

UNIVERSIDAD NACIONAL DE CHIMBORAZO

FACULTAD DE INGENIERÍA

CARRERA INGENIERÍA EN TECNOLOGÍAS DE LA

INFORMACIÓN

Sistema para la gestión de censo de salud en el centro de salud Chambo

utilizando el framework Flutter

Trabajo de Titulación para optar al título de Ingeniero en

Tecnologías de la Información

 Autor:

Logroño Casco Anthony Alexander

Silva Silva Michelle Carolina

Tutor:

Ing. Danny Patricio Velasco Silva

Riobamba, Ecuador. 2026

DECLARATORIA DE AUTORÍA

Nosotros, Anthony Alexander Logroño Casco, con cédula de ciudadanía 0605936624, y

Michelle Carolina Silva Silva con cédula de ciudadanía 0650302334, autores del trabajo de

investigación titulado: Sistema para la gestión de censo de salud en el centro de salud

Chambo utilizando el framework Flutter, certifico que la producción, ideas, opiniones,

criterios, contenidos y conclusiones expuestas son de mí exclusiva responsabilidad.

Asimismo, cedo a la Universidad Nacional de Chimborazo, en forma no exclusiva, los

derechos para su uso, comunicación pública, distribución, divulgación y/o reproducción total

o parcial, por medio físico o digital; en esta cesión se entiende que el cesionario no podrá

obtener beneficios económicos. La posible reclamación de terceros respecto de los derechos

de autor (a) de la obra referida, será de mi entera responsabilidad; librando a la Universidad

Nacional de Chimborazo de posibles obligaciones.

En Riobamba, 08 de octubre del 2025.

Anthony Alexander Logroño Casco

C.I: 0605936624

Michelle Carolina Silva Silva

C.I: 0650302334

DEDICATORIA

Dedico este trabajo de investigación, en primer lugar, a mis padres, quienes han sido mi

mayor fuente de inspiración y apoyo incondicional. A mi madre, por su amor infinito, su

fortaleza y por estar siempre presente, brindándome su apoyo tanto emocional como

económico. A mi padre, por ser ese pilar firme que nunca me dejó solo, acompañándome en

cada paso, en cada desafío, y por motivarme siempre a dar lo mejor de mí en cada reto

académico.

Quiero también dedicar esta tesis a mis abuelitos, aquellos que ahora me cuidan desde el

cielo, Papá Lucho y Mamá Tina, que siempre quisieron verme convertido en un profesional,

y a mis abuelos que siguen conmigo, Mamá Trini y Papá Pablo, cuyo amor y apoyo

incondicional han sido fundamentales en este camino. A Mamá Trini, en especial, por

haberme criado desde pequeño y por enseñarme con su ejemplo el valor de la dedicación y

el amor.

No puedo dejar de mencionar a mis queridas mascotas, que, aunque no comprendan el

significado de este logro, fueron un sostén emocional invaluable en los momentos difíciles.

A toda mi familia, gracias por ser parte de este sueño hecho realidad. Esta tesis lleva impreso

el esfuerzo, el amor y el apoyo que he recibido de cada uno de ustedes.

Anthony Logroño

Dedico este trabajo de investigación a mi madre, por ser esa mujer increíble que me enseñó

con su ejemplo lo que significa la fortaleza, el amor incondicional y la entrega total. Eres y

siempre serás mi mayor inspiración, gracias por cada palabra de aliento, por cada sacrificio

y por nunca soltar mi mano, incluso cuando yo misma dudaba. A quien me ha acompañado

con amor genuino y constante, mi amado novio, gracias por estar cuando más te necesitaba,

por impulsarme a seguir adelante cuando sentía que no podía más y por abrazar cada una de

mis versiones, incluso las más cansadas. Tu paciencia, tu fe en mí y tu amor constante han

sido luz en los días oscuros y fuerza en los días débiles. No hubiera llegado tan lejos sin ti.

A mi querido amigo Francisco Navarrete, gracias por ser esa amistad firme y verdadera, por

las largas noches de estudio, por compartir el cansancio sin quejarte, por acompañarme en

silencio y también en risa. Tu apoyo ha sido compañía real y profunda, de esas que se sienten

incluso cuando no se dicen. A mis docentes, a quienes respeto profundamente, gracias por

ser guías pacientes y por sembrar no solo conocimiento, sino pasión, disciplina y confianza.

Cada palabra y enseñanza suya ha dejado huella en mi camino. A todos ustedes, por

sostenerme, por creer en mí y por caminar a mi lado. Esta tesis es el fruto de un esfuerzo

compartido, y en cada página vive un pedacito de su amor, su entrega y su apoyo.

Michelle Silva

AGRADECIMIENTO

Agradezco, ante todo, a mis padres, Diego Logroño y Maribel Casco, por haberme dado

siempre su apoyo incondicional y enseñarme, con su ejemplo, que los sueños se alcanzan

con esfuerzo, sacrificio y amor. Gracias por ser la base sobre la cual he podido construir cada

meta.

A mis abuelos, Papá Lucho y Mamá Tina, que, aunque ya no están, siempre permanecen en

mi memoria y en mis logros, y a Mamá Trini y Papá Pablo, por su cariño y respaldo

incondicional.

A mis tíos, Luis Logroño y Silvia Casco, por haberme acogido en una etapa importante de

mi vida y brindarme su apoyo como si fueran unos segundos padres. Y a mi primo Josué,

por ser más que un primo, un verdadero hermano y compañero en los momentos difíciles.

A Michelle Silva, por haber sido mi compañera en este camino, por su disposición para

ayudarme siempre que lo necesité y por motivarme a seguir adelante, incluso en los

momentos más difíciles.

También agradezco a mis docentes y a mi tutor, por sus enseñanzas y por transmitirme el

compromiso y la pasión por esta profesión.

A todas las personas que, de distintas maneras, han sido parte de este camino, gracias por su

apoyo y por contribuir a la realización de este logro.

Anthony Logroño

Agradezco a Dios por llenarme de sabiduría cuando más la necesité, por darme serenidad en

medio del cansancio y por fortalecer mi espíritu en cada momento de duda. Su presencia ha

sido mi guía silenciosa y constante, dándome fuerzas cuando sentía que ya no podía más.

A mi madre, gracias por ser mi apoyo más incondicional, por tus palabras firmes cuando

necesitaba ánimo y por estar presente en cada paso, aún en los más difíciles. Eres el corazón

que me sostuvo y la fuerza que me impulsó a no rendirme.

A mis amigos Dennis, Felipe y Anthony, que se convirtieron en mi segunda familia, gracias

por cada gesto, cada palabra, cada desvelo compartido. Su compañía sincera, su paciencia y

su lealtad hicieron que este camino fuera más llevadero y lleno de aprendizajes. Gracias por

estar, por quedarse y por creer en mí.

A mi novio, por estar a mi lado durante todo el semestre, por ayudarme en cada tarea, por

acompañarme en los momentos de estrés y por no soltarme nunca. Tu apoyo, tu paciencia y

tu amor hicieron toda la diferencia en este proceso.

Michelle Silva

ÍNDICE GENERAL

DECLARATORIA DE AUTORÍA

DICTAMEN FAVORABLE DEL PROFESOR TUTOR

CERTIFICADO DE LOS MIEMBROS DEL TRIBUNAL

CERTIFICADO ANTIPLAGIO

DEDICATORIA

AGRADECIMIENTO

ÍNDICE DE TABLAS

ÍNDICE DE FIGURAS

RESUMEN

ABSTRACT

CAPÍTULO I. INTRODUCCIÓN .. 14

1.1 Planteamiento del problema .. 14

1.2 Justificación ... 15

1.3 Formulación del problema ... 15

1.4 Objetivos .. 15

CAPÍTULO II. MARCO TEÓRICO .. 17

2.1 Sistemas de censo de salud .. 17

2.2 Desarrollo de aplicaciones móviles ... 17

2.2.1 Aplicaciones móviles nativas .. 17

2.3 Aplicaciones web ... 17

2.4 Ecosistema de desarrollo de aplicaciones móviles .. 17

2.4.1 Android Studio .. 17

2.4.2 Sistema operativo Android .. 18

2.4.3 Arquitectura de Android .. 18

2.4.4 Flutter .. 18

2.4.5 Dart .. 19

2.5 Ecosistema de desarrollo de aplicaciones web .. 19

2.5.1 React.js .. 19

2.5.2 Visual Studio Code .. 20

2.5.3 Node,js ... 20

2.6 Base de datos del sistema .. 20

2.6.1 SQLite .. 20

2.6.2 PostgreSQL .. 21

2.7 Analítica de datos .. 21

2.8 Metodología Mobile-D .. 21

2.8.1 Fases de la metodología Mobile-D .. 23

2.9 Norma ISO/IEC 25012:2008 ... 25

2.9.1 Fiabilidad ... 25

CAPÍTULO III. METODOLOGÍA ... 27

3.1 Tipo de Investigación .. 27

3.1.1 Según el objeto de estudio ... 27

3.1.2 Según el tipo de variable ... 27

3.2 Diseño de la investigación ... 27

3.3 Población de estudio y tamaño muestra .. 27

3.4 Técnicas de recolección de datos... 27

3.5 Métodos de análisis y procesamiento de datos .. 28

3.6 Identificación de variables ... 28

3.7 Operacionalización de variables .. 28

3.8 Metodología de desarrollo (Mobile-D).. 30

CAPÍTULO IV. RESULTADOS Y DISCUSIÓN .. 52

4.1 Resultados .. 52

4.2 Discusión ... 55

CAPÍTULO V. CONCLUSIONES y RECOMENDACIONES .. 57

5.1 Conclusiones .. 57

5.2 Recomendaciones .. 57

BIBLIOGRAFÍA ... 58

ANEXOS ... 63

ÍNDICE DE TABLAS

Tabla 1: Principales características de Node.js. ... 20

Tabla 2: Tipos de análisis de datos ... 21

Tabla 3: Cuadro comparativo de metodologías. ... 22

Tabla 4: Clasificación de características seleccionadas de la norma ISO 25012:2008 26

Tabla 5: Operacionalización de las variables. .. 29

Tabla 6: Grupos de interés. ... 30

Tabla 7: Requisitos Funcionales. .. 30

Tabla 8: Requisitos No Funcionales. .. 31

Tabla 9: Limitaciones del desarrollo del proyecto. .. 32

Tabla 11: Ambiente de desarrollo basado en el modelo MVC. ... 33

Tabla 12: Planificación de las fases.. 33

Tabla 13: Diccionario de la tabla usuarios. .. 35

Tabla 14: Planificación de la eficiencia de datos. .. 49

Tabla 15: Planificación de la precisión de los datos... 49

Tabla 16: Planificación de la disponibilidad. ... 49

Tabla 17: Resultados de la eficiencia de datos. .. 52

Tabla 18: Resultados de la precisión de los datos. ... 53

Tabla 19: Resultados de la disponibilidad. ... 54

Tabla 20: Diccionario de la tabla usuarios. .. 63

Tabla 21: Diccionario de la tabla roles. .. 63

Tabla 22: Diccionario de la tabla unidades educativas. ... 63

Tabla 23: Diccionario de la tabla unidades precargadas. ... 64

Tabla 24: Diccionario de la tabla estudiantes. .. 64

Tabla 25: Diccionario de la tabla estudiantes precargados. ... 65

Tabla 26: Diccionario de la tabla encuestas. .. 65

Tabla 27: Diccionario de la tabla alimentación y nutrición. .. 65

Tabla 28: Diccionario de la tabla vacunación. ... 66

Tabla 29: Diccionario de la tabla registro de campañas. .. 66

Tabla 30: Diccionario de la tabla tamizaje visual. ... 66

Tabla 31: Diccionario de la tabla salud oral. .. 67

Tabla 32: Diccionario de la tabla salud mental. ... 67

Tabla 33: Diccionario de la tabla higiene y saneamiento. .. 68

ÍNDICE DE FIGURAS

Figura 1: Arquitectura de android. ... 18

Figura 2: Capas arquitectónicas de Flutter. .. 19

Figura 3: Ciclo de Mobile-D. ... 23

Figura 4: Proceso de la fase de producción. ... 24

Figura 5: Proceso de la fase de estabilización. ... 24

Figura 6: Proceso de la fase de pruebas del sistema. ... 25

Figura 7: Características de la norma ISO/IEC 25012:2008. ... 25

Figura 8: Diseño del sistema multiplataforma ... 34

Figura 9: Diagrama de la base de datos. .. 35

Figura 10: Esquema de navegabilidad de la parte móvil. .. 36

Figura 11: Esquema de navegabilidad de la parte web. ... 37

Figura 12: Diagrama de caso de uso para el administrador. .. 37

Figura 13: Diagrama de caso de uso para el encuestador. ... 38

Figura 14: Diagrama de caso de uso para el rector. ... 38

Figura 15: Diagrama de caso de uso para el odontólogo. .. 38

Figura 16: Conexión y sincronización de la aplicación móvil con el backend. 39

Figura 17: Login de la aplicación móvil. ... 39

Figura 18:Menu principal de la aplicación móvil. ... 40

Figura 19: Registro de encuesta. .. 40

Figura 20: Menú principal de los módulos. ... 41

Figura 21: Sincronización de datos. ... 42

Figura 22: Login de la aplicación web. .. 43

Figura 23: Menú del aplicativo web. .. 44

Figura 24: Módulos de gestión de usuario, campañas de vacunación, unidades educativas y

visualización de estudiantes. (web). .. 45

Figura 25: Módulo de gestión de analítica de datos (web) .. 46

Figura 26: Módulo de reporte de encuestas (web) ... 47

Figura 27: Carga de UV (web). .. 48

Figura 28: Tiempo de respuesta y tasa de transferencia de datos obtenido en JMeter. 50

Figura 29: Porcentaje de coincidencia de datos y porcentaje de error obtenidos en Python.

 ... 51

Figura 30: Tiempo de propagación de la información obtenido con K6. 51

Figura 31: Comparación de resultados eficiencia de los datos (tiempo de respuesta). 52

Figura 32: Comparación de resultados eficiencia de los datos (tasa de transferencia). 53

Figura 33: Porcentaje de precisión de los datos. .. 54

Figura 34: Tiempo de propagación de la información. .. 55

RESUMEN

La presente investigación abordó el desarrollo de un sistema multiplataforma para la gestión

del censo de salud en el Centro de Salud Chambo, empleando el framework Flutter para la

aplicación móvil, mientras que para el apartado web se utilizó Node.js para el backend y

React para el frontend. El desarrollo del sistema se estructuró en fases bajo la metodología

ágil Mobile-D, permitiendo implementar un proceso iterativo e incremental, garantizando la

integración de funcionalidades tanto en la aplicación móvil como en la plataforma web.

El proceso de desarrollo comenzó con la fase de exploración, en la cual se identificaron los

requisitos funcionales y no funcionales, los grupos de interés y el alcance del sistema; en la

fase de inicialización se configuró el entorno de desarrollo, se diseñaron los diagramas de

base de datos, casos de uso y esquemas de navegación; mientras que en la fase de producción

y estabilización se llevó a cabo el desarrollo integral de las plataformas móvil y web,

integrando funcionalidades como autenticación y validación de usuarios por roles, apartado

offline, carga masiva de datos en formato .xlxs, gestión de usuarios, registro de encuestas de

salud, campañas de vacunación y más características que se adaptaron a las necesidades del

Centro de Salud Chambo.

Finalmente, en la fase de pruebas del sistema se planificaron y ejecutaron simulaciones

basadas en la norma ISO/IEC 25012:2008 para medir la eficiencia, precisión y

disponibilidad de los datos. Los resultados obtenidos gracias a estas pruebas reflejaron una

elevada precisión en la captura y almacenamiento de los registros de los usuarios, evitando

perdidas o inconsistencias, además, confirmaron una buena disponibilidad, asegurando que

la información esté accesible de manera consiste y sin retrasos.

Palabras claves: analítica de datos, aplicación híbrida, aplicación offline, censo de salud,

fiabilidad de los datos, Flutter, sistema de gestión, sincronización de datos.

ABSTRACT

This research addressed the development of a multiplatform system for managing the health

census at the Chambo Health Center, using the Flutter framework for the mobile application,

while Node.js was used for the backend and React for the frontend of the web platform. The

system development was organized into phases following the Mobile-D agile methodology,

which enabled an iterative and incremental process and ensured the integration of

functionalities in both the mobile application and the web platform.

The development process began with the exploration phase, in which the functional and non-

functional requirements, stakeholders, and system scope were identified. In the initialization

phase, the development environment was configured, and the database diagrams, use cases,

and navigation schemas were designed. Subsequently, during the production and

stabilization phases, the comprehensive development of both platforms was carried out,

incorporating functionalities such as user authentication and role-based validation, offline

mode, bulk data upload in .xlsx format, user management, health survey registration,

vaccination campaign management, and other features tailored to the needs of the Chambo

Health Center.

Finally, during the testing phase, evaluations were planned and executed based on the

ISO/IEC 25012:2008 standard to assess data efficiency, accuracy, and availability. The

results demonstrated high accuracy in capturing and storing records, preventing data loss or

inconsistencies; additionally, they confirmed adequate availability, ensuring that

information remains consistently accessible without delays.

Keywords: data analytics, data reliability, data synchronization, Flutter, health census,

hybrid application, management system, offline application.

https://dictionary.cambridge.org/es/diccionario/ingles-espanol/data
https://dictionary.cambridge.org/es/diccionario/ingles-espanol/analytics
https://dictionary.cambridge.org/es/diccionario/ingles-espanol/data
https://dictionary.cambridge.org/es/diccionario/ingles-espanol/reliability
https://dictionary.cambridge.org/es/diccionario/ingles-espanol/data
https://dictionary.cambridge.org/es/diccionario/ingles-espanol/synchronization
https://dictionary.cambridge.org/es/diccionario/ingles-espanol/flutter
https://dictionary.cambridge.org/es/diccionario/ingles-espanol/health
https://dictionary.cambridge.org/es/diccionario/ingles-espanol/census
https://dictionary.cambridge.org/es/diccionario/ingles-espanol/hybrid
https://dictionary.cambridge.org/es/diccionario/ingles-espanol/application
https://dictionary.cambridge.org/es/diccionario/ingles-espanol/management
https://dictionary.cambridge.org/es/diccionario/ingles-espanol/system
https://dictionary.cambridge.org/es/diccionario/ingles-espanol/offline
https://dictionary.cambridge.org/es/diccionario/ingles-espanol/application

14

CAPÍTULO I. INTRODUCCIÓN

En la actualidad, la gestión eficiente de la información sanitaria es un desafío crítico para los

sistemas de salud pública a nivel mundial. La capacidad de recopilar, organizar y analizar

datos de manera efectiva se ha convertido en un elemento esencial para mejorar la calidad

de los servicios y garantizar una planificación estratégica basada en evidencia. Según la

Organización Mundial de la Salud [1], la implementación de sistemas tecnológicos en el

ámbito sanitario permite una mejora significativa en la accesibilidad, precisión y utilización

de los datos, aspecto que resulta clave para responder a las crecientes demandas de los

servicios de salud.

El Centro de Salud de Chambo, ubicado en una región rural del Ecuador, no es ajeno a estos

retos. Su dependencia de métodos manuales para la gestión de censos de salud, como fichas

en papel y formularios impresos, ha limitado severamente su capacidad operativa. Este

enfoque tradicional no solo incrementa la probabilidad de errores humanos, sino que también

dificulta el acceso oportuno a información crítica. De acuerdo con el Ministerio de Salud

Pública del Ecuador [2], ciertos centros de salud rurales enfrentaron dificultades similares,

donde se señaló la urgente necesidad de modernizar sus procesos de gestión.

