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RESUMEN 

Las moscas de la fruta (Diptera: Tephritidae) se encuentran entre las principales amenazas 
fitosanitarias para la agricultura a nivel mundial, causando pérdidas económicas 
considerables en el Ecuador. La identificación temprana y precisa de las especies 
predominantes es esencial para la ejecución efectiva de programas de control y cuarentena 
liderados por organismos como Agrocalidad. Los métodos tradicionales de vigilancia son 
laboriosos, dependen de la pericia humana y pueden retrasar la toma oportuna de decisiones. 

Esta tesis presenta el desarrollo de un sistema de clasificación basado en visión artificial para 
la detección temprana de las principales especies de moscas de la fruta relevantes en las 
operaciones de Agrocalidad. El objetivo es proporcionar una herramienta automatizada y 
eficiente que optimice los procesos de inspección. Se empleó un enfoque de aprendizaje 
profundo mediante una Red Neuronal Convolucional (CNN), entrenada y validada con un 
conjunto de datos etiquetados de alta calidad de Ceratitis capitata, Anastrepha serpentina y 
Anastrepha striata. El sistema también fue optimizado para su implementación en una 
NVIDIA Jetson Nano, garantizando eficiencia computacional para uso en campo o 
laboratorio. 

Los resultados experimentales mostraron un desempeño sólido, alcanzando una precisión 
del 99.0% y una velocidad de inferencia de 7.3450 segundos por imagen, adecuada para 
monitoreo en tiempo casi real. Estos hallazgos demuestran el potencial del sistema para 
fortalecer la detección de plagas y los programas fitosanitarios en el Ecuador. 

Palabras Clave: Visión Artificial, Detección de Plagas, Mosca de la Fruta, Red Neuronal 
Convolucional (CNN), Aprendizaje Profundo, Agrocalidad.  
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1 CAPITULO I. INTRODUCCIÓN 

En el Ecuador, las moscas de la fruta representan un problema constante para los cultivos 
frutales, ya que dañan los frutos y reducen su calidad. Entre las especies de interés 
económico más comunes se encuentran Anastrepha Striata, Anastrepha Serpentina y 
Ceratitis Capitata [1]. Estas especies se consideran de alto impacto económico por su 
facilidad para infestar diferentes hospederos y por los daños que ocasionan en cultivos de 
importancia comercial, de esta manera no solo afectan la producción, sino que también 
pueden impedir la exportación de fruta debido a las normas fitosanitarias que deben cumplir 
los productores. Los documentos oficiales emitidos por AGROCALIDAD explican que el 
monitoreo permanente es esencial para mantener bajo control a esta plaga y evitar pérdidas 
económicas [2]. 

El sistema de monitoreo oficial se basa en trampas como las McPhail y Jackson, que 
permiten obtener datos para calcular el índice MTD (Mosca/Trampa/Día), el cual indica si 
la población de moscas se encuentra dentro de parámetros aceptables. No obstante, este 
proceso depende de inspecciones manuales y del análisis visual de los especímenes, lo que 
implica un esfuerzo considerable y tiempos prolongados antes de tomar decisiones. En zonas 
donde la producción es intensiva o donde las condiciones ambientales favorecen el 
desarrollo de la plaga, los métodos tradicionales pueden resultar insuficientes para detectar 
incrementos poblacionales de manera rápida. [3]. 

En este escenario, tecnologías como la visión artificial y el machine learning ofrecen nuevas 
oportunidades para automatizar y mejorar el proceso de identificación de insectos. Estas 
herramientas permiten analizar imágenes y reconocer especies según sus características 
visuales, logrando una clasificación rápida y consistente. Además, la incorporación de 
dispositivos, como el Jetson Nano, permite el desarrollo de sistemas portátiles que pueden 
utilizarse directamente en campo. La presente investigación propone el diseño de un sistema 
de detección automática de moscas de la fruta basado en imágenes, con el objetivo de apoyar 
las labores de monitoreo, reducir el tiempo de respuesta y contribuir a un manejo fitosanitario 
más eficiente [4].  
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1.1 PLANTEAMIENTO DEL PROBLEMA. 

El monitoreo tradicional de moscas de la fruta enfrenta varias limitaciones que afectan su 
eficiencia y rapidez. En la práctica, los técnicos deben visitar periódicamente los sitios de 
producción, revisar manualmente las trampas instaladas y clasificar cada uno de los insectos 
encontrados. Este trabajo demanda tiempo, recursos económicos y personal capacitado, 
además de estar expuesto a errores humanos por fatiga, condiciones del clima o exceso de 
muestras. A esto se suma que las muestras suelen necesitar confirmación en laboratorio, lo 
que extiende aún más el tiempo entre la captura del insecto y la obtención del resultado final 
[2]. 

En cultivos de exportación como el mango, pequeñas variaciones en el índice MTD pueden 
provocar sanciones inmediatas, como la suspensión de la cosecha de un lote o la obligación 
de aplicar planes de manejo intensivos. Cuando la identificación no se realiza a tiempo, la 
plaga puede seguir creciendo sin ser detectada, lo cual incrementa el riesgo de que los niveles 
superen los límites permitidos por la normativa. Además, factores como la presencia de 
frutos caídos, el manejo insuficiente del predio o la existencia de hospederos cercanos 
pueden aumentar la presión de la plaga de manera inesperada, lo que hace aún más necesario 
contar con herramientas que brinden información inmediata [3], [5].  

A pesar de los avances en tecnología agrícola, actualmente no existe un sistema accesible 
que pueda identificar de forma automática y precisa las especies de moscas de la fruta a 
partir de imágenes tomadas en campo. Los métodos basados en machine learning aún no se 
han implementado en los programas oficiales de monitoreo, a pesar de su potencial para 
reducir errores, acelerar el análisis y proporcionar datos en tiempo real. Esta ausencia 
tecnológica limita la capacidad de respuesta de los productores y técnicos, genera demoras 
en la toma de decisiones y puede ocasionar pérdidas económicas considerables. Por ello, es 
necesario desarrollar un sistema inteligente que ofrezca una alternativa práctica para el 
reconocimiento rápido de moscas de la fruta y que apoye las actividades del manejo 
integrado de plagas [4], [6].  
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1.2 JUSTIFICACIÓN 

La creación de un sistema que utilice machine learning para identificar moscas de la fruta es 
importante porque permite mejorar la forma en que se realiza el monitoreo fitosanitario. Al 
automatizar la clasificación de las especies mediante imágenes, es posible obtener resultados 
en poco tiempo y detectar problemas antes de que la plaga alcance niveles que afecten la 
producción. Esto ayuda a los técnicos y productores a actuar con rapidez y evitar que la plaga 
supere los valores permitidos que pueden detener la cosecha o impedir la exportación [4], 
[6]. 

El uso de tecnologías como cámaras y dispositivos de bajo costo ofrece una ventaja 
adicional, ya que puede implementarse en zonas donde no hay laboratorios disponibles. De 
esta manera, la identificación se vuelve más accesible y menos dependiente del análisis 
manual. Esto contribuye a que el monitoreo sea más preciso, uniforme y rápido, mejorando 
así la eficiencia del manejo integrado de moscas de la fruta. 

Además, este tipo de solución impulsa el desarrollo de nuevas herramientas tecnológicas 
para el sector agrícola, lo que fortalece los programas de vigilancia y permite avanzar hacia 
una agricultura más moderna y basada en datos. El sistema complementa los métodos 
tradicionales y ofrece información que puede evitar pérdidas económicas y mejorar la 
planificación de las actividades de campo. Su aplicación también puede extenderse a otros 
cultivos y plagas, lo que abre oportunidades para futuros desarrollos en el área. 
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1.3  OBJETIVOS 

1.3.1 General 

Desarrollo de un Sistema de clasificación basado en Visión Artificial para detección 
temprana de plagas de Especies predominantes de Mosquitos de la Fruta en Agrocalidad. 

1.3.2 Específicos 

• Investigar y seleccionar hardware y software óptimo para implementar un sistema de 
clasificación de especies de mosquitos de la fruta basado en machine learning. 

• Investigar y seleccionar las técnicas de machine learning más adecuadas para la 
clasificación de especies de mosquitos de la fruta. 

• Desarrollar e implementar un sistema de clasificación de especies de mosquitos de 
la fruta utilizando la técnica de machine learning seleccionada. 

• Evaluar el funcionamiento del sistema con pruebas de campo. 
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2 CAPÍTULO II. MARCO TEÓRICO 

2.1 Entomología Económica 

La entomología económica es la rama de la entomología que estudia los insectos que causan 
efectos directos o indirectos en las actividades humanas, especialmente en la agricultura, la 
industria alimentaria, la salud pública y los sistemas de almacenamiento. Según los textos 
de formación entomológica [7], esta disciplina está orientada a comprender la biología, 
ecología, comportamiento y mecanismos de daño de las especies consideradas plagas, con 
el fin de desarrollar estrategias de manejo integrado de plagas (MIP) que reduzcan las 
pérdidas económicas y aseguren la sostenibilidad productiva. 

Entre los elementos fundamentales analizados por la entomología económica se encuentran 
los umbrales económicos, el impacto en el rendimiento y la calidad de los productos 
agrícolas, así como los costos derivados del monitoreo, control químico, control biológico y 
cumplimiento de las normativas fitosanitarias. Según la guía técnica del OIEA [8], esta 
disciplina integra conocimientos de biología, climatología, economía agrícola y tecnologías 
aplicadas para diseñar sistemas de prevención y manejo que mitiguen el daño a los cultivos 
comerciales y reduzcan las pérdidas postcosecha. 

La entomología económica, en el contexto ecuatoriano, es importante porque el país tiene 
diversidad agrícola y existen plagas cuarentenarias de alto impacto (Ceratitis capitata, 
Anastrepha striata y Anastrepha serpentina). Estas especies afectan los cultivos destinados a 
la exportación y al consumo interno, causan restricciones fitosanitarias, aumentan los costos 
de producción y representan una amenaza continua para los pequeños y medianos 
productores, sugiere Agrocalidad [9]. Por lo tanto, el país implementa programas de 
vigilancia, control integrado y regulación fitosanitaria destinados a minimizar su impacto. 

