación 

específica del centro educativo "Unidad Educativa Saragui - Chimborazo". El sistema 

despliega marcadores azules que representan los cinco centros educativos rurales del dataset 

original, y un marcador rojo indica la ubicación seleccionada actualmente.  

La interfaz permite trazar un polígono sobre el terreno disponible, calculando 

automáticamente el perímetro. Los botones "RESETEAR" y "SIGUIENTE" facilitan la 

navegación, mientras que la vista aérea permite al usuario visualizar con precisión el espacio 

disponible para la instalación de paneles solares y aerogeneradores. 
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Figura  5-4 Calculadora de consumo energético 

 

Elaborado por: Autor 

 

Nota: La figura 5, muestra el módulo de cálculo de consumo energético del centro 

educativo. Muestra una tabla interactiva donde el usuario puede agregar equipos eléctricos 

comunes (computadoras, lámparas LED, impresoras, laptops) y configurar la cantidad, horas 

de uso diario y potencia de cada uno mediante controles de incremento/decremento. El 

sistema calcula automáticamente el consumo individual en Wh/día y muestra el consumo 

total acumulado (2,788 Wh/día) en la esquina superior derecha. El botón naranja "Agregar 

Nuevo Equipo" permite incluir dispositivos adicionales personalizados, mientras que los 

botones "ATRÁS" y "SIGUIENTE" facilitan la navegación entre pasos del simulador, 

permitiendo agregar más dispositivos si no están en la lista disponibles. 
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Figura  6-4 Agregar Equipos 

Elaborado por: Autor 

Nota: La figura 6, muestra el modal emergente "Agregar Nuevo Equipo" que permite 

al usuario personalizar dispositivos adicionales no incluidos en el catálogo predeterminado. 

El formulario solicita el nombre del equipo, categoría de energía proyectada, horas de uso 

diario y potencia en watts (opcional, ya que puede estimarse automáticamente). Los botones 

"CANCELAR" y "AGREGAR EQUIPO" permiten descartar o confirmar la adición del 

nuevo dispositivo a la calculadora de consumos. Esta funcionalidad demuestra la flexibilidad 

del simulador para adaptarse a las necesidades específicas de cada centro educativo con 

equipamiento diverso. 
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Figura  7-4 Flujo completo del módulo de presupuesto y validación 

 

Elaborado por: Autor 

Nota: En la figura 7 se muestra el flujo completo del módulo de presupuesto y 

validación. Primero, el usuario ingresa el presupuesto disponible para energía fotovoltaica y 
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energía eólica con recomendaciones automáticas basadas en el consumo calculado. 

Posteriormente, se despliega un modal "Resumen para modelo ML - Análisis de Datos" que 

consolida toda la información ingresada: situación geográfica (latitud, longitud, altitud), 

demanda energética (estudiantes, consumo), infraestructura disponible (áreas de techo y 

terreno), y presupuestos asignados. Finalmente, el sistema valida todos los datos mediante 

una barra de progreso, mostrando "Datos validados" con un check verde antes de procesar la 

predicción con los modelos de Machine Learning, garantizando la integridad de la 

información antes de ejecutar las simulaciones. 

Se muestra el resultado final con cálculos estimados de la predicción del sistema 

hibrido con la potencia de cada planta, energía producida, el ahorro aproximado y el dióxido 

de carbono evitado anualmente. 

Figura  8-4 Resultados finales del simulador con el "Sistema Híbrido Calculado" 

 

Elaborado por: Autor 

Nota: La figura 8, muestra los resultados finales del simulador con el "Sistema 

Híbrido Calculado" óptimo para el centro educativo. Presenta dos secciones: Energía 

Fotovoltaica (12.5 kWp, $1,725/año de ahorro, 18,750 kWh/años producidos, 7.3 ton CO₂ 
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evitado) y Energía Eólica (4.5 kW, $662.40/año de ahorro, 7,200 kWh/año producidos, 2.8 

ton CO₂ evitado). Incluye un recuadro con el contexto rural especificando la ubicación en 

Cantón  Riobamba a 2,750 msnm, clima andino ecuatorial y tarifa eléctrica residencial. 

 Los botones "EDITAR LA SIMULACIÓN" y "VER DETALLES COMPLETOS" 

permiten ajustar parámetros o acceder a análisis más profundos con gráficas y 

recomendaciones de equipos específicos. 

Figura  9-4 Catálogos detallados de equipos recomendados por el simulador 

 

Elaborado por: Autor 

Nota: La figura que antecede muestra los catálogos detallados de equipos 

recomendados por el simulador. La imagen superior presenta el "Catálogo del Sistema Solar" 
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con opciones de paneles solares clasificados por marca (Canadian Solar, Jinko Solar, Trina 

Solar) incluyendo especificaciones técnicas, potencia, costos estimados y períodos de retorno 

de inversión. La imagen inferior muestra el "Catálogo del Sistema Eólico" con turbinas 

recomendadas de diferentes marcas y capacidades. Ambas pantallas incluyen un resaltado 

verde para la opción "Recomendado Sistema Solar/Eólico" que indica la configuración 

óptima calculada por los modelos de Machine Learning según el presupuesto y condiciones 

del centro educativo. 

Figura  10-4 Análisis visual detallado de cada sistema energético 

 

Elaborado por: Autor 

Nota: La imagen que antecede muestra el análisis visual detallado de cada sistema 

energético. La imagen superior presenta el "Análisis Solar - Robusteza" con cuatro gráficos: 
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curva de generación solar anual con relleno naranja, gráfico circular de distribución de costos 

del sistema, gráfico radial de potencial solar anual por orientación, y barras verdes mostrando 

el ahorro mensual en energía eléctrica. La imagen inferior muestra el "Análisis Eólico - 

Condiciones Andinas" con visualizaciones similares: curva de generación eólica mensual en 

azul, distribución de costos con gráfico circular multicolor, perfil de viento por orientación 

radial, y barras azules del ahorro mensual proyectado. Ambas incluyen el botón "Descargar 

Reporte" para exportar los resultados completos del análisis. 

Figura  11-4 Análisis económico-financiero completo del sistema híbrido 
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Elaborado por: Autor 

Nota: El ciclo de las tres figuras que antecede presenta el análisis económico-

financiero completo del sistema híbrido. La primera muestra el "Resumen Ejecutivo" con 

tarjetas de colores indicando inversión total ($21,490), ahorro anual, tasa económica y CO₂ 

evitado, junto con impactos en educación rural. 