Por otra parte, el presente proyecto propone como objetivo diseñar e implementar un sistema

de gestión de censos de salud para el Centro de Salud de Chambo, empleando tecnologías

modernas que permitirán desarrollar un sistema multiplataforma destinado a optimizar la

recolección y almacenamiento de información. El aplicativo móvil contará con módulos

enfocados en distintas áreas de la salud como alimentación y nutrición, vacunación, tamizaje

visual, salud oral, higiene y saneamiento, y salud mental. Además, el desarrollo de un sitio

web complementario permitirá visualizar la información recolectada y ayudará en el análisis

de los datos para una posterior toma de decisiones.

1.1 Planteamiento del problema

El Centro de Salud Chambo enfrenta dificultades importantes en la gestión del censo de

salud debido a la dependencia de procesos manuales para la recopilación, procesamiento y

análisis de datos. Este enfoque tradicional incrementa la probabilidad de errores humanos,

duplicidad de registros, pérdida de información y falta de consistencia en los datos, afectando

la fiabilidad de la información necesaria para la toma de decisiones oportunas y precisas.

Además, la ausencia de herramientas tecnológicas que optimicen la recopilación y

validación de los datos limita la eficiencia y la capacidad de analizar grandes volúmenes de

información de manera oportuna. Según el Ministerio de salud pública [3], el 76% de los

sistemas informáticos del MSP son obsoletos y carecen de interoperabilidad. Esta situación

repercute negativamente en la capacidad del personal médico para planificar y ejecutar

estrategias de salud basadas en datos confiables, impactando directamente en la calidad del

servicio ofrecido a la población.

15

Por otra parte, pero no menos importante, uno de los principales obstáculos en materia de

conectividad es el acceso a internet en las zonas rurales. Según el Ministerio de salud pública

[3], en el año 2023 solo el 44,4% de los hogares rurales contaban con conexión a internet,

ya sea fija o móvil. Esta limitación puede influir negativamente el funcionamiento de un

sistema digital, considerando que, en la mayoría de las ocasiones el almacenamiento de la

información requiere de conexión a internet.

En este contexto, se plantea la necesidad de implementar un sistema para la gestión del censo

de salud que permita optimizar la recopilación de información de manera offline,

organización y análisis de los datos, evaluando su fiabilidad conforme a los criterios

establecidos en la norma ISO/IEC 25012:2008, con un enfoque en la eficiencia, precisión y

disponibilidad de los datos.

1.2 Justificación

El Ministerio de salud pública [3], en su plan de actualización de infraestructura tecnológica

y fortalecimiento de conectividad en establecimientos de salud, busca reducir la brecha

tecnológica en instituciones públicas y privadas del 60% en 2024 al 25% en 2034. La

implementación de un sistema digital permitirá no solo facilitar el análisis de los datos para

identificar patrones y tendencias que puedan guiar políticas de salud más efectivas, sino

también dotar al personal de herramientas modernas y ágiles, mejorando así la atención a la

población, que podrá acceder a una atención más rápida y basada en información confiable.

Por otro lado, este proyecto se enfoca en el desarrollo de un sistema multiplataforma para

optimizar la recolección y gestión de la información del censo en instituciones educativas,

incluyendo aquellas ubicadas en zonas rurales. A través de herramientas de desarrollo de

aplicativos, bases de datos y gestión de procesos, se busca mejorar la cobertura y precisión

de la información recolectada, permitiendo una mejor toma de decisiones en al ámbito de la

salud.

1.3 Formulación del problema

¿Cómo impactará la implementación de un sistema WEB y MÓVIL para la gestión del censo

de salud en la fiabilidad de los datos del Centro de Salud Chambo, considerando los criterios

de eficiencia, precisión y disponibilidad establecidos por la norma ISO/IEC 25012:2008?

1.4 Objetivos

Objetivo General

Implementar un sistema para la gestión de censo de salud en el Centro de Salud Chambo

utilizando el framework Flutter.

Objetivos Específicos

16

• Investigar la metodología de desarrollo ágil Mobile-D, para la implementación de un

sistema que integre componentes de datos enfocados en el Centro de Salud Chambo.

• Desarrollar una aplicación web y móvil para la recopilación y análisis de información de

censo en el centro de salud Chambo.

• Evaluar la fiabilidad de los datos en el sistema de gestión de censo de salud conforme

con los criterios establecidos por la norma ISO/IEC 25012:2008.

17

CAPÍTULO II. MARCO TEÓRICO

2.1 Sistemas de censo de salud

Un censo se basa en la recolección sistemática de datos, además de organizarlos y analizarlos

con la finalidad de obtener información precisa y actualizada de una población [4]. Según

Colwill y Poullis [5], el uso de sistemas censales en aplicaciones móviles para el área de

salud ayuda a que la recolección de datos sea más rápida y precisa, además, facilita el acceso

a zonas rurales de países en desarrollo, constituyendo un recurso sumamente valioso y útil

para la investigación de la planificación sanitaria.

2.2 Desarrollo de aplicaciones móviles

Una aplicación móvil es un software hecho para ejecutarse en teléfonos inteligentes y

tabletas, con el propósito de ofrecer funcionalidades específicas al usuario. Estas

aplicaciones pueden desarrollarse para distintas plataformas, como Android o iOS, o también

pueden ser multiplataforma, utilizando tecnologías como Flutter o React Native. [6]

2.2.1 Aplicaciones móviles nativas

Son aplicaciones específicas de una plataforma aprovechan al máximo las capacidades del

dispositivo, dando como resultado una mejor experiencia de usuario. Algunos ejemplos de

estas aplicaciones pueden ser: mensajería, redes sociales, geolocalización, reproductor de

archivos multimedia y otras apps que facilitan el acceso a varias funcionalidades. Huaraca

[7] menciona que las aplicaciones nativas de la plataforma no están estandarizadas, dando

como resultado mayor tiempo de desarrollo.

2.3 Aplicaciones web

Es un sistema informático accesible a través de un navegador, permitiendo a los usuarios

interactuar con diversas funcionalidades y servicios sin la necesidad de instalar softwares de

terceros en su dispositivo. Su funcionalidad se basa en la combinación de tecnologías como

HTML, CSS y JavaScript, además de permitir la programación con lenguajes como Python,

PHP o Node.js. De acuerdo con Guaman y Yambay [8], las aplicaciones web pueden

diseñarse para una gran variedad de usos, de las que más se usan comúnmente pueden ser

correos electrónicos, tiendas en línea, redes sociales, entre otras muchas aplicaciones que se

pueden acceder únicamente mediante un navegador.

2.4 Ecosistema de desarrollo de aplicaciones móviles

2.4.1 Android Studio

Es un entorno de desarrollo para crear aplicaciones Android, desarrollado por Google y

basado en IntelliJ IDEA. Ofrece desde herramientas para interfaces, escribir código en

lenguajes como Kotlin, Java, Flutter o C++, probar la app con emuladores de distintas

versiones de Android y generar los instaladores tanto en formato APK como AAB. Vallejo

[9], menciona que su sistema de emulación integrado permite a los desarrolladores visualizar

los cambios que se van realizando en tiempo real, además de permitir comprobar la

18

aplicación en diferentes dispositivos móviles que tienen distintas configuraciones y

resoluciones simultáneamente.

2.4.2 Sistema operativo Android

Es un sistema operativo para dispositivos móviles desarrollado por Google. El propósito de

Android es promover el uso de un S.O de tipo abierto, gratuito y seguro, además de adaptarse

a teléfonos inteligentes, tablets y televisores. Este sistema basado en Linux, incluye una

versión de Java llamada Dalvik, facilitando el desarrollo de aplicaciones que aprovechan las

características de los dispositivos de manera sencilla. Según Valdivieso [10], Android es un

sistema operativo de código abierto a cargo de Handset Alliance liderado por Google, basado

en el núcleo o kernel de Linux lo que permite a los desarrolladores aprovechar al máximo el

uso de este S.O.

2.4.3 Arquitectura de Android

La arquitectura del sistema operativo Android consta de cuatro capas principales que hacen

posible un buen funcionamiento en dispositivos móviles. En la base se ubica el núcleo de

Linux, seguido por la capa de bibliotecas y el entorno de ejecución. Sobre esta se ubica el

framework de aplicaciones, que proporciona las interfaces y servicios necesarios para el

desarrollo. Finalmente, en la capa superior se encuentran las aplicaciones, que interactúan

directamente con los usuarios. Esta estructura modular y jerárquica además de dividirse en

cuatro capas, cuenta con una gran variedad de características como se muestra en la Figura

1.

Figura 1: Arquitectura de android.

Fuente: [11]

2.4.4 Flutter

Framework de desarrollo de aplicaciones móviles multiplataforma creado por Google, cuyo

principal objetivo es la construcción de aplicaciones nativas para sistemas operativos iOS y

Android utilizando una única base de código. Esta característica optimiza significativamente

los recursos y el tiempo en el proceso de desarrollo, garantizando la creación de aplicaciones

eficientes y consistentes [12]. De acuerdo con Baldrés [13], una de las principales ventajas

de Flutter es su arquitectura basada en widgets, que permite a los desarrolladores diseñar

19

interfaces de usuario altamente personalizables y de alto rendimiento. Asimismo, Flutter

emplea el lenguaje de programación Dart, también desarrollado por Google, especialmente

optimizado para facilitar la creación de interfaces de usuario reactivas y eficientes.

En cuanto a su arquitectura, Flutter adopta un modelo basado en capas, donde el framework

proporciona herramientas para la gestión de widgets, gestos y animaciones, mientras que la

capa del motor se encarga del renderizado gráfico y la comunicación con la plataforma del

dispositivo, como se detalla en la Figura 2. Esta estructura modular mejora la escalabilidad

de las aplicaciones y optimiza la integración con servicios externos, como bases de datos y

autenticación.

Figura 2: Capas arquitectónicas de Flutter.

Fuente: [14]

2.4.5 Dart

Es un nuevo lenguaje de programación orientado a objetos y desarrollado por la empresa

Google, donde su uso se enfoca principalmente en crear aplicaciones móviles y web, además

de ser el lenguaje base del framework Flutter desarrollado por la misma empresa. Según

Escobar [15], Dart es conocido por su gran flexibilidad y por ser un lenguaje de código

abierto. Su diseño optimizado hace posible que Dart se ejecute fluidamente gracias a su

compilación Just-In-Time y Ahead-Of-Time, permitiendo a los desarrolladores crear

aplicaciones agiles y responsivas.

2.5 Ecosistema de desarrollo de aplicaciones web

2.5.1 React.js

Biblioteca de JavaScript desarrollada por Meta que se utiliza principalmente para crear

interfaces de usuario interactivas y eficientes. React utiliza una estructura de árbol conocida

como Virtual DOM, la cual ayuda a la optimización de imágenes por segundo (fps),

permitiendo así que las aplicaciones sean rápidas y respondan a las acciones del usuario. De

acuerdo con Avalos y Guaillas [16], React.js se puede utilizar junto con varias tecnologías y

herramientas como pueden ser: JSX (extensión de sintaxis HTML), CSS, Webpack, Babel

20

(convertidor de formato para navegadores), Redux (biblioteca de gestión) y React Router

(gestión de navegación).

2.5.2 Visual Studio Code

Editor de código fuente conocido por ser ligero y de código abierto, desarrollado por

Microsoft y enfocado principalmente para programadores y desarrolladores web. Visual

Code ofrece potentes funcionalidades como el autocompletado del código, un sistema de

depuración, un control de versiones integrado (git) y una gran cantidad de extensiones que

facilitan el desarrollo al adaptarse a casi cualquier lenguaje o tecnología. Conforme con

Zuñiga [17], este editor de código tiene un suporte multiplataforma permitiendo trabajar

tanto en Windows, macOs y Linux. Por otra parte, puede presentar un gran consumo de

recursos dando como resultado tiempo de carga lenta.

2.5.3 Node,js

Entorno de ejecución de JavaScript de código abierto y multiplataforma que permite a los

desarrolladores construir aplicaciones en el lado del servidor y herramientas de red

utilizando JavaScript. Basado en el motor V8 de Google Chrome, Node.js ejecuta código

JavaScript fuera del navegador, facilitando la creación de aplicaciones escalables y

eficientes. En la Tabla 1 se presenta un resumen de las principales características de Node,js.

Tabla 1: Principales características de Node.js.

Aspecto Descripción

Características

- Basado en un modelo asíncrono y no bloqueante.

- Utiliza un solo hilo con un modelo de eventos (Event Loop).

- Permite crear aplicaciones altamente escalables a través de su naturaleza asincrónica.

Ventajas

- Alto rendimiento debido a su ejecución basada en el motor V8 y su modelo

asíncrono.

- Su fácil desarrollo permite utilizar JavaScript tanto en el frontend como en el

backend.

- Ideal para aplicaciones de chat, streaming y APIs en tiempo real.

Limitaciones

- No es adecuado para tareas pesadas en CPU debido a su arquitectura monohilo.

- Su consumo de memoria es mayor debido a su naturaleza asíncrona.

- Node.js es no es recomendable para cálculos pesados.
Fuente: Adaptado de [18]

2.6 Base de datos del sistema

2.6.1 SQLite

Biblioteca que proporciona un motor de base de datos SQL independiente. Esta base de datos

es de origen público y puede utilizarse para cualquier propósito, ya sea de carácter comercial

o privado, además, es un sistema de gestión de bases de datos relacional ligero, añadido en

aplicaciones y muy utilizado para almacenar y gestionar datos de manera local. A diferencia

de otros sistemas como MySQL o PostgreSQL, SQLite no requiere de un servidor

independiente, dado que toda la base de datos se almacena en un solo archivo en el sistema

de archivos del dispositivo, este punto lo hace ideal para aplicaciones móviles, dispositivos

IoT y software que necesita capacidades de almacenamiento sin depender de una conexión

a internet [19].

21

2.6.2 PostgreSQL

Es un sistema gestor de base de datos relacional (RDBMS), conocido por ser de código

abierto, además de brindar gran seguridad, flexibilidad y robustez. Permite organizar,

almacenar y consultar grandes volúmenes de datos utilizando el lenguaje SQL, permitiendo

el soporte tanto de datos relaciones como objetos avanzados (JSON, XML, arrays, tipos

personalizados). De acuerdo con Salcan [20], este gestor de base de datos cumple con las

transacciones ACID (atomicidad, consistencia, aislamiento y durabilidad) desde hace más

de dos décadas, además de integrar poderosos complementos como PostGIS para la gestión

de información geoespacial.

2.7 Analítica de datos

Es el proceso de recolectar, transformar y analizar información para facilitar la toma de

decisiones. Este enfoque permite a las organizaciones aprovechar al máximo sus datos para

identificar patrones, predecir comportamientos y mejorar procesos. Conforme con Zapata

[21], el análisis de datos es la utilización de la información con el fin de extraer

conocimientos de una seria de datos, el objetivo principal de la analítica de datos es tomar

mejores decisiones de acuerdo con la información obtenida.

Por otra parte, el manejo y análisis de grandes volúmenes de datos debe tener en cuenta tres

características importantes, estas son: velocidad, volumen y variedad. Existen varios tipos

de análisis de datos, los cuales se presentan en la Tabla 2.

Tabla 2: Tipos de análisis de datos

Tipos Características

Descriptivo

- Resume datos históricos.

- Identifica patrones y tendencias.

- Utiliza reportes y dashboard.

- Base para otros análisis.

Diagnóstico

- Detecta causas y relaciones.

- Analiza anomalías y comportamientos.

- Profundiza en los datos.

- Explica sucesos pasados.

Predictivo

- Estima riesgos y tendencias.

- Predice resultados futuros.

- Utiliza machine learning.

- Toma de decisiones anticipadas.

Prescriptivo

- Recomienda acciones óptimas.

- Simula escenarios posibles.

- Optimiza recursos y decisiones.

- Se base en inteligencia artificial.

2.8 Metodología Mobile-D

Enfocada principalmente en el desarrollo de aplicaciones móviles, debido a que se basa en

prácticas de programación extrema (XP) y Scrum, adaptándolas a los retos que involucra el

22

desarrollo móvil, como la necesidad de un buen rendimiento, pruebas en múltiples

dispositivos y ciclos de vida reducidos de las aplicaciones. Además, estudios como los de

Abrahamsson [22] et al. y Kaur [23] señalan que, si bien Mobile-D está diseñada

especialmente para el desarrollo de aplicativos móviles, muchos de sus principios también

pueden aplicarse a sistemas multiplataforma, ya que está fundamentada en prácticas de

metodologías agiles como Scrum y XP. Esto es especialmente relevante si el desarrollo del

sistema inicia con el apartado móvil como eje central, complementándolo posteriormente

con el aplicativo web.

Conforme a lo anterior, se ha considerado importante mencionar el proyecto titulado

“Implementación de un aplicativo móvil y web para la gestión administrativa de la empresa

consta usando la metodología Mobile-D” [24]. Esto demuestra que dicha metodología ha

sido aplicada de manera efectiva en el desarrollado de sistemas multiplataforma. Para

destacar las características más importantes de las metodologías base de Mobile-D

(Programación extrema y Scrum), se presenta la Tabla 3, que compara las metodologías

mencionadas anteriormente.

Tabla 3: Cuadro comparativo de metodologías.

Programación Extrema

(XP)
SCRUM Mobile-D

Fases

- Planeación.

- Diseño.

- Desarrollo.

- Pruebas.

- Reunión de

planificación de

Sprints.

- Scrum diario.

- Desarrollo durante

el Sprint.

- Revisión del Sprint.

- Retrospectiva del

Sprint.

- Exploración.

- Inicialización.

- Producción.

- Estabilización.

- Pruebas del sistema.

Enfoque

Su objetivo principal son las

necesidades del cliente, las

cuales aseguran el éxito en el

desarrollo del software.

Su enfoque se centra en

los requisitos del cliente,

para comenzar con el

desarrollo en base a

dichos requisitos.

Su objetivo es medir el

nivel de satisfacción de los

usuarios finales.

Programación

- Programación en grupo.

- Jornadas largas de

trabajo.

- Retroalimentación

mutua en base al código.

La puntuación de

prioridad asignada a

cada tarea determina el

tiempo de programación.

La programación se realiza

en grupo permitiendo

mejorar la etapa de

difusión de conocimiento

dentro del grupo de

trabajo.

Documentación

- Historias de usuario.

- Tarjetas de clase,

responsabilidades y

colaboración (CRC).

- Product backlog.

- Sprint backlog.

- Burndown chart.

- Definición de

hecho.

- Definición de

culminación.

- StoryCards.

- StoryBoards.

Principios

orientados al

desarrollo

Orientados a la gestión de

proyectos.

Mejora del grupo de

desarrolladores.

Orientado al desarrollo de

aplicaciones móviles.

Fuente: Adaptado de [25].

23

Por otra parte, su estructura se divide en cinco fases claves que garantiza una implementación

eficiente como se muestra en la Figura 3.

Figura 3: Ciclo de Mobile-D.

Fuente: [26]

2.8.1 Fases de la metodología Mobile-D

Fase 1: Exploración

En esta fase inicial se definen los objetivos del proyecto, al analizar los requerimientos del

cliente y realizar estudios de factibilidad, además, se identifican riesgos técnicos y se elabora

un plan de trabajo basado en iteraciones cortas. También se definen los roles de cada uno de

los desarrolladores y finalmente se crea una versión beta del backlog de la aplicación. Según

Sepa [27], esta etapa tiene como objetivo formar las bases del proyecto, por otra parte,

funciona como un indicador de las expectativas respecto a la aplicación móvil. Igualmente,

el autor menciona que los productos resultantes de esta fase son: requisitos iniciales, plan de

proyecto, descripción de los procesos y plan de capacitación.

Fase 2: Inicialización

Durante esta etapa, se realiza el diseño de la arquitectura y se establecen los criterios de

calidad del software, asimismo, se eligen las herramientas de desarrollo y los frameworks

adecuados para la aplicación. Minina [28] menciona, que en esta fase se preparan e

identifican los recursos que se crean necesarios. La fase de iniciación se divide en cuatro

sub-fases que son: puesta en marcha del proyecto, planificación, día de prueba y finalmente

salida.