2.1.1 Moscas De La Fruta 

Ciclo De Vida  

Los factores en estos ecosistemas, incluyendo la temperatura, la humedad, la vegetación 
nativa, la fruta para la oviposición, el sustrato de pupación y la disponibilidad de alimentos, 
regulan estrictamente el ciclo de vida [9]. 

El ciclo ocurre de la siguiente manera: una hembra fertilizada inserta su ovipositor en una 
fruta que está madurando y pone huevos. Una vez que las larvas salen, se alimentan de la 
pulpa de la fruta hasta completar tres etapas larvarias. Cuando maduran, caen al suelo y se 
convierten en pupas. El adulto crece y, después de un tiempo, emerge de la pupa y comienza 
un nuevo ciclo. Los géneros presentes son Anastrepha, Ceratitis y Toxotrypana, y son 
multivoltinos, es decir, tienen varias generaciones por año. También son generalistas en 
cuanto al número de plantas hospedadoras que atacan y su biología gira en torno a dos o más 
especies de frutas [9]. 
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2.1.2 Especies De Importancia Cuarentenaria en el Ecuador  

AGROCALIDAD ha logrado localizar 34 especies del género Anastrepha en Ecuador 
mediante el PNMMF hasta 2015. A estas moscas se suma la especie introducida Ceratitis 
capitata, más comúnmente conocida como la mosca de la fruta del Mediterráneo, y 
Toxotrypana recurcauda. Las especies más significativas y comunes, considerando aspectos 
de distribución, importancia económica, rango de hospedadores y el daño que causan, son: 
Anastrepha fraterculus, A. striata, A. serpentina, A. obliqua y Ceratitis capitata, de las cuales 
se han seleccionado las siguientes tres especies [1], [9]. 

• Ceratitis Capitata. - Se considera una de las moscas de la fruta más invasivas y 
polífagas a nivel mundial. Su amplia distribución en las áreas costeras y de la sierra 
de Ecuador se debe a su gran adaptabilidad, fertilidad y capacidad para colonizar 
diversos microclimas. Esta especie ataca a más de 200 hospedadores, incluidos 
cultivos de alto valor como el durazno, mango, tomate de árbol y cítricos, lo que la 
convierte en una plaga de importancia económica y cuarentenaria [9]. 

• Anastrepha Striata. - Es una de las moscas de la fruta más importantes en Ecuador, 
especialmente debido a su fuerte asociación con la guayaba, un cultivo de 
importancia económica para los pequeños productores rurales. Esta especie está 
ampliamente distribuida en las regiones tropicales y subtropicales del país, donde las 
temperaturas cálidas favorecen su reproducción y supervivencia. También puede 
atacar otros hospedadores como el babaco y algunos cítricos [9]. 

• Anastrepha Serpentina. - Es una mosca de la fruta de importancia cuarentenaria en 
Ecuador debido a su capacidad para dañar árboles frutales de alta demanda como el 
aguacate, zapote, cítricos y otras especies tropicales. Su presencia se ha registrado 
principalmente en áreas cálidas y húmedas, donde encuentra condiciones ideales para 
la reproducción. Esta especie tiene un ciclo biológico eficiente que facilita brotes 
recurrentes en huertos poco mecanizados [9]. 
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2.1.3 Morfología Clave De Las Especies Objetivo 

Tabla 1. Morfología de las especies objetivo. 

Especie Rasgos Morfológicos Distintivos 

Ceratitis capitata 

 

Figura 1. Ceratitis capitata (Mosca de la 
fruta del Mediterráneo) 

•  Alas: Poseen un patrón de 
manchas y bandas oscuras muy 
característico, con bandas 
transversales de color 
amarillo/pardo claro y una mancha 
oscura en el ápice alar. 

•  Tórax: Presenta un dibujo bien 
definido en blanco y negro 
(mármol).  

• Abdomen: Color pardo-
amarillento, a veces con bandas 
oscuras. 

Anastrepha Serpentina 

. 

 Figura 2. Anastrepha Serpentina. 

• Alas: Se caracterizan por tener un 
patrón de bandas amarillentas o 
marrones con forma de "S" o de 
"V" invertida, con la vena R4+5 
presentando una mancha oscura 
que se extiende hacia el margen. 

• Ovopositor: Largo y delgado, lo 
que le permite alcanzar la pulpa de 
frutos grandes. 
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Anastrepha Striata 

Figura 3. Anastrepha striata (Mosca de la 
guayaba). 

 

• Alas: Su patrón es similar al de 
otras Anastrepha, pero la banda 
costal (a lo largo del borde del ala) 
es más ancha y la banda S (en forma 
de 'S') es más marcada y continua 
que en otras especies. 

• Cuerpo: Generalmente de 
coloración más clara (amarillo-
rojiza) que otras especies. 

• Ovipositor: Es una de las 
características clave para distinguir 
las especies de Anastrepha. 

 

Fuente:[1], [10], [11]. 

2.1.4 Métodos Tradicionales de Detección de Plagas 

Durante décadas, los métodos comunes de detección de plagas han sido el pilar de la 
agricultura (inspecciones visuales y trampas adhesivas y todo eso), incluyendo la detección 
de insectos mediante inspecciones visuales. Las inspecciones visuales son procesos 
laboriosos y subjetivos en los que los agricultores o técnicos inspeccionan los cultivos en 
busca de signos visibles de infestación de plagas. Este trabajo puede ser inconsistente y 
falible, dependiendo en gran medida de la experiencia del inspector, de ahí la eficiencia de 
tales inspecciones. Además, estas inspecciones son poco prácticas en grandes áreas de 
cultivo por ser laboriosas y consumir mucho tiempo[12]. 

En contraste, las trampas adhesivas son instrumentos pasivos que capturan insectos 
voladores, dando una pista de la actividad de plagas. Sin embargo, estas trampas requieren 
mantenimiento constante y no son conocidas por ser efectivas para la detección temprana, 
ya que monitorean las plagas solo una vez que ya han comenzado a colonizar el área. Cuando 
estos métodos tradicionales se comparan con métodos automáticos basados en visión 
artificial, los sistemas automáticos, según estudios, son más rápidos y precisos para la 
identificación de plagas, proporcionando monitoreo continuo y alertas tempranas de 
infestación [13]. 
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2.1.5 Inteligencia Artificial 

La inteligencia artificial (IA) es una tecnología que permite a las computadoras y máquinas 
imitar la capacidad humana de aprender, comprender, resolver problemas, tomar decisiones, 
ser creativos y ser autónomos [14]. 

La IA ha surgido como un método poderoso para la agricultura con un monitoreo preciso de 
cultivos y detección temprana de plagas, lo que ayuda a reducir pérdidas económicas y 
minimizar el uso excesivo de pesticidas. Las tecnologías de inteligencia artificial (IA) como 
sensores y drones permiten a los agricultores tomar decisiones informadas basadas en datos 
en tiempo real, ayudando a usar los recursos de manera eficiente y aumentando la 
productividad [15]. 

•  Machine learning. 

El aprendizaje automático es un subcampo de la inteligencia artificial que entrena algoritmos 
para predecir o hacer algunas predicciones sobre datos sin un guion o programación 
explícita. Hay varios enfoques, por ejemplo, árboles de decisión, regresión, bosques 
aleatorios, SVM, KNN y agrupamiento para diferentes problemas. Uno de los más utilizados 
son las redes neuronales artificiales que imitan el cerebro humano y son útiles para el 
reconocimiento de patrones en grandes cantidades de datos. El más simple es el aprendizaje 
supervisado; aquí, el modelo aprende de datos etiquetados para identificar las relaciones 
entre la entrada y la salida de un modelo, obteniendo así una clasificación y/o predicción 
precisa de nuevos casos [14]. 

•  Deep learning. 

El aprendizaje profundo es un tipo de aprendizaje automático basado en múltiples capas de 
redes neuronales profundas que son capaces de aprender sin supervisión directa a partir de 
grandes cantidades de material no estructurado. Esta tecnología es la base de la mayoría de 
las aplicaciones modernas de inteligencia artificial, como la visión por computadora y el 
procesamiento del lenguaje natural [14]. 

2.1.6 Tecnologías Y Algoritmos De Visión Artificial 

La creación de un sistema de clasificación basado en visión artificial para la detección de 
plagas es muy tecnológico y orientado al aprendizaje automático. Las redes neuronales 
convolucionales (CNNs) son ideales para el análisis y clasificación de imágenes agrícolas, 
ya que las arquitecturas pueden aprender y comprender patrones complejos y las 
características. Tales redes consisten en varias capas compuestas por la extracción de 
características de las imágenes, que pueden usarse para clasificarlas de manera efectiva [16]. 
Además, el método de segmentación de imágenes es un método utilizado para separar ciertas 
áreas de una imagen para identificar plagas en un entorno complejo [17]. 

La implementación práctica real de estos sistemas en el campo debe estar respaldada por el 
hardware adecuado y el software más reciente. Cámaras de alta resolución y sensores 
multiespectrales de drones pueden capturar una instantánea extendida de un cultivo real, que 
se procesa utilizando el algoritmo de visión artificial, con el potencial de detectar plagas en 
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tiempo real [18]. Herramientas de software como TensorFlow, PyTorch se utilizan para 
desarrollar modelos de visión artificial y entrenarlos, mientras que las plataformas de 
monitoreo agrícola ponen a trabajar los datos almacenados para obtener una imagen 
definitiva sobre la salud del cultivo. Un enfoque combinado de estas tecnologías permite un 
monitoreo eficiente y una respuesta rápida a las infestaciones de plagas, mejorando la 
productividad y sostenibilidad de la agricultura [19]. 

2.1.7 Visión Artificial En La Agricultura 

Para los agricultores que se enfrentan a una gran cantidad de trabajo repetitivo que 
generalmente requiere esfuerzo humano para completarse, la visión por computadora es una 
tecnología revolucionaria en la agricultura moderna. La visión por computadora, al aplicar 
cámaras y algoritmos avanzados de procesamiento de imágenes, puede clasificar 
automáticamente plagas, enfermedades y otras causas de preocupaciones sobre la salud de 
los cultivos. Esta tecnología se puede utilizar para analizar grandes cantidades de datos 
visuales en tiempo real, ayudando así a tomar decisiones de manera más efectiva. Por 
ejemplo, las redes neuronales convolucionales (CNN) han demostrado gran precisión en la 
detección de enfermedades en hojas de tomate con una precisión superior al 90% [16], [20].  