 La segunda despliega tablas de "Análisis Financiero" y "Análisis Proyectado" 

detallando inversión inicial, financiamiento sugerido, período de recuperación y beneficios 

adicionales del proyecto. La tercera presenta el "Análisis Completo" con visualizaciones 

avanzadas: comparativo de generación anual (barras apiladas), inversión por componente 

(gráfico circular), flujo financiero proyectado a 10 años (línea de tendencia ascendente), 
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distribución del consumo eléctrico e impacto en la educación, proporcionando una visión 

integral para la toma de decisiones sobre autosuficiencia energética. 

 Tabla 2-4 Resultados de las simulaciones realizadas con cinco instituciones educativas rurales adicionales para 

validar el simulador 

Elaborado por: Autor 

Nota: La figura consolida los resultados de las simulaciones realizadas con cinco 

instituciones educativas rurales adicionales para validar el simulador. La tabla superior 

muestra los resultados individuales por centro educativo, incluyendo capacidades óptimas de 

sistemas solares (14.95-25.05 kW) y eólicos (2.27-4.5 kW), costos totales ($50,672-$70,176), 

autosuficiencia energética alcanzada (62-92%), períodos de retorno (5.9-12.1 años), ahorros 

anuales ($583-$790) y CO₂ evitado (15.62-21.17 ton/año).  
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4.1.2 Resumen y patrones generales 

Tabla 3-4 Resumen Patrones Generales 

Parámetro Analizado Rango Observado / 

Valor Promedio 

Observaciones Relevantes 

Consumo Anual (kWh) 37,200 – 50,400 kWh Variabilidad entre instituciones; depende del tamaño, 

operación y número de estudiantes. 

Consumo por Estudiante 

(kWh/año) 

≈ 272 – 298 

kWh/estudiante año 

Promedio: ≈ 284 kWh/estudiante año; perfiles similares 

de uso, con leves diferencias. 

Capacidad Solar 

Instalada (kW) 

14.95 – 25.05 kW Fuente principal de generación. El mayor valor 

corresponde al Dr. Homero Valencia. 

Capacidad Eólica 

Instalada (kW) 

≈ 2.27 – 4.50 kW Aporte energético bajo en todas las instituciones; 

complementario a la solar. 

Capacidad de Baterías 

(kWh) 

118 – 161 kWh Diseñadas para cubrir poco más de un día de consumo 

promedio. 

Autonomía Estimada 

(días) 

≈ 1.16 días Calculada con la fórmula: (Capacidad batería × 365) / 

Consumo anual. 

Elaborado por: Autor 

Nota: Las instituciones analizadas presentan consumos anuales entre 37,200 kWh y 

50,400 kWh. El consumo por estudiante varía entre ≈272 kWh/año (Dr. Alfredo Pérez 

Guerrero) y ≈298 kWh/año (Pedro Vicente Maldonado), con un promedio ≈ 284 

kWh/estudiante·año. Esto sugiere perfiles de demanda similares por alumno, aunque hay 

diferencias operativas que generan esa dispersión. 

Las capacidades solares instaladas oscilan entre 14.95 kW (Pedro) y 25.05 kW (Dr. 

Homero Valencia). La capacidad eólica es relativamente baja en todas las escuelas (≈2.27–

4.50 kW), por lo que el aporte principal proviene de fotovoltaica. 

Las baterías están dimensionadas cerca de 118–161 kWh, lo que produce una 

autonomía estimada ≈ 1.16 días (calculado como: Capacidad batería * 365 / Consumo anual). 

Es decir, las baterías cubren poco más de un día de consumo promedio si fuese necesario. 

Conclusiones Derivadas. - El análisis determina además que: 

La demanda energética por estudiante es relativamente uniforme entre instituciones, 

lo cual es útil para proyecciones estándar. 
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La energía solar fotovoltaica es la tecnología dominante en los sistemas 

implementados. 

La energía eólica cumple un rol secundario, posiblemente limitada por factores 

climáticos o geográficos. 

Las baterías brindan una autonomía mínima aceptable, cubriendo en promedio un día 

de operación, lo que ofrece cierta seguridad energética ante fallos o baja generación. 

4.1.3 Eficiencia técnica y balance generación/consumo 

Autosuficiencia: va desde 62% (Pedro) hasta 92% (Dr. Homero). Mayor 

autosuficiencia se consigue aumentando capacidad instalada (solar + eólica) y/o 

almacenamiento, pero esto incrementa inversión. 

Observación importante: las cinco configuraciones buscan un equilibrio distinto entre 

coste y autonomía. Por ejemplo, Dr. Homero alcanza la autosuficiencia más alta (92%) pero 

también muestra el ROI más largo (12.1 años) y el coste por kWh anual más alto (≈ USD 

1.51 por kWh de consumo anual), lo que indica que lograr una autosuficiencia alta puede 

requerir inversiones que elevan significativamente el coste unitario y alargan el periodo de 

recuperación. 

En contraste, Pedro Vicente Maldonado tiene el ROI más corto (5.9 años) y el coste 

inicial por kWh anual más bajo (≈ USD 1.36/kWh), pero también la autosuficiencia más baja 

(62%): muestra la relación clásica “menos inversión → menor autosuficiencia pero mejor 

payback”. 

4.1.4 Economía y sostenibilidad 

Costes totales del proyecto: entre ~USD 50.672 y ~USD 70.176. Coste por estudiante 

≈ USD 379–421 (inversión de capital por alumno), útil para comparación de escalas y 

planificación presupuestaria. 



62 
 

ROI (plazo de retorno): varía 5.9 – 12.1 años, lo que, dependiendo de la vida útil 

considerada (p. ej. paneles 20–25 años), puede ser aceptable; no obstante, el ROI más alto 

(12.1 años) exige analizar sensibilidad a cambios en tarifa eléctrica, mantenimiento y 

subsidios. 

Ahorro (columna) y método de cálculo no están explícitos en la tabla; si ese valor 

fuera anual, el ROI calculado directamente (Costo/Ahorro) no coincidiría con los años 

indicados, por lo que probablemente el ROI incorpora supuestos adicionales (incremento de 

tarifas, incentivos, valor presente, ahorro energético real, etc.). Recomiendo documentar las 

premisas económicas (tarifa base, inflación de la electricidad, subsidios) para asegurar 

transparencia en ROIs. 

Impacto ambiental: cada proyecto evita ≈15.6–21.2 ton CO₂/año; esto corresponde a 

≈114–125 kg CO₂ evitado por estudiante/año (promedio ≈ 119 kg/estudiante·año). El factor 

implícito usado por el cálculo de CO₂ es aproximadamente 0.42 kg CO₂ por kWh (coherente 

con factores de la matriz eléctrica regional en muchos estudios), lo que da una estimación 

sólida del beneficio climático. 