Fase 3: Producción

Esta es la fase en la que se desarrolla el software de manera incremental e iterativa. Las

funcionalidades se implementan siguiendo principios agiles como las pruebas frecuentes y

la integración continua, igualmente, se deben realizar reuniones diarias que permitan evaluar

los avances y analizar los problemas detectados. Conforme con Sepa [27], en esta fase se

24

incluye la implementación real mediante la aplicación del ciclo de desarrollo iterativo e

incremental como se muestra en la Figura 4.

Figura 4: Proceso de la fase de producción.

Fuente: [6].

• Días de planificación (Planning Day): Su objetivo es definir el contenido a través de

iteraciones y la aceptación de los usuarios, que se serán usados el día de la presentación

final del proyecto.

• Días de trabajo (Working Day): En esta etapa se desarrollan las funciones del software

de manera controlada y gestionada.

• Días de lanzamiento (Release Day): Se valida y verifica la funcionalidad del software

para comprobar la aceptación del usuario.

Al culminar esta fase se obtienen las anotaciones de desarrollo, funcionalidades en

producción, esquema de interfaz de usuario, historias de usuario y por último los requisitos

que fueron modificados.

Fase 4: Estabilización

Aquí se realizan las pruebas que ayudan a detectar errores y mejorar el rendimiento del

software. Para lograr esto se aplican pruebas automatizadas y manuales que garantizaran la

estabilidad y usabilidad del aplicativo. Además, en esta etapa se optimizan apartados como

la eficiencia del código, el consumo de recursos y la experiencia final del usuario, basado en

el proceso que se puede observar en la Figura 5.

Figura 5: Proceso de la fase de estabilización.

Fuente: [6].

Fase 5: Pruebas del sistema

Según Minina [28], el propósito de esta fase es que el aplicativo sea estable y funcional para

los usuarios finales. La aplicación terminada se integrará y se le realizaran pruebas en base

a los requerimientos del cliente, permitiendo eliminar todos los errores encontrados. Cabe

recalcar que esta fase se divide en dos etapas, específicamente la de pruebas del sistema y la

de corrección de errores, como se puede observar más detalladamente en la Figura 6.

25

Figura 6: Proceso de la fase de pruebas del sistema.

Fuente: [6].

• Pruebas del sistema (System Test): En esta etapa se prueba el sistema como se define en

el modelo de tarea de prueba, donde los defectos encontrados se trabajan en la iteración

de corrección de errores (Fix).

• Corrección de errores (Fix): Este apartado es una variación de la iteración normal, sin

embargo, ninguna funcionalidad nueva es añadida. El motivo para esta iteración son los

defectos encontrados en la fase de pruebas.

2.9 Norma ISO/IEC 25012:2008

Como parte de la familia de normas SQuaRE (Software Product Quality Requirements and

Evaluation), establece un modelo integral para evaluar la calidad de los datos almacenados

en sistemas informáticos. Este modelo define quince características esenciales para

garantizar que los datos sean adecuados, confiables y útiles, organizándolas en dos

perspectivas principales. La calidad de datos evalúa propiedades fundamentales, como la

exactitud, completitud, consistencia y credibilidad, asegurando que los datos reflejen

fielmente la realidad que representan, además de otras características que se muestran en la

Figura 7.

Figura 7: Características de la norma ISO/IEC 25012:2008.

Fuente: [29]

2.9.1 Fiabilidad

Hace referencia a el grado de confianza que se tiene en su precisión, consistencia y fiel

representación de la realidad. En este sentido, la fiabilidad es una propiedad especifica la

norma ISO/IEC 25012:2008 establece un marco conceptual en el que la fiabilidad se puede

26

evaluar mediante características dependientes e inherentes del sistema. Según Gualo et al.

[30], se recomienda el uso del modelo de calidad de datos definido en la norma ISO/IEC

25012:2008, que establece características, propiedades y medidas concretas para evaluar la

fiabilidad a través de los indicadores implícitos en esta norma. Dentro de estas se escogieron

tres indicadores clave, específicamente la eficiencia, precisión y disponibilidad, las cuales

se clasifican en base al tipo de dato, como se observa en la Tabla 4.

Tabla 4: Clasificación de características seleccionadas de la norma ISO 25012:2008

Características Inherente Dependiente del sistema

Eficiencia X

Precisión X

Disponibilidad X
Fuente: Adaptado de [31].

Estudios recientes evidencian que estos tres indicadores son dimensiones mediante las cuales

se puede evaluar la fiabilidad de datos. El artículo “Overview of Data Quality: Examining

the Dimensions, Antecedents, and Impacts of Data Quality” [32], señala que estudios

fundamentales en el área incluyen de forma habitual atributos como accuracy (precisión),

timelines (eficiencia y acceso oportuno) y availability (disponibilidad) dentro de las

dimensiones esenciales para valorar la calidad y fiabilidad (reliability) de la información.

• Eficiencia: Mide el rendimiento en el que los datos tienen atributos que pueden ser

procesados en un contexto específico.

• Precisión: Analiza los atributos de los datos para que estos sean exactos y no cuenten

con cambios en un contexto específico.

• Disponibilidad: Grado en el que los datos pueden ser obtenidos por usuarios o

aplicaciones fácilmente en un contexto específico.

27

CAPÍTULO III. METODOLOGÍA

3.1 Tipo de Investigación

3.1.1 Según el objeto de estudio

La investigación se clasificó como aplicada, pues buscó emplear conocimientos teóricos y

prácticos en el desarrollo de un sistema informático para la gestión de censos de salud del

cantón Chambo.

Así también, se clasificó como una investigación descriptiva, debido a que se enfocó en

detallar las características del sistema en relación con la fiabilidad de los datos, conforme a

los criterios establecidos dentro de la norma ISO/IEC 25012:2008.

3.1.2 Según el tipo de variable

La presente investigación demostró un enfoque cuantitativo, dado que se basó en el análisis

de datos numéricos obtenidos a partir de diversas simulaciones, que comprobaron como la

aplicación manejó la entrada y persistencia de los datos, mediante indicadores específicos

que evaluaron la eficiencia, precisión y disponibilidad de la información, conforme con la

norma ISO mencionada anteriormente.

3.2 Diseño de la investigación

Esta investigación tomó un diseño no experimental dado que no se manipuló las variables

de manera intencional, en este caso, se realizó y analizó las simulaciones aplicadas en el

producto final en su contexto natural.

3.3 Población de estudio y tamaño muestra

La población objeto del presente estudio se consideró infinita, dado que se utilizaron

herramientas de software con una carga de concurrencia simulada. En este sentido, no se

estableció un tamaño de muestra, ya que no se seleccionó un subconjunto de individuos, sino

que se trabajó con un número configurable de UV (usuarios virtuales) predefinidos en cada

simulación, los mismos que sirvieron para representar de manera artificial el

comportamiento de personas reales dentro del sistema. El análisis se centró en la evaluación

cuantitativa de la fiabilidad de los datos del sistema multiplataforma, considerando

indicadores como la eficiencia, precisión y la disponibilidad de la información, conforme a

la norma ISO/IEC 25012:2008.

3.4 Técnicas de recolección de datos

Para la recolección de datos, se utilizó como técnica la experimentación mediante

simulación, con el fin de obtener información precisa sobre los indicadores de la fiabilidad

de los datos relacionados con el sistema de gestión de censo de salud. Se evaluó como la

aplicación maneja la entrada y persistencia de los datos bajo distintas condiciones de carga,

diseñándose escenarios controlados con situaciones reales de uso. Para ello, se usó

herramientas especializadas de simulación de carga y rendimiento, como Apache Jmeter, K6

28

y bibliotecas de Python, las cuales permitieron medir parámetro claves establecidos en la

fase de pruebas del sistema, además de brindar la posibilidad de generar la cantidad de

usuarios virtuales adecuados para cada simulación.

3.5 Métodos de análisis y procesamiento de datos

Para evaluar el manejo de la fiabilidad de los datos del sistema multiplataforma, se llevó a

cabo simulaciones de carga con Apache JMeter para la eficiencia, validaciones cruzadas

entre los datos ingresados y almacenados mediante bibliotecas de Python para determinar la

precisión, y pruebas de sincronización con K6 para analizar la disponibilidad. Cada una de

estas simulaciones tienen un conjunto de indicadores técnicos detallados dentro de la

metodología de desarrollo, permitiendo un análisis cuantificable del sistema bajo condicione

controladas.

3.6 Identificación de variables

• Variable dependiente

Fiabilidad de los datos.

• Variable independiente

Sistema de gestión de censo.

3.7 Operacionalización de variables

Se presenta la Tabla 5 que contiene la operacionalización de las variables.

29

Tabla 5: Operacionalización de las variables.

Problema Tema Objetivos Variables Conceptualización Dimensión Indicadores

¿Cómo impactará la

implementación de

un sistema para la

gestión del censo de

salud en la

fiabilidad de los

datos del Centro de

Salud Chambo,

considerando los

criterios de

eficiencia, precisión

y disponibilidad

establecidos por la

norma ISO/IEC

25012:2008?

Sistema para la

gestión de

censo de salud

en el Centro de

Salud Chambo

utilizando el

framework Flu

tter.

General Independiente Un sistema de información

(SI) es definido como un

conjunto integrado de

componentes que interactúan

entre sí para recopilar,

procesar, almacenar y

distribuir información, con el

fin de apoyar actividades de

toma de decisiones,

coordinación, análisis y

visualización en

organizaciones.

Desarrollo de

software.

Independiente.

• Módulos.

• Tamaño de la

aplicación.

• Compatibilidad

del sistema.

• Tiempo de

desarrollo.

Implementar un sistema para la

gestión de censo de salud en el

Centro de Salud Chambo utilizando

el framework Flutter.

Sistema de gestión

de censo.

Específicos Dependiente

Según la ISO/IEC

25012:2008, la fiabilidad de

los datos se considera una

característica esencial dentro

del modelo de calidad de

datos, debido a que garantiza

que estos sean consistentes,

precisos y estén accesibles

cuando se necesiten. Esto

asegura su utilidad en

procesos de toma de

decisiones, minimizando

riesgos asociados a errores o

incoherencias en la

información.

Calidad de

datos.

Dependiente.

• Eficiencia de

datos.

• Precisión de los

datos.

• Disponibilidad.

• Investigar la metodología de

desarrollo ágil Mobile-D, para

la implementación de un

sistema que integre

componentes de datos

enfocados en el Centro de Salud

Chambo.

• Desarrollar una aplicación web

y móvil para la recopilación y

análisis de información de

censo en el centro de salud

Chambo.

• Evaluar la fiabilidad de los

datos del sistema de gestión de

censo de salud conforme con los

criterios establecidos por la

norma ISO/IEC 25012:2008.

Fiabilidad de los

datos.

30

3.8 Metodología de desarrollo (Mobile-D)

Fase 1: Exploración

Esta fase determinó el punto de partida para el desarrollo del aplicativo, abarcando los

requisitos iniciales para el sistema móvil y web, la identificación de los grupos de interés, la

evaluación de los requisitos funcionales y no funcionales, así como la delimitación del

alcance del proyecto.

• Requisitos iniciales

Como parte del levantamiento de requisitos iniciales para el desarrollo del sistema, se realizó

una visita de campo al centro de salud Chambo. En la fase inicial se definieron los requisitos

funcionales y no funcionales del sistema, orientados a mejorar y optimizar el levantamiento

de información del área de la salud en escuelas del cantón Chambo. Como eje principal del

sistema, se estableció la necesidad de desarrollar un aplicativo móvil capaz de recolectar y

almacenar la información con soporte para operaciones de manera offline, así como un

aplicativo web que permita consumir los datos para su posterior visualización, análisis y

generación de reportes mediante analítica de datos.

• Identificación de los grupos de interés

Las personas identificadas que serán parte del desarrollo de la aplicación se muestran en la

Tabla 6.

Tabla 6: Grupos de interés.

Grupo Descripción

Desarrolladores
Grupo de estudiantes de la Universidad Nacional de Chimborazo, encargados

del desarrollo del sistema móvil y web.

Encuestadores Personal médico zonal encargado del manejo de la aplicación móvil.

Encuestados (alumnos)
Grupo de interés prioritario, que podrán contar con el monitoreo de salud, una

vez aplicada la encuesta.

Encargado del Centro de

Salud

Es la persona encargada de administrar y consumir la información del sistema

móvil y web.

• Requisitos funcionales

En la Tabla 7 se presentan los requisitos funcionales del proyecto.

Tabla 7: Requisitos Funcionales.

Id Requerimiento Descripción Prioridad

RF-1 Autenticación de usuario

El encuestador al iniciar sesión en el aplicativo

móvil accederá a una pantalla con validación de

credenciales y rol de usuario.

Alta

31

RF-2

Descarga de datos

(estudiantes, unidades y

campañas de vacunación)

El sistema descarga de forma local los datos

precargados desde el servidor sobre unidades

educativas, estudiantes y campañas de vacunación.

Alta

RF-3
Comprobación de la unidad

educativa

Tras la descarga, el encuestador puede verificar la

información de la unidad educativa antes de

registrarla.

Media

RF-4
Comprobación de la

información del estudiante

La validación de estudiantes se realiza mediante el

número de cedula presente en la lista precargada.
Media

RF-5

Estado del registro de la

encuesta

La interfaz presenta un módulo para gestionar el

estado de las encuestas: completas, incompletas y

pendientes.

Media

RF-6
Activación del módulo de

encuestas

Una vez activado el estado de la encuesta, el

encuestador puede registrar una encuesta vinculada

a cada estudiante.

Alta

RF-7
Módulo de alimentación y

nutrición

El sistema calcula el IMC y clasifica el estado

nutricional del estudiante a partir de su talla y peso.
Alta

RF-8 Módulo de vacunación
El encuestador podrá registrar vacunas en función de

la edad del estudiante.
Alta

RF-9
Módulo de campañas de

vacunación

Atreves del módulo correspondiente, se registran las

campañas de vacunación disponibles para el

estudiante.

Alta

RF-10 Módulo de tamizaje visual
Se almacena la información relacionada con la salud

visual del estudiante.
Alta

RF-11 Módulo de salud oral
El módulo odontológico permite registrar el estado

de las piezas dentales del estudiante.
Alta

RF-12 Módulo de salud mental
Se genera un registro de la evaluación psicológica y

emocional del estudiante.
Alta

RF-13
Módulo de higiene y

saneamiento

Este módulo permite registrar las condiciones

sanitarias básicas del estudiante.
Alta

RF-14 Sincronización de datos

Al completar los módulos, los datos almacenados

localmente se sincronizan con el servidor cuando

haya conexión a internet.

Alta

RF-15 Gestión de la sección offline
El aplicativo mantiene activa la sesión del

encuestador cuando no tenga conexión a internet.
Alta

RF-16 Visualización de reportes

El sistema presenta gráficos y resúmenes

estadísticos de la información recolectada en las

encuestas.

Alta

RF-17
Módulo de registro de

usuarios

El módulo de administración incluye la opción de

registrar nuevos encuestadores.
Media

• Requisitos no funcionales

En la Tabla 8 se presentan los requisitos no funcionales del proyecto, que especifican los

atributos y características del sistema.

Tabla 8: Requisitos No Funcionales.

Id Requerimiento Descripción

RNF-1
Lenguaje de

programación

La aplicación móvil fue desarrollada utilizando Flutter, mientras

que la aplicación web fue implementada con React.js.

RNF-2 Plataformas

La aplicación móvil se desarrolló para su uso en dispositivos

Android, mientras que la visualización de reportes se gestionó

en la aplicación web.

32

RNF-3 Interfaz
El sistema móvil y web tendrá una interfaz intuitiva para el fácil

manejo del usuario.

RNF-4
Topologías de

bases de datos

Las bases de datos utilizadas en el sistema son, SQLite y

PostgreSQL, las cuales se encargaron del almacenamiento de

datos y la implementación de la metodología offline.

RNF-5
Fiabilidad de los

datos

Los datos recolectados y enviados al servidor deben transmitirse

de manera segura y confiable.

• Definición del alcance

En esta sección se detallan que aspectos serán considerados dentro del proyecto, definiendo

así las limitaciones y el establecimiento del proyecto.

a) Limitaciones

Las limitaciones que tendrá el sistema para la gestión de censo se presentan en la Tabla 9.

Tabla 9: Limitaciones del desarrollo del proyecto.

Aspecto Limitaciones

Aplicación Móvil

• Se podrá generar una carga masiva de datos del estudiante, unidades

educativas, alimentación, vacunación, salud oral, tamizaje visual, salud

mental, higiene y saneamiento.

• El aplicativo se ejecutará en dispositivos Android, permitiendo la

sincronización de la base de datos local con el servidor.

• Se implementarán roles de usuario para el inicio de sesión.

• Permitirá la carga de datos en el dispositivo de manera offline.

Aplicación Web

• Este apartado permitirá visualizar los datos recolectados mediante la

aplicación móvil.

• Únicamente el personal asignado podrá visualizar los reportes detallados del

censo aplicado a la población estudiantil.

• Contará con roles de usuario, donde el administrador designará los permisos

del personal médico.

Implementación

Tecnología

• La base de datos central contará con una estructura que permitirá la carga

masiva de datos.

• Se permitirá la sincronización de la información de la aplicación móvil al

servidor central, permitiendo la actualización continua de la información.

Módulos de

Desarrollo

• Módulo de Alimentación y Nutrición.

• Módulo de Vacunación.

• Módulo de Tamizaje Visual.

• Módulo de Salud Oral.

• Módulo de Salud Mental.

• Módulo de Higiene y Saneamiento.

Fase 2: Inicialización

El objetivo de esta fase es explicar las actividades de desarrollo para el diseño del aplicativo

móvil y web. En esta etapa se definirán aspectos clave como las configuraciones del

ambiente de desarrollo, la planificación de las fases basadas en iteraciones, el diseño de la

aplicación web y móvil, el diagrama de la base de datos y de caso de uso y el esquema de

navegabilidad.

33

• Configuración del ambiente de desarrollo

Este punto está dirigido exclusivamente para los desarrolladores del sistema y tiene como

objetivo configurar un espacio de trabajo idóneo para el desarrollo del aplicativo, a

continuación, la Tabla 10 describe las herramientas utilizadas paras la preparación del

ambiente.

Tabla 10: Ambiente de desarrollo basado en el modelo MVC.

Elemento Detalle

Tipo de proyecto Aplicación hibrida

Vista de la aplicación móvil Widgets de Flutter

Vista de la aplicación web React.js

Controlador de la aplicación móvil Dart

Controlador de la aplicación web Node.js

Base de datos para la aplicación móvil SQLite

Base de datos para la aplicación web PostgreSQL

IDE de desarrollo para la aplicación móvil Android Studio

IDE de desarrollo para la aplicación web Visual Studio Code

• Planificación de fases

En esta etapa se divide el trabajo en fases secuenciales y ordenadas que se basan en

iteraciones. Este proceso permite detallar las secuencias de las fases que guiaran el desarrollo

tanto del aplicativo móvil y web. Siendo la Tabla 11 la responsable de describir cada una de

las iteraciones.
Tabla 11: Planificación de las fases.

Fase Iteración Descripción

Exploración
Iteración 0

(semana 1)

Establecimiento de los requerimientos iniciales, grupos de interés,

requisitos funcionales y no funciónales, además de las limitaciones.

Inicialización

Iteración 0

(semana 1)

Selección de las herramientas y tecnologías para el ambiente de

desarrollo.

Iteración 1

(semana 2)

Diseño de la aplicación, diseño del diagrama de la base de datos,

esquema de navegabilidad y diagrama de caso de uso.