La visión por computadora juega un papel importante en el campo de la agricultura, donde 
aumenta la precisión y eficiencia de la detección de plagas y disminuye la dependencia de 
métodos manuales, que son más propensos a errores humanos y consumen más tiempo. 
Técnicas como la segmentación de imágenes se utilizan para aislar y analizar ciertas partes 
de una planta o una pieza de fruta, e identificar la presencia de plagas con mucha más 
precisión [21]. Además, el aprendizaje por transferencia apoya la modificación de modelos 
preentrenados para nuevas tareas con muestras más pequeñas de datos, lo que se realiza más 
fácilmente en entornos agrícolas menos explorados donde los datos etiquetados son 
escasos [22]. 

2.1.8 Detección Temprana De Plagas En La Agricultura De Precisión 

Con el fin de mejorar la eficiencia de la producción agrícola y el uso de recursos, se ha 
implementado un modelo de toma de decisiones con tecnología de análisis basada en 
precisión e información, para optimizar las decisiones inteligentes en la gestión de insumos 
y para monitorear y predecir la producción de cultivos utilizando tecnología avanzada. En 
este contexto, la detección temprana de plagas se considera uno de los componentes 
centrales, ya que desempeña un papel primordial en la reducción de pérdidas económicas y 
la minimización del consumo excesivo de pesticidas [23], [24], lo cual es crucial para la 
agricultura sostenible. Los métodos de monitoreo convencionales, que incluyen 
inspecciones visuales frecuentes y trampas adhesivas, han demostrado tener tanto una 
eficiencia limitada como una pobre oportunidad de respuesta. Por otro lado, los sistemas de 
agricultura de precisión utilizan sensores, redes inalámbricas, dispositivos de Internet de las 
Cosas (IoT) y algoritmos de inteligencia artificial para rastrear parámetros biológicos y 
ambientales relacionados con las actividades de las plagas a medida que ocurren [25]. 



 

27 
 

Uno de los componentes cruciales para la detección temprana es la automatización del 
proceso de identificación mediante visión por computadora, lo que permite la adquisición, 
procesamiento e interpretación de imágenes de alta resolución obtenidas de trampas 
inteligentes o cámaras que se han desplegado en el campo [26]. Este método ayuda a acelerar 
y mejorar la precisión del diagnóstico y permite una respuesta rápida a las infestaciones de 
plagas antes de que alcancen niveles críticos. Además, los modelos predictivos analizan 
datos históricos y actuales para anticipar la propagación de plagas basándose en fenómenos 
ambientales (temperatura, humedad, estacionalidad). Así, instrumentos como las redes 
neuronales recurrentes (RNN) y los modelos híbridos de aprendizaje profundo pueden 
predecir la probabilidad de infestación basándose en datos climáticos y biológicos, 
reforzando aún más el sistema de alerta temprana [27]. 

2.1.9 Arquitectura Yolo Para La Detección Y Clasificación De Plagas En Tiempo 

Real 

YOLO (You Only Look Once) es líder mundial en arquitectura de detección de objetos en 
tiempo real, caracterizada por su alta velocidad/efectividad mientras logra un buen equilibrio 
de alta precisión. Su novedad esencial es detectar en una sola pasada a través de la red. 
También hemos dividido nuestra imagen de entrada en una cuadrícula en una capa, donde 
cada celda estima al mismo tiempo la probabilidad del objeto y sus coordenadas. A 
diferencia de los métodos convencionales de múltiples etapas (por ejemplo, Faster-RCNN), 
este paradigma tiene la ventaja de procesar muy rápidamente. Por razones como esta, YOLO 
es lo suficientemente potente como para servir en aplicaciones de monitoreo de campo y es 
adecuado para marcos de optimización de inferencia como PyTorch y TensorRT [28]. 

La ventaja clave de YOLO es trabajar en dispositivos integrados y con pequeños recursos 
de computación, lo que permite la construcción de sistemas autónomos que no requieren 
acceso continuo a la nube, minimizando así la latencia y los costos. La arquitectura ha sido 
sustancialmente mejorada con las versiones más recientes (por ejemplo, YOLOv10 y 
YOLOv11) que incorporan detección sin anclas, modelos reparametrizables y mejor 
atención visual. Estas mejoras conducen a una mayor precisión (mAP) y a un tiempo de 
inferencia reducido, preservando a YOLO como la opción para ofertas rápidas y modulares 
de visión por computadora [29]. 

Tabla 2. Características YOLOv11. 

Característica Clave de 
YOLOv11 

Justificación 

Arquitectura Anchor-Free A diferencia de versiones anteriores, YOLOv11 elimina 
las "cajas ancla" (anchor boxes). Esto simplifica el 
entrenamiento y es más efectivo para objetos con formas y 
tamaños muy variables (como insectos en distintas 
orientaciones y estados). 
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Modelos 
Reparametrizables 

(RepVGG-style blocks) 

Permiten aumentar significativamente la velocidad de 
inferencia sin perder precisión. Es crucial para el 
despliegue en la Jetson Nano, ya que optimiza el uso de la 
memoria y la GPU Maxwell en un entorno de baja 
potencia. 

Eficiencia Computacional 
(FLOPS/Parámetros) 

El modelo YOLOv11 Large (25.3M de parámetros, 86.9 
GFLOPs) ofrece un balance óptimo de recursos/precisión 
15, garantizando que se mantenga una alta velocidad de 
inferencia (< 3 segundos por imagen) mientras se mantiene 
la precisión del 99%. 

Visión Global y 
Localización Integrada 

YOLO procesa toda la imagen en una sola pasada, 
minimizando los errores de contexto que sufren las redes 
de dos etapas (como Faster R-CNN). Esto es vital para 
distinguir moscas muy cercanas en la trampa y evitar 
contarlas como una sola instancia. 

 

Fuente: [28], [30]. 

2.1.10 Uso De Dispositivos Embebidos e IOT en Agricultura 

La combinación de dispositivos integrados y tecnología IoT (Internet de las Cosas) ha 
cambiado el rostro de la gestión agrícola al mecanizar y digitalizar el monitoreo de cultivos. 
Todas estas herramientas con sensores, cámaras y software de computación permiten la 
captura y procesamiento de datos en tiempo real. Las plataformas integradas juegan un papel 
clave en la gestión fitosanitaria, donde el despliegue de modelos de aprendizaje profundo 
(visión por computadora) directamente en el campo es vital. Esto tiene la ventaja de contar 
con instalaciones de procesamiento local para aumentar la eficiencia, reducir la latencia en 
la toma de decisiones y eliminar la dependencia de una conexión permanente a la nube, 
preservando así la privacidad de los datos [31]. 

Esta arquitectura IoT integrada es muy escalable, de esta manera, se pueden desplegar varios 
nodos de detección distribuidos geográficamente. La operación de los modelos de visión por 
computadora se realiza en estos mismos nodos y la información fluye a través de protocolos 
inalámbricos (LoRa, Wi-Fi u otros) hacia un servidor central compartido. Esta configuración 
no solo reduce los costos operativos y mejora la gestión fitosanitaria, sino que también ayuda 
a evitar la pérdida de tiempo, con la detección y registro en tiempo real de plagas como las 
moscas de la fruta. Permite la notificación automática de alertas automáticas y aumenta la 
resiliencia dentro de los sistemas agrícolas con más toma de decisiones [31]. 

 

2.2 Estudio Del Estado Del Arte 

En [32], se observa el procedimiento para identificar al mosquito de la fruta consiste en 
utilizar trampas inteligentes que toman imágenes de los insectos que quedan atrapados. 
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Utiliza una Red Neuronal Artificial para clasificar, observar figura 2, una red neuronal 
convolucional (CNN) para aprender las características de los insectos y un procesamiento 
digital de imágenes para identificar áreas afectadas por plagas. Mientras que SqueezeNet 
presenta una precisión parecida pero con un tiempo de inferencia más corto, el modelo 
obtiene un 93.55% de precisión para Ceratitis capitata y un 91.28% para Grapholita molesta 
mediante ResNet18. 

 
Figura 2. Pipeline del Sistema. 

Fuente: [32] 

En [33], se analiza la identificación y clasificación de la mosca del olivo con los algoritmos 
SVM (Support Vector Machine) y RF (Random Forest), que han sido incorporados en una 
trampa electrónica basada en Raspberry Pi B+. La combinación de ambas técnicas permite 
detectar la mosca del olivo con una precisión del 89,1%. Este porcentaje se eleva al 94,5% 
en el caso de SVM y al 91,9% en el de RF si comparamos todas las especies de moscas con 
otros insectos. El empleo de dispositivos IoT para clasificar imágenes crea nuevas 
oportunidades para optimizar recursos y proteger la privacidad, mientras que la aplicación 
efectiva de machine learning en este sistema de trampa electrónica brinda información 
importante para el control de plagas, observar figura 3. 
 

 
Figura 3. Componentes electrónicos de la trampa electrónica. (A) Trampa electrónica con 

panel solar, pantalla Stevenson para proteger el sensor de temperatura y humedad 
relativa. (B) Cámara colocada frente a una trampa Rimi®. (C) Batería y Electrónica. 

Fuente: [33]. 
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En [34], se presentan métodos automáticos para monitorear plagas clave en manzanas, como 
Cydia pomonella y moscas de la fruta (Tephritidae y Drosophilidae), destacando el impacto 
del cambio climático en su comportamiento. Se evalúan sistemas basados en análisis de 
imágenes, trampas inteligentes y sensores que, combinados con IA y IoT, permiten una 
detección temprana y precisa, optimizando el manejo integrado de plagas. Estos sistemas 
automatizados reducen el uso de pesticidas y mejoran la eficiencia en el monitoreo, 
contribuyendo a una agricultura sostenible y adaptada a condiciones climáticas cambiantes. 