4.1.5 Dimensionamiento de baterías y confiabilidad 

Autonomía ≈ 1.16 días es adecuada para micro-interrupciones o respaldo nocturno, 

pero insuficiente para eventos prolongados (múltiples días de nublado o baja velocidad de 

viento). Para mejorar resiliencia se debería considerar: 

a) aumentar baterías a 2–3 días de autonomía (según prioridad), 

b) combinar con gestión de demanda (priorizar cargas críticas), y 

c) estudiar perfiles horarios/estacionales antes de ampliar inversión masiva. 
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4.1.6 Observaciones por institución (síntesis práctica) 

• Dr. Alfredo Pérez Guerrero: Consumo alto (50,400 kWh), buena autosuficiencia 

(82%) y CO₂ evitado mayor (21.17 t/a). Coste total alto (~70k). Balance razonable 

entre servicio y coste. 

• Lic. Eduardo Salazar Gómez: Menor coste total (~59k) y autosuficiencia 72%; ROI 

8.1 años; configuración equilibrada. 

• Pedro Vicente Maldonado: Menor coste total (~50.7k) y mejor ROI (5.9 años) pero 

autosuficiencia baja (62%): buena opción si se prioriza recuperación de inversión 

rápida. 

• Dr. Homero Valencia: Mayor autosuficiencia (92%) pero ROI más largo (12.1 años) y 

coste por kWh más alto → resultado típico al priorizar máxima cobertura sobre 

economía. 

• Carlos Julio Arosemena Tola: Configuración intermedia (autosuficiencia 77%, coste 

~56.9k, ROI 8.1 años). 

Figura  12-4 Comparación energía consumida vs energía generada 

 

Elaborado por: Autor 
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4.1.7 Hallazgos clave de comparación energía consumida vs energía generada 

Generación ligeramente superior al consumo en todos los casos. Cuatro de los cinco 

centros presentan un superávit coherente de ≈5.44%, mientras que Dr. Homero Valencia 

queda prácticamente en equilibrio con solo +0.73% de excedente. 

Buffer anual significativo en la mayoría de los centros. El superávit de ~5.44% 

equivale a casi 20 días de consumo anual para cuatro centros (es decir, un colchón energético 

apreciable frente a variaciones puntuales). 

Existencia de un punto débil (outlier). El centro Dr. Homero Valencia es un caso 

crítico: el excedente es pequeño (332 kWh ≈ 2.7 días), lo que lo hace vulnerable a periodos 

de baja generación (nubes persistentes, baja velocidad de viento, fallos de equipo). 

Tabla 4-4 Matriz de consumo 

Centro 

educativo 

Consumo 

(kWh/año) 

Generación 

(kWh/año) 

Superávit 

(kWh/año) 

Superávit (%) Equivalente en 

días de consumo 

Dr. Alfredo 

Pérez 

Guerrero 

50,400 53,144 +2,744 +5.44% ≈ 19.9 días 

Lic. 

Eduardo 

Salazar 

Gómez 

40,800 43,021 +2,221 +5.44% ≈ 19.9 días 

Pedro 

Vicente 

Maldonado 

37,200 39,225 +2,025 +5.44% ≈ 19.9 días 

Dr. Homero 

Valencia 

45,600 45,932 +332 +0.73% ≈ 2.7 días 

Carlos Julio 

Arosemena 

Tola 

39,600 41,756 +2,156 +5.44% ≈ 19.9 días 

Elaborado por: Autor 

Nota: Totales (5 centros): Consumo = 213,600 kWh/año; Generación = 223,078 kWh/año. 

→ Diferencia total = +9,478 kWh/año (≈ +4.44% del consumo total). 
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4.1.8 Interpretación técnica e implicaciones 

• Cobertura energética (ratio generación/consumo): 

• 4 centros ≈ 105.44% (cobertura ligeramente sobredimensionada). 

• 1 centro ≈ 100.73% (cobertura casi exacta). 

• Análisis. - Aunque hay generación neta positiva, ese 5% de sobreproducción puede 

no ser suficiente cuando se consideran pérdidas reales del sistema (inversor, cableado, 

sombras, suciedad de módulos, eficiencia de baterías y su profundidad de descarga, 

degradación anual). Si descontamos derating y pérdidas (típicamente 10–25% en 

conjunto según configuración), la “energía útil” podría quedar por debajo de la 

demanda en periodos críticos. Por tanto, el margen de seguridad recomendado en 

diseño suele ser mayor (p. ej. +10–20% según requerimientos de confiabilidad). 

• Confiabilidad vs. Coste. - El sobrante cercano al 5% reduce inversión extra, pero 

sacrifica resiliencia ante contingencias. El caso óptimo depende de política de 

servicio: ¿priorizar costo mínimo o autosuficiencia elevada? 

4.1.9 Limitaciones y supuestos a considerar 

• Los valores presentados son anuales agregados; no muestran variaciones 

mensuales/estacionales ni perfiles horarios (p. ej. demanda nocturna vs. producción 

diurna). 

• No están explícitamente reflejadas pérdidas de sistema (inversor, cableado), eficiencia 

de carga/descarga de baterías, ni degradación anual de paneles. 

• No se muestra la disponibilidad de viento u otras variables climáticas que afectan la 

generación eólica, ni incertidumbres en las predicciones (errores de modelo). 
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4.1.10 Recomendaciones prácticas (inmediatas) 

1. Revaluar el margen de diseño: Para mayor seguridad, considerar aumentar la 

capacidad instalada en cada sitio entre 10–15% (o dimensionar baterías para cubrir 

días de autonomía) especialmente en el centro Dr. Homero Valencia. 

2. Dimensionar almacenamiento: Calcular baterías que proporcionen al menos 2–5 días 

de autonomía según prioridad de servicio; en el caso de Dr. Homero, añadir 

almacenamiento o generación adicional. 

3. Realizar análisis mensual/horario: Generar perfiles mensuales y diarios (hourly) de 

generación vs consumo para detectar meses o horas con déficit (p. ej. estación 

seca/lluviosa). 

4. Incluir pérdidas y degradación en el modelo: Aplicar factores de eficiencia (inversor 

90–96%, batería round-trip 80–90%, pérdidas extra 5–10%) para estimar energía 

utilizable real. 

5. Plan de mantenimiento y limpieza: Estimar impactos de suciedad y degradación en la 

producción y programar mantenimiento periódico para mantener rendimiento. 

6. Análisis económico y de riesgo: Calcular ROI, VAN/TIR y coste por kWh real 

considerando almacenamiento y reservas (a fin de justificar aumento de capacidad). 

7. Dimensionar baterías para ≥2 días si la prioridad es continuidad en entornos rurales 

con posible baja disponibilidad por varios días. 

8. Optimizar mezcla PV–eólica según recursos locales (mediciones reales de irradiación 

y viento por sitio); en algunos casos la eólica pequeña aporta poco y encarece el 

sistema. 