Producción

Iteración 2

(semana 3)

Implementación de la funcionalidad de la autenticación de usuarios,

basado en un sistema de roles.

Iteración 2

(semana 3)

Implementación del dashboard principal, con las funcionalidades de

registro de unidades educativas, estudiantes y encuestas, además de la

sincronización.

Iteración 3

(semana 4)

Implementación de la funcionalidad que permite trabajar con el módulo

de alimentación y nutrición.

Iteración 4

(semana 5)

Implementación de la funcionalidad que permite trabajar con el módulo

de vacunación.

Iteración 5

(semana 6)

Implementación de la funcionalidad que permite trabajar con el módulo

de tamizaje visual.

Iteración 6

(semana 7)

Implementación de la funcionalidad que permite trabajar con el módulo

de salud oral.

Iteración 8

(semana 9)

Implementación de la funcionalidad que permite trabajar con el módulo

de salud mental.

Iteración 9

(semana 10)

Implementación de la funcionalidad que permite trabajar con el módulo

de higiene y saneamiento.

34

Iteración 10

(semana 11)
Implementación del login del apartado web.

Iteración 10

(semana 11)

Implementación del dashboard principal de la página web que contara

con los apartados de gestión de usuarios, consulta de información de

cada estudiante, análisis y carga de datos.

Iteración 11

(semana 12)
Implementación de la funcionalidad para la gestión de usuarios.

Iteración 11

(semana 12)

Implementación de la funcionalidad para la consulta de información de

cada estudiante.

Iteración 12

(semana 13)
Implementación de la funcionalidad para el análisis de datos.

Iteración 12

(semana 13)
Implementación de la funcionalidad para la carga de datos.

Estabilización

Iteración 13

(semana 14)
Establecimiento de las interfaces finales del aplicativo móvil.

Iteración 13

(semana 14)
Establecimiento de las interfaces finales del aplicativo web.

Iteración 14

(semana 15)

Implementación de sistemas de validación de caracteres y controles

específicos.

Iteración 14

(semana 15)

Corrección de cálculos de valores específicos de cada uno de los

módulos.

Prueba del

sistema

Iteración 15

(semana 16)

Realización de evaluaciones y pruebas del sistema, que permitirán

analizar los resultados obtenidos del aplicativo.

• Diseño del sistema multiplataforma

Esta etapa permitió definir la estructura visual, funcional y técnica que tendrá el sistema,

asegurando que se cumpla con los requerimientos iniciales establecidos para el apartado

móvil y web. La Figura 8 muestra el diseño del aplicativo y sus componentes principales.

Figura 8: Diseño del sistema multiplataforma

• Diagrama de la base de datos

Para garantizar una correcta gestión de la información recolectada a través del aplicativo

móvil y su posterior visualización mediante el aplicativo web, se diseñó un diagrama de base

de base de datos estructurado que define la relación entre las entidades del sistema. En total

se consideraron 13 tablas, cada una con atributos claves y sus distintos tipos de datos, que

incluyen información relacionada con usuarios, encuestas, unidades educativas, estudiantes,

campañas de vacunación y módulos específicos de salud (nutrición, salud oral, salud mental,

tamizaje visual, entre otros). La Figura 9 presenta el modelo diseñado para este sistema,

donde se evidencian las claves principales y foráneas que conectan los distintos módulos del

censo de salud.

35

Figura 9: Diagrama de la base de datos.

Diccionario de datos de la base de datos

a) Tabla de usuarios

En la Tabla 12 se hace referencia a todos los campos que contiene la tabla usuarios. Para

profundizar más sobre cada una de las tablas y sus características, visualizar el Anexo I.

Tabla 12: Diccionario de la tabla usuarios.

Campo Tipo de Dato Descripción

id Uuid Identificador único del usuario

cedula varchar(10) Cédula del usuario

nombres varchar(100) Nombres del usuario

apellidos varchar(100) Apellidos del usuario

password Text Contraseña encriptada

rol_id Uuid Rol del usuario (FK)

fecha_creacion Timestamp Fecha de creación

36

• Esquema de navegabilidad

Para definir de manera más clara el recorrido que realizaran los usuarios dentro de la

aplicación móvil y web, se diseñó los esquemas de navegabilidad que representan las

pantallas, módulos y secciones disponibles. Estos diagramas permiten visualizar el flujo

lógico de navegación, identificando como el usuario transita y accede entre las distintas

secciones del sistema. Para facilitar la comprensión de la arquitectura funcional y las rutas

posibles, se elaboró un esquema para cada apartado.

a) Esquema de navegabilidad del apartado móvil

El esquema de navegabilidad del aplicativo móvil, presentado en la Figura 10, define la

jerarquía de flujos y pantallas con las que interactuara el usuario. La estructura comienza

con una pantalla de inicio o Splash y un módulo de autenticación (login) con validación de

credenciales. Si las credenciales son correctas, el usuario accede al menú principal, que le

permitirá dirigirse a los módulos de registro, tanto de unidades educativas, encuestas o

estudiantes. Dentro del registro de encuestas se habilita el módulo de salud, que agrupa

submódulos especializados: alimentación y nutrición, vacunación (con acceso al registro de

campañas de vacunación), tamizaje visual, salud oral, salud mental e higiene y saneamiento.

Figura 10: Esquema de navegabilidad de la parte móvil.

carrera varchar(100) Carrera del usuario

fecha_nacimiento Date Fecha de nacimiento

genero varchar(20) Género

area_trabajo varchar(100) Área de trabajo

estado Varchar Estado del usuario (Activo/Inactivo)

37

b) Esquema de navegabilidad del apartado web

De manera complementaria, se diseñó el esquema de navegabilidad para la aplicación web

presentado en la Figura 11, enfocada principalmente en la consulta, gestión y análisis de la

información. Al igual que el apartado móvil, el sitio web comienza con la validación de

credenciales mediante la pantalla de login. Una vez autenticado, el usuario visualizara el

menú principal que presenta las opciones de: gestión de usuarios (permitiendo el registro de

nuevos usuarios y su visualización), visualizar estudiantes, analítica de datos, campañas de

vacunación, avance de encuestas y carga de datos.

Figura 11: Esquema de navegabilidad de la parte web.

• Diagrama de caso de uso

a) Administrador

Las interacciones que realiza el administrador tanto del sistema móvil como web

corresponden a las acciones y funcionalidades exclusivas a las que este perfil puede acceder

dentro del sistema. Dichas interacciones se muestran en la Figura 12.

Figura 12: Diagrama de caso de uso para el administrador.

b) Encuestador

38

Por otro lado, las interacciones que realiza el encuestador responden al registro,

almacenamiento y sincronización de datos de los diferentes módulos disponibles. Las

funciones del encuestador se pueden observar más detalladamente en la Figura 13.

Figura 13: Diagrama de caso de uso para el encuestador.

c) Entidades adicionales

En cuanto a las entidades adicionales, se hace únicamente referencia a las funcionalidades

complementarias a las cuales tiene acceso el rector en la interfaz web (Figura 14) y el

odontólogo en el sistema móvil (Figura 15).

Figura 14: Diagrama de caso de uso para el rector.

Figura 15: Diagrama de caso de uso para el odontólogo.

Fase 3: Producción y estabilización

En la fase de producción, correspondiente al desarrollo de la aplicación móvil y web, se

describen todas las funcionalidades implementadas que en conjunto consolidan el trabajo

realizado en las etapas anteriores, así mismo, en el apartado de la estabilización se integraron

los distintos módulos del aplicativo.

a) Aplicación móvil

En la Figura 16 se visualiza la conexión y sincronización de la base de datos del aplicativo

móvil con el backend. Para esta implementación, se desarrolló una API RESTful con Node.js

que funciona como intermediaria para la sincronización de datos. La base de datos utilizada

para la aplicación móvil fue SQLite, permitiendo almacenar los datos de manera local hasta

que exista la conexión necesaria para subir la información al servidor.

39

Figura 16: Conexión y sincronización de la aplicación móvil con el backend.

La Figura 17 muestra el módulo de inicio de sesión del aplicativo móvil. La autenticación se

implementó mediante JSON Web Tokens (JWT). El proceso de validación por roles se

desarrolló a través de un middleware en el backend. Para reforzar la seguridad, las

contraseñas que se almacenaron en la base de datos fueron encriptadas con bcrypt.

Figura 17: Login de la aplicación móvil.

En la Figura 18 se visualiza el menú principal, que incluye funciones generales de ingreso y

visualización de unidades educativas y estudiantes, así como la sincronización completa de

los datos. El desarrollo de la totalidad de la interfaz de usuario del aplicativo móvil fue

empleado utilizando el framework Flutter. Las funcionalidades que incluye este layout son,

el ingreso de datos y controladores de estado; la visualización de registros mediante

consultas al backend, utilizando formatos de respuesta en JSON; la sincronización de la

información entre el dispositivo móvil y la base de datos local, almacenando la información

hasta que el usuario use la función de sincronización, momento en el que la información se

envía al servidor.

40

Figura 18:Menu principal de la aplicación móvil.

La Figura 19 muestra los apartados a los cuales se puede ingresar en función del rol del

usuario, funcionalidad implementada a través de un sistema de autenticación y autorización

basado en roles (RBAC, Role-Bassed Acces Control). Este mecanismo implementado

mediante authMiddleware permitió establecer la lógica del sistema dividido en tres roles:

administrador, encuestador y odontólogo. El desarrollo de esta funcionalidad intercepta cada

petición al servidor y verifica la validez del token de usuario como los privilegios asociados

al rol.

Figura 19: Registro de encuesta.

En la Figura 20 se presenta los distintos módulos de encuestas dependiendo del rol del

usuario. De esta manera, el encuestador puede acceder a cinco módulos, mientras que, el

odontólogo se limita al módulo de salud oral, permitiendo a ambos roles el registro y

visualización de la información recolectada. A nivel técnico, se utilizó la funcionalidad de

autenticación mediante una consulta a la base de datos, asimismo, se aplicaron principios de

modularidad y reutilización de código al ser módulos similares.

41

Figura 20: Menú principal de los módulos.

En la Figura 21 se puede observar un estatus de la sincronización de los datos, la misma que

se activa una vez que el encuestador finaliza el registro de las encuestas. Durante la fase de

recolección de información, los datos ingresados se almacenan temporalmente en la base de

datos local. Posteriormente, mediante el botón sincronizar, toda la información se transfiere

al servidor. El backend valida cada registro para evitar datos repetidos e inconsistentes,

almacena la información y responde con un reporte de estado.

Cabe resaltar que el proceso de sincronización únicamente se ejecuta cuando el encuestador

tiene conexión a internet; caso contrario, los datos permanecerán almacenados de manera

local.

42

Figura 21: Sincronización de datos.

b) Aplicación web

La Figura 22 presenta la autenticación y validación por roles para el inicio de sesión. Este

mecanismo mantiene la misma lógica de control que el aplicativo móvil, diferenciando los

accesos según el perfil del usuario. Sin embargo, en este caso el backend se desarrolló

mediante Node.js, mientras que la interfaz de usuario fue construida con React.

43

Figura 22: Login de la aplicación web.

En la Figura 23 se observa el menú principal del apartado web, permitiendo administrar las

funciones del sistema mediante componentes modulares y servicios REST. Entre las

funcionalidades principales, se encuentran los módulos: de gestión de usuarios, analítica de

datos, campañas de vacunación, gestión de unidades educativas, carga masiva de datos en

formato Excel, visualizar avance de encuestas y visualizar a los estudiantes registrados.

44

Figura 23: Menú del aplicativo web.

Los módulos presentados en la Figura 24, fueron desarrollados siguiendo un enfoque CRUD

(créate, read, update, delete). Estos módulos se realizaron mediante un formulario controlado

en el frontend, capturando los datos para posteriormente enviarlos al backend. Por otra parte,

la visualización se implementó mediante una tabla dinámica. En cuanto al módulo de

edición, el sistema permite actualizar la información en tiempo real. Finalmente, la búsqueda

mediante filtros se implementó mediante consultas especificas en la base de datos.

45

Figura 24: Módulos de gestión de usuario, campañas de vacunación, unidades educativas y visualización de estudiantes.

(web).

La Figura 25 corresponde a la analítica de datos, cuyo diseñado fue un enfoque de la analítica

descriptiva. La funcionalidad principal se basa en filtros dinámicos de búsqueda,

permitiendo segmentar la información en base a distintos criterios. Los resultados se

presentaron mediante tablas y gráficas interactivas, utilizando librerías especializadas como

Chart.js para la visualización de datos.

46

Figura 25: Módulo de gestión de analítica de datos (web)

El módulo que permite gestionar el estado de las encuestas se muestra en la Figura 26,

desarrollado como mecanismo de seguimiento en tiempo real del progreso de las encuestas.

Esta funcionalidad permite al administrador realizar búsquedas especificas aplicando filtros,

mostrando los registros almacenados en la base de datos a través de peticiones al backend.

Complementariamente, se agregó un indicador de progreso que detalla el estado de las

encuestas (completadas y pendientes). Cabe destacar que también permite la exportación de

los resultados en formato .xlxs.

47

Figura 26: Módulo de reporte de encuestas (web)

La Figura 27 hace referencia a la carga de estudiantes, la misma que fue diseñada

exclusivamente para el rol del administrador. Este módulo permite la incorporación de

archivos en formato .xlsx, que son procesados mediante librerías como SheetJS y Axios. Los

documentos Excel se validan para evitar duplicados o campos nulos antes de ser

almacenados, quedando listos para su precarga en el aplicativo móvil.

48

Figura 27: Carga de UV (web).

Fase 4: Pruebas del sistema

La fase final de la metodología Mobile-D hace referencia a las pruebas del sistema, siendo

una etapa esencial para el desarrollo de aplicaciones, pues permitió verificar la eficiencia,

precisión y disponibilidad de los datos.

• Planificación de las pruebas

En este apartado se planificaron distintos tipos de simulaciones con el objetivo de identificar

y corregir errores o inconsistencias que puedan afectar a la fiabilidad de los datos, conforme

con la norma ISO/IEC 25012:2008. Para la evaluación de los indicadores de eficiencia,

precisión y disponibilidad de datos, se consideraron los valores referenciales que se detallan

más adelante, correspondientes a cada uno de los indicadores mencionados.

a) Eficiencia de datos

El análisis de la eficiencia de los datos garantizo que la aplicación móvil gestione la

información de manera ágil y segura. La planificación sobre este indicador se muestra en la

Tabla 13.

49

Tabla 13: Planificación de la eficiencia de datos.

Categoría Descripción

Pruebas realizadas
Ejecuciones de simulaciones de carga para medir eficiencia en la transferencia y

sincronización de datos.

Herramientas

utilizadas

Se hizo uso de Apache JMeter para realizar pruebas de rendimiento y carga en

escenarios simulados.

Indicadores

evaluados

• Tiempo de respuesta promedio: <=1 seg (por modulo).

• Tasa promedio de transferencia de datos: >=50 KB/s

El valor de tiempo de respuesta promedio por módulo y la transferencia de datos, se obtuvo

de Google SRE [35], en donde se menciona que, “ninguna solicitud puede recibir respuesta

en menos de 0 ms, y un tiempo de espera de 1000 ms”.

b) Precisión de los datos

La presión de los datos permitió evaluar el grado de exactitud con que el aplicativo almacena

y procesa la información recolectada en los censos. La planificación sobre este indicador se

muestra en la Tabla 14.

Tabla 14: Planificación de la precisión de los datos.

Categoría Descripción

Pruebas realizadas
Se ejecutaron validaciones cruzadas entre los datos ingresados desde la aplicación

móvil y los datos almacenados en el servidor.

Herramientas

utilizadas

Se implemento la herramienta Python junto a la librería de Pandas para verificar la

exactitud de los datos almacenados.

Indicadores

evaluados

• Porcentaje de coincidencia de datos: >=95%

• Porcentaje de errores: <=5%

El porcentaje considerado para la coincidencia de datos se basa en menciones dentro del

artículo redactado en Tability [34], donde se menciona que, “una precisión de los datos del

95 % al 98 % garantiza la fiabilidad”.

c) Disponibilidad

Este indicador permitió medir el acceso oportuno y continuo a los datos almacenados,

asegurando así que la información se pueda visualizar y consultar sin interrupciones. La

planificación sobre este indicador se muestra en la Tabla 15.

Tabla 15: Planificación de la disponibilidad.

Categoría Descripción

Pruebas

realizadas

Se realizaron pruebas de sincronización de datos, simulando una combinación de

métodos POST y GET que consulta el servidor hasta obtener una respuesta valida.

Herramientas

utilizadas

Se utilizo K6 para simular el tiempo que tarda la información en estar accesible para

procesos de visualización.

Indicadores

evaluados
• Tiempo promedio de propagación de la información: <=1seg

El valor de tiempo promedio de propagación de la información hace referencia al sitio web,

donde las métricas se obtuvieron a partir de Core Web Vitals [33], mencionando que los

sitios web LCP deben contar con un valor <= 2,5s para contar con un buen rendimiento.

50

• Ejecución de pruebas

Con el objetivo de garantizar la eficiencia, precisión y disponibilidad de los datos se aplicó

la fase de ejecución de pruebas, donde se evaluaron distintos escenarios que permitieron

medir el comportamiento del aplicativo de manera local bajo condiciones reales y simuladas.

a) Eficiencia de datos

Se realizaron pruebas de rendimiento enfocadas en medir el tiempo de respuesta y la

transferencia de datos. Para ello, se utilizó la herramienta Apache JMeter, permitiendo

simular escenarios de acceso concurrente. En total, se realizaron 25 simulaciones, cuyos

resultados se muestran en la Figura 28, contando con un rango de 500 a 600 solicitudes

simultaneas.

Figura 28: Tiempo de respuesta y tasa de transferencia de datos obtenido en JMeter.

b) Precisión de los datos

Las pruebas realizadas para este indicador permitieron verificar el porcentaje de coincidencia

de datos y el porcentaje de errores. Para esto se desarrolló un script con el lenguaje de

programación de alto nivel Python junto con la librería Pandas, especializada en la

manipulación y análisis de datos. El desarrollo de este script facilitó realizar cálculos

precisos sobre la exactitud de cada una de las tuplas presentes en las distintas tablas de la

base de datos. En total se llevaron a cabo 25 simulaciones, cuyos resultados se presentan en

la Figura 29.

51

Figura 29: Porcentaje de coincidencia de datos y porcentaje de error obtenidos en Python.

c) Disponibilidad

Este indicador permitió evaluar el tiempo de propagación de la información, midiendo el

lapso entra la carga de datos y su visualización en el apartado web. Como resultado de esta

prueba realizada en la herramienta K6, la cual contó con 25 simulaciones, se obtuvieron los

resultados que se presentan en la Figura 30, donde posterior a la carga de datos se recuperó

la información de los estudiantes mediante su número de cédula.

Figura 30: Tiempo de propagación de la información obtenido con K6.

Para ver el resultado de todas las simulaciones organizadas por indicador, véase el Anexo II.

52

CAPÍTULO IV. RESULTADOS Y DISCUSIÓN

4.1 Resultados

• Eficiencia de datos

El indicador de eficiencia de los datos permitió evaluar tanto el tiempo de respuesta como la

capacidad de transferencia de información entre el aplicativo móvil y el servidor. Con el

propósito de analizar la rapidez y estabilidad del sistema, se ejecutaron 25 pruebas de carga

y transmisión de datos en JMeter, cuyos resultados se detallan en la Tabla 16.

Tabla 16: Resultados de la eficiencia de datos.

Código Nombre de la prueba Limite Resultado

SED01 Tiempo de respuesta promedio (s) <=1 s (por módulo) 0.35 s

SED03 Tasa promedio de transferencia de datos (KB/s) >=50 KB/s 198,26 KB/s

A continuación, se ilustra el comportamiento de las dos métricas obtenidas a partir de las

simulaciones realizadas en JMeter en la Figura 31 y Figura 32.

