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RESUMEN

Las moscas de la fruta (Diptera: Tephritidae) se encuentran entre las principales amenazas
fitosanitarias para la agricultura a nivel mundial, causando pérdidas econdmicas
considerables en el Ecuador. La identificacion temprana y precisa de las especies
predominantes es esencial para la ejecucion efectiva de programas de control y cuarentena
liderados por organismos como Agrocalidad. Los métodos tradicionales de vigilancia son
laboriosos, dependen de la pericia humana y pueden retrasar la toma oportuna de decisiones.

Esta tesis presenta el desarrollo de un sistema de clasificacion basado en vision artificial para
la deteccion temprana de las principales especies de moscas de la fruta relevantes en las
operaciones de Agrocalidad. El objetivo es proporcionar una herramienta automatizada y
eficiente que optimice los procesos de inspeccion. Se empled un enfoque de aprendizaje
profundo mediante una Red Neuronal Convolucional (CNN), entrenada y validada con un
conjunto de datos etiquetados de alta calidad de Ceratitis capitata, Anastrepha serpentina y
Anastrepha striata. El sistema también fue optimizado para su implementacion en una
NVIDIA Jetson Nano, garantizando eficiencia computacional para uso en campo o
laboratorio.

Los resultados experimentales mostraron un desempefio s6lido, alcanzando una precision
del 99.0% y una velocidad de inferencia de 7.3450 segundos por imagen, adecuada para
monitoreo en tiempo casi real. Estos hallazgos demuestran el potencial del sistema para
fortalecer la deteccion de plagas y los programas fitosanitarios en el Ecuador.

Palabras Clave: Vision Artificial, Deteccion de Plagas, Mosca de la Fruta, Red Neuronal
Convolucional (CNN), Aprendizaje Profundo, Agrocalidad.



ABSTRACT

Fruit flies (Diptera: Tephritidae) are among the most significant phytosanitary threats to global
agriculture, causing considerable economic losses in Ecuador. Early and accurate identification
of predominant species is essential for the effective execution of control and gquarantine
programs led by agencies such as Agrocalidad. Traditional surveillance methods are labor-

intensive, depend on human expertise, and may delay timely decision-making.

This thesis presents the development of a computer-vision-based classification system for the
early detection of the main fruit fly species relevant to Agrocalidad’s operations. The
objective 1s to provide an automated and efficient tool that optimizes inspection processes. A
Deep Learning approach was applied, using a Convolutional Neural Network (CNN) trained
and validated on a high-quality labeled dataset of Ceratitis capitata, Anastrepha serpentina,
and Anastrepha striata. The system was also optimized for deployment on an NVIDIA Jetson

Mano to ensure computational efficiency for field or laboratory use.

Experimental results showed strong performance, achieving 99.0% classification accuracy and
an inference time of 7.3450 seconds per image, suitable for near-real-time monitoring. These
findings demonstrate the potential of the proposed system to improve pest detection and

strengthen phytosanitary programs in Ecuador,

Keywords: Computer Vision, Pest Detection, Fruit Fly, Convolutional Neural Network

{CNN), Deep Learning, Agrocalidad.

Reviewed by:

Mgs. Sofia Freire Carrillo
ENGLISH PROFESSOR
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CAPITULO L. INTRODUCCION

En el Ecuador, las moscas de la fruta representan un problema constante para los cultivos
frutales, ya que dafian los frutos y reducen su calidad. Entre las especies de interés
econdmico mas comunes se encuentran Anastrepha Striata, Anastrepha Serpentina y
Ceratitis Capitata [1]. Estas especies se consideran de alto impacto econémico por su
facilidad para infestar diferentes hospederos y por los dafos que ocasionan en cultivos de
importancia comercial, de esta manera no solo afectan la produccion, sino que también
pueden impedir la exportacion de fruta debido a las normas fitosanitarias que deben cumplir
los productores. Los documentos oficiales emitidos por AGROCALIDAD explican que el
monitoreo permanente es esencial para mantener bajo control a esta plaga y evitar pérdidas
econdmicas [2].

El sistema de monitoreo oficial se basa en trampas como las McPhail y Jackson, que
permiten obtener datos para calcular el indice MTD (Mosca/Trampa/Dia), el cual indica si
la poblacion de moscas se encuentra dentro de parametros aceptables. No obstante, este
proceso depende de inspecciones manuales y del andlisis visual de los especimenes, lo que
implica un esfuerzo considerable y tiempos prolongados antes de tomar decisiones. En zonas
donde la produccién es intensiva o donde las condiciones ambientales favorecen el
desarrollo de la plaga, los métodos tradicionales pueden resultar insuficientes para detectar
incrementos poblacionales de manera rapida. [3].

En este escenario, tecnologias como la vision artificial y el machine learning ofrecen nuevas
oportunidades para automatizar y mejorar el proceso de identificacion de insectos. Estas
herramientas permiten analizar imagenes y reconocer especies segun sus caracteristicas
visuales, logrando una clasificacion rapida y consistente. Ademas, la incorporacion de
dispositivos, como el Jetson Nano, permite el desarrollo de sistemas portatiles que pueden
utilizarse directamente en campo. La presente investigacion propone el disefio de un sistema
de deteccion automatica de moscas de la fruta basado en imagenes, con el objetivo de apoyar
las labores de monitoreo, reducir el tiempo de respuesta y contribuir a un manejo fitosanitario
mas eficiente [4].



1.1 PLANTEAMIENTO DEL PROBLEMA.

El monitoreo tradicional de moscas de la fruta enfrenta varias limitaciones que afectan su
eficiencia y rapidez. En la practica, los técnicos deben visitar periddicamente los sitios de
produccidn, revisar manualmente las trampas instaladas y clasificar cada uno de los insectos
encontrados. Este trabajo demanda tiempo, recursos econdmicos y personal capacitado,
ademads de estar expuesto a errores humanos por fatiga, condiciones del clima o exceso de
muestras. A esto se suma que las muestras suelen necesitar confirmacion en laboratorio, lo
que extiende atin mas el tiempo entre la captura del insecto y la obtencion del resultado final

[2].

En cultivos de exportacion como el mango, pequeias variaciones en el indice MTD pueden
provocar sanciones inmediatas, como la suspension de la cosecha de un lote o la obligacion
de aplicar planes de manejo intensivos. Cuando la identificacion no se realiza a tiempo, la
plaga puede seguir creciendo sin ser detectada, lo cual incrementa el riesgo de que los niveles
superen los limites permitidos por la normativa. Ademads, factores como la presencia de
frutos caidos, el manejo insuficiente del predio o la existencia de hospederos cercanos
pueden aumentar la presion de la plaga de manera inesperada, lo que hace ain mas necesario
contar con herramientas que brinden informacion inmediata [3], [5].

A pesar de los avances en tecnologia agricola, actualmente no existe un sistema accesible
que pueda identificar de forma automatica y precisa las especies de moscas de la fruta a
partir de imagenes tomadas en campo. Los métodos basados en machine learning atin no se
han implementado en los programas oficiales de monitoreo, a pesar de su potencial para
reducir errores, acelerar el andlisis y proporcionar datos en tiempo real. Esta ausencia
tecnoldgica limita la capacidad de respuesta de los productores y técnicos, genera demoras
en la toma de decisiones y puede ocasionar pérdidas econdmicas considerables. Por ello, es
necesario desarrollar un sistema inteligente que ofrezca una alternativa practica para el
reconocimiento rapido de moscas de la fruta y que apoye las actividades del manejo
integrado de plagas [4], [6].



1.2  JUSTIFICACION

La creacion de un sistema que utilice machine learning para identificar moscas de la fruta es
importante porque permite mejorar la forma en que se realiza el monitoreo fitosanitario. Al
automatizar la clasificacion de las especies mediante imagenes, es posible obtener resultados
en poco tiempo y detectar problemas antes de que la plaga alcance niveles que afecten la
produccion. Esto ayuda a los técnicos y productores a actuar con rapidez y evitar que la plaga
supere los valores permitidos que pueden detener la cosecha o impedir la exportacion [4],

[6].

El uso de tecnologias como camaras y dispositivos de bajo costo ofrece una ventaja
adicional, ya que puede implementarse en zonas donde no hay laboratorios disponibles. De
esta manera, la identificacion se vuelve mas accesible y menos dependiente del analisis
manual. Esto contribuye a que el monitoreo sea mas preciso, uniforme y rapido, mejorando
asi la eficiencia del manejo integrado de moscas de la fruta.

Ademas, este tipo de solucion impulsa el desarrollo de nuevas herramientas tecnologicas
para el sector agricola, lo que fortalece los programas de vigilancia y permite avanzar hacia
una agricultura mas moderna y basada en datos. El sistema complementa los métodos
tradicionales y ofrece informacion que puede evitar pérdidas econdmicas y mejorar la
planificacion de las actividades de campo. Su aplicacion también puede extenderse a otros
cultivos y plagas, lo que abre oportunidades para futuros desarrollos en el area.



1.3 OBJETIVOS
1.3.1 General

Desarrollo de un Sistema de clasificacion basado en Vision Artificial para deteccion
temprana de plagas de Especies predominantes de Mosquitos de la Fruta en Agrocalidad.

1.3.2 Especificos

e Investigar y seleccionar hardware y software 6ptimo para implementar un sistema de
clasificacion de especies de mosquitos de la fruta basado en machine learning.

e Investigar y seleccionar las técnicas de machine learning mas adecuadas para la
clasificacion de especies de mosquitos de la fruta.

e Desarrollar e implementar un sistema de clasificacion de especies de mosquitos de
la fruta utilizando la técnica de machine learning seleccionada.

e Evaluar el funcionamiento del sistema con pruebas de campo.
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CAPITULO II. MARCO TEORICO

2.1 Entomologia Economica

La entomologia econdmica es la rama de la entomologia que estudia los insectos que causan
efectos directos o indirectos en las actividades humanas, especialmente en la agricultura, la
industria alimentaria, la salud ptblica y los sistemas de almacenamiento. Segtn los textos
de formacidén entomologica [7], esta disciplina estd orientada a comprender la biologia,
ecologia, comportamiento y mecanismos de dafo de las especies consideradas plagas, con
el fin de desarrollar estrategias de manejo integrado de plagas (MIP) que reduzcan las
pérdidas econdmicas y aseguren la sostenibilidad productiva.

Entre los elementos fundamentales analizados por la entomologia econdmica se encuentran
los umbrales economicos, el impacto en el rendimiento y la calidad de los productos
agricolas, asi como los costos derivados del monitoreo, control quimico, control biologico y
cumplimiento de las normativas fitosanitarias. Segun la guia técnica del OIEA [8], esta
disciplina integra conocimientos de biologia, climatologia, economia agricola y tecnologias
aplicadas para disefiar sistemas de prevencion y manejo que mitiguen el dafio a los cultivos
comerciales y reduzcan las pérdidas postcosecha.

La entomologia econdmica, en el contexto ecuatoriano, es importante porque el pais tiene
diversidad agricola y existen plagas cuarentenarias de alto impacto (Ceratitis capitata,
Anastrepha striata y Anastrepha serpentina). Estas especies afectan los cultivos destinados a
la exportacion y al consumo interno, causan restricciones fitosanitarias, aumentan los costos
de produccion y representan una amenaza continua para los pequefios y medianos
productores, sugiere Agrocalidad [9]. Por lo tanto, el pais implementa programas de
vigilancia, control integrado y regulacion fitosanitaria destinados a minimizar su impacto.