En [35], sugieren usar Faster R CNN con la estructura de red ResNet50 para detectar y 
clasificar plagas, utilizando la trampa McPhail, observar figura 4 el conjunto de datos FF 
studio, que se especializa en insectos relevantes para la agricultura. La evaluación del 
modelo se realizó a través de métricas estándar, como el recall, la precisión, el IoU y la 
precisión media (AP), poniendo de manifiesto un rendimiento elevado en la detección de 
especies que presentan variaciones en forma, tamaño y condiciones de luz. Al emplear 
ResNet50 como extractor de características, se logró perfeccionar la detección de objetos 
diminutos y optimizar la habilidad general del sistema para el aprendizaje profundo. 
Asimismo, se destaca el beneficio de Faster R CNN por su estructura de dos fases, que 
fusiona propuestas regionales con una clasificación exacta, obteniendo así resultados más 
altos en comparación con los métodos tradicionales de visión computacional. La 
investigación subraya el potencial de integrar este tipo de modelos en sistemas de monitoreo 
automatizados de plagas para reducir costos y tiempos en comparación con la inspección 
manual. Asimismo, se enfatiza la utilidad de estas técnicas en el marco de la agricultura de 
precisión, donde la detección temprana de plagas es clave para minimizar daños en cultivos. 
Finalmente, los autores sugieren que la ampliación del dataset y el uso de técnicas de data 
augmentation podrían incrementar aún más la robustez del modelo en escenarios reales. 

 
Figura 4. Imagen del prototipo de trampa electrónica McPhail colgado de un árbol de 

cítricos. 

Fuente: [35]. 

En [36], muestran un método de aprendizaje por transferencia para clasificar imágenes de 
dos especies de moscas de la fruta (Anastrepha fraterculus y Ceratitis capitata), observar 
figura 5, que fueron tomadas con una cámara de teléfono móvil montada en un 
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estereomicroscopio y segmentadas para separar áreas morfológicas importantes. Con 
puntuaciones F1, se examinaron tres modelos preentrenados (VGG16, VGG19 e Inception 
v3), logrando 82 % con los dos primeros y hasta 93 % con el tercero; este último sobresalió 
también en ambientes no controlados. Se empleó la técnica Grad CAM para observar las 
zonas fundamentales que afectan la clasificación, lo cual corroboró que el modelo tiene la 
capacidad de captar rasgos morfológicos importantes. Este trabajo demuestra que, con un 
dataset bien curado y un pipeline basado en aprendizaje por transferencia, se puede lograr 
una clasificación precisa y replicable de especies de moscas de la fruta.  

 
Figura 5. Manejo de moscas 

Fuente: [36]. 

En [37], se estudia el reconocimiento de objetos mediante redes neuronales convolucionales 
con la finalidad de analizar su efectividad en las tareas de clasificación de imágenes. Este 
análisis tiene lugar en dispositivos móviles que poseen Android. Usando TensorFlow Lite, 
una herramienta diseñada para optimizar la inferencia en el límite de red, el proyecto 
examina modelos preentrenados como VGG16, ResNet50, MobileNet y EfficientNetB0, 
observar figura 6. Se pone en marcha una aplicación que, mediante la cámara del aparato, 
detecta elementos en tiempo real y contrasta su eficiencia energética, su precisión y los 
tiempos de ejecución. Aunque no se enfoca específicamente en la detección de insectos, el 
trabajo demuestra cómo la visión artificial y el aprendizaje profundo pueden aplicarse 
eficazmente en dispositivos embebidos, sentando las bases para futuras aplicaciones en 
entornos agrícolas o de monitoreo ambiental donde la clasificación automatizada y 
local es crucial. 

 
Figura 6. Comparativa de la tasa de aciertos de los modelos. 

Fuente: [37]. 
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En [38], se muestra una variedad de métodos que utilizan técnicas de aprendizaje profundo 
y visión por computadora para analizar la regurgitación en las moscas de la fruta (Diptera: 
Tephritidae). Se sugieren tres técnicas diferentes, observar figura 7: el reconocimiento de 
regurgitación con I3D, la segmentación semántica utilizando U Net optimizado por el 
sistema de atención CBAM, y el seguimiento de trayectoria mediante la fusión de Yolov5 y 
DeepSort. La detección y el rastreo de insectos logran una exactitud del 99,8 %; la 
segmentación a través de U Net+CBAM logra un índice medio de unión (mIoU) del 90,96 
%; y el modelo I3D obtuvo un Top 1 Accuracy del 96,3 %, por encima de C3D y X3D. Se 
empleó OpenCV y segmentación por umbral para cuantificar el líquido que fue regurgitado, 
lo cual posibilitó medir con exactitud el área. El uso conjunto de reconocimiento, 
segmentación y tracking posiciona esta metodología como una herramienta integral para 
analizar la regurgitación, aportando datos cuantitativos útiles para acciones fitosanitarias 
específicas en cultivos. 

 
Figura 7. (A, B) representan dos conjuntos diferentes de muestras y, después de la 

segmentación semántica y la segmentación del umbral, se puede extraer una posición y 
forma más claras del líquido regurgitado. 

Fuente: [38] 
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3 CAPÍTULO III. METODOLOGÍA 

3.1 Tipo de Investigación 

El presente trabajo corresponde a una investigación experimental aplicada, orientada al 
desarrollo de un sistema de clasificación de especies de moscas de la fruta mediante técnicas 
de visión artificial. El enfoque aplicado radica en el uso de un modelo de Deep Learning 
para resolver un problema concreto del ámbito agropecuario, específicamente el proceso de 
identificación temprana de plagas que afectan la producción frutícola nacional. 

El trabajo se basa en el entrenamiento, ajuste y evaluación de un modelo de detección de 
objetos, comparando su desempeño con los métodos tradicionales empleados por la entidad 
Agrocalidad. De esta manera, se busca determinar la precisión de identificación y la 
reducción del tiempo de respuesta que ofrece el sistema propuesto frente al proceso manual 
de clasificación. 

3.1.1 Diseño de la Investigación 

El procedimiento metodológico se estructuró en seis fases consecutivas, que permitieron 
organizar el desarrollo del proyecto desde la revisión teórica hasta la validación del sistema, 
observar figura 8. 

 
Figura 8. Etapas del Desarrollo del Prototipo. 

3.1.2 Técnicas de Recolección de Datos 

La recopilación de datos para la evaluación del sistema de clasificación se fundamentó en 
una combinación de técnicas que aseguraron la obtención de información directa, objetiva y 
continua, esenciales para validar el rendimiento del prototipo frente al método tradicional. 
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• Observación 

La observación se empleó como técnica de recopilación de información directa en un entorno 
controlado (Laboratorio de Entomología de AGROCALIDAD) para evaluar el desempeño 
humano y del prototipo durante las pruebas experimentales. 

Mediante la observación, se pudo registrar y analizar de forma directa: 

- Se observó la interacción del personal técnico con el sistema desarrollado, 
incluyendo la manipulación de la interfaz gráfica (GUI) para la captura, detección, 
y generación de reportes. 

- Se registró el Tiempo de Identificación (en segundos) que tomaban los 
participantes para realizar la clasificación manual de las moscas bajo un 
microscopio, lo cual sirvió de base para la comparación con el método automático.  

- Se observó cómo el sistema realizaba la detección automática en las mismas 
muestras, registrando el tiempo de procesamiento y la exactitud de la clasificación, 
verificando su fiabilidad en un entorno de laboratorio. 

 
• Subsistema de Adquisición y Procesamiento de Datos 

Esta técnica une el procesamiento automatizado local con la intervención controlada del 
usuario. El propósito es producir resultados en tiempo real y objetivos a partir de las 
fotografías que se toman y cargan en el dispositivo. 

El proceso comienza cuando el técnico de laboratorio o de campo emplea la cámara 
IMX219-77, que es la unidad sensora en este caso, para tomar una fotografía de la muestra 
y cargarla manualmente en la Unidad de Procesamiento Embebido usando la interfaz gráfica 
(GUI). El sistema actúa de manera independiente tras cargar la imagen: el modelo YOLOv11 
es ejecutado por el NVIDIA Jetson Nano y produce automáticamente los datos de salida 
esenciales. Estos datos incluyen la Clasificación de la Especie identificada, el Nivel de 
Confianza asociado a cada detección, y el Tiempo de Inferencia que sería velocidad de 
procesamiento en milisegundos. Asegurándonos así que, aunque la entrada sea manual, la 
identificación, clasificación y el registro de métricas de rendimiento se ejecuten de manera 
automática y se almacenen en registros digitales para su trazabilidad. 

3.1.3 Población de estudio.  

La población de estudio está compuesta por todas las mediciones posibles del tiempo de 
ejecución, que se logran dependiendo del método utilizado para identificar a las moscas de 
la fruta y el nivel de conocimiento del usuario. Estas mediciones fueron producidas durante 
las pruebas experimentales que se llevaron a cabo en los locales de Agrocalidad, en un 
ambiente controlado que posibilitó la normalización de las condiciones del sistema. 

Esta población, desde una perspectiva estadística, representa el grupo teórico y sin límites 
de valores que se podrían alcanzar si cualquier usuario potencial empleara el sistema en 
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circunstancias parecidas a las del análisis. Como la cantidad de usuarios potenciales, así 
como las mediciones de tiempo y niveles de conocimiento, no tienen un límite 
preestablecido, se asumió que la población es infinita. Esta definición posibilita que se 
empleen métodos estadísticos adecuados para poblaciones grandes y hace más sencillo 
extender los resultados a un extenso conjunto de usuarios y escenarios. 

3.1.4 Operacionalización de las variables 

Tabla 3. Parámetros y Métodos de Evaluación. 

Variable Concepto Tipo de variable Técnicas e 
Instrumentación 

                       Independiente 

Método Forma en que se 
realiza la detección 

de las especies. 

Cualitativa Nominal Detección manual 
vs Detección 
Automática 

                       Dependiente 

Tiempo de detección Tiempo necesario 
para la 

identificación y 
clasificación de la 

muestra. 

Cuantitativa Continua Tiempo empleado 
por cada método de 

clasificación, 
medido en 
segundos. 

 
En la tabla 3, se detalla la operacionalización de las variables objeto de estudio. 

3.1.5 Fase Uno 

La primera fase del proyecto comprende el estudio de los principios teóricos relacionados 
con la visión artificial y el aprendizaje profundo empleados para la identificación y 
clasificación de plagas agrícolas. En esta etapa, el objetivo es establecer las bases 
conceptuales que sustenten el desarrollo del sistema de clasificación orientado a la detección 
temprana de las especies de moscas de la fruta más comunes. Posteriormente, tras una 
reunión con el departamento de Entomología, se determinó que las especies de mayor 
relevancia para la investigación son Ceratitis capitata, Anastrepha serpentina y Anastrepha 
striata. 