Figura 31: Comparación de resultados eficiencia de los datos (tiempo de respuesta).

Los resultados obtenidos en la dimensión de eficiencia muestran que el sistema presenta un

tiempo de respuesta promedio de 3,53 segundos para la ejecución total de los 10 módulos,

demostrando que cada módulo responde en aproximadamente 0,35 segundos. Este valor se

encuentra holgadamente dentro del umbral establecido de ≤1 segundo por módulo,

evidenciando un desempeño adecuado y consistente en términos de tiempo de respuesta.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 5 10 15 20 25 30

T
ie

m
p

o
r

d
e

re
sp

u
es

ta
 (

s)

Repeticion

Tiempo de respuesta promedio

53

Figura 32: Comparación de resultados eficiencia de los datos (tasa de transferencia).

En cuanto a la tasa de transferencia de datos, se registraron valores comprendidos entre 170

KB/s y 210 KB/s, con un promedio cercano a 198,24 KB/s. Esta cifra supera ampliamente

el criterio mínimo definido de ≥50 KB/s, garantizando que el sistema dispone de una

capacidad suficiente de transmisión de datos para sostener operaciones de consulta y

actualización de manera fluida.

En conjunto, estos resultados permiten concluir que la aplicación cumple satisfactoriamente

con la dimensión de eficiencia definida en ISO/IEC 25012, asegurando que los datos pueden

ser procesados y entregados de forma rápida y utilizando recursos adecuados. Desde la

perspectiva de la fiabilidad, el cumplimiento de los objetivos de eficiencia contribuye a

consolidar la confianza en el sistema, ya que los usuarios perciben una respuesta oportuna y

estable en las operaciones, reduciendo la probabilidad de fallos relacionados con demoras o

saturación en la transferencia de datos.

• Precisión de los datos

Este proceso permitió verificar que la información almacenada en el servidor coincidiera con

los datos ingresados desde el aplicativo. Para evaluar este parámetro, se programó dentro del

IDE Visual Studio Code, un script con el lenguaje de programación Python junto con su

librería Pandas, permitiendo simular el envío de datos específicos y posteriormente validar

que no existieran alteraciones ni pérdidas durante el proceso de sincronización. Los

resultados obtenidos en las pruebas de precisión de los datos se presentan en la Tabla 17.

Tabla 17: Resultados de la precisión de los datos.

Código Nombre de la prueba Limite Resultados

SPD01 Porcentaje de coincidencia de datos >=95% 100%

SPD02 Porcentaje de error <=5% 0%

La Figura 33 muestra una gráfica que resume la proporción promedio obtenida por cada

tabla para los dos indicadores.

0

50

100

150

200

250

0 5 10 15 20 25 30

T
sa

d
e

tr
an

sf
er

en
ci

a
(k

b
/s

)

Repetición

Tasa promedio de transferencia

54

Figura 33: Porcentaje de precisión de los datos.

Los resultados obtenidos en la dimensión de precisión de los datos muestran que, para las 10

tablas evaluadas, se logró una coincidencia del 100% entre la información almacenada en el

servidor y los datos ingresados desde el aplicativo móvil, sin registrarse ningún error de

transmisión o alteración durante las 25 pruebas realizadas.

Este desempeño indica que el sistema garantiza la integridad de los datos durante el proceso

de sincronización, asegurando que la información capturada por los usuarios se almacene de

manera correcta y sin pérdidas. Desde la perspectiva de la ISO/IEC 25012, este

cumplimiento refleja un alto nivel de precisión, contribuyendo de manera directa a la

fiabilidad percibida del sistema, ya que los usuarios pueden confiar en que los datos que

consultan o procesan son exactos y consistentes con la información original.

• Disponibilidad

El indicador de disponibilidad de los datos permitió evaluar la capacidad del sistema para

mantener la información almacenada en el servidor accesible, así como garantizar la

posibilidad de realizar consultas desde la plataforma web. Para ello, se ejecutó una

simulación considerando el tiempo de propagación de la información, en la que se insertaron

datos en el servidor mediante el método POST y posteriormente se verificó su accesibilidad

a través de consultas utilizando el método GET. Los resultados obtenidos se presentan en la

Tabla 18.

Tabla 18: Resultados de la disponibilidad.

Código Nombre de la prueba Limite Resultados

SD01 Tiempo promedio de propagación de la información <=1seg 112.84 ms

0

20

40

60

80

100

120

P
o

rc
en

ta
je

 (
%

)

Tabla

Coincidencia y error promedio por tablas

Coincidencia Error

55

Figura 34: Tiempo de propagación de la información.

Durante la simulación realizada con K6, se registró un tiempo de propagación de la

información de 112,84 ms. Este resultado evidencia que la sincronización de los datos entre

el aplicativo y el servidor se realizó de manera efectiva, asegurando que la información

estuviera accesible para su consulta en un tiempo mínimo. La medición refleja que el sistema

mantiene un alto grado de disponibilidad, cumpliendo con la definición de la ISO/IEC

25012, al garantizar que los datos puedan ser obtenidos oportunamente por los usuarios y

aplicaciones autorizadas.

Desde la perspectiva de la fiabilidad del sistema, este desempeño es idóneo ya que un tiempo

de propagación reducido asegura que la información esté disponible de manera consistente

y sin retrasos, minimizando la percepción de fallos y garantizando la continuidad operativa

del aplicativo. Además, el valor obtenido evidencia una buena optimización de los procesos

de sincronización y una infraestructura robusta que soporta la disponibilidad operativa del

sistema, contribuyendo directamente a que los usuarios confíen en que los datos estarán

accesibles cuando los necesiten.

Finalmente, la implementación del sistema web y móvil para la gestión de censos de salud

en el Centro Salud Chambo tuvo un impacto positivo en la fiabilidad de los datos, al mejorar

notablemente los criterios de eficiencia, precisión y disponibilidad definidos en la norma

ISO/IEC 25012:2008. Los resultados demuestran que la digitalización del proceso reducirá

errores de transcripción, optimización de tiempos de registro y permitir un acceso oportuno

a la información, incluso en entornos sin conectividad gracias a la función offline. De esta

forma, el sistema no solo fortaleció la calidad de los datos recolectados, sino que también

garantizó su correcta utilización para la toma de decisiones en la gestión de la salud.

4.2 Discusión

En el presente proyecto de investigación, se evaluó la fiabilidad de los datos en base a la

norma ISO/IEC 25012:2008, donde se establecen lineamientos específicos para evaluar las

propiedades de un producto de datos determinado, priorizando la eficiencia, precisión y

disponibilidad de la información.

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30

T
ie

m
p

o
 (

m
s)

Iteración

Tiempo promedio de propagación de la información

56

Al comparar los resultados alcanzados con investigaciones similares, tales como “Aplicación

web progresiva para el manejo de inventario en la farmacia de la coordinación de salud zona

3” [36], se observó que el aplicativo registro tiempos de respuesta entre 300 ms y 345 ms

bajo escenarios de carga menores. En cambio, este proyecto manejo de 500 a 600 usuarios

virtuales y procesos de sincronización más complejos, obteniendo un tiempo promedio de

350 ms en JMeter, si bien este valor supera ligeramente al proporcionado por el estudio

comparado, las diferencias se justifican por la mayor cantidad de peticiones y la complejidad

de las operaciones.

A lo mencionado anteriormente, se suma una ventaja significativa respecto a otros proyectos

similares, como el proyecto titulado “Desarrollo de una aplicación web para el censo

obstétrico y control neonatal en el Centro de Salud Chambo” [37], donde se desarrolló una

aplicación web sin integrar funcionalidades offline. A diferencia del proyecto citado

anteriormente, el sistema planteado en esta investigación permite al usuario almacenar los

datos recolectados de manera local temporalmente, es decir, hasta que el usuario disponga

de conexión a internet y pueda sincronizar la información recolectada con el servidor.

Finalmente, es importante mencionar que, a diferencia de las investigaciones analizadas

previamente, tanto Tapuy y Segovia [36] como Montaño [37] se centraron únicamente en el

desarrollo de un sitio web, el mismo que servía para recolectar y analizar la información. La

solución propuesta en esta investigación está conformada por dos aplicativos

complementarios: una aplicación móvil, encargada de recolectar y enviar la información al

servidor, y una aplicación web, destinada a la visualización, gestión y análisis de los datos

recolectados.

57

CAPÍTULO V. CONCLUSIONES y RECOMENDACIONES

5.1 Conclusiones

• Tras la investigación y aplicación de la metodología Mobile-D, se logró comprobar su

efectividad en el desarrollo de sistemas multiplataforma por su enfoque ágil, además,

gracias a su estructura iterativa se implementaron las distintas funcionalidades de forma

ordenada y eficiente. La metodología Mobile-D fue la que mejor se ajustó al desarrollo

del proyecto, ya que facilitó una adaptación progresiva a los requerimientos funcionales,

asegurando una correcta sincronización de la aplicación móvil y web destinada a la

recolección y análisis de datos en el centro de salud Chambo.

• La creación de un sistema para la realización de censos de salud mediante dispositivos

móviles, junto con el desarrollo de una plataforma web, se llevó a cabo

satisfactoriamente siguiendo la metodología ágil Mobile-D. La aplicación móvil

desarrollada mediante el framework Flutter, facilita la recolección de información de

manera offline para su posterior sincronización, en base a módulos que se enfocan en

distintas áreas de la salud. Por su parte, la plataforma web realizada con Node,js y React,

posibilitó la gestión, visualización de reportes y análisis de datos recolectados, brindando

así a los administrativos del centro de salud Chambo, una herramienta para la toma de

decisiones basadas en información oportuna y precisa.

• Los resultados obtenidos en base a los criterios de la norma ISO/IEC 25012:2008

definidos en base a características de calidad que deben considerarse en la evaluación de

un producto enfocado en los datos permitieron verificar que el sistema mantiene un alto

nivel de fiabilidad, evaluada principalmente a través de tres indicadores clave: eficiencia,

precisión y disponibilidad. Las simulaciones se realizaron en JMeter y mediante scripts

programados en K6 y Python, obteniendo tiempos de respuesta promedio de 3,53 seg,

además, se evidencio un porcentaje de error del 0% en el aparatado de la consistencia de

los datos. Finalmente, un valor muy por debajo del límite en base a la propagación de la

información, siendo este de 112,84 ms. Estos resultados permiten concluir en una

solución confiable y ágil para la gestión de censos de salud, cumpliendo con los

estándares de calidad de datos definidos por la norma ISO y aportando beneficios gracias

a su enfoque multiplataforma.

5.2 Recomendaciones

• Se sugiere continuar utilizando metodologías agiles como Mobile-D para futuros

proyectos multiplataforma, dado a su capacidad de adaptación a requerimientos

cambiantes y su enfoque iterativo durante el desarrollo.

• Se recomienda la actualización y expansión de funcionalidades del aplicativo móvil y

web, que incluyan nuevos módulos de salud y reportes automatizados, potenciando aún

más la toma de decisiones.

• Se aconseja realizar evaluaciones periódicas de los indicadores de calidad de los datos

definidos por la norma ISO/IEC 25012:2008 para mantener la fiabilidad. Además, en

caso de expandir el sistema, se deben ajustar los valores limite conforme crezca el

volumen y diversidad de la información gestionada.

58

BIBLIOGRAFÍA

[1] Organización Mundial de la Salud, «Global strategy on digital health 2020-2025,»

2021. [En línea]. Available: https://www.who.int/docs/default-

source/documents/gs4dhdaa2a9f352b0445bafbc79ca799dce4d.pdf.

[2] Ministerio de Salud Pública del Ecuador, «Informe de Gestión 2022,» 2022. [En

línea]. Available: https://www.salud.gob.ec/wp-content/uploads/2023/06/5.2FASE-

2_INFORME_FINAL_-RC_2022_CZ5-1.pdf.

[3] Ministerio de salud pública, «Registro oficial - Tercer Suplemento N°715,» 06 01

2025. [En línea]. Available:

https://www.hgdc.gob.ec/images/Hospital/Base%20legal/AC-00068-

2024%20DIC%2018-

Tercer%20Suplemento%20Nro.%20715%20Politica%20de%20Transformacion%20

Digital%20de%20la%20Salud.pdf. [Último acceso: 11 08 2025].

[4] Public Health International, «Open Access Pub,» [En línea]. Available:

https://openaccesspub.org/public-health-

international/census?utm_source=chatgpt.com.

[5] M. Colwill y A. Poullis, «Using national census data to facilitate healthcare research,»

13 12 2023. [En línea]. Available: https://doi.org/10.5662/wjm.v13.i5.414. [Último

acceso: 15 08 2025].

[6] J. Baldoceta, «Desarrollo de un aplicativo móvil basado en la metodología Mobile-D

para la gestión de reservas del hotel Caribe de Huaral.,» 2017. [En línea]. Available:

https://repositorio.uigv.edu.pe/backend/api/core/bitstreams/e6507d8c-6a2f-45db-

bdf5-2245d0a3ccf8/content. [Último acceso: 14 03 2025].

[7] H. Huaraca, «Uso de aplicaciones móviles en el proceso de aprendizaje del idioma

inglés por parte de los estudiantes de la Carrera de Pedagogía de los Idiomas

Nacionales y Extranjeros de la UNACH.,» 2022. [En línea]. Available:

http://dspace.unach.edu.ec/bitstream/51000/9697/1/UNACH-EC-FCEHT-PCEINF-

0009-2022.pdf. [Último acceso: 11 03 2025].

[8] E. Guaman y E. Yambay, «Desarrollo de una aplicación web y móvil utilizando la

metodología agile inception, para la gestión de servicios de trabajos informales en

Riobamba,» 2022. [En línea]. Available:

59

http://dspace.unach.edu.ec/bitstream/51000/10091/1/Guaman%20S.%2C%20Edwin

%20A.%20Yambay%20L.%2C%20Edison%20F.%20(2022)%20Desarrollo%20de

%20una%20aplicación%20web%20y%20móvil%20utilizando%20la%20metodolog

ía%20agile%20inception%2C%20para%20la%20gestión%20de. [Último acceso: 12

03 2025].

[9] L. Vallejo, «Desarrollo de una aplicación móvil para la adopción de animales

abandonados centro de rescate animal (CRIAR) Municipio de Riobamba.,» 02 05

2024. [En línea]. Available: http://dspace.espoch.edu.ec/handle/123456789/22008.

[10] E. Valdivieso, «DISEÑO E IMPLEMENTACIÓN DE UNA APLICACIÓN

TURÍSTICA DE LA CIUDAD DE RIOBAMBA PARA DISPOSITIVOS CON

SISTEMA OPERATIVO ANDROID,» 2016. [En línea]. Available:

http://dspace.unach.edu.ec/bitstream/51000/2951/1/UNACH-FCEHT-TG-

INFORM-2016-000019.pdf. [Último acceso: 12 03 2025].

[11] Blog Tecnologia Movil , «Arquitectura de Android,» [En línea]. Available:

https://tecnologiamovil128806266.wordpress.com/equipos/. [Último acceso: 12 03

2025].

[12] V. Vázquez, «Desarrollo de aplicaciones móviles multiplataforma con Flutter,» 2019.

[En línea]. Available:

https://repositorio.ual.es/bitstream/handle/10835/8010/TFG_VAZQUEZ%20RODR

IGUEZ%2c%20VICTOR.pdf?sequence=1&isAllowed=y. [Último acceso: 11 03

2025].

[13] J. Baldrés, Desarrollo de una aplicación multiplataforma mediante el framework

Flutter e implementación de servicios de autenticación y base de datos mediante

Firebase, Valencia: Universitat Politecnica de Valencia, 2020.

[14] Google, «Descripción general de la arquitectura de Flutter,» Flutter Documentation ,

[En línea]. Available: https://docs.flutter.dev/resources/architectural-overview.

[Último acceso: 11 03 2025].

[15] K. Escobar, «Desarrollo de la aplicación móvil de gestión de cupones en las campañas

de mercadotecnia del diario Elespecial-noticias para influir en su eficiencia,» 20 11

2024. [En línea]. Available: http://dspace.espoch.edu.ec/handle/123456789/23168.

[16] S. Avalos y D. Guaillas, «APLICACIÓN WEB Y MÓVIL PARA LA GESTIÓN DE

SERVICIOS GASTRONÓMICOS DE RESTAURANTES DEL CANTÓN

60

SARAGURO.,» 2023. [En línea]. Available:

http://dspace.unach.edu.ec/handle/51000/11359. [Último acceso: 18 05 2025].

[17] C. Zuñiga, «Software de recorrido virtual para pymes con una vitrina web del cantón

Guano utilizando la tecnología Three.js,» 2024. [En línea]. Available:

http://dspace.unach.edu.ec/handle/51000/13947. [Último acceso: 18 05 2025].

[18] T. Brito, M. Ferreira, M. Monteiro, P. Lopes, M. Barros, J. Santos y N. Santos, «Study

of JavaScript Static Analysis Tools for,» 2023. [En línea]. Available:

https://arxiv.org/pdf/2301.05097. [Último acceso: 11 03 2025].

[19] SQLite, «¿Qué es SQLite?,» [En línea]. Available: https://sqlite.org/. [Último acceso:

12 03 2025].

[20] C. Salcan, «Prototipo de un Sistema en GNS3 con la Integración de Asterisk y

PostgreSQL sobre IPv6 para Consulta de Notas Académicas,» 2024. [En línea].

Available: http://dspace.unach.edu.ec/handle/51000/13176. [Último acceso: 18 05

2025].

[21] L. Zapata, «ANALÍTICA DE DATOS PARA MONITOREAR EL DESEMPEÑO

DE LOS ESTUDIANTES DEL COLEGIO FRANCISCO DE MIRANDA.,» 2021.

[En línea]. Available: https://hdl.handle.net/10983/27216. [Último acceso: 12 03

2025].

[22] P. Abrahamsson, A. Hanhineva, H. Hulkko, T. Ihme, J. Jäälinoja, M. Korkala, J.

Koskela, P. Kyllönen y O. Salo, «Mobile-D: An Agile Approach for Mobile

Application Development,» 20 09 2017. [En línea]. Available:

https://doi.org/10.48550/arXiv.1709.06820. [Último acceso: 12 08 2025].

[23] A. Kaur y K. Kaur, «Systematic literature review of mobile application development

and testing effort estimation,» 02 2022. [En línea]. Available:

https://doi.org/10.1016/j.jksuci.2018.11.002. [Último acceso: 12 08 2025].

[24] P. Ramírez, «Implementación de un aplicativo móvil y web para la gestión

administrativa de la empresa constsa usando la metodología mobile-d,» 2021. [En

línea]. Available: http://repositorio.utmachala.edu.ec/handle/48000/17863. [Último

acceso: 13 11 2025].

[25] C. Muñoz, «APLICACIÓN DE LA METODOLOGÍA MOBILE-D EN EL

DESARROLLO DE UNA APP MÓVIL PARA GESTIONAR CITAS MÉDICAS

DEL CENTRO JEL RIOBAMBA,» 2020. [En línea]. Available:

61

http://dspace.unach.edu.ec/bitstream/51000/7073/2/7.%20APLICACIÓN%20DE%2

0LA%20METODOLOGÍA%20MOBILE-

D%20EN%20EL%20DESARROLLO%20DE%20UNA%20APP%20MÓVIL%20P

ARA%20GESTIONAR%20CITAS%20MÉDICAS%20DEL%20CENTRO%20JEL

%20RIOBAMBA.pdf. [Último acceso: 14 03 2025].

[26] S. Márquez, «SISTEMA COMPUTACIONAL PARA ESTIMAR LA CAPTURA

DE CARBONO EN AGROECOSISTEMAS DE CAFÉ: CASO HUATUSCO,

VERACRUZ,» 2016. [En línea]. Available:

https://www.researchgate.net/figure/Figura-210-Metodologia-Mobile-D-Fuente-

Leyva-et-al-2016_fig5_348295603. [Último acceso: 08 10 2025].