2.1.1 Moscas De La Fruta

Ciclo De Vida

Los factores en estos ecosistemas, incluyendo la temperatura, la humedad, la vegetacion
nativa, la fruta para la oviposicion, el sustrato de pupacion y la disponibilidad de alimentos,
regulan estrictamente el ciclo de vida [9].

El ciclo ocurre de la siguiente manera: una hembra fertilizada inserta su ovipositor en una
fruta que estd madurando y pone huevos. Una vez que las larvas salen, se alimentan de la
pulpa de la fruta hasta completar tres etapas larvarias. Cuando maduran, caen al suelo y se
convierten en pupas. El adulto crece y, después de un tiempo, emerge de la pupa y comienza
un nuevo ciclo. Los géneros presentes son Anastrepha, Ceratitis y Toxotrypana, y son
multivoltinos, es decir, tienen varias generaciones por afio. También son generalistas en
cuanto al nimero de plantas hospedadoras que atacan y su biologia gira en torno a dos o mas
especies de frutas [9].
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2.1.2 Especies De Importancia Cuarentenaria en el Ecuador

AGROCALIDAD ha logrado localizar 34 especies del género Anastrepha en Ecuador
mediante el PNMMF hasta 2015. A estas moscas se suma la especie introducida Ceratitis
capitata, mas comunmente conocida como la mosca de la fruta del Mediterraneo, y
Toxotrypana recurcauda. Las especies mas significativas y comunes, considerando aspectos
de distribucién, importancia econdmica, rango de hospedadores y el dafio que causan, son:
Anastrepha fraterculus, A. striata, A. serpentina, A. obliqua y Ceratitis capitata, de las cuales
se han seleccionado las siguientes tres especies [1], [9].

Ceratitis Capitata. - Se considera una de las moscas de la fruta mas invasivas y
polifagas a nivel mundial. Su amplia distribucion en las areas costeras y de la sierra
de Ecuador se debe a su gran adaptabilidad, fertilidad y capacidad para colonizar
diversos microclimas. Esta especie ataca a mds de 200 hospedadores, incluidos
cultivos de alto valor como el durazno, mango, tomate de arbol y citricos, lo que la
convierte en una plaga de importancia econdmica y cuarentenaria [9].

Anastrepha Striata. - Es una de las moscas de la fruta mas importantes en Ecuador,
especialmente debido a su fuerte asociacion con la guayaba, un cultivo de
importancia economica para los pequefios productores rurales. Esta especie esta
ampliamente distribuida en las regiones tropicales y subtropicales del pais, donde las
temperaturas calidas favorecen su reproduccion y supervivencia. También puede
atacar otros hospedadores como el babaco y algunos citricos [9].

Anastrepha Serpentina. - Es una mosca de la fruta de importancia cuarentenaria en
Ecuador debido a su capacidad para danar arboles frutales de alta demanda como el
aguacate, zapote, citricos y otras especies tropicales. Su presencia se ha registrado
principalmente en areas calidas y himedas, donde encuentra condiciones ideales para
la reproduccion. Esta especie tiene un ciclo bioldgico eficiente que facilita brotes
recurrentes en huertos poco mecanizados [9].
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2.1.3 Morfologia Clave De Las Especies Objetivo

Tabla 1. Morfologia de las especies objetivo.

Especie Rasgos Morfologicos Distintivos
Ceratitis capitata e Alas: Poseen un patron de
manchas y bandas oscuras muy
caracteristico, con bandas

transversales de color
amarillo/pardo claro y una mancha
oscura en el dpice alar.

e Torax: Presenta un dibujo bien
definido en blanco y negro

(mérmol).

e Abdomen: Color pardo-
amarillento, a veces con bandas
oscuras.

Figura 1. Ceratitis capitata (Mosca de la
fruta del Mediterraneo)
Anastrepha Serpentina e Alas: Se caracterizan por tener un

patron de bandas amarillentas o
marrones con forma de "S" o de
"V" invertida, con la vena R4+5
Ansstraphs presentando una mancha oscura
que se extiende hacia el margen.

e Ovopositor: Largo y delgado, lo
que le permite alcanzar la pulpa de
frutos grandes.

Figura 2. Anastrepha Serpentina.
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Anastrepha Striata e Alas: Su patrén es similar al de
otras Anastrepha, pero la banda
costal (a lo largo del borde del ala)

Anastrepha es mas ancha y labanda S (en forma

striata

de 'S'") es mas marcada y continua
que en otras especies.

e Cuerpo: Generalmente de
coloracion més clara (amarillo-
rojiza) que otras especies.

e Ovipositor: Es una de las
i caracteristicas clave para distinguir

Figura 3. Anastrepha striata (Mosca de la las especies de Anastrepha.

guayabay).

Fuente:[1], [10], [11].
2.1.4 Métodos Tradicionales de Deteccion de Plagas

Durante décadas, los métodos comunes de deteccion de plagas han sido el pilar de la
agricultura (inspecciones visuales y trampas adhesivas y todo eso), incluyendo la deteccion
de insectos mediante inspecciones visuales. Las inspecciones visuales son procesos
laboriosos y subjetivos en los que los agricultores o técnicos inspeccionan los cultivos en
busca de signos visibles de infestacion de plagas. Este trabajo puede ser inconsistente y
falible, dependiendo en gran medida de la experiencia del inspector, de ahi la eficiencia de
tales inspecciones. Ademas, estas inspecciones son poco practicas en grandes areas de
cultivo por ser laboriosas y consumir mucho tiempo[12].

En contraste, las trampas adhesivas son instrumentos pasivos que capturan insectos
voladores, dando una pista de la actividad de plagas. Sin embargo, estas trampas requieren
mantenimiento constante y no son conocidas por ser efectivas para la deteccion temprana,
ya que monitorean las plagas solo una vez que ya han comenzado a colonizar el area. Cuando
estos métodos tradicionales se comparan con métodos automaticos basados en vision
artificial, los sistemas automaticos, segun estudios, son mds rapidos y precisos para la
identificacion de plagas, proporcionando monitoreo continuo y alertas tempranas de
infestacion [13].
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2.1.5 Inteligencia Artificial

La inteligencia artificial (IA) es una tecnologia que permite a las computadoras y maquinas
imitar la capacidad humana de aprender, comprender, resolver problemas, tomar decisiones,
ser creativos y ser autonomos [14].

La IA ha surgido como un método poderoso para la agricultura con un monitoreo preciso de
cultivos y deteccion temprana de plagas, lo que ayuda a reducir pérdidas econdmicas y
minimizar el uso excesivo de pesticidas. Las tecnologias de inteligencia artificial (IA) como
sensores y drones permiten a los agricultores tomar decisiones informadas basadas en datos
en tiempo real, ayudando a usar los recursos de manera eficiente y aumentando la
productividad [15].

e Machine learning.

El aprendizaje automatico es un subcampo de la inteligencia artificial que entrena algoritmos
para predecir o hacer algunas predicciones sobre datos sin un guion o programacion
explicita. Hay varios enfoques, por ejemplo, arboles de decision, regresion, bosques
aleatorios, SVM, KNN y agrupamiento para diferentes problemas. Uno de los mas utilizados
son las redes neuronales artificiales que imitan el cerebro humano y son ftiles para el
reconocimiento de patrones en grandes cantidades de datos. E1 mas simple es el aprendizaje
supervisado; aqui, el modelo aprende de datos etiquetados para identificar las relaciones
entre la entrada y la salida de un modelo, obteniendo asi una clasificacion y/o prediccion
precisa de nuevos casos [14].

e Deep learning.

El aprendizaje profundo es un tipo de aprendizaje automatico basado en multiples capas de
redes neuronales profundas que son capaces de aprender sin supervision directa a partir de
grandes cantidades de material no estructurado. Esta tecnologia es la base de la mayoria de
las aplicaciones modernas de inteligencia artificial, como la visiébn por computadora y el
procesamiento del lenguaje natural [14].

2.1.6 Tecnologias Y Algoritmos De Vision Artificial

La creacion de un sistema de clasificacion basado en vision artificial para la deteccion de
plagas es muy tecnoldgico y orientado al aprendizaje automatico. Las redes neuronales
convolucionales (CNNs) son ideales para el analisis y clasificacion de iméagenes agricolas,
ya que las arquitecturas pueden aprender y comprender patrones complejos y las
caracteristicas. Tales redes consisten en varias capas compuestas por la extraccion de
caracteristicas de las imagenes, que pueden usarse para clasificarlas de manera efectiva [16].
Ademas, el método de segmentacion de imagenes es un método utilizado para separar ciertas
areas de una imagen para identificar plagas en un entorno complejo [17].

La implementacion practica real de estos sistemas en el campo debe estar respaldada por el
hardware adecuado y el software mds reciente. Camaras de alta resolucion y sensores
multiespectrales de drones pueden capturar una instantanea extendida de un cultivo real, que
se procesa utilizando el algoritmo de vision artificial, con el potencial de detectar plagas en
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tiempo real [18]. Herramientas de software como TensorFlow, PyTorch se utilizan para
desarrollar modelos de vision artificial y entrenarlos, mientras que las plataformas de
monitoreo agricola ponen a trabajar los datos almacenados para obtener una imagen
definitiva sobre la salud del cultivo. Un enfoque combinado de estas tecnologias permite un
monitoreo eficiente y una respuesta rapida a las infestaciones de plagas, mejorando la
productividad y sostenibilidad de la agricultura [19].

2.1.7 Vision Artificial En La Agricultura

Para los agricultores que se enfrentan a una gran cantidad de trabajo repetitivo que
generalmente requiere esfuerzo humano para completarse, la vision por computadora es una
tecnologia revolucionaria en la agricultura moderna. La vision por computadora, al aplicar
camaras y algoritmos avanzados de procesamiento de imdagenes, puede clasificar
automaticamente plagas, enfermedades y otras causas de preocupaciones sobre la salud de
los cultivos. Esta tecnologia se puede utilizar para analizar grandes cantidades de datos
visuales en tiempo real, ayudando asi a tomar decisiones de manera mas efectiva. Por
ejemplo, las redes neuronales convolucionales (CNN) han demostrado gran precision en la
deteccion de enfermedades en hojas de tomate con una precision superior al 90% [16], [20].

La vision por computadora juega un papel importante en el campo de la agricultura, donde
aumenta la precision y eficiencia de la deteccion de plagas y disminuye la dependencia de
métodos manuales, que son mas propensos a errores humanos y consumen mas tiempo.
Técnicas como la segmentacion de imagenes se utilizan para aislar y analizar ciertas partes
de una planta o una pieza de fruta, e identificar la presencia de plagas con mucha mas
precision [21]. Ademas, el aprendizaje por transferencia apoya la modificacion de modelos
preentrenados para nuevas tareas con muestras mas pequenas de datos, lo que se realiza mas
facilmente en entornos agricolas menos explorados donde los datos etiquetados son
escasos [22].