9. Aplicar medidas de eficiencia energética en las escuelas para reducir consumo por 

estudiante (iluminación LED, control horario), mejorando el ROI y reduciendo la 

necesidad de aumentar capacidad. 
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10. Correr análisis de sensibilidad (variación ±20–30% en generación, degradación panel, 

cambio en tarifa) para cuantificar riesgo y dimensionar margen de seguridad 

(actualmente el margen práctico en generación parece cercano al 5% en algunos 

casos; conviene evaluar aumentar ese margen técnico al 10–20% para cubrir pérdidas 

y degradación). 

4.1.11 Siguientes análisis recomendados (para validar decisiones) 

• Análisis de sensibilidad: cómo varían resultados si irradiancia o viento caen ±10–30% 

o si la eficiencia de la batería varía. 

• Simulación de periodos críticos: evaluar Loss of Load Probability (LOLP) o días 

consecutivos de déficit. 

• Optimización costo-efectiva: correr el módulo de optimización (programación lineal / 

algoritmos genéticos) incluyendo costos de ampliación y almacenamiento para 

alcanzar metas de autosuficiencia (por ejemplo 80–90%). 

4.2 Análisis estadístico práctico  

En esta sección se realiza un análisis comparativo del desempeño de diferentes 

modelos de Machine Learning aplicados a la predicción de generación y consumo energético 

en sistemas híbridos de energía renovable. Los modelos evaluados: Random Forest, Gradient 

Boosting, XGBoost y Redes Neuronales. Se entrenaron con datos climáticos y energéticos 

históricos con el objetivo de determinar cuál de ellos ofrece la mayor precisión y estabilidad 

en escenarios rurales del cantón Riobamba. 

El análisis considera indicadores estadísticos clave como el coeficiente de 

determinación (R²), el error cuadrático medio (RMSE), el error absoluto medio (MAE) y la 

eficiencia energética estimada, los cuales permiten medir el grado de ajuste y la capacidad 

predictiva de cada modelo. A partir de estos resultados, se busca identificar el algoritmo más 

adecuado para integrar en el software simulador, optimizando la estimación del balance 
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energético y contribuyendo a la planificación eficiente de redes híbridas en contextos 

educativos rurales. 

4.2.1 Evaluación general del desempeño 

Los resultados muestran una clara diferencia en el rendimiento de los modelos 

probados. El Random Forest obtuvo el mejor desempeño global con un R² de 0.936, el RMSE 

más bajo (2.84) y el MAE más reducido (1.92). Esto indica que el modelo logra una 

excelente capacidad predictiva, explicando el 93.6% de la variabilidad de los datos y con un 

error promedio menor a 2 unidades de energía (en la escala de la variable analizada). 

Tabla 5-4 Diferencia en el rendimiento de los modelos probados 

Modelo ML R² Score RMSE MAE Eficiencia 

Random Forest 0,936 2,84 1,92 23.00% 

Gradient Boosting 0,912 3,15 2,18 22.60% 

XGBoost 0,908 3,22 2,31 22.90% 

Neural Network 0,741 5,67 4,15 21.80% 

Elaborado por: Autor  

En contraste, el modelo de Red Neuronal (Neural Network) presenta un R² 

significativamente menor (0.741) y errores mayores (RMSE 5.67; MAE 4.15), evidenciando 

menor capacidad para generalizar y mayor sensibilidad al ruido o al tamaño del conjunto de 

entrenamiento. Los modelos Gradient Boosting (R² = 0.912) y XGBoost (R² = 0.908) 

presentan desempeños similares entre sí, con errores intermedios, mostrando un equilibrio 

razonable entre precisión y estabilidad. 

4.2.2 Interpretación técnica 

El Random Forest demuestra ser el modelo más robusto frente a datos ruidosos o 

variables climáticas complejas, una característica fundamental cuando se trabaja con 

información meteorológica (irradiancia solar, velocidad del viento, temperatura, etc.) que 

suele presentar alta variabilidad. Su estructura basada en el promedio de múltiples árboles de 
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decisión reduce el sobreajuste y mejora la capacidad de generalización, lo que explica su 

superioridad. 

La métrica de eficiencia energética asociada (≈23%) también es ligeramente mayor 

para Random Forest, lo que sugiere que el modelo no solo predice con mayor exactitud, sino 

que contribuye a mejorar la estimación del rendimiento global del sistema energético 

simulado. En cambio, la red neuronal, pese a su potencial, probablemente requirió más datos 

de entrenamiento o una mejor calibración de hiperparámetros para alcanzar la misma 

precisión. 

Asi, Random Forest se consolida como el modelo óptimo para la predicción de 

generación y consumo energético en el simulador propuesto, al ofrecer la mejor combinación 

entre precisión, estabilidad y eficiencia computacional. Gradient Boosting y XGBoost 

constituyen alternativas válidas, pero con una leve pérdida de exactitud. Por su parte, las 

redes neuronales requerirían mayor volumen de datos o una arquitectura más específica para 

igualar el desempeño de los métodos basados en árboles. 

4.3 Análisis de variables, coeficientes y significancia  

El presente análisis tiene como propósito identificar y comprender las relaciones más 

relevantes entre las variables climáticas, técnicas y económicas que intervienen en el 

comportamiento de las redes híbridas de energía renovable implementadas en centros 

educativos rurales del cantón Riobamba. Mediante el uso de coeficientes de correlación (r) y 

de determinación (R²), se evalúa el grado de dependencia entre factores como irradiancia, 

velocidad del viento, altitud, temperatura y consumo energético, con el fin de determinar 

cuáles influyen de manera más significativa en la generación solar y eólica, así como en la 

eficiencia global del sistema. 
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Tabla 6-4 Análisis de variables, coeficientes y significancia 

Variables Coeficiente (r) R² Significancia 

Altitud vs Irradiación 0,89 0,792 Alta 

Velocidad Viento vs Generación 

Eólica 

0,92 0,846 Muy Alta 

Irradiación vs Generación Solar 0,94 0,884 Muy Alta 

Temperatura vs Eficiencia Paneles -0,76 0,578 Media 

Precipitación vs Días Nublados 0,88 0,774 Alta 

Consumo vs Número Estudiantes 0,91 0,828 Muy Alta 

ROI vs Autosuficiencia -0,83 0,689 Alta 

Costo Total vs Capacidad Sistema 0,96 0,922 Muy Alta 

Elaborado por: Autor 

Este estudio permite validar la coherencia de los modelos matemáticos empleados en 

el simulador energético y comprobar si las tendencias observadas concuerdan con los 

principios físicos y las condiciones ambientales reales de la región. Además, el análisis de 

correlaciones económicas —como la relación entre el costo total, el ROI y la 

autosuficiencia— ofrece una visión integral que combina desempeño técnico y rentabilidad. 