[27] F. Sepa, «DESARROLLO DE UNA APLICACIÓN MÓVIL ANDROID PARA LA

PROMOCIÓN Y DIFUSIÓN DE EVENTOS Y TURISMO DEL CANTÓN

GUARANDA UTILIZANDO LA METODOLOGÍA DE DESARROLLO MOBILE-

D,» 2022. [En línea]. Available:

http://dspace.espoch.edu.ec/handle/123456789/20775. [Último acceso: 14 03 2025].

[28] A. Minina, «DESARROLLO DE UNA APLICACIÓN MÓVIL DELIVERY PARA

VISUALIZACIÓN DEL MENÚ Y REALIZACIÓN PEDIDOS DE COMIDAS Y

BEBIDAS A DOMICILIO EN EL BARRESTAURANTE BALTIMORE,» 2023.

[En línea]. Available: http://dspace.espoch.edu.ec/handle/123456789/22427. [Último

acceso: 14 03 2025].

[29] ISO 25000, «ISO/IEC 25012,» [En línea]. Available:

https://iso25000.com/index.php/normas-iso-25000/iso-25012. [Último acceso: 11 03

2025].

[30] F. Gualo, M. Rodríguez, J. Verdugo, I. Caballero y M. Piattini, «Data Quality

Certification using ISO/IEC 25012: Industrial Experiences,» 23 02 2021. [En línea].

Available: https://doi.org/10.48550/arXiv.2102.11527.

[31] S. Cobos y J. Maigua, «Desarrollo de una aplicación web para el análisis de los datos

de estabilidad del carbono orgánico en la zona alto andina de la sierra centro del

Ecuador.,» 10 05 2024. [En línea]. Available:

http://dspace.espoch.edu.ec/handle/123456789/22071.

[32] J. Wang, Y. Liu, P. Li, Z. Lin, S. Sindakis y S. Aggarwal, «Overview of Data Quality:

Examining the Dimensions, Antecedents, and Impacts of Data Quality,» 10 02 2023.

62

[En línea]. Available: https://doi.org/10.1007/s13132-022-01096-6. [Último acceso:

14 11 2025].

[33] Google, «Core Web Vitals,» 17 02 2025. [En línea]. Available:

https://developers.google.com/search/docs/appearance/core-web-vitals?hl=es.

[Último acceso: 23 06 2025].

[34] M. Meucci y A. Muller, OWASP Web Security Testing Guide v4, Wilmington: The

OWASP Foundation, 2020.

[35] Google, «Google SRE,» 2017. [En línea]. Available: https://sre.google/sre-

book/service-level-objectives/. [Último acceso: 23 06 2025].

[36] F. Tapuy y S. Segovia, «APLICACIÓN WEB PROGRESIVA PARA EL MANEJO

DE INVENTARIO EN LA FARMACIA DE LA COORDINACIÓN DE SALUD

ZONA 3,» 27 05 2022. [En línea]. Available:

http://dspace.unach.edu.ec/handle/51000/9159. [Último acceso: 01 07 2025].

[37] R. Montaño, «Desarrollo de una aplicación web para el censo obstétrico y control

neonatal en el Centro de Salud Chambo,» 16 05 2024. [En línea]. Available:

http://dspace.unach.edu.ec/handle/51000/12950. [Último acceso: 02 07 2025].

[38] Google, « Flutter documentation,» Flutter, [En línea]. Available:

https://docs.flutter.dev/. [Último acceso: 10 03 2025].

[39] T. Gironés, «Arquitectura de Android,» Valencia, 2011.

[40] C. Peralta, «INTELIGENCIA DE NEGOCIOS APLICADA A LA GESTIÓN

ESTRATÉGICA DE INFORMACIÓN COMERCIAL, DENTRO DEL PROCESO

DE TOMA DE DECISIONES EN VENTAS DE PYMES,» 2022. [En línea].

Available:

http://dspace.unach.edu.ec/bitstream/51000/9033/1/Proyecto%20de%20Investigació

n.pdf. [Último acceso: 12 03 2025].

[41] H. Ghalavand, S. Shirshahi, A. Rahimi, Z. Zarrinabadi y F. Amani, «Common data

quality elements for health information systems: a systematic review,» 02 09 2024.

[En línea]. Available:

https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-024-

02644.

63

ANEXOS

Anexo I: Diccionario de la base de datos

a) Tabla de usuarios

En la Tabla 19 se hace referencia a todos los campos que contiene la tabla usuarios.

Tabla 19: Diccionario de la tabla usuarios.

b) Tabla de roles

En la Tabla 20 se hace referencia a todos los campos que contiene la tabla roles de usuario.

Tabla 20: Diccionario de la tabla roles.

Campo Tipo de Dato Descripción

id uuid Identificador del rol.

nombre varchar(50) Nombre del rol (admin, encuestador, odontólogo, rector).

c) Tabla de unidades educativas

En la Tabla 21 se hace referencia a todos los campos que contiene la tabla unidades

educativas.

Tabla 21: Diccionario de la tabla unidades educativas.

Campo Tipo de Dato Descripción

id uuid Identificador de la unidad educativa.

nombre varchar(150) Nombre de la unidad.

direccion text Dirección.

tipo varchar(50) Tipo de unidad educativa.

fecha_creacion timestamp Fecha de creación.

Campo Tipo de Dato Descripción

id uuid Identificador único del usuario

cedula varchar(10) Cédula del usuario

nombres varchar(100) Nombres del usuario

apellidos varchar(100) Apellidos del usuario

password text Contraseña encriptada

rol_id uuid Rol del usuario (FK)

fecha_creacion timestamp Fecha de creación

carrera varchar(100) Carrera del usuario

fecha_nacimiento date Fecha de nacimiento

genero varchar(20) Género

area_trabajo varchar(100) Área de trabajo

estado varchar Estado del usuario (Activo/Inactivo)

64

d) Tabla de unidades precargadas

En la Tabla 22 se hace referencia a todos los campos que contiene la tabla unidades

precargadas.

Tabla 22: Diccionario de la tabla unidades precargadas.

Campo Tipo de Dato Descripción

id uuid Identificador único.

nombre varchar(255) Nombre de la unidad educativa.

direccion varchar(255) Dirección.

tipo varchar(100) Tipo de unidad educativa.

e) Tabla de estudiantes

En la Tabla 23 se hace referencia a todos los campos que contiene la tabla estudiante.
Tabla 23: Diccionario de la tabla estudiantes.

Campo Tipo de Dato Descripción

cedula varchar(10) Cédula del estudiante.

unidad_id uuid Unidad educativa (FK).

nombres varchar(100) Nombres.

apellidos varchar(100) Apellidos.

fecha_nacimiento date Fecha de nacimiento.

sexo varchar(10) Sexo.

discapacidad varchar(50) Tipo de discapacidad.

alergias text Alergias.

representante_nombre varchar(100) Nombre del representante.

representante_telefono varchar(20) Teléfono del representante.

comunidad_residencia varchar(100) Comunidad de residencia.

fecha_registro timestamp Fecha de registro.

profesor_nombre varchar(100) Nombre del profesor.

profesor_cedula varchar(20) Cédula del profesor.

tipo_alergia text Tipo de alergia.

parentesco_representante text Parentesco del representante.

posee_seguro text Posee seguro.

tipo_seguro text Tipo de seguro.

grado_paralelo text Grado y paralelo.

f) Tabla de estudiantes precargados

En la Tabla 24 se hace referencia a todos los campos que contiene la tabla estudiante

precargados.

65

Tabla 24: Diccionario de la tabla estudiantes precargados.

Campo Tipo de Dato Descripción

cedula varchar(20) Cédula del estudiante.

nombres varchar(100) Nombres.

apellidos varchar(100) Apellidos.

fecha_nacimiento date Fecha de nacimiento.

sexo varchar(10) Sexo.

discapacidad varchar(50) Tipo de discapacidad.

alergias text Alergias.

nombre_representante varchar(100) Nombre del representante.

telefono_representante varchar(20) Teléfono del representante.

comunidad_residencia varchar(100) Comunidad de residencia.

profesor_nombre varchar(100) Nombre del profesor.

profesor_cedula varchar(20) Cédula del profesor.

tipo_alergia text Tipo de alergia.

parentesco_representante text Parentesco del representante.

posee_seguro text Posee seguro.

tipo_seguro text Tipo de seguro.

grado_paralelo text Grado y paralelo.

g) Tabla de encuestas

En la Tabla 25 se hace referencia a todos los campos que contiene la tabla encuestas.

Tabla 25: Diccionario de la tabla encuestas.

Campo Tipo de Dato Descripción

id uuid Identificador único.

usuario_id uuid ID del usuario que registró (FK).

cedula_estudiante varchar(10) Cédula del estudiante evaluado.

fecha timestamp Fecha de creación.

tipo_encuesta varchar(50) Tipo de encuesta (salud, salud_oral).

h) Tabla de alimentación y nutrición

En la Tabla 26 se hace referencia a todos los campos que contiene la tabla alimentación y

nutrición.

Tabla 26: Diccionario de la tabla alimentación y nutrición.

Campo Tipo de Dato Descripción

id uuid Identificador del registro.

encuesta_id uuid ID de encuesta (FK).

peso numeric(5,2) Peso en kg.

talla numeric(5,2) Talla en metros.

66

imc numeric(5,2) Índice de masa corporal.

estado_imc varchar(50) Estado nutricional por IMC.

peso_para_edad varchar(50) Clasificación de peso para edad.

talla_para_edad varchar(50) Clasificación de talla para edad.

i) Tabla de vacunación

En la Tabla 27 se hace referencia a todos los campos que contiene la tabla vacunación.

Tabla 27: Diccionario de la tabla vacunación.

Campo Tipo de Dato Descripción

id uuid Identificador.

encuesta_id uuid ID de encuesta (FK).

vacuna varchar(50) Nombre de la vacuna.

fecha_vacunacion date Fecha de vacunación.

tipo varchar(50) Tipo de vacuna (regular o campaña).

estado varchar(50) Estado de aplicación.

observacion text Observaciones.

j) Tabla de registro de campañas

En la Tabla 28 se hace referencia a todos los campos que contiene la tabla registro de

campañas.

Tabla 28: Diccionario de la tabla registro de campañas.

Campo Tipo de Dato Descripción

id uuid ID del registro.

encuesta_id uuid ID de encuesta (FK).

campania_id uuid ID de campaña (FK).

fecha_vacunacion text Fecha de vacunación.

created_at timestamp Fecha de creación.

k) Tabla de tamizaje visual

En la Tabla 29 se hace referencia a todos los campos que contiene la tabla tamizaje visual.

Tabla 29: Diccionario de la tabla tamizaje visual.

Campo Tipo de Dato Descripción

id uuid Identificador del registro.

encuesta_id uuid ID de encuesta (FK).

ojo_izquierdo_sin_lentes varchar(30) Agudeza visual ojo izquierdo sin lentes.

ojo_derecho_sin_lentes varchar(30) Agudeza visual ojo derecho sin lentes.

ojo_izquierdo_con_lentes varchar(30) Agudeza visual ojo izquierdo con lentes.

ojo_derecho_con_lentes varchar(30) Agudeza visual ojo derecho con lentes.

67

resultado_sin_lentes text Resultado general sin lentes.

resultado_con_lentes text Resultado general con lentes.

l) Tabla de salud oral

En la Tabla 30 se hace referencia a todos los campos que contiene la tabla salud oral.

Tabla 30: Diccionario de la tabla salud oral.

Campo Tipo de Dato Descripción

id uuid Identificador del registro.

encuesta_id uuid ID de encuesta (FK).

placa_bacteriana boolean Presencia de placa bacteriana.

aplicacion_fluor boolean Aplicación de flúor.

aplicacion_sellantes boolean Aplicación de sellantes.

fecha_placa_bacteriana date Fecha de control de placa bacteriana.

fecha_aplicacion_fluor date Fecha de aplicación de flúor.

fecha_aplicacion_sellantes date Fecha de aplicación de sellantes.

observaciones text Observaciones del odontólogo.

piezas_sanas_superior integer Piezas sanas del maxilar superior.

piezas_sanas_inferior integer Piezas sanas del maxilar inferior.

piezas_cariadas_superior integer Piezas cariadas del maxilar superior.

piezas_cariadas_inferior integer Piezas cariadas del maxilar inferior.

piezas_obturadas_superior integer Piezas obturadas del maxilar superior.

piezas_obturadas_inferior integer Piezas obturadas del maxilar inferior.

piezas_perdidas_superior integer Piezas perdidas del maxilar superior.

piezas_perdidas_inferior integer Piezas perdidas del maxilar inferior.

extraccion_indicada_superior text Piezas con extracción indicada superior.

extraccion_indicada_inferior text Piezas con extracción indicada inferior.

m) Tabla de salud mental

En la Tabla 31 se hace referencia a todos los campos que contiene la tabla salud mental.

Tabla 31: Diccionario de la tabla salud mental.

Campo Tipo de Dato Descripción

id uuid Identificador del registro.

encuesta_id uuid ID de encuesta (FK).

violencia_fisica_familiar boolean Violencia física en el entorno familiar.

violencia_fisica_escolar boolean Violencia física en el entorno escolar.

violencia_fisica_otro boolean Violencia física en otros contextos.

violencia_psicologica_familiar boolean Violencia psicológica familiar.

violencia_psicologica_escolar boolean Violencia psicológica escolar.

violencia_psicologica_otro boolean Violencia psicológica en otro ámbito.

68

violencia_sexual_familiar boolean Violencia sexual en el hogar.

violencia_sexual_escolar boolean Violencia sexual en la escuela.

violencia_sexual_otro boolean Violencia sexual en otros espacios.

alcohol_pasado boolean Consumo de alcohol en el pasado.

alcohol_actual boolean Consumo actual de alcohol.

tabaco_pasado boolean Consumo de tabaco en el pasado.

tabaco_actual boolean Consumo actual de tabaco.

drogas_pasado boolean Consumo de drogas en el pasado.

drogas_actual boolean Consumo actual de drogas.

ansiedad_pasada boolean Síntomas de ansiedad en el pasado.

ansiedad_actual boolean Síntomas actuales de ansiedad.

depresion_pasada boolean Síntomas de depresión en el pasado.

depresion_actual boolean Síntomas actuales de depresión.

intento_suicidio_pasado boolean Intentos de suicidio en el pasado.

intento_suicidio_actual boolean Intentos actuales de suicidio.

n) Tabla de higiene y saneamiento

En la Tabla 32 se hace referencia a todos los campos que contiene la tabla higiene y

saneamiento.

Tabla 32: Diccionario de la tabla higiene y saneamiento.

Campo Tipo de Dato Descripción

id uuid Identificador del registro.

encuesta_id uuid ID de encuesta (FK).

participa_riesgos_vectores boolean Participa en control de vectores.

participa_espacios_saludables boolean Participa en espacios saludables.

participa_lavado_manos boolean Participa en lavado de manos.

participa_agua_segura boolean Participa en agua segura.

numero_vectores integer Numero de sesiones sobre vectores.

numero_espacios_saludables integer Numero de sesiones de espacios saludables.

numero_lavado_manos integer Numero de sesiones de lavado de manos.

numero_agua_segura integer Numeros de sesiones de agua segura.

Anexo II: Pruebas de simulaciones

a) Eficiencia de datos

69

70

b) Precisión de los datos

71

c) Disponibilidad

72

Anexo III: Ficha técnica del sistema

73

Ficha técnica del sistema de gestión de censo de salud Chambo

Indicador/Característica Valor/Descripción

Nombre del sistema Censo de salud Chambo.

Tipo de aplicación Aplicación web y Aplicación móvil.

Tamaño de la aplicación (APK) 43.58 MB.

Disponibilidad del sistema Android (versión mínima 8.0) y sistema web

compatible con navegadores modernos.

Módulos implementados 10 módulos: Unidad educativa, estudiantes,

encuestas, alimentación, vacunación, campañas de

vacunación, salud mental, salud oral, higiene y

saneamiento, tamizaje visual.

Tiempo de desarrollo 4 meses.

Tecnologías utilizadas Flutter, Node.js, React.js.

Metodología de desarrollo Mobile-D.

Bases de datos MySQL, PostgreSQL.

Modo Offline Si. Permite trabajo sin conexión y posterior

sincronización.

74

Anexo IV: Manual de usuario

MANUAL DE USUARIO

SISTEMA PARA LA GESTIÓN DE CENSO DE SALUD EN

EL CENTRO DE SALUD CHAMBO UTILIZANDO EL

FRAMEWORK FLUTTER

CENTRO DE SALUD CHAMBO

75

Tabla de contenido

1. Apartado móvil .. 76

1.1 Inicio de sesión ... 76

1.2 Encuesta de salud ... 79

1.2.1 Módulo de alimentación y nutrición ... 79

1.2.2 Módulo de vacunación .. 80

1.2.3 Módulo de tamizaje visual .. 81

1.2.4 Módulo de salud mental .. 81

1.2.5 Módulo de higiene y saneamiento .. 82

1.3 Encuesta de salud oral .. 82

1.3.1 Módulo de salud oral ... 83

1.4 Sincronizar datos .. 85

1.5 Cerrar sesión ... 86

2. Apartado web ... 86

2.1 Inicio de sesión .. 86

2.2 Módulos del sistema .. 87

2.2.1 Gestión de usuarios ... 87

2.2.2 Registro de unidades educativas .. 89

2.2.3 Carga masiva de estudiantes .. 91

2.2.4 Campañas de vacunación .. 92

2.2.5 Visualización de encuestas realizadas ... 93

2.2.6 Reporte encuestas .. 94

2.2.5 Analítica de datos .. 95

2.3 Cerrar sesión.. 97

76

1. Apartado móvil

1.1 Inicio de sesión

Al iniciar sesión por primera vez a través de la cedula y contraseña, la aplicación descargara

el listado de los estudiantes, unidades educativas y campañas de vacunación pre cargadas.

Esta sincronización inicial puede tardar unos minutos, dependiendo de la cantidad de

estudiantes y la calidad de la conexión. El usuario deberá esperar a que se complete antes de

empezar con el registro de encuestas.

En caso de que las credenciales sean incorrectas, se mostrará el siguiente mensaje de

advertencia.

Una vez iniciada la sesión, el sistema mostrará la pantalla principal, la cual dispone de un

menú lateral que organiza los distintos módulos: selección de unidad educativa,

Paso 1

Paso 2
Paso 3

77

visualización de unidades registradas, selección de estudiantes, registro de encuestas de

salud, consulta de encuestas registradas, consulta de estudiantes registrados y sincronización

de información.

En esta sección, el encuestador deberá seleccionar la unidad educativa y presionar el botón

registrar unidad para dar inicio al proceso de registro. Posteriormente, mediante la opción

ver unidades registradas, será posible verificar si la unidad educativa fue seleccionada

correctamente antes de continuar con el proceso.

Al utilizar seleccionar estudiante, el encuestador podrá ingresar el número de cédula del

estudiante, lo que permitirá que el sistema complete automáticamente las casillas con la

información registrada previamente. En esta etapa, el encuestador deberá confirmar la

Paso 1

Paso 2

78

unidad educativa a la que pertenece y posteriormente, presionar el botón guardar estudiante

para asociar y registrar correctamente los datos en el sistema.

A través de la opción ver estudiantes registrados, el encuestador podrá visualizar al

estudiante previamente registrado junto con toda su información asociada, lo que permite

verificar la correcta incorporación de los datos en el sistema antes de continuar con el

levantamiento de la encuesta.

Mediante llenar encuesta de salud, se podrá seleccionar al estudiante correspondiente y

definir el tipo de encuesta que desea realizar. Una vez completada esta selección, será

necesario presionar el botón guardar encuesta, lo que habilitará automáticamente la opción

llenar módulos. A través de esta función se activarán los diferentes módulos de la encuesta

de salud.