2.1.8 Deteccion Temprana De Plagas En La Agricultura De Precision

Con el fin de mejorar la eficiencia de la produccion agricola y el uso de recursos, se ha
implementado un modelo de toma de decisiones con tecnologia de analisis basada en
precision e informacion, para optimizar las decisiones inteligentes en la gestion de insumos
y para monitorear y predecir la produccion de cultivos utilizando tecnologia avanzada. En
este contexto, la deteccion temprana de plagas se considera uno de los componentes
centrales, ya que desempefa un papel primordial en la reduccion de pérdidas econdmicas y
la minimizacién del consumo excesivo de pesticidas [23], [24], lo cual es crucial para la
agricultura sostenible. Los métodos de monitoreo convencionales, que incluyen
inspecciones visuales frecuentes y trampas adhesivas, han demostrado tener tanto una
eficiencia limitada como una pobre oportunidad de respuesta. Por otro lado, los sistemas de
agricultura de precision utilizan sensores, redes inalambricas, dispositivos de Internet de las
Cosas (IoT) y algoritmos de inteligencia artificial para rastrear pardmetros biologicos y
ambientales relacionados con las actividades de las plagas a medida que ocurren [25].
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Uno de los componentes cruciales para la deteccion temprana es la automatizacion del
proceso de identificacion mediante vision por computadora, lo que permite la adquisicion,
procesamiento e interpretacion de imagenes de alta resolucién obtenidas de trampas
inteligentes o camaras que se han desplegado en el campo [26]. Este método ayuda a acelerar
y mejorar la precision del diagnostico y permite una respuesta rapida a las infestaciones de
plagas antes de que alcancen niveles criticos. Ademas, los modelos predictivos analizan
datos historicos y actuales para anticipar la propagacion de plagas basandose en fendmenos
ambientales (temperatura, humedad, estacionalidad). Asi, instrumentos como las redes
neuronales recurrentes (RNN) y los modelos hibridos de aprendizaje profundo pueden
predecir la probabilidad de infestacion basandose en datos climaticos y bioldgicos,
reforzando atin mas el sistema de alerta temprana [27].

2.1.9 Arquitectura Yolo Para La Deteccion Y Clasificacion De Plagas En Tiempo

Real

YOLO (You Only Look Once) es lider mundial en arquitectura de deteccion de objetos en
tiempo real, caracterizada por su alta velocidad/efectividad mientras logra un buen equilibrio
de alta precision. Su novedad esencial es detectar en una sola pasada a través de la red.
También hemos dividido nuestra imagen de entrada en una cuadricula en una capa, donde
cada celda estima al mismo tiempo la probabilidad del objeto y sus coordenadas. A
diferencia de los métodos convencionales de multiples etapas (por ejemplo, Faster-RCNN),
este paradigma tiene la ventaja de procesar muy rapidamente. Por razones como esta, YOLO
es lo suficientemente potente como para servir en aplicaciones de monitoreo de campo y es
adecuado para marcos de optimizacion de inferencia como PyTorch y TensorRT [28].

La ventaja clave de YOLO es trabajar en dispositivos integrados y con pequefios recursos
de computacién, lo que permite la construccion de sistemas autdbnomos que no requieren
acceso continuo a la nube, minimizando asi la latencia y los costos. La arquitectura ha sido
sustancialmente mejorada con las versiones mas recientes (por ejemplo, YOLOVI1O y
YOLOv11) que incorporan deteccion sin anclas, modelos reparametrizables y mejor
atencion visual. Estas mejoras conducen a una mayor precision (mAP) y a un tiempo de
inferencia reducido, preservando a YOLO como la opcién para ofertas rapidas y modulares
de vision por computadora [29].

Tabla 2. Caracteristicas YOLOvI 1.

Caracteristica Clave de Justificacion
YOLOv11

Arquitectura Anchor-Free A diferencia de versiones anteriores, YOLOv11 elimina
las "cajas ancla" (anchor boxes). Esto simplifica el
entrenamiento y es mas efectivo para objetos con formas y
tamanos muy variables (como insectos en distintas
orientaciones y estados).
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Modelos Permiten aumentar significativamente la velocidad de
Reparametrizables inferencia sin perder precision. Es crucial para el
(RepVGG-style blocks) despliegue en la Jetson Nano, ya que optimiza el uso de la
memoria y la GPU Maxwell en un entorno de baja

potencia.

Eficiencia Computacional EI modelo YOLOv11 Large (25.3M de parametros, 86.9
(FLOPS/Parametros) GFLOPs) ofrece un balance 6ptimo de recursos/precision
15 garantizando que se mantenga una alta velocidad de
inferencia (< 3 segundos por imagen) mientras se mantiene

la precision del 99%.

Vision Global y YOLO procesa toda la imagen en una sola pasada,
Localizacion Integrada  minimizando los errores de contexto que sufren las redes
de dos etapas (como Faster R-CNN). Esto es vital para
distinguir moscas muy cercanas en la trampa y evitar

contarlas como una sola instancia.

Fuente: [28], [30].
2.1.10 Uso De Dispositivos Embebidos e IOT en Agricultura

La combinacién de dispositivos integrados y tecnologia IoT (Internet de las Cosas) ha
cambiado el rostro de la gestion agricola al mecanizar y digitalizar el monitoreo de cultivos.
Todas estas herramientas con sensores, camaras y software de computacion permiten la
captura y procesamiento de datos en tiempo real. Las plataformas integradas juegan un papel
clave en la gestion fitosanitaria, donde el despliegue de modelos de aprendizaje profundo
(vision por computadora) directamente en el campo es vital. Esto tiene la ventaja de contar
con instalaciones de procesamiento local para aumentar la eficiencia, reducir la latencia en
la toma de decisiones y eliminar la dependencia de una conexion permanente a la nube,
preservando asi la privacidad de los datos [31].

Esta arquitectura IoT integrada es muy escalable, de esta manera, se pueden desplegar varios
nodos de deteccion distribuidos geograficamente. La operacion de los modelos de vision por
computadora se realiza en estos mismos nodos y la informacion fluye a través de protocolos
inalambricos (LoRa, Wi-Fi u otros) hacia un servidor central compartido. Esta configuracion
no solo reduce los costos operativos y mejora la gestion fitosanitaria, sino que también ayuda
a evitar la pérdida de tiempo, con la deteccion y registro en tiempo real de plagas como las
moscas de la fruta. Permite la notificacion automatica de alertas automaticas y aumenta la
resiliencia dentro de los sistemas agricolas con mas toma de decisiones [31].

2.2 Estudio Del Estado Del Arte

En [32], se observa el procedimiento para identificar al mosquito de la fruta consiste en
utilizar trampas inteligentes que toman imagenes de los insectos que quedan atrapados.
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Utiliza una Red Neuronal Artificial para clasificar, observar figura 2, una red neuronal
convolucional (CNN) para aprender las caracteristicas de los insectos y un procesamiento
digital de imégenes para identificar areas afectadas por plagas. Mientras que SqueezeNet
presenta una precision parecida pero con un tiempo de inferencia mas corto, el modelo
obtiene un 93.55% de precision para Ceratitis capitata y un 91.28% para Grapholita molesta
mediante ResNet18.

50_12 Grapholita

Caslication

50.03 Ctthers. gt ot

Figura 2. Pipeline del Sistema.
Fuente: [32]

En [33], se analiza la identificacién y clasificacion de la mosca del olivo con los algoritmos
SVM (Support Vector Machine) y RF (Random Forest), que han sido incorporados en una
trampa electronica basada en Raspberry Pi B+. La combinacion de ambas técnicas permite
detectar la mosca del olivo con una precision del 89,1%. Este porcentaje se eleva al 94,5%
en el caso de SVM y al 91,9% en el de RF si comparamos todas las especies de moscas con
otros insectos. El empleo de dispositivos IoT para clasificar imagenes crea nuevas
oportunidades para optimizar recursos y proteger la privacidad, mientras que la aplicacion
efectiva de machine learning en este sistema de trampa electronica brinda informacion
importante para el control de plagas, observar figura 3.

Figura 3. Componentes electronicos de la trampa electronica. (A) Trampa electronica con
panel solar, pantalla Stevenson para proteger el sensor de temperatura y humedad
relativa. (B) Camara colocada frente a una trampa Rimi®. (C) Bateria y Electronica.

Fuente: [33].
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En [34], se presentan métodos automaticos para monitorear plagas clave en manzanas, como
Cydia pomonella y moscas de la fruta (Tephritidae y Drosophilidae), destacando el impacto
del cambio climético en su comportamiento. Se evaluan sistemas basados en analisis de
imagenes, trampas inteligentes y sensores que, combinados con IA y IoT, permiten una
deteccion temprana y precisa, optimizando el manejo integrado de plagas. Estos sistemas
automatizados reducen el uso de pesticidas y mejoran la eficiencia en el monitoreo,
contribuyendo a una agricultura sostenible y adaptada a condiciones climaticas cambiantes.

En [35], sugieren usar Faster R CNN con la estructura de red ResNet50 para detectar y
clasificar plagas, utilizando la trampa McPhail, observar figura 4 el conjunto de datos FF
studio, que se especializa en insectos relevantes para la agricultura. La evaluacion del
modelo se realiz6 a través de métricas estandar, como el recall, la precision, el IoU y la
precision media (AP), poniendo de manifiesto un rendimiento elevado en la deteccion de
especies que presentan variaciones en forma, tamafio y condiciones de luz. Al emplear
ResNet50 como extractor de caracteristicas, se logré perfeccionar la deteccion de objetos
diminutos y optimizar la habilidad general del sistema para el aprendizaje profundo.
Asimismo, se destaca el beneficio de Faster R CNN por su estructura de dos fases, que
fusiona propuestas regionales con una clasificacion exacta, obteniendo asi resultados mas
altos en comparacion con los métodos tradicionales de visidbn computacional. La
investigacion subraya el potencial de integrar este tipo de modelos en sistemas de monitoreo
automatizados de plagas para reducir costos y tiempos en comparacion con la inspeccion
manual. Asimismo, se enfatiza la utilidad de estas técnicas en el marco de la agricultura de
precision, donde la deteccion temprana de plagas es clave para minimizar dafios en cultivos.
Finalmente, los autores sugieren que la ampliacion del dataset y el uso de técnicas de data
augmentation podrian incrementar ain mas la robustez del modelo en escenarios reales.

citricos.

Fuente: [35].

En [36], muestran un método de aprendizaje por transferencia para clasificar imagenes de
dos especies de moscas de la fruta (Anastrepha fraterculus y Ceratitis capitata), observar
figura 5, que fueron tomadas con una cédmara de teléfono moévil montada en un
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estereomicroscopio y segmentadas para separar areas morfoldgicas importantes. Con
puntuaciones F1, se examinaron tres modelos preentrenados (VGG16, VGG19 e Inception
v3), logrando 82 % con los dos primeros y hasta 93 % con el tercero; este ultimo sobresalid
también en ambientes no controlados. Se empleo la técnica Grad CAM para observar las
zonas fundamentales que afectan la clasificacion, lo cual corrobord que el modelo tiene la
capacidad de captar rasgos morfoldgicos importantes. Este trabajo demuestra que, con un
dataset bien curado y un pipeline basado en aprendizaje por transferencia, se puede lograr
una clasificacion precisa y replicable de especies de moscas de la fruta.

-

c)

Figura 5. Manejo de moscas

Fuente: [36].

En [37], se estudia el reconocimiento de objetos mediante redes neuronales convolucionales
con la finalidad de analizar su efectividad en las tareas de clasificacion de imagenes. Este
analisis tiene lugar en dispositivos moviles que poseen Android. Usando TensorFlow Lite,
una herramienta disefiada para optimizar la inferencia en el limite de red, el proyecto
examina modelos preentrenados como VGGI16, ResNet50, MobileNet y EfficientNetBO,
observar figura 6. Se pone en marcha una aplicacion que, mediante la camara del aparato,
detecta elementos en tiempo real y contrasta su eficiencia energética, su precision y los
tiempos de ejecucion. Aunque no se enfoca especificamente en la deteccion de insectos, el
trabajo demuestra cémo la vision artificial y el aprendizaje profundo pueden aplicarse
eficazmente en dispositivos embebidos, sentando las bases para futuras aplicaciones en
entornos agricolas o de monitoreo ambiental donde la clasificacion automatizada y
local es crucial.