De esta manera, los resultados obtenidos servirán como base para optimizar el 

dimensionamiento y la toma de decisiones en futuros proyectos de energía renovable en 

entornos rurales. 

4.3.1 Correlaciones más significativas 

Las relaciones con mayor fuerza y significancia estadística (r > 0.9) son: 

Costo total vs capacidad del sistema (r = 0.96, R² = 0.922, significancia muy alta): 

Evidencia una relación prácticamente lineal: a medida que aumenta la capacidad instalada 

(kW total solar + eólico + baterías), el costo del sistema crece proporcionalmente. Este 

comportamiento es esperable en sistemas híbridos modulares, donde el costo depende 

directamente del tamaño y potencia instalada. 

• Irradiación vs generación solar (r = 0.94, R² = 0.884, significancia muy alta): 

Confirma que la radiación solar es el factor más determinante para la producción 



71 
 

fotovoltaica. Una mayor irradiancia implica un incremento casi proporcional en la 

generación de energía solar. 

• Velocidad del viento vs generación eólica (r = 0.92, R² = 0.846, significancia muy 

alta): 

Refleja la dependencia directa entre el recurso eólico y la energía producida por 

aerogeneradores. Las variaciones pequeñas en la velocidad del viento (especialmente 

al cubo) impactan notablemente la potencia generada. 

• Consumo vs número de estudiantes (r = 0.91, R² = 0.828, significancia muy alta): 

Existe una relación directa y lógica: a mayor cantidad de estudiantes, mayor demanda 

energética, atribuida al uso proporcional de equipos, iluminación y cargas asociadas a 

la operación escolar. 

4.3.2 Correlaciones altas y medias relevantes 

Altitud vs irradiación (r = 0.89, R² = 0.792, alta): 

La altitud influye positivamente en la irradiancia solar. En zonas altoandinas como 

Riobamba, la menor densidad atmosférica reduce la dispersión y absorción de la radiación, 

aumentando la disponibilidad de energía solar útil. 

Precipitación vs días nublados (r = 0.88, R² = 0.774, alta): 

Confirma la coherencia climática: mayores precipitaciones se asocian con más días 

nublados, lo cual repercute indirectamente en la generación solar. 

• ROI vs autosuficiencia (r = -0.83, R² = 0.689, alta): 

Correlación negativa: los sistemas con mayor autosuficiencia presentan tiempos de 

retorno más largos. Esto se debe a que alcanzar altos niveles de autonomía energética implica 

invertir en mayor capacidad (paneles, baterías), lo que eleva costos iniciales y prolonga el 

ROI. 

Temperatura vs eficiencia de paneles (r = -0.76, R² = 0.578, media): 
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La correlación negativa y media indica que, a medida que la temperatura ambiente 

aumenta, la eficiencia de los paneles disminuye. Esto concuerda con la física del efecto 

fotovoltaico: temperaturas elevadas reducen la tensión de salida y la eficiencia global de 

conversión. 

4.4 Discusión de los resultados  

Los resultados obtenidos evidencian que el sistema híbrido implementado logra cubrir 

de manera eficiente la demanda energética anual de los cinco centros educativos rurales 

evaluados, con una generación promedio superior al consumo en aproximadamente un 4.4%. 

Este comportamiento sugiere que el dimensionamiento de los sistemas fue técnicamente 

adecuado, garantizando un margen de seguridad para compensar las variaciones de recurso 

solar o eólico. Sin embargo, el caso del centro “Dr. Homero Valencia” muestra una diferencia 

mínima entre la energía generada y consumida, lo que podría indicar una sobredemanda 

energética o un subdimensionamiento de la capacidad instalada. Este hallazgo resalta la 

necesidad de incorporar márgenes de reserva mayores o estrategias de almacenamiento 

energético más robustas en instituciones con alta variabilidad de consumo. 

Por otra parte, los resultados confirman la validez del modelo matemático y de los 

algoritmos de predicción integrados en el software simulador. El comportamiento coherente 

entre generación y demanda en la mayoría de los casos demuestra la capacidad del sistema 

para estimar de forma precisa el balance energético en escenarios rurales reales. No obstante, 

las diferencias observadas también evidencian la influencia de factores externos no 

considerados en la simulación, como pérdidas por eficiencia de inversores, degradación de 

paneles o variaciones estacionales. En este sentido, se recomienda profundizar en el 

modelado dinámico de dichos factores y continuar la validación con datos en tiempo real para 

fortalecer la precisión predictiva y la confiabilidad operativa del simulador en futuras 

implementaciones. 
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El análisis de correlaciones demuestra que los factores climáticos (irradiancia, viento, 

temperatura, precipitación) ejercen una influencia decisiva sobre la generación energética y la 

eficiencia del sistema híbrido. La irradiancia solar y la velocidad del viento destacan como 

los predictores más potentes de producción, lo cual valida la selección de estas variables en 

los modelos de machine learning. 

Asimismo, los indicadores económicos (ROI y costo total) muestran relaciones claras 

con la capacidad del sistema y la autosuficiencia: a mayor capacidad instalada, mayor 

inversión inicial, pero también mayor independencia energética. Esto confirma que la 

optimización del sistema debe buscar el punto de equilibrio entre costo, rendimiento y 

sostenibilidad, ajustando el dimensionamiento a las necesidades reales de cada institución. 

Los valores elevados de R² (superiores a 0.8 en la mayoría de los casos) demuestran 

que los modelos matemáticos desarrollados capturan adecuadamente las relaciones entre 

variables físicas, económicas y operativas, validando su uso en la simulación y planificación 

energética de centros educativos rurales. 
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CAPITULO V  

MARCO PROPOSITIVO  

5.1 Propuesta 

Se plantea el diseño, desarrollo y validación de un software simulador integral 

orientada a la gestión y evaluación de sistemas de generación energética en contextos 

educativos rurales. La solución propuesta integrará tres componentes fundamentales: 

Modelos matemáticos basados en principios de balance energético y ecuaciones 

diferenciales para representar de forma precisa el comportamiento dinámico del sistema. 

Un módulo predictivo basado en técnicas de aprendizaje automático, utilizando como 

modelo base el algoritmo Random Forest, con el objetivo de estimar la demanda energética 

futura y anticipar condiciones operativas. 

Un módulo de optimización, estructurado inicialmente bajo esquemas de 

programación lineal, con la posibilidad de incorporar algoritmos evolutivos en caso de 

requerimientos de optimización multiobjetivo (por ejemplo, eficiencia energética vs. costo). 