Paso 2

Paso 1

Paso 3

79

1.2 Encuesta de salud

En la pantalla, se muestra en la parte superior el nombre del estudiante con su número de

cédula. Desde esta sección se podrá accede a los diferentes módulos disponibles:

Alimentación y nutrición, Vacunación, Tamizaje visual, Salud mental e Higiene y

saneamiento, cada uno con su respectiva opción para registrar información y consultar

registros anteriores.

1.2.1 Módulo de alimentación y nutrición

En el módulo de alimentación y nutrición se presentan los datos del estudiante, incluyendo

nombre, cédula, sexo y edad. Desde esta sección el encuestador podrá ingresar el peso (kg)

y la talla (m), a partir de los cuales el sistema calculara automáticamente el IMC,

posteriormente al seleccionar guardar registros la información se almacena de forma segura

Paso 1

Paso 2

Paso 3

Paso 4

80

y mediante el botón ver registro de alimentación se podrá consultara y editar el peso y la

talla del encuestado.

1.2.2 Módulo de vacunación

En el módulo de vacunación se podrá seleccionar el nombre de la vacuna, el tipo, el estado

y la fecha de aplicación. Al presionar el botón guardar registro, la información se

almacenará de manera segura. Además, dependiendo de la edad del estudiante, se habilitará

la campaña correspondiente, en la cual únicamente será necesario seleccionar la fecha y

guardar la campaña.

En registro de vacunación se podrá visualizar de manera completa toda la información

registrada, incluyendo los datos de la vacuna, tipo, estado, fecha de aplicación y campañas

asociadas, lo que permite un seguimiento preciso y actualizado del historial de vacunación

del estudiante.

Paso 1

Paso 2

Paso 3

Paso 1

Paso 2

Paso 3

Paso 4

Paso 5

Paso 6

Paso 8

Paso 7

81

1.2.3 Módulo de tamizaje visual

En el módulo de tamizaje visual se podrá registrar el puntaje de refracción del ojo izquierdo

y del ojo derecho, tanto sin lentes como con lentes. A partir de estos datos, el sistema

determinará si existe algún error de refracción. Posteriormente, la información se almacenará

mediante el botón guardar registro. Por otra parte, en la sección ver registro de tamizaje

visual se podrá consultar toda la información generada.

1.2.4 Módulo de salud mental

En el módulo de salud mental se presentarán preguntas cerradas de SI o NO relacionadas

con antecedentes de violencia, consumo de sustancias y estado emocional del estudiante. La

información se almacenará al presionar el botón guardar información. Además, en la

sección ver registro de salud mental se podrá consultar toda la información registrada en

Paso 1

Paso 2

Paso 3

82

el módulo, lo que permite un seguimiento preciso del estado emocional y conductual del

estudiante.

1.2.5 Módulo de higiene y saneamiento

En el módulo de higiene y saneamiento se presentará una serie de preguntas relacionadas

con las actividades realizadas por el estudiante durante el periodo escolar, en las cuales se

deberá activar la casilla correspondiente y registrar el número de veces que se han realizado.

La información se almacenará al presionar el botón guardar información. Además, en la

sección ver registro de higiene se podrá consultar toda la información almacenada, lo que

permite un seguimiento detallado de los hábitos del estudiante.

1.3 Encuesta de salud oral

Paso 1

Paso 2

Paso 2

Paso 1

83

En la sección de registro, el encuestador con rol de odontólogo seleccionará al estudiante y

la opción encuesta de salud oral, posteriormente deberá presionar el botón guardar

encuesta, lo que habilitará el botón llenar módulos; al presionar este último, se desplegará

el módulo correspondiente, permitiendo registrar de manera organizada y completa todos los

datos de la encuesta.

En esta sección se podrá visualizar el nombre del estudiante, su cédula, el módulo de salud

oral y la opción ver registro de salud oral, lo que permite consultar de manera organizada y

completa toda la información registrada en el módulo.

1.3.1 Módulo de salud oral

En el módulo de salud oral se pueden observar las piezas dentales del maxilar superior e

inferior, donde el encuestador podrá seleccionar cada pieza dental y asignarle el estado

correspondiente entre las opciones: sano, cariado, obturado, perdido, extracción indicada o

no aplica. A partir de estas selecciones, el sistema mostrará automáticamente el número de

Paso 1

Paso 4

Paso 2

Paso 3

84

piezas sanas, obturadas, perdidas y con extracción indicada, así como el total de piezas

evaluadas.

Adicionalmente, se presentan tres casillas referentes a: presencia de placa bacteriana,

necesita aplicación de flúor y necesita aplicación de sellante; al seleccionar alguna de estas

opciones, se habilita el botón programar fecha de intervención, que permite registrar la

fecha prevista para la intervención.

El módulo también cuenta con un cuadro de observaciones para registrar notas adicionales.

Para almacenar toda la información registrada, el encuestador deberá presionar el botón

guardar registro, garantizando que los datos queden completos y actualizados. Asimismo,

en el módulo ver registro de salud oral se podrá visualizar toda la información recolectada,

permitiendo consultar de manera organizada los estados de las piezas dentales,

intervenciones programadas y observaciones registradas, lo que facilita un seguimiento

preciso del estado de salud oral del estudiante.

Paso 1

Paso 2

Paso 3

85

1.4 Sincronizar datos

Al finalizar los módulos, el encuestador podrá retroceder presionando este icono ubicado

en la parte superior izquierda. Al hacerlo, se mostrará un mensaje que confirma los cambios

realizados en la encuesta actual y pregunta si se desea regresar al menú principal, debiendo

seleccionar la opción sí para regresar.

En esta sección, el encuestador de la área de salud y odontología deberá contar con conexión

a internet para sincronizar la información que se ha almacenado de manera offline en el

dispositivo móvil, asegurando que todos los datos recopilados queden actualizados en la base

de datos central, lo cual se podrá realizar mediante la selección del botón sincronizar

información, que inicia el proceso de transferencia de datos de forma segura y confiable,

Paso 5

Paso 2

Paso 1

Paso 4

86

mostrando a continuación un cuadro de resumen de sincronización en el que el encuestador

deberá presionar el botón aceptar para confirmar y cerrar el mensaje.

1.5 Cerrar sesión

Para cerrar sesión, el usuario deberá hacer clic en el icono de , en el caso de requerir un

nuevo acceso será necesario autenticarse nuevamente con sus credenciales.

2. Apartado web

2.1 2.1 Inicio de sesión

En la ventana principal, el usuario deberá ingresar su cédula y contraseña, tal como se

indica en la ilustración a continuación.

Paso 3

Paso 4

Paso 1

87

En esta sección se encuentra el módulo principal, que integra las opciones de gestión de

usuarios, analítica de datos, campañas de vacunación, unidades educativas, carga masiva de

estudiantes, avance de encuestas y ver estudiantes.

2.2 Módulos del sistema

2.2.1 Gestión de usuarios

En esta sección, el usuario con rol de administrador podrá acceder a las opciones de

registrar un nuevo usuario y ver los usuarios registrados.

Paso 1

Paso 2

Paso 3

88

Al seleccionar la opción registrar usuario, se podrá crear un perfil ingresando los datos

correspondientes: número de cédula, nombres, apellidos, carrera, fecha de nacimiento, sexo,

contraseña, rol y área de trabajo. Finalmente, para guardar el registro, se deberá presionar el

botón aceptar.

En el módulo de gestión de usuarios, el administrador podrá buscar a los usuarios por

cédula o nombre utilizando el icono de la lupa. Además, tendrá la opción de editar, activar

o desactivar usuarios según sea necesario y contará con un botón de acceso rápido para

registrar un nuevo usuario de manera inmediata.

Paso 1

Paso 2

89

Si el administrador selecciona la opción editar, se mostrará una ventana donde podrá

modificar todos los campos de información del usuario previamente registrado y, al

presionar el botón guardar cambios, se actualizará la información en el sistema.

Por otra parte, solo el administrador tiene la facultad de gestionar las contraseñas de los

usuarios.

2.2.2 Registro de unidades educativas

En esta sección, el administrador podrá visualizar las unidades educativas y contará con las

opciones de buscar, editar, eliminar y registrar nuevas unidades según sea necesario.

Buscar

usuario

Activar y desactivar

Registrar

usuario

Paso 2

Paso 1

Editar

usuario

90

Al seleccionar la opción registrar unidad, se deberán completar los campos de nombre,

tipo y dirección, y posteriormente presionar el botón guardar para almacenar la

información.

Al seleccionar editar, se podrá modificar la información registrada y presionar guardar para

actualizar los datos en el sistema.

Buscar unidad
Registrar

unidad

Editar y

eliminar

unidad

Paso 1

Paso 2

91

2.2.3 Carga masiva de estudiantes

El usuario deberá aplastar el botón elegir archivo para seleccionar el Excel con la lista de

estudiantes; luego, al presionar carga masiva de datos, el sistema valida la información,

guarda los registros correctos y muestra un reporte con los cargados y rechazados.

Al seleccionar el botón eliminar todos los estudiantes precargados, el usuario borrará de

forma permanente la información cargada masivamente. Al ejecutar esta acción, se mostrará

una ventana para confirmar o cancelar la operación. Esta acción debe realizarse únicamente

en casos necesarios, cuando se requiera reiniciar la base de datos para cargar un nuevo

listado actualizado de estudiantes.

Paso 1

Paso 2

Seleccionar archivo

Seleccionar eliminar

estudiantes

precargados

Seleccionar carga

de datos

92

2.2.4 Campañas de vacunación

En esta sección, el usuario podrá visualizar la información de las campañas de vacunación,

incluyendo nombre, vacuna, rango de edad y rango de fechas. Además, cuenta con las

funciones de editar campaña, registrar una nueva campaña y buscar campaña por

nombre, facilitando la gestión y actualización de los registros.

Al presionar editar, se mostrará una ventana en la que el usuario podrá modificar el nombre

de la campaña, vacuna, rango de edad y el rango de fechas. Para aplicar los cambios,

será necesario presionar el botón guardar; en caso de no querer actualizar la información,

solo se deberá presionar el icono de X para cerrar la ventana sin guardar los cambios.

Seleccionar si eliminar o

cancelar

Buscar campaña

Editar campaña

Registrar

campaña

93

Al presionar registrar nueva campaña, el usuario podrá completar todos los campos de

información correspondientes a la nueva campaña y, posteriormente, presionar el botón

guardar para registrar la campaña en el sistema o, en caso de no querer guardar, presionar

el icono de X para cerrar la ventana sin realizar cambios.

2.2.5 Visualización de encuestas realizadas

En encuestas realizadas, el usuario podrá filtrar la información por unidad educativa,

curso o buscar directamente por el número de cédula del estudiante, facilitando la

localización rápida de los registros.

Guardar cambios

Cerrar cambios

Paso 2

Paso 1 Cerrar campaña

94

Al filtrar al estudiante, el usuario dispondrá de dos botones: uno para visualizar la

información del estudiante y otro para consultar el resumen del censo realizado.

2..1 2.2.6 Reporte encuestas

El usuario podrá filtrar la información por unidad educativa y curso. Al presionar el botón

consultar avance, el sistema mostrará los datos correspondientes, incluyendo el número de

estudiantes encuestados, encuestas completas, encuestas no registradas, porcentaje de

avance y el último estudiante encuestado.

Seleccionar

unidad
Seleccionar

curso

Buscar por

cedula

Seleccionar

información

personal

Seleccionar

información

del censo

95

En el segundo bloque, el usuario podrá filtrar las encuestas ingresando la cédula, el año y el

mes. Al presionar consultar, se mostrarán los resultados y se habilitan dos opciones de

exportación: exportar totales, que genera un archivo con el resumen de encuestas, y

exportar detalle, que descarga el listado completo con la información detallada de cada

encuesta.

2.2.5 Analítica de datos

En esta sección, el usuario podrá filtrar la información por unidad educativa, curso, sexo,

rango de edad, rango de fechas y módulo de salud. Para ejecutar la búsqueda, será

necesario presionar el botón buscar.

Seleccionar

unidad

Seleccionar curso

Seleccionar

consultar

avance

Seleccionar

cedula

Seleccionar

año

Seleccionar

mes

Seleccionar consultar

Seleccionar

exportación total

o por detalle

96

Al filtrar la información de los censos en el módulo de analítica de datos, el usuario podrá

exportar los resultados en formato xlxs para ciertos grupos vulnerables, presionando el

botón exportar casos.

En este apartado, al seleccionar el módulo de alimentación y nutrición o salud oral, se

habilitarán dos filtros adicionales que permiten visualizar un histograma comparativo

entre periodos, de acuerdo con el año y el mes seleccionado.

Seleccionar

rango de

fecha

Seleccionar

rango de edad
Seleccionar

sexo

Seleccionar

módulo

Seleccionar

unidad

Seleccionar curso

Seleccionar

exportar casos

Paso 1

Paso 2

97

2.3 Cerrar sesión

Para “cerrar sesión”, el usuario deberá hacer clic en botón cerrar sesión, en el caso de

requerir un nuevo acceso será necesario autenticarse nuevamente con sus credenciales.

Paso 1

98

Anexo V: Manual técnico

MANUAL TÉCNICO

SISTEMA PARA LA GESTIÓN DE CENSO DE SALUD EN

EL CENTRO DE SALUD CHAMBO UTILIZANDO EL

FRAMEWORK FLUTTER

CENTRO DE SALUD CHAMBO

99

1. Introducción

El presente Manual Técnico documenta de manera detallada la estructura, configuración y

funcionamiento del sistema informático desarrollado para la gestión del Censo de Salud en

el Centro de Salud Chambo.

Este manual está dirigido a desarrolladores, técnicos y personal de soporte, y tiene como

finalidad servir como guía de referencia técnica para la instalación, mantenimiento, uso y

futura evolución del sistema.

En las siguientes secciones se detallan los componentes del sistema (móvil, web y backend),

la arquitectura general, los requerimientos técnicos, la estructura de la base de datos, la lógica

de sincronización, y los procedimientos de despliegue y administración.

2. Objetivo del sistema

El objetivo principal del sistema es digitalizar y optimizar el proceso de levantamiento y

gestión de información de salud en estudiantes de unidades educativas del cantón Chambo,

mediante una solución tecnológica integral compuesta por una aplicación móvil, un backend

centralizado y una plataforma web administrativa.

3. Dirigido a

Este manual está orientado a desarrolladores, técnicos de soporte, y personal del área de

sistemas que esté a cargo de la instalación, administración o mantenimiento del sistema de

Censo de Salud.

Su lectura permitirá conocer cómo está estructurado internamente el sistema, cómo se

instala, qué módulos lo componen, cómo se conecta a la base de datos y cómo se puede

escalar o actualizar en el futuro.

4. Conocimientos previos

Para el uso adecuado de este manual y la correcta administración técnica del sistema

informático del Censo de Salud, el personal encargado debe contar con ciertos

conocimientos previos. Estos conocimientos permiten entender la estructura, configuración,

despliegue y mantenimiento de los diferentes componentes del sistema.

A continuación, se detallan las áreas de conocimiento necesarias:

4.1. Conocimientos generales

Manejo básico de sistemas operativos Windows y/o Linux (instalación de programas,

navegación de archivos, uso de terminal o consola).

Comprensión de conceptos de redes y conectividad: IP local, conexión cliente-servidor,

puertos, conexión a base de datos remota.

100

Habilidad para navegar en entornos web, utilizar navegadores y herramientas administrativas

en línea.

4.2. Conocimientos técnicos específicos

• Para técnicos de instalación o despliegue:

o Instalación y configuración de dependencias en Node.js y React usando npm.

o Manejo básico de bases de datos PostgreSQL: creación de bases, ejecución de

sentencias SQL, importación/exportación de datos.

o Conocimiento del sistema de control de versiones Git, para clonar y actualizar

repositorios del sistema.

• Para desarrolladores o personal de mantenimiento:

o Lectura e interpretación de código en JavaScript (Node.js) y Dart (Flutter).

o Conocimiento del framework Express.js para comprender la estructura del backend

y sus rutas API.

o Familiaridad con el framework Flutter para modificar la aplicación móvil y compilar

en Android Studio.

o Experiencia básica en React.js para modificar o extender el frontend web del sistema.

• Para supervisores o administradores del sistema:

o Comprensión general de los roles de usuario, estructura de módulos y

funcionamiento de cada componente (web, móvil, servidor).

o Uso de herramientas como Postman o Insomnia para probar endpoints del sistema si

es necesario.

o Capacidad para identificar errores comunes y comunicarlos al equipo técnico.

4.3. Recomendaciones adicionales

• Tener acceso a documentación oficial de las tecnologías empleadas.

• Mantener un entorno de pruebas local para realizar cambios sin afectar el sistema en

producción.

• Disponer de respaldo periódico de la base de datos y del código fuente actualizado.

5. Especificaciones técnicas

El correcto funcionamiento del sistema de gestión del Censo de Salud requiere de ciertos

recursos tecnológicos, tanto a nivel de hardware como de software. Esta sección describe los

requerimientos mínimos y recomendados que deben cumplir los dispositivos y entornos

donde se implementarán los distintos componentes del sistema: aplicación móvil, backend

(API), base de datos y plataforma web.

101

5.1. Requerimientos de Hardware

• Dispositivos móviles (uso en campo)

Utilizados por los encuestadores para el levantamiento de datos.

Recurso Requerimiento mínimo Recomendado

Sistema operativo Android 8.0 (Oreo) Android 11 o superior

Procesador Quad-core 1.3 GHz Octa-core 2.0 GHz o más

Memoria RAM 2 GB 4 GB o más

Almacenamiento libre 8 GB 16 GB o más

Conectividad Wi-Fi o datos móviles Wi-Fi + 4G

Pantalla 5.5 pulgadas 6.0 pulgadas

• Computador de escritorio (uso administrativo o desarrollo)

Utilizado por el personal técnico para administración web, mantenimiento y soporte.

Recurso Requerimiento mínimo Recomendado

Sistema operativo Windows 10 / Ubuntu 20.04 Windows 11 / Ubuntu 22.04

Procesador Intel Core i3 Intel Core i5 o superior

Memoria RAM 4 GB 8 GB o más

Almacenamiento 100 GB libres 256 GB SSD

Resolución de pantalla 1366 x 768 1920 x 1080

Conectividad Red LAN o Wi-Fi estable Conexión directa a red local

• Servidor (backend + base de datos)

Para uso en entorno de producción o pruebas centralizadas.

Recurso Requerimiento mínimo Recomendado

Sistema operativo Ubuntu Server 20.04 Ubuntu Server 22.04

Procesador 2 núcleos 4 núcleos o más

Memoria RAM 4 GB 8 GB o más

Disco duro 100 GB 250 GB SSD

Seguridad Firewall activado Backup automático y VPN

5.2. Requerimientos de Software

Los siguientes entornos y herramientas son necesarias para la instalación, ejecución,

desarrollo o mantenimiento del sistema.

Componente Herramienta / Tecnología Versión recomendada

Aplicación móvil Flutter SDK 3.19.0 o superior

IDE móvil Android Studio Electric Eel o superior

Lenguaje móvil Dart Última versión estable

Backend (API REST) Node.js 18.x LTS

Framework backend Express.js ^4.18

Base de datos PostgreSQL 15.x

ORM / conexión DB pg-promise o nativa Según implementación

Frontend web React.js 18.x

Gestor de dependencias npm 9.x

102

Editor de código Visual Studio Code Última versión

Control de versiones Git Instalado y configurado

Pruebas de carga JMeter o K6 Opcional

Otros JWT, dotenv, bcrypt Para seguridad y configuración

Esta configuración técnica asegura que el sistema pueda ser instalado, desplegado y utilizado

sin inconvenientes, y permite garantizar la portabilidad, estabilidad y escalabilidad del

software a futuro.