Comparativa Accuracy

EfficientNet

MobileNet

Modelos

ResNet50
VGG16
60,00% 65,00% 70,00% 75,00% 80,00% 85,00% 90,00% 95,00%

Accuracy

M Top-1 TensorFlow Lite Top-1 Keras Top-5 TensorFlow Lite Top-5 Keras

Figura 6. Comparativa de la tasa de aciertos de los modelos.

Fuente: [37].
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En [38], se muestra una variedad de métodos que utilizan técnicas de aprendizaje profundo
y visioén por computadora para analizar la regurgitacion en las moscas de la fruta (Diptera:
Tephritidae). Se sugieren tres técnicas diferentes, observar figura 7: el reconocimiento de
regurgitacion con I3D, la segmentacion semantica utilizando U Net optimizado por el
sistema de atencion CBAM, y el seguimiento de trayectoria mediante la fusion de Yolov5y
DeepSort. La deteccion y el rastreo de insectos logran una exactitud del 99,8 %; la
segmentacion a través de U Net+CBAM logra un indice medio de uniéon (mloU) del 90,96
%; y el modelo 13D obtuvo un Top 1 Accuracy del 96,3 %, por encima de C3D y X3D. Se
empled OpenCV y segmentacion por umbral para cuantificar el liquido que fue regurgitado,
lo cual posibilitd6 medir con exactitud el area. El uso conjunto de reconocimiento,
segmentacion y tracking posiciona esta metodologia como una herramienta integral para
analizar la regurgitacion, aportando datos cuantitativos utiles para acciones fitosanitarias
especificas en cultivos.

insect regurgitation fluid Semantic wegmentation Threshold segmentation

Figura 7. (A, B) representan dos conjuntos diferentes de muestras y, después de la

A

segmentacion semantica y la segmentacion del umbral, se puede extraer una posicion y
forma mas claras del liquido regurgitado.

Fuente: [38]
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CAPITULO III. METODOLOGIA

3.1 Tipo de Investigacion

El presente trabajo corresponde a una investigacion experimental aplicada, orientada al
desarrollo de un sistema de clasificacion de especies de moscas de la fruta mediante técnicas
de vision artificial. El enfoque aplicado radica en el uso de un modelo de Deep Learning
para resolver un problema concreto del &mbito agropecuario, especificamente el proceso de
identificacion temprana de plagas que afectan la produccion fruticola nacional.

El trabajo se basa en el entrenamiento, ajuste y evaluacion de un modelo de deteccion de
objetos, comparando su desempefio con los métodos tradicionales empleados por la entidad
Agrocalidad. De esta manera, se busca determinar la precision de identificacion y la
reduccion del tiempo de respuesta que ofrece el sistema propuesto frente al proceso manual
de clasificacion.

3.1.1 Diseiio de la Investigacion

El procedimiento metodoldgico se estructurd en seis fases consecutivas, que permitieron
organizar el desarrollo del proyecto desde la revision tedrica hasta la validacion del sistema,
observar figura 8.

FASE 1 FASE2

REVISION BIBLIOGRAFICA CREACION DEL DATASET
* Revision Bibliografica »  *Bisqueda y descarga de imagenes.
* Comprension del problema v ¥ Etiquetado.
requisitos. * Data augmentation
Y

FASE 3

FASE 4 DISENO Y DESARROLLO

EVALUACION Y VALIDACION
* Pruebas experimentales
* Comparacion con tecnicas

* Seleccion de software y hardware.
* Entrenamiento con el modelo
seleccionado.

trac'limona.les. ) * Desarrollo del GUI e Inferencia
* Evaluacion del rendimiento * Integracion de software y hardware.
v
FASE 5 FASE 6

EVALUACION CON TECNICOS
* Evaluacion con un equipo Técnico
para pruebas de funcionalidad.

CONCLUSIONES Y DOCUMENTACION
* Consolidacion de resultados.
* Documentacion técnica y trabajos a futuro.

Figura 8. Etapas del Desarrollo del Prototipo.
3.1.2 Técnicas de Recoleccion de Datos
La recopilacion de datos para la evaluacion del sistema de clasificacion se fundament6 en

una combinacion de técnicas que aseguraron la obtencion de informacion directa, objetiva 'y
continua, esenciales para validar el rendimiento del prototipo frente al método tradicional.
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e Observacion

La observacion se emple6 como técnica de recopilacion de informacion directa en un entorno
controlado (Laboratorio de Entomologia de AGROCALIDAD) para evaluar el desempefio
humano y del prototipo durante las pruebas experimentales.

Mediante la observacion, se pudo registrar y analizar de forma directa:

- Se observo la interaccion del personal técnico con el sistema desarrollado,
incluyendo la manipulacion de la interfaz grafica (GUI) para la captura, deteccion,
y generacion de reportes.

- Se registro el Tiempo de Identificacion (en segundos) que tomaban los
participantes para realizar la clasificacion manual de las moscas bajo un
microscopio, lo cual sirvi6 de base para la comparacion con el método automatico.

- Se observo como el sistema realizaba la deteccion automatica en las mismas
muestras, registrando el tiempo de procesamiento y la exactitud de la clasificacion,
verificando su fiabilidad en un entorno de laboratorio.

e Subsistema de Adquisicion y Procesamiento de Datos

Esta técnica une el procesamiento automatizado local con la intervencion controlada del
usuario. El proposito es producir resultados en tiempo real y objetivos a partir de las
fotografias que se toman y cargan en el dispositivo.

El proceso comienza cuando el técnico de laboratorio o de campo emplea la cdmara
IMX219-77, que es la unidad sensora en este caso, para tomar una fotografia de la muestra
y cargarla manualmente en la Unidad de Procesamiento Embebido usando la interfaz grafica
(GUI). El sistema actia de manera independiente tras cargar la imagen: el modelo YOLOv11
es ejecutado por el NVIDIA Jetson Nano y produce automaticamente los datos de salida
esenciales. Estos datos incluyen la Clasificacion de la Especie identificada, el Nivel de
Confianza asociado a cada deteccion, y el Tiempo de Inferencia que seria velocidad de
procesamiento en milisegundos. Asegurandonos asi que, aunque la entrada sea manual, la
identificacion, clasificacion y el registro de métricas de rendimiento se ejecuten de manera
automatica y se almacenen en registros digitales para su trazabilidad.

3.1.3 Poblacion de estudio.

La poblacion de estudio estd compuesta por todas las mediciones posibles del tiempo de
ejecucion, que se logran dependiendo del método utilizado para identificar a las moscas de
la fruta y el nivel de conocimiento del usuario. Estas mediciones fueron producidas durante
las pruebas experimentales que se llevaron a cabo en los locales de Agrocalidad, en un
ambiente controlado que posibilitd la normalizacion de las condiciones del sistema.

Esta poblacion, desde una perspectiva estadistica, representa el grupo teodrico y sin limites
de valores que se podrian alcanzar si cualquier usuario potencial empleara el sistema en
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circunstancias parecidas a las del andlisis. Como la cantidad de usuarios potenciales, asi
como las mediciones de tiempo y niveles de conocimiento, no tienen un limite
preestablecido, se asumi6 que la poblacion es infinita. Esta definicion posibilita que se
empleen métodos estadisticos adecuados para poblaciones grandes y hace mas sencillo
extender los resultados a un extenso conjunto de usuarios y escenarios.

3.1.4 Operacionalizacion de las variables

Tabla 3. Parametros y Métodos de Evaluacion.

Variable Concepto Tipo de variable Técnicas e
Instrumentacion
Independiente
Meétodo Forma en que se Cualitativa Nominal Deteccion manual

Tiempo de deteccion

realiza la deteccion
de las especies.

Dependiente

Tiempo necesario Cuantitativa Continua

vs Deteccion
Automatica

Tiempo empleado

para la por cada método de
identificacion y clasificacion,
clasificacion de la medido en
muestra. segundos.

En la tabla 3, se detalla la operacionalizacion de las variables objeto de estudio.

3.1.5 Fase Uno

La primera fase del proyecto comprende el estudio de los principios tedricos relacionados
con la vision artificial y el aprendizaje profundo empleados para la identificacion y
clasificacion de plagas agricolas. En esta etapa, el objetivo es establecer las bases
conceptuales que sustenten el desarrollo del sistema de clasificacion orientado a la deteccion
temprana de las especies de moscas de la fruta mas comunes. Posteriormente, tras una
reunion con el departamento de Entomologia, se determind que las especies de mayor
relevancia para la investigacion son Ceratitis capitata, Anastrepha serpentina y Anastrepha
striata.

Se lleva a cabo un estudio de proyectos e investigaciones previas relacionadas con el uso de
modelos de inteligencia artificial para el monitoreo y control de plagas, identificando las
arquitecturas de redes neuronales, los métodos empleados y las plataformas informéticas
utilizadas. Este andlisis permitié establecer criterios técnicos para la seleccion de las
herramientas mas adecuadas para el sistema propuesto.
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e Comparacion de plataformas de procesamiento

Se comparan diversas plataformas de hardware con el objetivo de ejecutar modelos de vision
artificial en tiempo real. Entre los factores considerados para la evaluacion se incluyeron el
costo, el consumo energético, la capacidad de procesamiento, la compatibilidad con
frameworks de aprendizaje profundo y el soporte para aceleracion mediante GPU.

Tabla 4. Comparativa de plataformas de procesamiento

Plataforma  Procesador/ Compatibi Consumo Costo Ventajas Desventajas
GPU lidad TIA energético aproximado principales principales
Raspberry Pi ARM Limitada Bajo (5-7 W) Bajo Economica y Bajo
4 Cortex-A72, (sin accesible rendimiento en
sin GPU CUDA) 1A
dedicada
Google Coral  TPU Edge TensorFlo Bajo (5 W) Medio Alta Soporte
integrado w Lite velocidad en limitado a
inferencias modelos
con especificos
TensorFlow
NVIDIA Quad-Core PyTorch, Moderado (10 Medio Aceleracion Requiere
Jetson Nano ARM A57+  TensorFlo W) por GPU, disipacion
GPU 128 w, ONNX soporte térmica
CUDA TensorRT, adecuada
buen
equilibrio
entre
potencia y
costo

Fuente: [39], [40].

La plataforma mas adecuada para el sistema, de acuerdo con la comparacion presentada en
la Tabla 4, fue seleccionada como la NVIDIA Jetson Nano. Esta eleccion se fundamenta en
su capacidad para ejecutar modelos complejos de deteccion en tiempo real mediante

aceleracion por GPU, asi como en la posibilidad de utilizar librerias optimizadas como
TensorRT. En conjunto, esta plataforma garantiza un equilibrio entre rendimiento, eficiencia

energética y viabilidad econdmica.
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e Comparacion de arquitecturas de redes neuronales convolucionales

Se analizan diversas arquitecturas de redes neuronales convolucionales (CNN) comunmente
empleadas en la clasificacion de imédgenes, evaluandolas segliin su exactitud, velocidad de
inferencia, requerimientos computacionales y facilidad de implementacion en dispositivos

embebidos.
Tabla 5. Comparativa de modelos de clasificacion
Modelo  Precision Velocidad Requerimientos Adecuado  Observaciones
CNN (mAP) de computacionales para tiempo
inferencia real
Inception Alta Media Alto Parcialmente Buena
V3 (~80%) precision, pero
elevada
demanda de
recursos
EfficientN Alta Media Medio Parcialmente =~ Buen balance
et-BO (~83%) entre
rendimiento y
eficiencia
YOLO Muy alta Alta Moderado Si Excelente
vll (>85%) rendimiento en

deteccion en
tiempo real

Fuente: [29][41], [42].