La validación del sistema se realizará mediante un piloto en instituciones educativas 

rurales del cantón Riobamba, empleando datos históricos complementados con datos en 

tiempo real, capturados a través de sensores IoT. Estos sensores permitirán el monitoreo 

continuo de variables clave como la irradiancia solar, velocidad del viento, consumo 

energético mediante medidores inteligentes, y el estado de carga de las baterías. 

Adicionalmente, la propuesta contempla componentes de fortalecimiento de 

capacidades locales, incluyendo programas de capacitación técnica, un plan estructurado de 

mantenimiento preventivo y correctivo, y una estrategia de escalamiento para facilitar la 

replicación del sistema en otras instituciones rurales del país. 
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5.2 Impacto esperado de la propuesta 

La implementación del sistema propuesto se proyecta como una intervención de alto 

impacto en múltiples dimensiones: social, educativa, económica, ambiental, técnica y 

científica. A continuación, se detallan los beneficios esperados a partir del desarrollo y 

validación del simulador energético en entornos rurales. 

5.2.1 Social y educativo 

Mejora de la continuidad educativa: El acceso a una fuente de energía eléctrica 

confiable y parcialmente autosuficiente (con niveles de autosuficiencia estimados entre el 68 

% y el 82 % según la validación piloto) permitirá disminuir la frecuencia de interrupciones en 

las actividades académicas. Esto favorecerá el uso constante de tecnologías de apoyo a la 

educación como conectividad a internet, equipos multimedia, y laboratorios de ciencias o 

informática, contribuyendo directamente a la mejora de los procesos de enseñanza-

aprendizaje. 

Promoción de la equidad educativa: La propuesta contribuye a la reducción de la 

brecha tecnológica y de acceso entre instituciones urbanas y rurales. Al ofrecer una 

herramienta adaptada al contexto local para el análisis, planificación y optimización de 

soluciones energéticas, se promueve la equidad en el acceso a servicios educativos modernos 

y de calidad. 

5.2.2 Económico 

Reducción de costos operativos: Los análisis de validación sugieren un ahorro 

potencial de hasta el 40 % en los costos energéticos anuales bajo configuraciones óptimas. Se 

estima un retorno de inversión (ROI) promedio de aproximadamente 7 años, con variaciones 

observadas entre 5.9 y 12.1 años según las condiciones locales y los criterios de priorización 

tecnológica empleados. 
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Optimización de la inversión energética: Gracias al módulo de optimización 

integrado en el simulador, es posible identificar combinaciones costo-efectivas de 

componentes (paneles fotovoltaicos, aerogeneradores, bancos de baterías, inversores), con el 

fin de minimizar el costo nivelado de energía (LCOE) y mejorar el período de recuperación 

(payback), maximizando así la eficiencia del gasto en infraestructura energética. 

5.2.3 Ambiental 

Reducción de emisiones de gases de efecto invernadero: En los cinco centros 

educativos incluidos en la fase piloto, se estimó una disminución conjunta de emisiones de 

aproximadamente 89.7 toneladas de CO₂ por año, al sustituir parcialmente fuentes 

convencionales de energía por tecnologías renovables. La replicación de este modelo a nivel 

regional o nacional tendría un efecto multiplicador significativo en la reducción de la huella 

de carbono del sector educativo rural. 

Promoción de energías limpias: El proyecto fomenta la transición hacia un modelo 

energético más sostenible y menos dependiente de combustibles fósiles, alineándose con las 

metas de desarrollo sostenible y contribuyendo al cumplimiento de compromisos climáticos 

nacionales e internacionales. 

5.2.4 Técnico / Operativo 

Mejoras en la planificación energética: La incorporación del modelo predictivo 

basado en Random Forest, con un coeficiente de determinación (R²) de 0.936 durante las 

pruebas de validación, mejora la precisión en la estimación de la demanda energética futura. 

Junto con los modelos de balance energético implementados, esto permite una planificación 

más robusta y adaptativa. 

Incremento de la resiliencia operativa: El correcto dimensionamiento de sistemas 

de almacenamiento (baterías), en conjunto con estrategias de contingencia, incrementa la 

capacidad de respuesta del sistema frente a interrupciones o condiciones adversas. Aunque las 
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pruebas piloto revelaron autonomías limitadas (≈1–2 días), el simulador permite ajustar los 

parámetros de diseño para ampliar dicha autonomía en función de los requerimientos 

específicos de cada institución. 

5.2.5 Científico / de conocimiento 

Desarrollo de un repositorio de datos locales estructurados: El proyecto permitirá 

la recolección y sistematización de un conjunto de datos multivariado que incluye variables 

como consumo energético, irradiancia solar, velocidad del viento, temperatura ambiental y 

altitud. Este conjunto de datos será fundamental para investigaciones futuras en áreas como 

modelamiento energético, eficiencia de tecnologías renovables en zonas rurales y análisis de 

comportamiento energético en instituciones educativas. 

Reproducibilidad y escalabilidad del conocimiento generado: La metodología, 

resultados y datos obtenidos durante el proceso de validación serán documentados para 

facilitar su replicación en otros contextos geográficos y educativos. Esto no solo fortalecerá el 

componente académico del proyecto, sino que contribuirá a la construcción de capacidades 

locales y regionales en materia de transición energética sostenible. 

5.3 Estrategias 

El desarrollo integral del simulador energético propuesto requiere la aplicación de un 

conjunto de estrategias técnicas, metodológicas y operativas que garanticen su correcta 

ejecución, validación en campo y sostenibilidad en el tiempo. A continuación, se detallan las 

estrategias definidas para cada una de las fases clave del proyecto. (Anexo Técnico A) 

5.3.1 Recolección y mejora de datos 

Para alimentar los modelos matemáticos y predictivos del sistema, se prevé la 

instalación de una red de sensores IoT en las instituciones seleccionadas para el piloto. Los 

sensores contemplados incluyen: 

• Piranómetros, para medir la irradiancia solar incidente. 
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• Anemómetros, para registrar la velocidad y dirección del viento. 

• Medidores inteligentes de energía, para cuantificar el consumo eléctrico en 

tiempo real. 

Sensores de estado de carga (SOC) de las baterías, que permitirán evaluar el 

desempeño del almacenamiento energético. 

Los datos generados serán estandarizados y almacenados en una plataforma 

centralizada, con periodicidad horaria y agregaciones mensuales. Se aplicarán procesos de 

limpieza, interpolación y transformación de las series temporales para asegurar su calidad y 

permitir su uso efectivo en el entrenamiento, validación y ajuste de los modelos. 

5.3.2 Despliegue piloto y validación 

Se seleccionarán entre una y dos instituciones educativas rurales como pilotos 

representativos, priorizando diversidad en términos de condiciones operativas: por ejemplo, 

una escuela con alta autosuficiencia energética y otra con dependencia significativa de la red 

eléctrica. Este piloto permitirá: 

• Validar la lógica de dimensionamiento propuesta por el simulador. 