Se lleva a cabo un estudio de proyectos e investigaciones previas relacionadas con el uso de 
modelos de inteligencia artificial para el monitoreo y control de plagas, identificando las 
arquitecturas de redes neuronales, los métodos empleados y las plataformas informáticas 
utilizadas. Este análisis permitió establecer criterios técnicos para la selección de las 
herramientas más adecuadas para el sistema propuesto. 
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• Comparación de plataformas de procesamiento 

Se comparan diversas plataformas de hardware con el objetivo de ejecutar modelos de visión 
artificial en tiempo real. Entre los factores considerados para la evaluación se incluyeron el 
costo, el consumo energético, la capacidad de procesamiento, la compatibilidad con 
frameworks de aprendizaje profundo y el soporte para aceleración mediante GPU. 

Tabla 4. Comparativa de plataformas de procesamiento 

Plataforma Procesador/
GPU 

Compatibi
lidad IA 

Consumo 
energético 

Costo 
aproximado 

Ventajas 
principales 

Desventajas 
principales 

Raspberry Pi 
4 

ARM 
Cortex-A72, 

sin GPU 
dedicada 

Limitada 
(sin 

CUDA) 

Bajo (5–7 W) Bajo Económica y 
accesible 

Bajo 
rendimiento en 

IA 

Google Coral TPU Edge 
integrado 

TensorFlo
w Lite 

Bajo (5 W) Medio Alta 
velocidad en 
inferencias 

con 
TensorFlow 

Soporte 
limitado a 
modelos 

específicos 

NVIDIA 
Jetson Nano 

Quad-Core 
ARM A57 + 

GPU 128 
CUDA 

PyTorch, 
TensorFlo
w, ONNX 

Moderado (10 
W) 

Medio Aceleración 
por GPU, 
soporte 

TensorRT, 
buen 

equilibrio 
entre 

potencia y 
costo 

Requiere 
disipación 

térmica 
adecuada 

 

Fuente: [39], [40]. 

La plataforma más adecuada para el sistema, de acuerdo con la comparación presentada en 
la Tabla 4, fue seleccionada como la NVIDIA Jetson Nano. Esta elección se fundamenta en 
su capacidad para ejecutar modelos complejos de detección en tiempo real mediante 
aceleración por GPU, así como en la posibilidad de utilizar librerías optimizadas como 
TensorRT. En conjunto, esta plataforma garantiza un equilibrio entre rendimiento, eficiencia 
energética y viabilidad económica. 
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• Comparación de arquitecturas de redes neuronales convolucionales 

Se analizan diversas arquitecturas de redes neuronales convolucionales (CNN) comúnmente 
empleadas en la clasificación de imágenes, evaluándolas según su exactitud, velocidad de 
inferencia, requerimientos computacionales y facilidad de implementación en dispositivos 
embebidos. 

Tabla 5. Comparativa de modelos de clasificación 

Modelo 
CNN 

Precisión 
(mAP) 

Velocidad 
de 

inferencia 

Requerimientos 
computacionales 

Adecuado 
para tiempo 

real 

Observaciones 

Inception
V3 

Alta 
(~80%) 

Media Alto Parcialmente Buena 
precisión, pero 

elevada 
demanda de 

recursos 
EfficientN

et-B0 
Alta 

(~83%) 
Media Medio Parcialmente Buen balance 

entre 
rendimiento y 

eficiencia 
YOLO 

v11 
Muy alta 
(>85%) 

Alta Moderado Sí Excelente 
rendimiento en 

detección en 
tiempo real 

Fuente: [29][41], [42]. 

A partir del análisis comparativo presentado en la Tabla 5, se seleccionó el modelo 
YOLOv11 en su versión l, debido a su alta precisión, capacidad de operación en tiempo real 
y adecuado acoplamiento con la plataforma NVIDIA Jetson Nano. Esta combinación 
permite una detección eficiente y precisa en condiciones variables de iluminación y entorno.  
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3.1.6 Fase Dos 

Se lleva a cabo la elaboración del conjunto de datos (dataset) necesario para el entrenamiento 
y la validación del modelo de clasificación. Esta fase resulta fundamental, ya que la calidad 
y diversidad de las imágenes influyen directamente en el desempeño y la capacidad de 
generalización del sistema. 

El procedimiento inicia con la identificación y recopilación de imágenes correspondientes a 
las tres especies seleccionadas: Anastrepha striata, Anastrepha serpentina y Ceratitis 
capitata. Las imágenes fueron obtenidas a partir de bases de datos abiertas, archivos 
científicos y capturas realizadas en campo, con el propósito de cubrir distintas condiciones 
de fondo, iluminación y orientación. 

Posteriormente, se efectua el proceso de etiquetado de las imágenes mediante el uso de 
herramientas especializadas como Roboflow, las cuales permitieron delimitar las áreas de 
interés asociadas a cada insecto. Este proceso posibilitó la generación de los archivos de 
anotación requeridos por el modelo YOLOv11 para su entrenamiento supervisado. 

Finalmente, se aplican técnicas de aumento de datos (data augmentation) con el fin de 
incrementar la diversidad y robustez del dataset, considerando que en su etapa inicial este 
contaba únicamente con 1 498 imágenes. 

Tabla 6. Composición Cuantitativa del Dataset 

Conjunto Ceratitis 
capitata 

Anastrepha 
Serpentina 

Anastrepha 
Striata 

Total de 
Instancias 

Total de 
Imágenes 

Porcentaje 

Entrenamiento 
(70%) 

1074 1035 1035 3144 X 70% 

Validación 
(20%) 

96 98 105 299 Y 20% 

Prueba (Test) 
(10%) 

46 54 49 149 Z 10% 

Total General 1216 1187 1189 3592 (X+Y+Z) 100% 

Para generar el conjunto de datos final de 3592 instancias, se aplica un pipeline de Data 
Augmentation en la plataforma Roboflow para incrementar la diversidad y prevenir el 
sobreajuste, observar tabla 6. 

 Las transformaciones incluyeron: 
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Rotación de 90°: en sentido horario, antihorario, boca abajo. 

Rotación: Entre -13° y +13°. 

Saturación: Entre -28% y +28%. 

Brillo: Entre -24% y +24%. 

Ruido: hasta el 0,97% de los píxeles. 

 

Figura 9. Proceso de etiquetado en RoboFlow. 

En la figura 9, se observa el procedimiento de etiquetado de imágenes mediante bounding 
box. 

 

3.1.7 Fase Tres 

Esta fase se enfoca en el diseño e implementación de un sistema de categorización basado 
en visión artificial, cuyo propósito fue lograr la detección temprana de moscas de la fruta, 
específicamente de las especies Anastrepha serpentina, Anastrepha striata y Ceratitis 
capitata. El objetivo principal consistió en integrar componentes de hardware y software que 
permitieran un procesamiento óptimo en tiempo real, proporcionando una solución portátil, 
accesible y eficiente para apoyar la vigilancia agrícola y la prevención de plagas. 

El diagrama de bloques presentado en la figura 10 ilustra la arquitectura de hardware y 
software del sistema propuesto. El bloque de alimentación es el encargado de suministrar los 
5 V/4 A necesarios para el funcionamiento estable de todos los componentes del sistema, 
entre ellos la cámara, la pantalla táctil de 7 pulgadas y la plataforma NVIDIA Jetson Nano, 
garantizando una operación sin fluctuaciones de voltaje. 

En el bloque de adquisición de datos se encuentra la cámara, cuya función es capturar 
imágenes del entorno en tiempo real. Estas imágenes son enviadas directamente al módulo 
de procesamiento, ubicado en la Jetson Nano, que constituye el núcleo central del sistema. 
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En el bloque de procesamiento, la Jetson Nano ejecuta el modelo YOLOv11, previamente 
entrenado mediante técnicas de transfer learning, realizando la detección e inferencia en 
tiempo real para identificar las especies presentes en las imágenes capturadas. Para este 
proceso se emplean bibliotecas como OpenCV, Ultralytics YOLO, Tkinter y NumPy, las 
cuales permiten el procesamiento visual, la gestión de datos y la implementación de la 
interfaz gráfica. 

El bloque de visualización presenta los resultados de la clasificación a través de una interfaz 
gráfica desarrollada en Tkinter y desplegada en una pantalla táctil de 7 pulgadas. Esta 
interfaz muestra las detecciones en tiempo real, incluyendo la especie identificada, el nivel 
de confianza y un conteo acumulativo de las muestras detectadas. Adicionalmente, el sistema 
permite la generación de reportes en formatos CSV y PDF que contienen la información 
procesada y las estadísticas de detección, facilitando su posterior análisis. 

Finalmente, el sistema incorpora un bloque de almacenamiento y gestión de resultados, en 
el cual se registran las detecciones junto con la especie identificada, la fecha y la hora 
correspondientes. Desde la interfaz es posible consultar o exportar dichos registros, lo que 
permite mantener un historial digital de las detecciones y simplificar el seguimiento del 
monitoreo. 

En conjunto, la arquitectura propuesta integra los módulos de captura, procesamiento, 
visualización y almacenamiento, con el objetivo de ofrecer una herramienta autónoma, 
portátil y de bajo costo orientada a respaldar las labores de detección temprana de plagas en 
el ámbito agrícola. 

 
Figura 10. Diagrama de Bloques del Dispositivo 
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• Ensamblaje e integración del sistema de clasificación basado en jetson nano. 

El presente apartado detalla el proceso de ensamblaje y puesta en funcionamiento del kit de 
desarrollo NVIDIA Jetson Nano de Makeronics, el cual constituye la plataforma 
fundamental para la implementación del sistema de detección y clasificación de especies de 
moscas de la fruta mediante visión artificial. 

El conjunto de componentes incluidos en el kit se detalla a continuación: 

A. Estuche de acrílico Jetson Nano 

1 funda protectora acrílica. 

1 juego de tornillos y separadores. 

1 ventilador de refrigeración PWM. 

1 destornillador de montaje. 

1 botón de encendido y 1 botón de reinicio. 

Manual de instrucciones. 

B. Cámara IMX219-77 

1 módulo de cámara IMX219-77. 

1 funda de protección para la cámara. 