A partir del andlisis comparativo presentado en la Tabla 5, se selecciond el modelo
YOLOVI11 en su version 1, debido a su alta precision, capacidad de operacion en tiempo real
y adecuado acoplamiento con la plataforma NVIDIA Jetson Nano. Esta combinacién
permite una deteccion eficiente y precisa en condiciones variables de iluminacion y entorno.
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3.1.6 Fase Dos

Se lleva a cabo la elaboracion del conjunto de datos (dataset) necesario para el entrenamiento
y la validacion del modelo de clasificacion. Esta fase resulta fundamental, ya que la calidad
y diversidad de las imagenes influyen directamente en el desempefio y la capacidad de
generalizacion del sistema.

El procedimiento inicia con la identificacion y recopilacion de imagenes correspondientes a
las tres especies seleccionadas: Anastrepha striata, Anastrepha serpentina y Ceratitis
capitata. Las imagenes fueron obtenidas a partir de bases de datos abiertas, archivos
cientificos y capturas realizadas en campo, con el proposito de cubrir distintas condiciones
de fondo, iluminacion y orientacion.

Posteriormente, se efectua el proceso de etiquetado de las imagenes mediante el uso de
herramientas especializadas como Roboflow, las cuales permitieron delimitar las areas de
interés asociadas a cada insecto. Este proceso posibilitdo la generacion de los archivos de
anotacion requeridos por el modelo YOLOv11 para su entrenamiento supervisado.

Finalmente, se aplican técnicas de aumento de datos (data augmentation) con el fin de
incrementar la diversidad y robustez del dataset, considerando que en su etapa inicial este
contaba unicamente con 1 498 imagenes.

Tabla 6. Composicion Cuantitativa del Dataset

Conjunto Ceratitis Anastrepha Anastrepha Totalde  Totalde Porcentaje

capitata  Serpentina Striata Instancias Imagenes

Entrenamiento 1074 1035 1035 3144 X 70%
(70%)

Validacion 96 98 105 299 Y 20%
(20%)

Prueba (Test) 46 54 49 149 Z 10%
(10%)

Total General 1216 1187 1189 3592 (X+Y+Z) 100%

Para generar el conjunto de datos final de 3592 instancias, se aplica un pipeline de Data
Augmentation en la plataforma Roboflow para incrementar la diversidad y prevenir el
sobreajuste, observar tabla 6.

Las transformaciones incluyeron:
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Rotacion de 90°: en sentido horario, antihorario, boca abajo.
Rotacion: Entre -13° y +13°.

Saturacion: Entre -28% y +28%.

Brillo: Entre -24% y +24%.

Ruido: hasta el 0,97% de los pixeles.

Figura 9. Proceso de etiquetado en RoboFlow.

En la figura 9, se observa el procedimiento de etiquetado de imagenes mediante bounding
box.

3.1.7 Fase Tres

Esta fase se enfoca en el disefio e implementacion de un sistema de categorizacion basado
en vision artificial, cuyo propdsito fue lograr la deteccion temprana de moscas de la fruta,
especificamente de las especies Anastrepha serpentina, Anastrepha striata y Ceratitis
capitata. El objetivo principal consistio en integrar componentes de hardware y software que
permitieran un procesamiento Optimo en tiempo real, proporcionando una solucion portétil,
accesible y eficiente para apoyar la vigilancia agricola y la prevencion de plagas.

El diagrama de bloques presentado en la figura 10 ilustra la arquitectura de hardware y
software del sistema propuesto. El bloque de alimentacion es el encargado de suministrar los
5 V/4 A necesarios para el funcionamiento estable de todos los componentes del sistema,
entre ellos la camara, la pantalla tactil de 7 pulgadas y la plataforma NVIDIA Jetson Nano,
garantizando una operacion sin fluctuaciones de voltaje.

En el bloque de adquisicion de datos se encuentra la camara, cuya funcion es capturar
imagenes del entorno en tiempo real. Estas imagenes son enviadas directamente al modulo
de procesamiento, ubicado en la Jetson Nano, que constituye el nicleo central del sistema.
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En el bloque de procesamiento, la Jetson Nano ejecuta el modelo YOLOv11, previamente
entrenado mediante técnicas de transfer learning, realizando la deteccion e inferencia en
tiempo real para identificar las especies presentes en las imagenes capturadas. Para este
proceso se emplean bibliotecas como OpenCV, Ultralytics YOLO, Tkinter y NumPy, las
cuales permiten el procesamiento visual, la gestion de datos y la implementacion de la
interfaz gréfica.

El bloque de visualizacion presenta los resultados de la clasificacion a través de una interfaz
grafica desarrollada en Tkinter y desplegada en una pantalla tactil de 7 pulgadas. Esta
interfaz muestra las detecciones en tiempo real, incluyendo la especie identificada, el nivel
de confianza y un conteo acumulativo de las muestras detectadas. Adicionalmente, el sistema
permite la generacion de reportes en formatos CSV y PDF que contienen la informacion
procesada y las estadisticas de deteccion, facilitando su posterior analisis.

Finalmente, el sistema incorpora un bloque de almacenamiento y gestion de resultados, en
el cual se registran las detecciones junto con la especie identificada, la fecha y la hora
correspondientes. Desde la interfaz es posible consultar o exportar dichos registros, lo que
permite mantener un historial digital de las detecciones y simplificar el seguimiento del
monitoreo.

En conjunto, la arquitectura propuesta integra los modulos de captura, procesamiento,
visualizacion y almacenamiento, con el objetivo de ofrecer una herramienta autéonoma,
portatil y de bajo costo orientada a respaldar las labores de deteccion temprana de plagas en
el ambito agricola.

NVIDIA Jetson Nano

Procesamiento YOLOv11
—» - Modelo: Deteccion de objetos
- Salida: Bounding boxes

Camara USB (OpenCV)
- Captura en tiempo real

Y

Interfaz Tkinter (GUT)
- Visualizacién en vivo
- Controles: Iniciar/Detener, etc.
- Alertas en pantalla

Almacenamiento CSV / PDF
- Reportes: Logs de deteccion
- Formatos: CSV (datos). PDF
(resumenes)
- Ubicacion: SD Card

Figura 10. Diagrama de Bloques del Dispositivo
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e Ensamblaje e integracion del sistema de clasificacion basado en jetson nano.

El presente apartado detalla el proceso de ensamblaje y puesta en funcionamiento del kit de
desarrollo NVIDIA Jetson Nano de Makeronics, el cual constituye la plataforma
fundamental para la implementacion del sistema de deteccion y clasificacion de especies de
moscas de la fruta mediante vision artificial.

El conjunto de componentes incluidos en el kit se detalla a continuacion:
A. Estuche de acrilico Jetson Nano

1 funda protectora acrilica.

1 juego de tornillos y separadores.

1 ventilador de refrigeracion PWM.

1 destornillador de montaje.

1 botén de encendido y 1 boton de reinicio.

Manual de instrucciones.

B. Camara IMX219-77

1 médulo de cdmara IMX219-77.

1 funda de proteccion para la camara.

Manual de montaje.

C. Tarjeta microSD de 64 GB

1 tarjeta TF de 64 GB

1 lector de tarjetas USB.

D. Kit de pantalla tactil LCD de 7 pulgadas

Pantalla tactil capacitiva de 7” (resolucién 1024x600 IPS).
Cable HDMI.

Cable micro USB para la funcion tactil.

Soporte de montaje.
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e Instalacion de la Tarjeta de Red de la Nvidia Jetson Nano

.....

Figura 11. Tarjeta de Red Externa

La NVIDIA Jetson Nano no cuenta con conectividad inalambrica integrada, por lo que se
incorpord una tarjeta de red externa, como se observa en la figura 11, con el propdsito de
habilitar la conexion a Internet requerida para la instalacion de dependencias, la
actualizacion del sistema operativo y la transferencia de archivos de entrenamiento.

e Instalacion de la NVIDIA Jetson Nano en la base acrilica

Figura 12. Estuche acrilico
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Figura 13. Jetson Nano sobre la base inferior del estuche acrilico.

En las Figuras 12 y 13 se observa la colocacion de la placa Jetson Nano sobre la base inferior
del estuche acrilico, alineando los orificios de montaje con los separadores plasticos.
Posteriormente, la placa fue fijada mediante los tornillos incluidos, asegurando que quedara
firme y correctamente posicionada,

e Montaje del sistema de ventilacion

Figura 14. Sistema de ventilacion

Sobre el disipador de la Jetson Nano se instala el ventilador de refrigeracion PWM, tal como
se muestra en la Figura 14, orientando el flujo de aire hacia el disipador.

El ventilador se conecta al conector GPIO de 5 V correspondiente, lo que permite la
regulacion automatica de la velocidad y el mantenimiento de temperaturas 6ptimas de la
tarjeta.
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e Instalacion de los botones de encendido y reinicio

Figura 15. Conexion botones de encendido y reinicio.

Los botones Power y Reset se colocan en los orificios del estuche acrilico, como se muestra
en la Figura 15, y se conectan a los pines GPIO designados de la Jetson Nano.

Estos botones permiten encender y reiniciar el sistema sin necesidad de manipular
directamente la placa.

e Conexion de la camara IMX219-77

La camara IMX219-77 figura 16, se conecta al puerto CSI (Camera Serial Interface) de la
Jetson Nano mediante su cable plano, se aseguraron las trabas del conector para evitar falsos
contactos.

Finalmente, se coloca la cdmara dentro de su carcasa protectora y se fija al soporte frontal
del estuche.

Figura 16 Camara IMX219-77
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o Instalacion de la pantalla tactil LCD de 7 pulgadas

La pantalla tactil se monta en su soporte y se conecta a la Jetson Nano mediante el cable
HDMI (para la sefal de video) y el cable micro USB (para la funcion tactil).
De esta forma, la pantalla actua como el principal medio de visualizacion e interaccion
con el sistema, véase figura 17.

e
T B
Figura 17. Pantalla LCD

e Preparacion del Sistema Operativo Nvidia Jetson Nano

En una computadora externa, se graba la imagen del sistema operativo JetPack utilizando la
herramienta Nvidia SDK Manager, véase figura 18.

o Data Science

Figura 18. Nvidia SDK Manager
e Alimentacion y verificacion inicial

Finalmente, se conecta la fuente de alimentacion de SV/4A al puerto de energia de la Jetson
Nano y se presiona el botén de encendido. Tras el arranque inicial, se verifica el
funcionamiento del sistema, la operacion del ventilador, la detecciéon de la camara, el
funcionamiento de la pantalla tactil y la conectividad de red, véase figura 19.
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Figura 19. Conexion de la alimentacion de la Nvidia Jetson Nano.
o Seleccion del modelo base

En este apartado se explica el procedimiento de entrenamiento del modelo de deteccion y
categorizacion de especies de moscas de la fruta con la arquitectura YOLOV11.

Para el actual proyecto, se elige la version YOLO11 (Large) de esta familia debido a que
proporciona una capacidad superior para detectar objetos pequefios y un nivel de precision
mas elevado, cualidades esenciales para identificar insectos como las moscas de la fruta.

A diferencia de modelos de clasificacion como InceptionV3 o EfficientNet, que procesan
imagenes completas, YOLO11l realiza simultdineamente la localizacion y clasificacion de
objetos, lo que lo hace ideal para realizar el sistema propuesto.

Tabla 7. Rendimiento del Modelo YolovlI en sus diferentes variantes.