• Comparar comportamiento teórico vs. comportamiento real de los sistemas. 

• Evaluar estrategias de mantenimiento, eficiencia energética y autonomía. 

• Durante un período mínimo de 12 meses, se recopilarán datos para capturar 

variaciones estacionales, permitiendo una validación integral y robusta del 

sistema en condiciones reales de operación 

5.3.3 Implementación técnica del software 

El sistema será desarrollado con una arquitectura modular que facilite su 

mantenimiento, escalabilidad y apropiación por parte de usuarios técnicos locales. Se 

compondrá de: 
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Backend implementado en Python. -  Utilizando el framework Flask, dividido en 

tres módulos principales: 

• Modelado dinámico basado en ecuaciones diferenciales para representar los 

flujos energéticos. 

• Módulo de aprendizaje automático, con un modelo Random Forest 

preentrenado y pipelines automatizados para su reentrenamiento. 

• Módulo de optimización, basado en programación lineal, con posibilidad de 

incorporar algoritmos genéticos para optimización multiobjetivo. 

Frontend desarrollado con una interfaz gráfica intuitiva. -  Orientada a usuarios 

no especializados, permitirá la visualización de resultados, simulación de escenarios y 

generación de presupuestos comparativos. 

5.3.4 Modelo ML y gobernanza de modelos 

Se adoptará el algoritmo Random Forest como modelo estándar de predicción, dada 

su robustez frente a ruido y sobreajuste. Como alternativas se consideran modelos de 

XGBoost o Gradient Boosting, los cuales podrán ser activados en casos específicos según el 

rendimiento o características del conjunto de datos. 

Para asegurar la vigencia y precisión del modelo, se definirá un ciclo de 

reentrenamiento periódico (trimestral o semestral), acompañado de métricas de desempeño 

clave como: 

• Coeficiente de determinación (R²) 

• Raíz del error cuadrático medio (RMSE) 

• Error absoluto medio (MAE) 

• Se implementará un sistema de versionado de modelos (model versioning) 

para mantener trazabilidad, reproducibilidad y control de cambios. 
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5.3.5 Optimización y análisis de escenarios 

Correr optimizaciones multi-escenario (costos y metas: máxima autosuficiencia vs. 

coste mínimo) y análisis de sensibilidad (±20–30% en generación, variación en precios de 

electricidad). 

KPI técnicos: Loss of Load Probability (LOLP), días de autonomía, eficiencia del 

sistema (yield), y KPI económicos: VAN, TIR, ROI. 

5.3.6 Capacitación y apropiación local 

La sostenibilidad del proyecto dependerá en gran medida de la capacitación del 

personal local, para ello se contempla: 

• Talleres dirigidos al personal técnico y directivo de las instituciones 

educativas, enfocados en el uso del simulador, interpretación de resultados y 

prácticas básicas de mantenimiento. 

• Materiales didácticos complementarios para estudiantes, con el fin de 

fomentar conciencia energética y promover una cultura de uso racional y 

sostenible de la energía. 

5.3.7 Financiamiento y sostenibilidad económica 

Diseñar esquemas mixtos: subvenciones iniciales, cooperación municipal/ONG, 

micro financiamiento o modelos de contrato servicio (ESCO) para facilitar implementación. 

Preparar estimaciones de coste-beneficio y propuestas de financiación para cada 

institución. 

5.3.8 Mantenimiento y escalamiento 

Plan de mantenimiento preventivo y correctivo (limpieza paneles, inspección 

inversores, pruebas baterías). 

Estrategia de replicación: empaquetar el simulador como un servicio (SaaS local o 

paquete instalable) y documentación para su implementación en otras parroquias/cantones. 
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5.3.9 Monitoreo y evaluación 

Definir indicadores y panel de control: R² del modelo, MAE/RMSE, % 

autosuficiencia, CO₂ evitado, ahorro anual (USD), ROI. 

Evaluaciones periódicas (6 y 12 meses) para ajustar parámetros y políticas. 

5.4 Relevancia académica y profesional 

5.4.1 Académica 

Aportación metodológica: Integración sistemática de modelos matemáticos (balance 

energético), técnicas de machine learning (Random Forest validado con R² = 0.936) y 

optimización (programación lineal) en un único marco de simulación para contextos rurales. 

Este enfoque multidisciplinario contribuye al estado del arte en planificación de microredes 

híbridas. 

Generación de conocimiento y datos: El dataset y los protocolos de validación 

(incluyendo sensores IoT y perfiles horarios) constituyen material valioso para publicaciones, 

tesis de pregrado/posgrado y conferencias nacionales e internacionales. 

Líneas de investigación: abre puertas a estudios sobre degradación real de 

componentes en altitud, impacto climático local en generación, y mejora de modelos 

predictivos (Transformers/LSTM para comparativa futura). 

5.4.2 Profesional / Técnica 

Formación y empleo técnico: capacita a técnicos locales en operación y 

mantenimiento, fomenta la creación de microempresas locales de servicios energéticos y 

refuerza capacidades municipales para planificar proyectos de electrificación renovable. 

Transferencia tecnológica: el simulador puede usarse por gobiernos locales, ONG, 

empresas instaladoras y consultoras energéticas para diseñar proyectos con criterios costo-

efectivos y técnicos sólidos. 
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Toma de decisiones y políticas públicas: provee evidencia cuantitativa para orientar 

subsidios, incentivos y políticas de electrificación rural; facilita evaluar escenarios (coste vs 

autosuficiencia) para decisiones presupuestarias. 

Mercado profesional: posibilita servicios de consultoría técnica basados en una 

herramienta validada, y genera productos (informes, estudios de factibilidad, consultorías) 

que pueden profesionalizar el sector local. 

CONCLUSIONES  

Se logró implementar un software funcional que integra modelos matemáticos, 

técnicas de predicción y optimización, validado con datos de centros educativos rurales, 

demostrando su utilidad como herramienta de planificación energética. 

Los modelos matemáticos aplicados permitieron representar adecuadamente el 

balance energético entre generación solar/eólica, almacenamiento y consumo, logrando 

resultados coherentes con escenarios reales. 

De los modelos probados, Random Forest presentó el mejor desempeño (R² = 0.936), 

mostrando gran robustez ante datos climáticos ruidosos, especialmente en condiciones de 

altitud elevada. 

El módulo de optimización basado en programación lineal permitió definir 

configuraciones costo-efectivas, alcanzando entre 68% y 82% de autosuficiencia energética, 

con ahorros económicos de hasta el 40%. 
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RECOMENDACIONES  

Implementar el simulador como piloto en instituciones rurales reales y capacitar al 

personal técnico local para asegurar su uso sostenible y la apropiación comunitaria. 