Manual de montaje. 

C. Tarjeta microSD de 64 GB 

1 tarjeta TF de 64 GB 

1 lector de tarjetas USB. 

D. Kit de pantalla táctil LCD de 7 pulgadas 

Pantalla táctil capacitiva de 7” (resolución 1024×600 IPS). 

Cable HDMI. 

Cable micro USB para la función táctil. 

Soporte de montaje. 
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• Instalación de la Tarjeta de Red de la Nvidia Jetson Nano 

 
          Figura 11. Tarjeta de Red Externa 

La NVIDIA Jetson Nano no cuenta con conectividad inalámbrica integrada, por lo que se 
incorporó una tarjeta de red externa, como se observa en la figura 11, con el propósito de 
habilitar la conexión a Internet requerida para la instalación de dependencias, la 
actualización del sistema operativo y la transferencia de archivos de entrenamiento. 

• Instalación de la NVIDIA Jetson Nano en la base acrílica 

 
          Figura 12. Estuche acrílico 



 

43 
 

 
       Figura 13. Jetson Nano sobre la base inferior del estuche acrílico. 

En las Figuras 12 y 13 se observa la colocación de la placa Jetson Nano sobre la base inferior 
del estuche acrílico, alineando los orificios de montaje con los separadores plásticos. 
Posteriormente, la placa fue fijada mediante los tornillos incluidos, asegurando que quedara 
firme y correctamente posicionada, 

• Montaje del sistema de ventilación 

 
        Figura 14. Sistema de ventilación 

Sobre el disipador de la Jetson Nano se instala el ventilador de refrigeración PWM, tal como 
se muestra en la Figura 14, orientando el flujo de aire hacia el disipador. 

El ventilador se conecta al conector GPIO de 5 V correspondiente, lo que permite la 
regulación automática de la velocidad y el mantenimiento de temperaturas óptimas de la 
tarjeta. 
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• Instalación de los botones de encendido y reinicio 

 
             Figura 15. Conexión botones de encendido y reinicio. 

Los botones Power y Reset se colocan en los orificios del estuche acrílico, como se muestra 
en la Figura 15, y se conectan a los pines GPIO designados de la Jetson Nano. 

Estos botones permiten encender y reiniciar el sistema sin necesidad de manipular 
directamente la placa. 

• Conexión de la cámara IMX219-77 

La cámara IMX219-77 figura 16, se conecta al puerto CSI (Camera Serial Interface) de la 
Jetson Nano mediante su cable plano, se aseguraron las trabas del conector para evitar falsos 
contactos. 
Finalmente, se coloca la cámara dentro de su carcasa protectora y se fija al soporte frontal 
del estuche. 

 
Figura 16 Camara IMX219-77 
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• Instalación de la pantalla táctil LCD de 7 pulgadas 

La pantalla táctil se monta en su soporte y se conecta a la Jetson Nano mediante el cable 
HDMI (para la señal de video) y el cable micro USB (para la función táctil). 
De esta forma, la pantalla actúa como el principal medio de visualización e interacción 
con el sistema, véase figura 17. 

 
Figura 17. Pantalla LCD 

• Preparación del Sistema Operativo Nvidia Jetson Nano 

En una computadora externa, se graba la imagen del sistema operativo JetPack utilizando la 
herramienta Nvidia SDK Manager, véase figura 18. 

 
Figura 18. Nvidia SDK Manager 

• Alimentación y verificación inicial 

Finalmente, se conecta la fuente de alimentación de 5V/4A al puerto de energía de la Jetson 
Nano y se presiona el botón de encendido. Tras el arranque inicial, se verifica el 
funcionamiento del sistema, la operación del ventilador, la detección de la cámara, el 
funcionamiento de la pantalla táctil y la conectividad de red, véase figura 19. 
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Figura 19. Conexión de la alimentación de la Nvidia Jetson Nano. 

• Selección del modelo base  

En este apartado se explica el procedimiento de entrenamiento del modelo de detección y 
categorización de especies de moscas de la fruta con la arquitectura YOLOV11. 

Para el actual proyecto, se elige la versión YOLO11 (Large) de esta familia debido a que 
proporciona una capacidad superior para detectar objetos pequeños y un nivel de precisión 
más elevado, cualidades esenciales para identificar insectos como las moscas de la fruta. 

A diferencia de modelos de clasificación como InceptionV3 o EfficientNet, que procesan 
imágenes completas, YOLO11l realiza simultáneamente la localización y clasificación de 
objetos, lo que lo hace ideal para realizar el sistema propuesto. 

Tabla 7. Rendimiento del Modelo Yolov11 en sus diferentes variantes. 

Modelo 
 

Tamaño 
(Pixeles) 

mAPval 
50-95 

Velocidad 
CPU 
ONNX 
(ms) 

Velocidad 
T4 
TensorRT10 
(ms) 

Parámetros 
(M) 

FLOPS 
(B) 

YOLO11n 640 39.5 56.1 ± 0.8 1.5 ± 0.0 2.6 6.5 
YOLO11s 640 47.0 90.0 ± 1.2 2.5 ± 0.0 9.4 21.5 
YOLO11m 640 51.5 183.2 ± 2.0 4.7 ± 0.1 20.1 68.0 
YOLO11l 640 53.4 238.6 ± 1.4 6.2 ± 0.1 25.3 86.9 
YOLO11x 640 54.7 462.8 ± 6.7 11.3 ± 0.2 56.9 194.9 

Fuente: [29]. 

Como se puede observar en la tabla 7, YOLO11l sobresale por su capacidad para brindar 
una relación equilibrada y robusta entre rendimiento y precisión, con una velocidad que 
permite la inferencia en tiempo real en la NVIDIA Jetson Nano. 

https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt
https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt
https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt
https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt
https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt
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Esto posibilita alcanzar un balance ideal entre el desempeño computacional y la precisión al 
clasificar especies que se parecen visualmente, como Anastrepha striata, Ceratitis capitata y 
Anastrepha serpentina. 

El modelo se entrena utilizando un método de Transfer Learning, que consiste en la 
adaptación de un modelo preentrenado con el conjunto de datos COCO a un nuevo dataset. 
Este último está compuesto por imágenes de las especies más frecuentes de moscas de la 
fruta, que en este caso fueron ceratitis capitata, anastrepha serpentina y anastrepha striata. 

• Proceso de transfer learning 

Se utiliza el método de Transfer Learning para ajustar el modelo al trabajo concreto de 
detección de moscas de la fruta. En este método, las capas convolucionales inferiores de 
YOLOV11, que se encargan de la extracción de rasgos generales como las texturas, los 
bordes y las formas, fueron preservadas. Por su parte, las capas superiores fueron 
reentrenadas para adaptarse al nuevo conjunto de datos compuesto por las tres especies 
objetivo en la tabla 1. 

De esta forma, el modelo se adapta para reconocer los patrones morfológicos distintivos de 
cada especie, optimizando tanto la clasificación como la localización dentro de las imágenes. 

 
 

• Conjunto de datos (dataset) 

Cada especie se organizada en carpetas independientes y etiquetada manualmente con la 
herramienta online RoboFlow, generando archivos en formato YOLO (.txt), donde se 
especifican las coordenadas de los cuadros delimitadores (bounding boxes) y la clase 
correspondiente. 

La distribución del dataset se puede observar en la tabla 6, el conjunto final incluyó imágenes 
en formato .jpg y .png, con una resolución promedio de 640×640 píxeles, garantizando 
uniformidad en la entrada de datos durante el entrenamiento. 

• Configuración del entrenamiento 

El entrenamiento del modelo se realiza utilizando el framework Ultralytics YOLOV11, 
implementado en Python 3.9 y ejecutado en el entorno Google Colab, aprovechando los 
recursos de GPU (NVIDIA Tesla T4). 

Los principales parámetros de entrenamiento se definieron en la tabla 8: 

 

 

 

 



 

48 
 

Tabla 8. Parámetros de Entrenamiento. 

Parámetro Valor 
Modelo base yolo11l.pt 
Tamaño de imagen 640 × 640 píxeles 
Número de épocas 60 
Batch size 16 
Optimizador Adam 
Tasa de aprendizaje inicial 0.001 
Archivo de configuración (data.yaml) Dataset personalizado con 3 clases 

• Preparación del entorno de Google Colab 

La figura 20 muestra la preparación inicial del entorno en Google Colab para entrenar el 
modelo YOLOV11. En primer lugar, se instala la librería Ultralytics mediante el comando 
!uv pip install ultralytics, que descarga todas las dependencias necesarias para el uso de los 
modelos YOLO, incluido PyTorch. Luego, se importa el módulo ultralytics para poder 
acceder a sus funciones desde Python. Finalmente, con ultralytics.checks() se realiza una 
verificación del entorno, comprobando que la instalación se haya completado correctamente 
y mostrando detalles como la versión de Python, PyTorch, el modelo de GPU disponible (en 
este caso una Tesla T4 de 15 GB), la memoria RAM y el espacio en disco. Esta 
comprobación confirma que el entorno está correctamente configurado y listo para iniciar el 
proceso de entrenamiento del modelo. 

 
Figura 20. Instalación de dependencias. 

• Importar el dataset desde roboflow 

Para importar automáticamente el conjunto de datos (dataset) desde la plataforma Roboflow 
hacia el entorno de trabajo en Google Colab, utilizamos el código de la figura 21. 

Primero, el comando !pip install roboflow instala la librería necesaria para conectarse a 
Roboflow mediante su API. Luego, con from roboflow import Roboflow se importa la clase 
principal que permite interactuar con los proyectos almacenados en la cuenta del usuario. 

La línea rf = Roboflow(api_key="Ir8MM0prAVBkW1WUnRTJ") autentica al usuario 
mediante su clave API personal, lo que habilita el acceso a los datasets privados o públicos 
de su cuenta. Posteriormente, se especifica el proyecto (project = rf.workspace("cristian-
wszik").project("tesis-sos0c")) y la versión del conjunto de datos (version = 
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project.version(2)), ya que Roboflow permite mantener diferentes versiones del mismo 
dataset conforme se realizan mejoras o ajustes. 