Modelo Tamaiio mAPval Velocidad Velocidad Parametros FLOPS
(Pixeles) 50-95 CPU T4 (M) (B)
ONNX TensorRT10
(ms) (ms)
YOLO11n 640 39.5 56.1 £0.8 1.5+0.0 2.6 6.5
YOLO11s 640 47.0 90.0+£1.2 2.5+0.0 9.4 21.5
YOLO11m 640 51.5 183.2+2.0 4.7+0.1 20.1 68.0
YOLO111 640 53.4 238.6+14 6.2+0.1 25.3 86.9
YOLO11x 640 54.7 462.8+6.7 11.3+0.2 56.9 194.9

Fuente: [29].

Como se puede observar en la tabla 7, YOLO11l sobresale por su capacidad para brindar
una relacion equilibrada y robusta entre rendimiento y precision, con una velocidad que
permite la inferencia en tiempo real en la NVIDIA Jetson Nano.
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Esto posibilita alcanzar un balance ideal entre el desempeiio computacional y la precision al
clasificar especies que se parecen visualmente, como Anastrepha striata, Ceratitis capitata y
Anastrepha serpentina.

El modelo se entrena utilizando un método de Transfer Learning, que consiste en la
adaptacion de un modelo preentrenado con el conjunto de datos COCO a un nuevo dataset.
Este ultimo estd compuesto por imagenes de las especies mas frecuentes de moscas de la
fruta, que en este caso fueron ceratitis capitata, anastrepha serpentina y anastrepha striata.

e Proceso de transfer learning

Se utiliza el método de Transfer Learning para ajustar el modelo al trabajo concreto de
deteccion de moscas de la fruta. En este método, las capas convolucionales inferiores de
YOLOV11, que se encargan de la extraccién de rasgos generales como las texturas, los
bordes y las formas, fueron preservadas. Por su parte, las capas superiores fueron
reentrenadas para adaptarse al nuevo conjunto de datos compuesto por las tres especies
objetivo en la tabla 1.

De esta forma, el modelo se adapta para reconocer los patrones morfoldgicos distintivos de
cada especie, optimizando tanto la clasificacion como la localizacion dentro de las imagenes.

e Conjunto de datos (dataset)

Cada especie se organizada en carpetas independientes y etiquetada manualmente con la
herramienta online RoboFlow, generando archivos en formato YOLO (.txt), donde se
especifican las coordenadas de los cuadros delimitadores (bounding boxes) y la clase
correspondiente.

La distribucion del dataset se puede observar en la tabla 6, el conjunto final incluyé imagenes
en formato .jpg y .png, con una resolucion promedio de 640x640 pixeles, garantizando
uniformidad en la entrada de datos durante el entrenamiento.

e Configuracion del entrenamiento

El entrenamiento del modelo se realiza utilizando el framework Ultralytics YOLOV11,
implementado en Python 3.9 y ejecutado en el entorno Google Colab, aprovechando los
recursos de GPU (NVIDIA Tesla T4).

Los principales parametros de entrenamiento se definieron en la tabla 8:
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Tabla 8. Parametros de Entrenamiento.

Parametro Valor

Modelo base yolo111.pt
Tamaifio de imagen 640 x 640 pixeles
Nuimero de épocas 60

Batch size 16

Optimizador Adam

Tasa de aprendizaje inicial 0.001

Archivo de configuracion (data.yaml) Dataset personalizado con 3 clases

e Preparacion del entorno de Google Colab

La figura 20 muestra la preparacion inicial del entorno en Google Colab para entrenar el
modelo YOLOV11. En primer lugar, se instala la libreria Ultralytics mediante el comando
luv pip install ultralytics, que descarga todas las dependencias necesarias para el uso de los
modelos YOLO, incluido PyTorch. Luego, se importa el mddulo ultralytics para poder
acceder a sus funciones desde Python. Finalmente, con ultralytics.checks() se realiza una
verificacion del entorno, comprobando que la instalacion se haya completado correctamente
y mostrando detalles como la version de Python, PyTorch, el modelo de GPU disponible (en
este caso una Tesla T4 de 15 GB), la memoria RAM vy el espacio en disco. Esta
comprobacion confirma que el entorno esta correctamente configurado y listo para iniciar el
proceso de entrenamiento del modelo.

(2]

e ° luv pip install ultralytics

import ultralytics
ultralytics.checks()

Ultralytics 8.3.221 & Python-3.12.12 torch-2.8.0+cul26 CUDA:@ (Tesla T4, 15095MiB)
Setup complete [ (2 CPUs, 12.7 GB RAM, 40.1/112.6 GB disk)

4
4

Figura 20. Instalacion de dependencias.
o Importar el dataset desde roboflow

Para importar automaticamente el conjunto de datos (dataset) desde la plataforma Roboflow
hacia el entorno de trabajo en Google Colab, utilizamos el codigo de la figura 21.

Primero, el comando !pip install roboflow instala la libreria necesaria para conectarse a
Roboflow mediante su APIL. Luego, con from roboflow import Roboflow se importa la clase
principal que permite interactuar con los proyectos almacenados en la cuenta del usuario.

La linea rf = Roboflow(api_key="Irf8MMOprAVBkWI1WUnRTIJ") autentica al usuario
mediante su clave API personal, lo que habilita el acceso a los datasets privados o publicos
de su cuenta. Posteriormente, se especifica el proyecto (project = rf.workspace("cristian-
wszik").project("tesis-sosOc")) y la version del conjunto de datos (version =
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project.version(2)), ya que Roboflow permite mantener diferentes versiones del mismo
dataset conforme se realizan mejoras o ajustes.

Finalmente, dataset = version.download("yolov11") descarga el dataset en el formato
compatible con YOLOv11, organizando automdaticamente las carpetas de imagenes de
entrenamiento, validacion y prueba, junto con el archivo data.yaml necesario para el
entrenamiento del modelo. Este proceso simplifica considerablemente la preparacion de
datos, asegurando una estructura estandarizada y lista para su uso inmediato.

Q Comandos + Cédigo = + Texto D Ejecutartodo ~  Copiar en Drive

= Archivos O X w
s o Ipip install roboflow
A ¢cBo
from roboflow import Roboflow
- rf = Roboflow(api_key="IrgMM@prAVBKI1WUNRTI")
& . project = rf.uorkspace("cristian-uszik").project("tesis-sosfc")
» [ config : . .
version = project.version(2)
[0 2N - sample data dataset = version.download("yolov1l")
I i tesis-2 _ .
2¥ Collecting roboflow
4 . test Downloading roboflow-1.2.11-py3-none-any.whl.metadata (9.7 kB)
. Requirement already satisfied: certifi in fusr/local/lib/python3.12/dist-packages (from roboflow) (2025.16.5)
4 .tram Collecting idna==3.7 (from roboflow)
» g vald Downloading idna-3.7-py3-none-any.whl.metadata (9.9 kB)
Requirement already satisfied: cycler in /usr/local/lib/python3.12/dist-packages (from roboflow) (8.12.1)
‘ README dataset txt Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.12/dist-packages (from roboflow) (1.4.9)
Requirement already satisfied: matplotlib in fusr/local/lib/python3.12/dist-packages (from roboflow) (3.16.8)
‘ README.roboflow.txt Requirement already satisfied: numpy»=1.18.5 in /usr/local/lib/python3.12/dist-packages (from roboflow) (2.6.2)
Collecting opencv-python-headless==4.18.8.84 (from roboflow)
‘ datayaml Downloading opencv_python_headless-4.16.0.84-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (20 kB)
Requirement already satisfied: Pillow»=7.1.2 in /usr/local/lib/python3.12/dist-packages (from roboflow) (11.3.8)
Collecting pi-heif<2 (from roboflow)
Downloading pi_heif-1.1.1-cp312-cp312-manylinux_2 27 x86_64.manylinux 2 28 x86_64.whl.metadata (6.5 kB)
Collecting pillow-avif-plugin<2 (from roboflow)
Downloading pillow avif plugin-1.5.2-cp312-cp312-manylinux_2 28 x86_64.whl.metadata (2.1 kB)
Requirement already satisfied: python-dateutil in /usr/local/lib/python3.12/dist-packages (from roboflow) (2.9.0.poste)
Requirement already satisfied: python-dotenv in /fusr/local/lib/python3.12/dist-packages (from roboflow) (1.1.1)
Requirement already satisfied: requests in /usr/local/lib/python3.12/dist-packages (from roboflow) (2.32.4)
Requirement already satisfied: six in fusr/local/lib/python3.12/dist-packages (from roboflow) (1.17.0)
Requirement already satisfied: urllib3»=1.26.6 in fusr/local/lib/python3.12/dist-packages (from roboflow) (2.5.8)
Requirement already satisfied: tqdm»=4.41.@ in /usr/local/lib/python3.12/dist-packages (from roboflow) (4.67.1)
Requirement already satisfied: PyYAML>=5.3.1 in /usr/local/lib/python3.12/dist-packages (from roboflow) (6.0.3)
Requirement already satisfied: requests-toolbelt in fusr/local/lib/python3.12/dist-packages (from roboflow) (1.0.8)
Collecting filetype (from roboflow)
Disco 72.58 GB disponibles Downloading filetype-1.2.0-py2.py3-none-any.whl.metadata (6.5 kB)

Figura 21. importacion del dataset a Google Colab.
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e Inicializacion del entrenamiento

Archivo Editar Ver Insertar Entorno de ejecucion Herramientas  Ayuda

Q Comandos  + Cédigo + + Texto b Ejecutartodo ~ | Copiar en Drive

= Archivos 0O x
R Bcobo
<> =
» [ config
€ ) s
=1 B tesis2
B test
s e
» I vaid

B RecoMEdatasetnt

[B README robofiowixt
B catayeml

B yoloript

B soormnpt

Disco 724768 disponibles

{} Variables Terminal

: G lyolo train model=yololll.pt data="/content/tesis-2/data.yaml” epochs=68 imgsz=540

Dwnlnaﬂ e

Downloading https://ul
Overriding nodel.yanl nc=

from n nodule
[l 11
1 11
2 12
3 11
4 12
6 412
7 11
8 -12 0 223368
9 11 66
19 -12 1455616 [
1 11 ] [
12 [-1, 61 1 ] s
13 12 2696512 [1024, 512, 2, True]
14 11 [} [Nene, 2, 'nearest’]
15 [-1,4] 1 [ &3]
16 12 756736 [1624, 256, 2, Truel
17 11 598336 [256, 256, 3, 2]
18 [-1,13] 1 &3]
19 412 2365440 [788, 512, 2, True]

11 2360320 [512, 512, 3, 2]

1 [ &3]
12 [1624, 512, 2, Truel

[3, [256, 512, 51211

Freezing layer 'nocel.23.0¢1.conv.i
AWP: running Automatic Mixed Preci:

‘download/v8.3.6/yololln.pt to 'yololln.pt': 108%

5.4% 102.6M8/5 0.13

d: 2080.92640.6 MB/s, size: 7L.5 KB)

ackgrounds, @ corrupt: 108% 3144/3144 2,6Kit/s 1.2s

b.u _Limit=(3, 7)), ToGray(p=0.81, method="weighted_average', num_output_channe

nag ns, e: 38.6 KB)
val: Scanning /cont id/1a! .29 i u backgr aum o corrupt: 100% 299/299 2.1Kit/s .15
val: Mew cache crested
Plotting labels to /content/!

ng " 0 “norentun=0.937" and deternining best ‘optiizer’, '1rd: and “monentur’ autoratically
Adanii(1r=0.801429, momentun=0.9) with parameter groups 167 weight(decay=0.8), 174 weight (decay=0. Daa‘) 173 bias (decay=

649 train, 640 val

ader workers

/content/runs/detect/train
Sterting training for 60 epochs...

¢

Figura 22. Proceso de entrenamiento.