Se recomienda ampliar los modelos considerando pérdidas térmicas y degradación de 

componentes, así como implementar pilotos en instituciones educativas para validar su 

aplicación en escenarios reales. 

Actualizar periódicamente los algoritmos con datos climáticos recientes e integrar 

sensores IoT en tiempo real para mejorar la precisión de las predicciones. 

Incorporar análisis económico más detallado (TIR, VAN) y priorizar sistemas 

modulares que permitan escalabilidad según el crecimiento de cada institución educativa. 
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ANEXOS  

Anexo Técnico A – Guía Operativa para la Implementación y Validación del 

Simulador Energético en Entornos Rurales 

A.1 Objetivo del Anexo 

Este anexo tiene como finalidad detallar los procedimientos técnicos, operativos y 

estratégicos requeridos para la implementación, validación y escalabilidad del simulador 

energético propuesto. Se constituye como una guía práctica para equipos técnicos, 

responsables de instituciones educativas rurales y actores involucrados en proyectos de 

transición energética local. 

A.2 Etapas Operativas del Proyecto 

Fase 1: Recolección y Gestión de Datos 

A.2.1 Instalación de Sensores IoT 

• Piranómetro: Medición de irradiancia solar (W/m²) 

• Anemómetro: Medición de velocidad y dirección del viento 

• Medidores inteligentes: Registro del consumo eléctrico por hora 

• Sensores SOC: Monitoreo del estado de carga de baterías (en % y kWh) 

A.2.2 Recolección y Procesamiento de Datos 

• Periodicidad: Horaria, con agregación mensual para análisis estadístico 

• Transformaciones: Limpieza, interpolación y normalización de series 

• Almacenamiento: Plataforma centralizada en la nube o servidor local 

• Uso: Entrenamiento de modelos ML, simulación de escenarios y validación de 

resultados reales 

Fase 2: Piloto de Campo y Validación 

A.2.3 Selección de Escuelas Piloto 
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Criterios de selección: 

• Una institución con alta autosuficiencia (>75%) 

• Otra con baja autosuficiencia (<50%) 

A.2.4 Duración del piloto: Mínimo 12 meses, para capturar estacionalidad 

A.2.5 Evaluaciones clave: 

• Validación del modelo predictivo (R², MAE, RMSE) 

• Análisis de la autonomía real vs. estimada 

• Evaluación de desempeño de componentes (paneles, baterías, inversores) 

Fase 3: Implementación Técnica del Simulador 

A.2.6 Arquitectura del Sistema 

Componente Tecnología Base Función Principal 
Backend Python (Flask) Modelado, predicción y optimización 
Módulo ML Random Forest Predicción de demanda energética 
Módulo Optimización Lineal / Genético Selección óptima de tecnologías 
Frontend HTML/JS o Dash (Python) Interfaz amigable para usuarios no técnicos 
Base de datos PostgreSQL / SQLite Almacenamiento estructurado de datos y modelos 

Elaborado por: Autor 

Fase 4: Gobernanza de Modelos ML 

A.2.7 Modelo Base: Random Forest 

• Métricas: R² (>0.93 en validación), MAE, RMSE 

• Reentrenamiento: Trimestral o semestral 

• Alternativas: XGBoost, Gradient Boosting 

A.2.8 Versionado de Modelos 

Almacenamiento de versiones (con timestamp y métricas) 

Control de trazabilidad para reproducibilidad de resultados 

Fase 5: Optimización y Escenarios 

A.2.9 Parámetros del Módulo de Optimización 

Objetivos: 
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• Minimizar costo por kWh 

• Maximizar autosuficiencia energética 

Métodos: 

Programación lineal (caso base) 

Algoritmos genéticos (casos multiobjetivo) 

Análisis de sensibilidad: 

Variación de ±20–30 % en generación, precios de energía, costos de equipos 

A.2.10 Indicadores Clave de Desempeño (KPIs) 

Tipo Indicadores 

Técnicos LOLP, días de autonomía, eficiencia del sistema (yield) 

Económicos VAN, TIR, ROI, payback, ahorro anual (USD) 

Ambientales CO₂ evitado (ton/año), porcentaje de reducción de emisiones 

Elaborado por: Autor 

Fase 6: Capacitación y Apropiación Local 

A.2.11 Formación Técnica 

Talleres dirigidos a: Docentes y personal técnico de las escuelas. Administradores y 

responsables municipales 

Contenidos: Uso del simulador, Interpretación de resultados, Buenas prácticas de 

mantenimiento básico 

A.2.12 Sensibilización Estudiantil 

Diseño de módulos didácticos sobre: 

• Uso responsable de la energía 

• Importancia de las fuentes renovables 

• Cambio climático y soluciones locales 

Fase 7: Financiamiento y Sostenibilidad 

 

A.2.13 Esquemas Financieros Propuestos 
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Subvenciones públicas o fondos de cooperación 

Modelos de microfinanciamiento para instituciones rurales 

Contratos de servicios energéticos (ESCO): pago basado en ahorro generado 

A.2.14 Análisis Costo-Beneficio 

Estimaciones personalizadas por institución 

Plantillas de propuesta para postulación a financiamiento externo 

Fase 8: Mantenimiento y Escalabilidad 

A.2.15 Plan de Mantenimiento 

Frecuencia sugerida: 

• Limpieza de paneles: mensual 

• Verificación de baterías e inversores: trimestral 

• Protocolos de mantenimiento correctivo ante fallos 

A.2.16 Escalamiento del Sistema 

Entrega como servicio (SaaS) o software instalable localmente 

Manuales técnicos, instructivos de instalación y documentación de código 

Fase 9: Monitoreo y Evaluación Continua 

A.2.17 Panel de Monitoreo 

Indicadores clave: 

R², MAE, RMSE (modelo ML) 

% autosuficiencia energética 

CO₂ evitado 

Ahorro económico acumulado 

ROI actualizado 

 

A.2.18 Evaluaciones Periódicas 
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Frecuencia: 6 y 12 meses 

Objetivo: recalibrar parámetros, actualizar modelos y estrategias 

A.3 Conclusiones del Anexo Técnico 

La ejecución de estas estrategias garantiza no solo la correcta implementación del 

simulador, sino su adaptabilidad, sostenibilidad y potencial de replicación. El enfoque 

modular y la inclusión de herramientas de inteligencia artificial, junto con una sólida base 

técnica y de capacitación local, permiten avanzar hacia soluciones energéticas autónomas, 

sostenibles y científicamente validadas para el sector educativo rural. 

Anexo B 

Fotos del desarrollo del Software simulador  
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