Finalmente, dataset = version.download("yolov11") descarga el dataset en el formato 
compatible con YOLOv11, organizando automáticamente las carpetas de imágenes de 
entrenamiento, validación y prueba, junto con el archivo data.yaml necesario para el 
entrenamiento del modelo. Este proceso simplifica considerablemente la preparación de 
datos, asegurando una estructura estandarizada y lista para su uso inmediato. 

 
Figura 21. importación del dataset a Google Colab. 
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• Inicialización del entrenamiento 

 
Figura 22. Proceso de entrenamiento. 

En la figura 22 se observa el proceso de inicio del entrenamiento del modelo YOLOv11 en 
el entorno de Google Colab, utilizando la librería Ultralytics. En esta fase, el sistema carga 
el modelo base preentrenado (yolo11l.pt) y verifica la configuración del entorno, mostrando 
información sobre la versión de Python, CUDA (aceleración por GPU) y la arquitectura del 
modelo. También se observa cómo se descargan los archivos necesarios desde los 
repositorios oficiales de Ultralytics y cómo se estructura la red neuronal, detallando las capas 
convolucionales y parámetros utilizados. 

Posteriormente, el modelo comienza a preparar el conjunto de datos definido en el archivo 
data.yaml, escaneando las carpetas train, val y test para identificar y organizar las imágenes 
y etiquetas que se usarán en el entrenamiento. Finalmente, se indica que el proceso se 
realizará durante 60 épocas, utilizando el optimizador Adam y aprovechando la GPU Tesla 
T4. 
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• Descarga del modelo Final 

Para localizar y acceder al modelo final (best.pt), diríjase al explorador de archivos en el 
panel izquierdo de Google Colab. Siga la estructura de directorios generada durante el 
entrenamiento: 

1. Ingrese a la carpeta runs. 

2. Ingrese a la carpeta detect 

3. Acceda a la subcarpeta train. 

4. Abra la carpeta weights. 

Aquí se encuentra el archivo de pesos entrenados, nombrado habitualmente como best.pt, 
además de otros archivos relevantes para la validación del modelo, como matriz de 
confusión, etc. Véase figura 23. 

 
Figura 23. Como descargar el modelo final desde Google Colab. 
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• Muestras del Conjunto de Datos de Entrenamiento y Validación para la 
Clasificación de Moscas de la Fruta 

 
Figura 24. Conjunto de Entrenamiento. 

 
Figura 25. Conjunto de Validación. 



 

53 
 

En la figura 24 y 25 se muestran ejemplos utilizados en el proceso de entrenamiento y 
validación del modelo de detección, cada recuadro indica el contenedor delimitador 
(bounding box) de los individuos presentes y su respectiva clase. Las especies representadas 
corresponden a Anastrepha serpentina, Anastrepha striata, y Ceratitis capitata. Estas 
muestras fueron fundamentales para el aprendizaje supervisado del modelo, permitiendo la 
identificación de variaciones en iluminación, fondo, posición y orientación de los insectos. 

• Pantalla inicial 

La pantalla inicial del dispositivo se visualiza en la Figura 26, donde el usuario puede 
ingresar los datos básicos del técnico y del lugar de trabajo, como el nombre, la ubicación y 
la provincia. También permite seleccionar el modelo que usará el sistema para la detección. 
Una vez completados estos campos, se habilita el botón “Continuar” para avanzar. 

 

 
Figura 26. Pantalla inicial 

• Interfaz de captura de datos y generación de reportes 

Se presenta la vista previa de la cámara activa junto con el rendimiento en tiempo real (FPS 
y tiempo de inferencia), véase figura 27. En esta interfaz el usuario puede capturar imágenes, 
subir archivos, cambiar la cámara, ajustar el umbral de detección y observar el conteo de 
especies detectadas en una tabla lateral. Además, dispone de opciones para cambiar el 
modelo, reiniciar el conteo y generar reportes en formato PDF o CSV, lo que facilita el 
manejo y registro de los resultados obtenidos. 
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Figura 27. Interfaz de captura de datos y generación de reportes. 

• Interfaz de visualización de resultados y re etiquetado de imágenes 

La pantalla de gestión de etiquetas y visualización de resultados, se observa en la figura 28, 
donde el sistema muestra las detecciones realizadas sobre la imagen, identificando 
ejemplares de moscas de la fruta mediante cuadros delimitadores y sus respectivas clases. 
En esta interfaz el usuario puede seleccionar la clase actual, añadir nuevas clases o 
eliminarlas, así como visualizar y gestionar la lista de etiquetas generadas, las cuales 
incluyen la especie detectada y las coordenadas del recuadro correspondiente. Además, 
cuenta con opciones para eliminar etiquetas individuales o todas a la vez y un botón de 
confirmación para guardar los cambios realizados en la clasificación. 

 
Figura 28. Interfaz de visualización de resultados y re etiquetado de imágenes 
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Fase Cuatro 

Esta fase se enfoca en comprobar el desempeño del sistema propuesto, contrastando sus 
resultados con métodos convencionales de identificación entomológica y verificando su 
fiabilidad en entornos reales. 

• Pruebas experimentales 

El prototipo de detección automática de moscas de la fruta se somete a una serie de pruebas 
experimentales con el fin de evaluar su rendimiento. Dichas pruebas se realizan en el 
Laboratorio de Entomología de AGROCALIDAD, ubicado en Tumbaco, y tienen como 
objetivo principal comparar el tiempo de respuesta y la capacidad de identificación de las 
tres especies de interés (Ceratitis capitata, Anastrepha striata y Anastrepha serpentina) del 
sistema propuesto frente al desempeño humano, bajo condiciones controladas. 

• Diseño experimental 

Las pruebas se estructuran en cuatro rondas independientes, como se observa en la Figura 
29. Para cada ronda, se selecciona un conjunto aleatorio de moscas, cuya especie es 
previamente verificada por expertos con el fin de garantizar la validez de la prueba. 

 
Figura 29. Pruebas. 

• Procedimiento de evaluación 

A cada participante se le solicita identificar la especie de los ejemplares presentes en cada 
una de las cuatro pruebas, basándose únicamente en la observación directa. Durante este 
proceso se registran de manera individual dos métricas clave, como se observa en la Figura 
30: 

1. Tiempo total de identificación por prueba. 

2. Exactitud en la clasificación de las especies. 
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Figura 30. Prueba Manual. 
En paralelo, el prototipo realiza la identificación de los mismos conjuntos de moscas, como 
se muestra en la Figura 30, manteniendo las mismas condiciones de iluminación y distancia. 
Los resultados del dispositivo se presentan de forma automática. 

 
Figura 31. Prueba Automática. 

• Variables de Comparación 

Para establecer una comparación directa entre el desempeño humano y el del prototipo, se 
analizan las siguientes variables: 

1. Tiempo de Identificación (segundos): Comparativa entre el tiempo requerido por el 
participante y el tiempo de procesamiento del prototipo. 

2. Eficiencia (Valida/ No Valida): Precisión en la identificación correcta de cada 
especie. 

3. Nivel de Conocimiento: Análisis de la diferencia de desempeño entre los 
participantes de nivel alto, medio y bajo. 
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• Consideraciones de validez 

Todo el proceso experimental es supervisado por un especialista, quien verifica 
rigurosamente:  

1. La aleatorización de los ejemplares de moscas en cada prueba. 

2. Las condiciones homogéneas de presentación para ambos métodos (manual y 
automático).  

3. La integridad y trazabilidad de los datos y tiempos registrados. 

Estas medidas aseguran que los resultados obtenidos reflejan objetivamente la capacidad 
comparativa entre la metodología manual tradicional y la solución automatizada propuesta. 

• Comparación con técnicas tradicionales 

La Tabla 9 presenta una comparación entre el sistema desarrollado y los métodos 
entomológicos tradicionales utilizados en Agrocalidad para la identificación de moscas de 
la fruta. 

Tabla 9 Comparación entre el método tradicional y el sistema basado en visión artificial 
YOLOv11. 

Criterio Método tradicional 
(identificación visual) 

Sistema propuesto (visión 
artificial YOLOv11) 

Tiempo de análisis 53.8438 segundos 7.3450 segundos 
Requiere personal 
especializado 

Sí No (detección automatizada) 

Exactitud promedio 80–85% (dependiente del 
experto) 

95–99% (constante y 
replicable) 

Costo operativo Medio–Alto (labor y 
laboratorio) 

Bajo (solo consumo energético) 

Portabilidad Limitada (equipos de 
laboratorio) 

Alta (Jetson Nano compacta) 

Escalabilidad Reducida (procesamiento 
manual) 

Alta (procesamiento masivo de 
imágenes) 

 

• Evaluación del rendimiento del modelo yolov11 entrenado 

En esta sección se analizan las métricas cuantitativas y los resultados visuales obtenidos tras 
el entrenamiento del modelo. 
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Figura 32. Curva Precisión–Recall. 

La figura 32 ilustra la relación entre el porcentaje de detecciones precisas (precisión) y el 
porcentaje de casos reales detectados (recall) para cada especie y su promedio. Las curvas 
que se acercan al vértice superior derecho muestran un alto acierto con escasas omisiones, 
lo cual se resume en un mAP@0.5≈0.99, demostrando así una detección confiable.  

 
Figura 33. Recall vs. umbral de confianza. 

El Recall se mantiene alto (cerca de 0.98-1.00) véase figura 33, hasta alrededor de 0.80-0.85, 
y después se reduce rápidamente al requerir un mayor nivel de certeza para aceptar una 
detección (umbral más riguroso), lo cual hace que aumenten los falsos negativos o las 
omisiones; esta relación orienta la elección del punto operativo: los umbrales moderados 
(aproximadamente entre 0.60 y 0.70) dan prioridad a la cobertura, mientras que los umbrales 
altos disminuyen las advertencias inciertas a costa de perder casos reales. 
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Figura 34. Matriz de confusión. 

La matriz de confusión, que se muestra en la figura 34, contrasta las clases reales (filas) y 
las predichas (columnas); los aciertos se agrupan en la diagonal, mientras que los errores 
(falsos negativos para la clase real y falsos positivos para la predicha) están fuera de ella. El 
hecho de que haya un predominio de la diagonal pone de manifiesto una clasificación sólida 
con confusiones residuales sobre todo entre A. serpentina y A. striata, por su similitud.  