En la figura 22 se observa el proceso de inicio del entrenamiento del modelo YOLOvV11 en
el entorno de Google Colab, utilizando la libreria Ultralytics. En esta fase, el sistema carga
el modelo base preentrenado (yolo111l.pt) y verifica la configuraciéon del entorno, mostrando
informacion sobre la version de Python, CUDA (aceleracion por GPU) y la arquitectura del
modelo. También se observa como se descargan los archivos necesarios desde los
repositorios oficiales de Ultralytics y como se estructura la red neuronal, detallando las capas

convolucionales y parametros utilizados.

Posteriormente, el modelo comienza a preparar el conjunto de datos definido en el archivo
data.yaml, escaneando las carpetas train, val y test para identificar y organizar las imagenes

y etiquetas que se usardn en el entrenamiento. Finalmente, se indica que el proceso se
realizara durante 60 épocas, utilizando el optimizador Adam y aprovechando la GPU Tesla

T4.
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Desc

arga del modelo Final

Para localizar y acceder al modelo final (best.pt), dirijase al explorador de archivos en el
panel izquierdo de Google Colab. Siga la estructura de directorios generada durante el

entrenamiento:
1. Ingrese a la carpeta runs.
2. Ingrese a la carpeta detect
3. Acceda a la subcarpeta train.
4. Abra la carpeta weights.

Aqui se encuentra el archivo de pesos entrenados, nombrado habitualmente como best.pt,
ademds de otros archivos relevantes para la validacion del modelo, como matriz de

confusion, etc. Véase figura 23.

Archivos BEaf %

¥

(L]

0O

C e

[EESSStN]
1) Bstet ]

D BoxF1_curve.png
D BoxPR_curve.png
D BoxP_curve.png

D BoxR_curve.png

D args.yaml

D confusion_matrix.png

D confusion_matrix_no...

pelr»un 3 19

dog 3 i 1

horse 1 2

e elephant 1 2
umbrella 1 1

potted plant 1 1

a.

OO 0 &G

.280
554
616
.373
.573
854

Speed: @.2ms preprocess, 4.3ms inference, @.ems loss, 3.€

Results saved to fcontent/runs/detect/train

Learn more at hittps://docs.ultralytics.com/modes/trai)

v 4. Export

Export a YOLO model to any supported format below with the | foi

information.

« | ProTip: Export to ONNX or OpenVINO for up to 3x CPU s}
« . ProTip: Export to TensorRT for up to 5x GPU speedup.

Format format Argument Model Metadata
PyTorch - yololln.pt =
TorchScript torchscript yololln.torchscript =
ONNX onnx yololln.onnx (]
OpenVINO openvino yololln_openvino_model/ [&
TensorRT engine yololln.engine ]

I

Marahdl roraml valnlln mlnarkaosa

Figura 23. Como descargar el modelo final desde Google Colab.
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Muestras del Conjunto de Datos de Entrenamiento y Validacion para la
Clasificacion de Moscas de la Fruta

i_jpeq [dekahifid 263pitata

- ,.

X
ntina 0.9

Figura 25. Conjunto de Validacion.
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En la figura 24 y 25 se muestran ejemplos utilizados en el proceso de entrenamiento y
validacion del modelo de deteccion, cada recuadro indica el contenedor delimitador
(bounding box) de los individuos presentes y su respectiva clase. Las especies representadas
corresponden a Anastrepha serpentina, Anastrepha striata, y Ceratitis capitata. Estas
muestras fueron fundamentales para el aprendizaje supervisado del modelo, permitiendo la
identificacion de variaciones en iluminacion, fondo, posicion y orientacion de los insectos.

e Pantalla inicial

La pantalla inicial del dispositivo se visualiza en la Figura 26, donde el usuario puede
ingresar los datos basicos del técnico y del lugar de trabajo, como el nombre, la ubicacion y
la provincia. También permite seleccionar el modelo que usard el sistema para la deteccion.
Una vez completados estos campos, se habilita el boton “Continuar” para avanzar.

Configuracién Inicial

Técnico
Lugar
Cantén
Provincia

Ubicacion (refs/GPS)

Modelo YOLO (.pt.onnx/.enginel.omnx)

Seleccionar... |

Figura 26. Pantalla inicial
e Interfaz de captura de datos y generacion de reportes

Se presenta la vista previa de la cdmara activa junto con el rendimiento en tiempo real (FPS
y tiempo de inferencia), véase figura 27. En esta interfaz el usuario puede capturar imagenes,
subir archivos, cambiar la cdmara, ajustar el umbral de deteccion y observar el conteo de
especies detectadas en una tabla lateral. Ademas, dispone de opciones para cambiar el
modelo, reiniciar el conteo y generar reportes en formato PDF o CSV, lo que facilita el
manejo y registro de los resultados obtenidos.
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Umbral: | [ 0.5
~Vista previa ~Conteo
Especie |cantidadConf. Promi |

[

Resetear Conteo ‘

Cambiar modelo ‘

Recargar |fhomeﬂetsonfDeskmpretecmr de Mo |

Generar PDF ‘
Capturar y Detectar ‘ Subir Imagen ‘ Camara: ﬂ J Aplicar LR ‘
! | -
g Vista previa de camara activa. Presiona 'Capturar y Detectar'. << Atras

Figura 27. Interfaz de captura de datos y generacion de reportes.
e Interfaz de visualizacion de resultados y re etiquetado de imagenes

La pantalla de gestion de etiquetas y visualizacion de resultados, se observa en la figura 28,
donde el sistema muestra las detecciones realizadas sobre la imagen, identificando
ejemplares de moscas de la fruta mediante cuadros delimitadores y sus respectivas clases.
En esta interfaz el usuario puede seleccionar la clase actual, afadir nuevas clases o
eliminarlas, asi como visualizar y gestionar la lista de etiquetas generadas, las cuales
incluyen la especie detectada y las coordenadas del recuadro correspondiente. Ademas,
cuenta con opciones para eliminar etiquetas individuales o todas a la vez y un boton de
confirmacion para guardar los cambios realizados en la clasificacion.

Detector de Mosquitos == MAXN = [B § B 4) 22:06 1%
Fuente: Local | Detec.: si | Inf.: 9762.8 ms
Clase actual:
anastrepha_serpentina J

Afiadir clase ‘

Eliminar clase ‘

Etiquetas (clic para seleccionar):

#0 | ceratitis_capitata | (300,712,515,944)
#1 | ceratitis_capitata | (80,529,294,767)
#2 | ceratitis_capitata | (257,489,488,680)

Eliminar seleccionada ‘ Eliminar todo ‘

Confirmar ‘ Salir ‘

Figura 28. Interfaz de visualizacion de resultados y re etiquetado de imdgenes
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Fase Cuatro

Esta fase se enfoca en comprobar el desempefio del sistema propuesto, contrastando sus
resultados con métodos convencionales de identificacion entomologica y verificando su
fiabilidad en entornos reales.

e Pruebas experimentales

El prototipo de deteccion automatica de moscas de la fruta se somete a una serie de pruebas
experimentales con el fin de evaluar su rendimiento. Dichas pruebas se realizan en el
Laboratorio de Entomologia de AGROCALIDAD, ubicado en Tumbaco, y tienen como
objetivo principal comparar el tiempo de respuesta y la capacidad de identificacion de las
tres especies de interés (Ceratitis capitata, Anastrepha striata y Anastrepha serpentina) del
sistema propuesto frente al desempefio humano, bajo condiciones controladas.

e Diseiio experimental

Las pruebas se estructuran en cuatro rondas independientes, como se observa en la Figura
29. Para cada ronda, se selecciona un conjunto aleatorio de moscas, cuya especie es
previamente verificada por expertos con el fin de garantizar la validez de la prueba.

AN
n N

Figura 29. Pruebas.
e Procedimiento de evaluacion

A cada participante se le solicita identificar la especie de los ejemplares presentes en cada
una de las cuatro pruebas, basandose tnicamente en la observacion directa. Durante este
proceso se registran de manera individual dos métricas clave, como se observa en la Figura
30:

1. Tiempo total de identificacién por prueba.

2. Exactitud en la clasificacion de las especies.
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Figura 30. Prueba Manual.

En paralelo, el prototipo realiza la identificacion de los mismos conjuntos de moscas, como
se muestra en la Figura 30, manteniendo las mismas condiciones de iluminacién y distancia.
Los resultados del dispositivo se presentan de forma automatica.

Fuente: Local | Detec.: si | Inf.: 7255.5 ms

Clase actual:

anastrepha_striata J
Afadir clase ‘
Eliminar clase ‘

Etiq (clic para seleccil )

20 | ceratitis_capitata | (371,615,578,840)
#1 | anastrepha_striata | (66,828,421,1090)
anastrepha_striata #2 | anastrepha_striata | (13,552,335,772)

ceratitis_capi
% P
’ Ll

P DM

s

Salir

Figura 31. Prueba Automatica.

o

e Variables de Comparacion

Para establecer una comparacion directa entre el desempefio humano y el del prototipo, se
analizan las siguientes variables:

1. Tiempo de Identificacion (segundos): Comparativa entre el tiempo requerido por el
participante y el tiempo de procesamiento del prototipo.

2. Eficiencia (Valida/ No Valida): Precision en la identificacion correcta de cada
especie.

3. Nivel de Conocimiento: Analisis de la diferencia de desempefio entre los
participantes de nivel alto, medio y bajo.
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e Consideraciones de validez

Todo el proceso experimental es supervisado por un especialista, quien verifica

rigurosamente:

1. La aleatorizacion de los ejemplares de moscas en cada prueba.

2. Las condiciones homogéneas de presentacion para ambos métodos (manual y

automatico).

3. Laintegridad y trazabilidad de los datos y tiempos registrados.

Estas medidas aseguran que los resultados obtenidos reflejan objetivamente la capacidad
comparativa entre la metodologia manual tradicional y la solucion automatizada propuesta.

e Comparacion con técnicas tradicionales

La Tabla 9 presenta una comparaciéon entre el sistema desarrollado y los métodos

entomoldgicos tradicionales utilizados en Agrocalidad para la identificacion de moscas de

la fruta.

Tabla 9 Comparacion entre el método tradicional y el sistema basado en vision artificial

YOLOvII.
Criterio Método tradicional Sistema propuesto (vision
(identificacion visual) artificial YOLOv11)

Tiempo de analisis

7.3450 segundos

53.8438 segundos

Requiere personal Si No (deteccion automatizada)

especializado

Exactitud promedio 80-85% (dependiente del 95-99% (constante y
experto) replicable)

Costo operativo Medio—Alto (labor y Bajo (solo consumo energético)
laboratorio)

Portabilidad Limitada (equipos de Alta (Jetson Nano compacta)
laboratorio)

Escalabilidad Reducida  (procesamiento Alta (procesamiento masivo de
manual) imagenes)

e Evaluacion del rendimiento del modelo yolovl1 entrenado

En esta seccion se analizan las métricas cuantitativas y los resultados visuales obtenidos tras

el entrenamiento del modelo.
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10 Precision-Recall Curve

—— anastrepha_serpentina 0.990
anastrepha_striata 0.984
ceratitis_capitata 0.995

all classes 0.990 mAP@0.5

0.8 1

0.6

Precision

0.4

0.2

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figura 32. Curva Precision—Recall.

La figura 32 ilustra la relacion entre el porcentaje de detecciones precisas (precision) y el
porcentaje de casos reales detectados (recall) para cada especie y su promedio. Las curvas
que se acercan al vértice superior derecho muestran un alto acierto con escasas omisiones,
lo cual se resume en un mAP@0.5~0.99, demostrando asi una deteccion confiable.