 

Figura 35. Matriz de confusión normalizada. 
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La matriz de confusión normalizada se observa en la figura 35. Es parecida a la de la figura 
34, pero con filas al 100 %, lo que posibilita la comparación del rendimiento por especie sin 
tener en cuenta el tamaño de muestra. Las diagonales cercanas a 1.0 corroboran la 
consistencia de la clasificación por especie y los valores alejados de la diagonal que están 
próximos a 0.0 señalan errores poco comunes, proporcionando una visión proporcional que 
hace más sencillo el rastreo de degradaciones particulares durante el despliegue. 

 
Figura 36. Conjunto de datos y distribución de cajas. 

Se muestra un balance de instancias por clase, lo que evita sesgos, una amplia cobertura 
espacial de cajas delimitadoras y variaciones de tamaño, lo que evidencia diversidad en las 
posiciones y escalas, véase figura 36. Esta variabilidad favorece la generalización del 
modelo bajo circunstancias reales y apoya su habilidad para diferenciar especies 
morfológicamente similares con un error mínimo. 

 

Figura 37. Curvas de entrenamiento y validación. 
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Las pérdidas de localización (box), clasificación (cls) y dfl como se observan en la figura 37 
disminuyen de manera constante y que las métricas convergen a mAP@0.5≈0.99 y 
mAP@0.5–0.95≈0.77–0.78, esta última más rigurosa al calcular el promedio de IoU entre 
0,50 y 0,95, sin diferencias significativas entre entrenamiento y validación; este patrón indica 
un aprendizaje estable, la falta de sobreajuste importante y el modelo listo para ser puesto 
en funcionamiento. 

 
Figura 38. F1 vs. umbral de confianza. 

En la figura 38 el F1 alcanza su máximo umbral de confianza≈0.63, punto operativo 
recomendado cuando se busca equilibrio entre falsos positivos y falsos negativos; en 
presencia de especies parecidas (A. striata/A. serpentina), este ajuste ofrece un balance 
adecuado entre no omitir casos y evitar confusiones. 

 
Figura 39. Precisión vs. umbral de confianza. 

Frente a una falsa alarma, este sistema es útil; si se adopta, la reducción de cobertura puede 
ser compensada con una frecuencia de muestreo más alta o con reglas de reverificación. En 
la figura 39, la precisión se aproxima a 1.0 hacia confianza≈0.94, casi sin falsos positivos, 
aunque eso implique un menor Recall (más omisiones). 
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4 CAPITULO IV. RESULTADOS Y DISCUSIÓN 
4.1 RESULTADOS 

En este capítulo se exponen y analizan los resultados generados por el equipo de monitoreo 
durante la fase de pruebas, centrándose inicialmente en la descripción de los datos de tiempo 
y en la comparación de las mediciones obtenidas mediante el método manual frente al 
automático, para luego presentar y analizar la información estadística obtenida del estudio, 
enfocándose en la variable Tiempo en función de las variables de agrupación Método y Nivel 
de Conocimiento. 

4.1.1 Prueba de normalidad 

Para proceder al análisis de resultados, se lleva a cabo una prueba de normalidad para 
determinar si los datos de la variable Tiempo en cada categoría del Método se ajustan a una 
distribución normal. 

• Hipótesis Nula (𝑯𝑯𝟎𝟎): Los datos medidos de Tiempo tienen una distribución 
normal. 

• Hipótesis Alternativa (𝑯𝑯𝒊𝒊): Los datos medidos de Tiempo no tienen una 
distribución normal. 

Tabla 10. Prueba de Normalidad Shapiro-Wilk N=36. 

Método Estadístico gl (p-valor) 
Manual 0,854 32 <0,001 
Automático 0,880 4 0,338 

 

Para el Método manual, el p-valor es <0,001, menor que 0,05. Esto indica que los datos para 
el método manual no se distribuyen normalmente. 

Para el Método automático, el p-valor es mayor que 0,05. Esto indica que, para esta 
categoría, la hipótesis nula se acepta, y los datos sí tienen una distribución normal. 

Dado que una de las categorías no sigue una distribución normal, se utiliza una prueba no 
paramétrica para la comparación de medianas. 

4.1.2 Prueba U de Mann-Whitney para muestras independientes. 

Se aplica la prueba U de Mann-Whitney para muestras independientes para comparar las 
distribuciones de Tiempo entre las categorías del Método. 

• Hipótesis Nula (𝑯𝑯𝟎𝟎): La distribución de Tiempo es la misma entre categorías 
de Método. 
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• Hipótesis Alternativa (𝑯𝑯𝒊𝒊): La distribución de Tiempo es diferente entre 
categorías de Método. 

Tabla 11. Prueba U de Mann-Whitney para muestras independientes N=36. 

Prueba Hipótesis Nula (p-valor) Decisión 
Prueba U de Mann-

Whitney 
La distribución de 

Tiempo es la misma entre 
categorías de Método. 

<0,001 Rechace la hipótesis 
nula 

 

El p-valor obtenido es <0,001, que es menor que el nivel de significación de 0,050. Por lo 
tanto, se rechaza la hipótesis nula, concluyendo que sí existe una diferencia significativa en 
la distribución del tiempo entre el método manual y el método automático. 

Los resultados descriptivos de la prueba confirman esta diferencia: 

• El método manual tiene un Rango promedio de 20,50 y una Media de 53,8438. 

• El método automático tiene un Rango promedio de 2,50 y una Media de 
7,3450. 

4.1.3 Resultados y Análisis Comparativo del Tiempo según el Nivel de Conocimiento. 

Se realiza una comparación del Tiempo en función de las categorías de la variable Nivel de 
Conocimiento (Alto, Medio, Bajo). 

• Prueba de Kruskal-Wallis para muestras independientes. 

Se utiliza la prueba de Kruskal-Wallis para determinar si existe una diferencia significativa 
en la distribución de la variable Tiempo entre los tres niveles de conocimiento, ya que la 
prueba de normalidad para el método manual (que incluye a la mayoría de los casos) indicó 
una distribución no normal. 

• Hipótesis Nula (𝑯𝑯𝟎𝟎): La distribución de Tiempo es la misma entre categorías 
de Nivel_Conocimiento. 

• Hipótesis Alternativa (𝑯𝑯𝒊𝒊): La distribución de Tiempo es diferente entre 
categorías de Nivel_Conocimiento. 

El p-valor obtenido es <0,001, que es menor que el nivel de significación de 0,050. Esto 
conduce a rechazar la hipótesis nula y concluir que sí existe una diferencia significativa en 
la distribución del tiempo en función del nivel de conocimiento. 
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Tabla 12. Prueba de Kruskal-Wallis para muestras independientes N=32. 

Prueba Hipótesis Nula (p-valor) Decisión 
Prueba de Kruskal-

Wallis 
La distribución de 

Tiempo es la misma 
entre categorías de 

Nivel_Conocimiento. 

<0,001 Rechace la 
hipótesis nula 

 
 

Figura 40. Diagrama de caja del Tiempo por Nivel_Conocimiento. 

En la figura 40 se observa una clara relación: a medida que aumenta el nivel de 
conocimiento, el Tiempo empleado para realizar la tarea disminuye, lo que confirma el 
impacto de esta variable en el rendimiento. 
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CAPITULO V CONCLUSIONES Y RECOMENDACIONES 

5.1 CONCLUSIONES 

• El sistema de clasificación basado en Visión Artificial con el modelo 
YOLOv11 demostra ser significativamente más eficiente en tiempo de 
respuesta que el método manual tradicional. Con la prueba U de Mann-
Whitney se confirma una diferencia significativa, con el método automático 
teniendo un Rango promedio de 2.50 y una Media de 7.3450 segundos, en 
comparación con el método manual, que tuvo un Rango promedio de 20.50 y 
una Media de 53.8438 segundos. 

• La selección de la arquitectura YOLOv11 y de la plataforma NVIDIA Jetson 
Nano resulta óptima para el objetivo de detección en tiempo real. El modelo 
entrenado alcanza una precisión (mAP@0.5) de 0,990, con un punto operativo 
de F1 máximo cercano a un umbral de confianza aproximado de 0,63, lo que 
evidencia un equilibrio sólido y robusto para la clasificación precisa de las tres 
especies objetivo: Ceratitis capitata, Anastrepha serpentina y Anastrepha 
striata. 

• El sistema propuesto elimina la dependencia de personal altamente 
especializado, reduciendo los requisitos de experiencia y la subjetividad en la 
identificación de plagas. La comparación con el desempeño humano evidencia 
que el tiempo de identificación manual disminuye de manera significativa a 
medida que aumenta el nivel de conocimiento; sin embargo, esta variabilidad 
se ve mitigada mediante la automatización, la cual proporciona una exactitud 
constante y replicable comprendida entre el 95 % y el 99 %. 
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5.2 RECOMENDACIONES 

• Se recomienda seguir recolectando y etiquetando imágenes de las moscas de la 
fruta en diferentes estados de conservación y condiciones de captura, 
incluyendo la integración con trampas electrónicas en campo. La ampliación 
del dataset con datos de campo ayudará a mejorar la generalización del modelo 
YOLOv11 ante variaciones no controladas de iluminación y posición. 

• Para asegurar la máxima eficiencia del sistema Jetson Nano, se sugiere 
priorizar la optimización del modelo mediante TensorRT para reducir el tiempo 
de inferencia. Esto es crucial para mantener la velocidad de procesamiento 
requerida en el despliegue del prototipo de bajo consumo en entornos agrícolas. 

• Se recomienda desarrollar una fase posterior del proyecto enfocada en la 
integración completa del dispositivo Jetson Nano con una arquitectura de 
Internet de las Cosas (IoT). Esto permitirá enviar los resultados de la 
clasificación (logs de detección y reportes en PDF/CSV) de manera autónoma 
y en tiempo real a una plataforma centralizada (servidor/nube), facilitando la 
generación de alertas automáticas para que Agrocalidad pueda aplicar acciones 
fitosanitarias inmediatas y fortalecer la gestión integral de plagas.  
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7. ANEXOS 
 

Anexo A. Código Python en Visual Studio Code. 

 
Anexo B. Montaje del dispositivo. 
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Anexo C. Agencia de Regulación y Control Fito y Zoosanitario del Ecuador sede Tumbaco. 

 
Anexo D. Preparación de pruebas. 
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Anexo F. Adecuación del ambiente de trabajo. 
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