10 Recall-Confidence Curve

—— anastrepha_serpentina
anastrepha_striata
—— ceratitis_capitata

= all classes 0.99 at 0.000
0.81

0.6

Recall

0.4 4

0.24

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

Figura 33. Recall vs. umbral de confianza.

El Recall se mantiene alto (cerca de 0.98-1.00) véase figura 33, hasta alrededor de 0.80-0.85,
y después se reduce rapidamente al requerir un mayor nivel de certeza para aceptar una
deteccion (umbral mas riguroso), lo cual hace que aumenten los falsos negativos o las
omisiones; esta relacion orienta la eleccion del punto operativo: los umbrales moderados
(aproximadamente entre 0.60 y 0.70) dan prioridad a la cobertura, mientras que los umbrales
altos disminuyen las advertencias inciertas a costa de perder casos reales.
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Confusion Matrix

100

anastrepha_serpentina

80

anastrepha_striata -
60

Predicted

ceratitis_capitata - 40

-20

background - 1

anastrepha_striata -
_capitata -
background -

astrepha_serpentina -
ceratitis_ca

Figura 34. Matriz de confusion.

La matriz de confusion, que se muestra en la figura 34, contrasta las clases reales (filas) y
las predichas (columnas); los aciertos se agrupan en la diagonal, mientras que los errores
(falsos negativos para la clase real y falsos positivos para la predicha) estan fuera de ella. El
hecho de que haya un predominio de la diagonal pone de manifiesto una clasificacion solida
con confusiones residuales sobre todo entre A. serpentina y A. striata, por su similitud.
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Figura 35. Matriz de confusion normalizada.
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La matriz de confusiéon normalizada se observa en la figura 35. Es parecida a la de la figura
34, pero con filas al 100 %, lo que posibilita la comparacion del rendimiento por especie sin
tener en cuenta el tamafio de muestra. Las diagonales cercanas a 1.0 corroboran la
consistencia de la clasificacion por especie y los valores alejados de la diagonal que estan
préximos a 0.0 sefalan errores poco comunes, proporcionando una vision proporcional que
hace mas sencillo el rastreo de degradaciones particulares durante el despliegue.
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Figura 36. Conjunto de datos y distribucion de cajas.

Se muestra un balance de instancias por clase, lo que evita sesgos, una amplia cobertura
espacial de cajas delimitadoras y variaciones de tamafio, lo que evidencia diversidad en las
posiciones y escalas, véase figura 36. Esta variabilidad favorece la generalizacion del
modelo bajo circunstancias reales y apoya su habilidad para diferenciar especies
morfolégicamente similares con un error minimo.
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Figura 37. Curvas de entrenamiento y validacion.
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Las pérdidas de localizacion (box), clasificacion (cls) y dfl como se observan en la figura 37
disminuyen de manera constante y que las métricas convergen a mAP@0.5~0.99 y
mAP@0.5-0.95~0.77-0.78, esta tltima mas rigurosa al calcular el promedio de IoU entre
0,50y 0,95, sin diferencias significativas entre entrenamiento y validacion; este patron indica
un aprendizaje estable, la falta de sobreajuste importante y el modelo listo para ser puesto
en funcionamiento.
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Figura 38. F1 vs. umbral de confianza.

En la figura 38 el F1 alcanza su maximo umbral de confianza~0.63, punto operativo
recomendado cuando se busca equilibrio entre falsos positivos y falsos negativos; en
presencia de especies parecidas (A. striata/A. serpentina), este ajuste ofrece un balance
adecuado entre no omitir casos y evitar confusiones.
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Figura 39. Precision vs. umbral de confianza.

Frente a una falsa alarma, este sistema es util; si se adopta, la reduccion de cobertura puede
ser compensada con una frecuencia de muestreo mas alta o con reglas de reverificacion. En
la figura 39, la precision se aproxima a 1.0 hacia confianza~0.94, casi sin falsos positivos,
aunque eso implique un menor Recall (més omisiones).
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CAPITULO IV. RESULTADOS Y DISCUSION
4.1 RESULTADOS

En este capitulo se exponen y analizan los resultados generados por el equipo de monitoreo
durante la fase de pruebas, centrandose inicialmente en la descripcion de los datos de tiempo
y en la comparacion de las mediciones obtenidas mediante el método manual frente al
automatico, para luego presentar y analizar la informacion estadistica obtenida del estudio,
enfocandose en la variable Tiempo en funcion de las variables de agrupacion Método y Nivel
de Conocimiento.

4.1.1 Prueba de normalidad

Para proceder al analisis de resultados, se lleva a cabo una prueba de normalidad para
determinar si los datos de la variable Tiempo en cada categoria del Método se ajustan a una
distribucion normal.

e Hipétesis Nula (H,): Los datos medidos de Tiempo tienen una distribucion
normal.

o Hipétesis Alternativa (H;): Los datos medidos de Tiempo no tienen una
distribucién normal.

Tabla 10. Prueba de Normalidad Shapiro-Wilk N=36.

Método Estadistico gl (p-valor)
Manual 0,854 32 <0,001
Automatico 0,880 4 0,338

Para el Método manual, el p-valor es <0,001, menor que 0,05. Esto indica que los datos para
el método manual no se distribuyen normalmente.

Para el Método automatico, el p-valor es mayor que 0,05. Esto indica que, para esta
categoria, la hipotesis nula se acepta, y los datos si tienen una distribucion normal.

Dado que una de las categorias no sigue una distribucion normal, se utiliza una prueba no
paramétrica para la comparacion de medianas.

4.1.2 Prueba U de Mann-Whitney para muestras independientes.

Se aplica la prueba U de Mann-Whitney para muestras independientes para comparar las
distribuciones de Tiempo entre las categorias del Método.

e Hipétesis Nula (H): La distribucion de Tiempo es la misma entre categorias
de Método.
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e Hipétesis Alternativa (H;): La distribucion de Tiempo es diferente entre
categorias de Método.

Tabla 11. Prueba U de Mann-Whitney para muestras independientes N=36.

Prueba Hipotesis Nula (p-valor) Decision
Prueba U de Mann- La distribucion de <0,001 Rechace la hipotesis
Whitney Tiempo es la misma entre nula

categorias de Método.

El p-valor obtenido es <0,001, que es menor que el nivel de significacion de 0,050. Por lo
tanto, se rechaza la hipotesis nula, concluyendo que si existe una diferencia significativa en
la distribucién del tiempo entre el método manual y el método automatico.

Los resultados descriptivos de la prueba confirman esta diferencia:
e El método manual tiene un Rango promedio de 20,50 y una Media de 53,8438.

e El método automatico tiene un Rango promedio de 2,50 y una Media de
7,3450.

4.1.3 Resultados y Analisis Comparativo del Tiempo segun el Nivel de Conocimiento.

Se realiza una comparacion del Tiempo en funcion de las categorias de la variable Nivel de
Conocimiento (Alto, Medio, Bajo).

e Prueba de Kruskal-Wallis para muestras independientes.

Se utiliza la prueba de Kruskal-Wallis para determinar si existe una diferencia significativa
en la distribucion de la variable Tiempo entre los tres niveles de conocimiento, ya que la
prueba de normalidad para el método manual (que incluye a la mayoria de los casos) indicé
una distribucion no normal.

e Hipétesis Nula (H): La distribucion de Tiempo es la misma entre categorias
de Nivel Conocimiento.

e Hipétesis Alternativa (H;): La distribucion de Tiempo es diferente entre
categorias de Nivel Conocimiento.

El p-valor obtenido es <0,001, que es menor que el nivel de significacion de 0,050. Esto
conduce a rechazar la hip6tesis nula y concluir que si existe una diferencia significativa en
la distribucién del tiempo en funcion del nivel de conocimiento.
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Tabla 12. Prueba de Kruskal-Wallis para muestras independientes N=32.

Prueba Hipotesis Nula (p-valor) Decision
Prueba de Kruskal- La distribucion de <0,001 Rechace la
Wallis Tiempo es la misma hipotesis nula

entre categorias de
Nivel Conocimiento.

Prueba de Kruskal-Wallis para muestras independientes

200,00

150,00

100,00

1 L

1

00
Bajo Medio Alto

Nivel_Conocimiento

Figura 40. Diagrama de caja del Tiempo por Nivel Conocimiento.

En la figura 40 se observa una clara relaciéon: a medida que aumenta el nivel de
conocimiento, el Tiempo empleado para realizar la tarea disminuye, lo que confirma el
impacto de esta variable en el rendimiento.
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CAPITULO V CONCLUSIONES Y RECOMENDACIONES

5.1 CONCLUSIONES

El sistema de clasificacion basado en Vision Artificial con el modelo
YOLOv11l demostra ser significativamente mds eficiente en tiempo de
respuesta que el método manual tradicional. Con la prueba U de Mann-
Whitney se confirma una diferencia significativa, con el método automatico
teniendo un Rango promedio de 2.50 y una Media de 7.3450 segundos, en
comparacion con el método manual, que tuvo un Rango promedio de 20.50 y
una Media de 53.8438 segundos.

La seleccion de la arquitectura YOLOv11 y de la plataforma NVIDIA Jetson
Nano resulta 6ptima para el objetivo de deteccion en tiempo real. El modelo
entrenado alcanza una precision (mAP@0.5) de 0,990, con un punto operativo
de F1 maximo cercano a un umbral de confianza aproximado de 0,63, lo que
evidencia un equilibrio s6lido y robusto para la clasificacion precisa de las tres
especies objetivo: Ceratitis capitata, Anastrepha serpentina y Anastrepha
striata.

El sistema propuesto elimina la dependencia de personal altamente
especializado, reduciendo los requisitos de experiencia y la subjetividad en la
identificacion de plagas. La comparacion con el desempefio humano evidencia
que el tiempo de identificacion manual disminuye de manera significativa a
medida que aumenta el nivel de conocimiento; sin embargo, esta variabilidad
se ve mitigada mediante la automatizacion, la cual proporciona una exactitud
constante y replicable comprendida entre el 95 %y el 99 %.
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5.2 RECOMENDACIONES

Se recomienda seguir recolectando y etiquetando imagenes de las moscas de la
fruta en diferentes estados de conservacion y condiciones de captura,
incluyendo la integracion con trampas electronicas en campo. La ampliacion
del dataset con datos de campo ayudard a mejorar la generalizacion del modelo
YOLOVI11 ante variaciones no controladas de iluminacion y posicion.

Para asegurar la maxima eficiencia del sistema Jetson Nano, se sugiere
priorizar la optimizacion del modelo mediante TensorRT para reducir el tiempo
de inferencia. Esto es crucial para mantener la velocidad de procesamiento
requerida en el despliegue del prototipo de bajo consumo en entornos agricolas.

Se recomienda desarrollar una fase posterior del proyecto enfocada en la
integracion completa del dispositivo Jetson Nano con una arquitectura de
Internet de las Cosas (IoT). Esto permitira enviar los resultados de la
clasificacion (logs de deteccion y reportes en PDF/CSV) de manera auténoma
y en tiempo real a una plataforma centralizada (servidor/nube), facilitando la
generacion de alertas automaticas para que Agrocalidad pueda aplicar acciones
fitosanitarias inmediatas y fortalecer la gestion integral de plagas.
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ANEXOS

Anexo A. Codigo Python en Visual Studio Code.

B
TESIS-PRO
Jatase

.
Build with agent
mode

Let's get started

SO +\Users\CRISTIAN\Desktop\TESIS
TIMELINE

B R0 A

Anexo B. Montaje del dispositivo.
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\
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Anexo C. Agencia de Regulacion y Control Fito y Zoosanitario del Ecuador sede Tumbaco.
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Anexo F. Adecuacion del ambiente de trabajo.
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