6. Descripción general del sistema

El sistema de gestión del Censo de Salud del Centro de Salud Chambo es una solución

informática distribuida, desarrollada con tecnologías modernas de software libre. Está

conformado por tres componentes principales que interactúan entre sí bajo una arquitectura

cliente-servidor:

• Aplicación móvil (Flutter)

• Servidor backend (Node.js + PostgreSQL)

• Aplicación web administrativa (React)

El sistema permite el registro, almacenamiento, consulta y análisis de datos de salud escolar,

con soporte para trabajo offline y sincronización posterior. Ha sido diseñado para operar en

contextos rurales, con dispositivos móviles y acceso limitado a internet, garantizando así la

continuidad del proceso de censo.

6.1. Componentes del sistema

• Aplicación móvil (Flutter)

o Utilizada por encuestadores y odontólogos en dispositivos Android.

o Permite levantar información en zonas sin cobertura, gracias al almacenamiento local

con SQLite.

o Sincroniza automáticamente los datos al recuperar conexión a internet.

o Cada módulo (alimentación, salud oral, visual, mental, vacunación, higiene) cuenta

con su propia pantalla.

o Control de visibilidad por tipo de rol y tipo de encuesta (salud o salud_oral).

• Backend – API REST (Node.js + Express + PostgreSQL)

o Expone servicios RESTful para registrar, actualizar y consultar datos.

o Implementa autenticación con JWT, control de acceso por roles y validación de

datos.

o Maneja la lógica de sincronización desde la app móvil mediante endpoints

organizados por módulo.

o Todos los datos se almacenan en una base de datos relacional PostgreSQL.

103

o Incluye protección de rutas, middlewares y estructura modular (routes, controllers,

models).

• Plataforma web (React)

o Dirigida a administradores, rectores y personal de salud.

o Permite consultar los registros por cédula, curso, unidad educativa, sexo, edad y

fechas.

o Ofrece un módulo de analítica con gráficos por módulo de salud.

o Permite exportar información en formato Excel.

o Estilo visual profesional, institucional y adaptable a escritorio.

6.2. Integración entre componentes

• La aplicación móvil interactúa con el servidor mediante endpoints HTTP seguros.

• Los datos capturados localmente se almacenan en SQLite y se sincronizan mediante

peticiones POST al backend cuando hay conexión.

• El backend registra los datos en PostgreSQL y los pone a disposición de la plataforma

web.

• La web consulta los registros a través de endpoints protegidos por JWT, renderizando

los datos en tablas, gráficos y filtros dinámicos.

6.3. Arquitectura General

El sistema implementa una arquitectura de tipo cliente-servidor distribuida, con las

siguientes capas:

• Capa de presentación: Flutter (cliente móvil) y React (cliente web).

• Capa de lógica de negocio: Node.js (servidor backend).

• Capa de datos: PostgreSQL (base de datos relacional).

7. Contenido del sistema

El sistema de gestión del Censo de Salud está estructurado en módulos funcionales, los

cuales corresponden a áreas específicas de evaluación del estado de salud de los estudiantes.

Estos módulos han sido implementados tanto en la aplicación móvil como en la plataforma

web, y se encuentran organizados por encuesta, lo cual permite registrar múltiples tipos de

datos para un mismo estudiante de forma independiente. Cada módulo fue diseñado

siguiendo criterios técnicos del Ministerio de Salud Pública del Ecuador, y ha sido validado

para su funcionamiento offline y posterior sincronización.

7.1. Módulos funcionales implementados

A continuación, se describen los principales módulos incluidos en el sistema:

104

• Alimentación y nutrición

o Registro de peso y talla.

o Cálculo automático del IMC y su clasificación.

o Evaluación de peso para la edad y talla para la edad.

o Uso de tablas oficiales del MSP integradas en la lógica de la app.

• Tamizaje visual

o Evaluación de agudeza visual en ambos ojos, con y sin lentes.

o Detección de errores de refracción según criterios médicos (20/40 o inferior).

o Asignación automática del estado “Con error de refracción” o “Sin error”.

• Salud oral

o Evaluación de cada pieza dental, dividida por maxilar superior e inferior.

o Clasificación en sano, cariado, obturado, perdido, extracción indicada y no aplica.

o Cálculo automático del total de piezas evaluadas.

o Registro de fechas para placa bacteriana, aplicación de flúor y sellantes.

• Vacunación

o Registro de vacunas regulares y campañas de vacunación activas.

o Gestión de estado de aplicación: colocada, no colocada, no aplica.

o Fechas de vacunación con validación de campañas vigentes.

o Registro de observaciones por cada vacuna.

• Salud mental

o Registro de factores de riesgo: violencia, consumo de sustancias, estado emocional.

o Clasificación entre datos actuales y pasados.

o Campos codificados con valores booleanos para análisis automático.

o Visualización diferenciada por colores en web y app.

• Higiene y saneamiento

o Participación del estudiante en prácticas saludables: lavado de manos, agua segura,

vectores, espacios saludables.

o Registro de número de sesiones recibidas por cada tema.

o Evaluación simple (sí/no) para cada variable.

7.2. Otros módulos del sistema

Además de los módulos de salud, el sistema cuenta con funcionalidades adicionales para su

correcta operación:

105

• Gestión de usuarios: creación, edición, activación/inactivación por rol.

• Gestión de unidades educativas y cursos.

• Carga masiva de estudiantes desde archivo Excel.

• Asignación de encuestas por tipo (salud, salud_oral).

• Sincronización de datos desde la app móvil.

• Visualización por estudiante con historial completo de registros.

• Módulo de analítica por unidad educativa, curso, sexo, edad y fecha.

8. Funciones principales del sistema

El sistema informático desarrollado para la gestión del Censo de Salud cumple con una serie

de funciones clave que permiten cubrir todo el ciclo de levantamiento, almacenamiento,

consulta y análisis de la información de salud escolar.

Estas funciones están distribuidas entre los tres componentes del sistema: aplicación móvil,

servidor backend y plataforma web, los cuales trabajan de forma integrada bajo un esquema

cliente-servidor.

8.1. Funciones generales del sistema

• Registro de encuestas de salud por estudiante, clasificadas por tipo (salud o

salud_oral).

• Gestión de módulos clínicos independientes para cada área de evaluación (nutrición,

salud mental, etc.).

• Soporte para trabajo en modo offline mediante almacenamiento local en SQLite

(móvil).

• Sincronización automática de datos al recuperar conexión.

• Autenticación segura mediante tokens JWT.

• Control de acceso por roles, diferenciando permisos para encuestadores,

odontólogos, rectores y administradores.

• Generación de informes y gráficos estadísticos por módulo y unidad educativa.

• Exportación de información en formato Excel desde la web.

• Carga masiva de estudiantes y unidades educativas desde archivos .xlsx.

8.2. Funciones específicas por componente

• Aplicación móvil (Flutter)

o Acceso mediante login protegido con JWT.

o Visualización de datos del estudiante antes de registrar.

o Formulario de ingreso por módulo con validaciones automáticas.

o Almacenamiento local por módulo usando SQLite.

o Sincronización modular de registros al backend.

o Interfaz responsiva y adaptada al contexto rural.

106

o Control de visibilidad según rol y tipo de encuesta.

• Backend (Node.js + PostgreSQL)

o Exposición de endpoints RESTful para cada módulo.

o Verificación de identidad y roles mediante middleware.

o Validación de datos antes de ser almacenados.

o Relación entre estudiantes, encuestas y módulos a través de claves foráneas.

o Lógica de sincronización que evita duplicados.

o Registro de campañas de vacunación y asignación por edad.

o Estructura modular por carpeta (routes, controllers, models).

• Plataforma Web (React)

o Login con verificación de sesión y roles.

o Consulta de registros de salud por cédula, unidad o curso.

o Módulo de analítica con filtros por sexo, edad, curso, fechas y unidad educativa.

o Gráficos por módulo: IMC, salud oral, visual, mental, vacunación, higiene.

o Exportación de datos fuera de rango a Excel.

o Gestión visual de usuarios (activar, editar, reasignar).

o Diseño moderno, accesible y profesional.

9. Arquitectura del sistema

El sistema de gestión del Censo de Salud está construido bajo una arquitectura cliente-

servidor distribuida, compuesta por tres capas funcionales que interactúan entre sí mediante

servicios REST. Esta estructura modular facilita el mantenimiento, escalabilidad y

reutilización del sistema, permitiendo su uso tanto en entornos locales como remotos.

9.1. Componentes principales de la arquitectura

• Aplicación Móvil (Cliente 1)

o Desarrollada en Flutter con lenguaje Dart.

o Funciona en modo offline, utilizando SQLite para almacenamiento local.

o Realiza peticiones HTTP al backend para sincronización.

o Diseñada para dispositivos Android, con compatibilidad desde Android 8.0.

• Servidor Backend (API REST)

o Desarrollado en Node.js utilizando el framework Express.js.

o Provee servicios RESTful protegidos con JWT.

o Realiza validaciones, operaciones CRUD, y maneja lógica de negocio.

o Administra el flujo de sincronización desde la app móvil.

o Se conecta a la base de datos PostgreSQL para almacenamiento persistente.

107

• Plataforma Web (Cliente 2)

o Desarrollada en React.js.

o Se conecta a los endpoints del backend mediante peticiones HTTP autenticadas.

o Permite la visualización de registros, exportación de datos y acceso a gráficos

analíticos.

o Aplicación SPA (Single Page Application) con gestión de rutas y sesiones por rol.

• Base de Datos (Servidor de datos)

o Motor: PostgreSQL

o Base relacional compuesta por más de 15 tablas (usuarios, estudiantes, encuestas,

módulos).

o Utiliza claves primarias UUID y relaciones con claves foráneas.

o Todas las operaciones de lectura y escritura son controladas por el backend.

9.2. Diagrama lógico de arquitectura

9.3. Flujo de sincronización

108

• El encuestador registra datos en la app (sin conexión) → guardado en SQLite.

• Cuando el dispositivo detecta conexión a internet, envía los datos al backend

mediante una petición POST.

• El backend valida, guarda en PostgreSQL y responde con éxito.

• La app marca ese registro como sincronizado.

• La plataforma web accede al backend y lee la información sincronizada para su

visualización y análisis.

Esta arquitectura permite que el sistema sea robusto, modular y escalable, soportando

múltiples usuarios en campo y consultas simultáneas desde la plataforma web.

10. Base de datos

El sistema de Censo de Salud utiliza una base de datos relacional construida sobre

PostgreSQL, la cual actúa como repositorio central de toda la información capturada desde

la aplicación móvil y consultada desde la plataforma web.

La base está estructurada bajo el esquema public y contiene más de 15 tablas principales,

que representan usuarios, unidades educativas, estudiantes, encuestas y todos los módulos

clínicos implementados (alimentación, tamizaje visual, salud oral, etc.).

Cada tabla fue diseñada con tipos de datos adecuados, identificadores únicos (UUID), claves

foráneas para mantener integridad referencial y convenciones normalizadas para

escalabilidad y mantenibilidad.

10.1. Diseño general

• Modelo relacional: basado en entidades y relaciones normalizadas.

• Identificadores únicos: uso de uuid como claves primarias para garantizar unicidad

entre dispositivos móviles y servidor.

• Relaciones: uso de claves foráneas (FOREIGN KEY) entre estudiantes, encuestas y

módulos de salud.

• Integridad: aplicación de restricciones NOT NULL, UNIQUE y tipos específicos

como boolean, timestamp, numeric, varchar.

10.2. Estructura de tablas principales

A continuación, se presenta la descripción técnica de las tablas más importantes del sistema:

10.2.1. Tabla: usuarios

Contiene la información de los usuarios registrados en el sistema, como encuestadores,

odontólogos, administradores y rectores.

109

Campo Tipo de Dato Descripción

id uuid Identificador único del usuario

cedula varchar(10) Cédula de identidad

nombres varchar(100) Nombres del usuario

apellidos varchar(100) Apellidos del usuario

correo varchar Correo institucional

password text Contraseña encriptada

rol_id uuid Relación con la tabla roles

carrera varchar(100) Carrera profesional

fecha_nacimiento date Fecha de nacimiento

genero varchar(20) Género (masculino/femenino/otro)

area_trabajo varchar(100) Área de trabajo

estado varchar Estado del usuario (Activo/Inactivo)

fecha_creacion timestamp Fecha de registro

10.2.2. Tabla: roles

Define los tipos de usuario existentes en el sistema.

Campo Tipo de Dato Descripción

id uuid Identificador único del rol

nombre varchar(50) Nombre del rol (admin, encuestador, etc.)

0.2.3. Tabla: unidades_educativas

Contiene el listado de unidades educativas participantes en el censo.

Campo Tipo de Dato Descripción

id uuid ID de la unidad educativa

nombre varchar(150) Nombre completo de la institución

direccion text Dirección física

tipo varchar(50) Tipo (Fiscal, Particular, etc.)

fecha_creacion timestamp Fecha de registro

10.2.4. Tabla: estudiantes

Contiene la información detallada de los estudiantes registrados manualmente en el sistema.

Campo Tipo de Dato Descripción

cedula varchar(10) Cédula del estudiante

unidad_id uuid Relación con la unidad educativa (FK)

nombres varchar(100) Nombres del estudiante

apellidos varchar(100) Apellidos del estudiante

fecha_nacimiento date Fecha de nacimiento

sexo varchar(10) Género

discapacidad varchar(50) Tipo de discapacidad, si aplica

alergias text Alergias reportadas

tipo_alergia text Detalle específico de la alergia

representante_nombre varchar(100) Nombre del representante legal

representante_telefono varchar(20) Teléfono del representante

parentesco_representante text Parentesco del representante

comunidad_residencia varchar(100) Comunidad o barrio donde reside el estudiante

fecha_registro timestamp Fecha de registro del estudiante

profesor_nombre varchar(100) Nombre del docente responsable

profesor_cedula varchar(20) Cédula del docente

110

posee_seguro text Indica si posee seguro (Sí/No)

tipo_seguro text Tipo de seguro (IESS, MSP, privado, etc.)

grado_paralelo text Curso y paralelo del estudiante

10.2.5. Tabla: estudiantes_precargados

Tabla auxiliar utilizada para carga masiva de estudiantes desde archivos Excel.

Campo Tipo de Dato Descripción

cedula varchar(20) Cédula del estudiante

nombres varchar(100) Nombres

apellidos varchar(100) Apellidos

fecha_nacimiento date Fecha de nacimiento

sexo varchar(10) Género

discapacidad varchar(50) Tipo de discapacidad

alergias text Alergias

tipo_alergia text Tipo de alergia

nombre_representante varchar(100) Nombre del representante legal

telefono_representante varchar(20) Teléfono del representante

parentesco_representante text Parentesco del representante

comunidad_residencia varchar(100) Comunidad

profesor_nombre varchar(100) Docente a cargo

profesor_cedula varchar(20) Cédula del docente

posee_seguro text Posee seguro (Sí/No)

tipo_seguro text Tipo de seguro

grado_paralelo text Grado y paralelo del estudiante

10.2.6. Tabla: encuestas

Registra cada levantamiento de información realizado a un estudiante. Relaciona un

estudiante con los módulos de salud.

Campo Tipo de Dato Descripción

id uuid Identificador único de la encuesta

usuario_id uuid Usuario que realizó el registro (FK a usuarios)

cedula_estudiante varchar(10) Cédula del estudiante evaluado

fecha timestamp Fecha de la encuesta

tipo_encuesta varchar(50) salud o salud_oral

10.2.7. Tabla: alimentacion_nutricion

Almacena los datos nutricionales obtenidos del estudiante, incluyendo peso, talla, cálculo

del IMC y clasificaciones según edad y sexo.

Campo Tipo de Dato Descripción

id uuid Identificador único del registro

encuesta_id uuid Relación con la encuesta correspondiente

peso numeric(5,2) Peso en kilogramos

talla numeric(5,2) Talla en metros

imc numeric(5,2) Índice de Masa Corporal

estado_imc varchar(50) Clasificación según IMC (bajo, normal, etc.)

peso_para_edad varchar(50) Clasificación de peso para edad

talla_para_edad varchar(50) Clasificación de talla para edad

111

10.2.8. Tabla: tamizaje_visual

Registra la evaluación de agudeza visual de cada ojo con y sin lentes, junto con el resultado

del tamizaje.

Campo Tipo de Dato Descripción

id uuid Identificador único del registro

encuesta_id uuid Relación con encuesta (FK)

ojo_izquierdo_sin_lentes varchar(30) Agudeza ojo izquierdo sin lentes

ojo_derecho_sin_lentes varchar(30) Agudeza ojo derecho sin lentes

ojo_izquierdo_con_lentes varchar(30) Agudeza ojo izquierdo con lentes

ojo_derecho_con_lentes varchar(30) Agudeza ojo derecho con lentes

resultado_sin_lentes text Resultado general sin lentes

resultado_con_lentes text Resultado general con lentes

10.2.9. Tabla: salud_oral

Guarda la información dental del estudiante, con separación por maxilar, tipo de afectación

y fechas de prevención bucal.

Campo
Tipo de

Dato
Descripción

id uuid ID del registro

encuesta_id uuid Relación con encuesta (FK)

placa_bacteriana boolean ¿Tiene placa bacteriana?

aplicacion_fluor boolean ¿Se aplicó flúor?

aplicacion_sellantes boolean ¿Se aplicaron sellantes?

fecha_placa_bacteriana date Fecha de control de placa bacteriana

fecha_aplicacion_fluor date Fecha de aplicación de flúor

fecha_aplicacion_sellantes date Fecha de aplicación de sellantes

observaciones text Observaciones del odontólogo

piezas_sanas_superior integer
Número de piezas sanas (maxilar

superior)

piezas_sanas_inferior integer Piezas sanas (maxilar inferior)

piezas_cariadas_superior integer Cariadas en el maxilar superior

piezas_cariadas_inferior integer Cariadas en el maxilar inferior

piezas_obturadas_superior integer Obturadas (superior)

piezas_obturadas_inferior integer Obturadas (inferior)

piezas_perdidas_superior integer Perdidas (superior)

piezas_perdidas_inferior integer Perdidas (inferior)

extraccion_indicada_superior text Piezas indicadas para extracción (sup.)

extraccion_indicada_inferior text Piezas indicadas para extracción (inf.)

10.2.10. Tabla: vacunacion

Registra las vacunas aplicadas a cada estudiante, ya sea de forma regular o por campaña.

Campo Tipo de Dato Descripción

id uuid Identificador único del registro

encuesta_id uuid Relación con la encuesta correspondiente (FK)

vacuna varchar(50) Nombre de la vacuna aplicada

fecha_vacunacion date Fecha en que se colocó la vacuna

tipo varchar(50) Tipo de vacuna: Regular o Campaña

estado varchar(50) Estado de aplicación: Colocada, No colocada, etc.

112

observacion text Observaciones adicionales

10.2.11. Tabla: campanias_vacunacion

Define las campañas de vacunación habilitadas, su rango de edad y la vacuna asociada.

Campo Tipo de Dato Descripción

id uuid ID de la campaña

nombre varchar(100) Nombre de la campaña

vacuna varchar(100) Vacuna administrada en la campaña

edad_desde_anios integer Edad mínima en años para aplicar la campaña

edad_hasta_anios integer Edad máxima en años

created_at timestamp Fecha de creación de la campaña

10.2.12. Tabla: registro_campania

Relación entre una encuesta y una campaña de vacunación aplicada.

Campo Tipo de Dato Descripción

id uuid ID del registro

encuesta_id uuid Relación con encuesta (FK)

campania_id uuid Relación con campaña (FK)

fecha_vacunacion text Fecha de vacunación en campaña

created_at timestamp Fecha de creación del registro

10.2.13. Tabla: salud_mental

Almacena indicadores sobre salud emocional y conductas de riesgo del estudiante,

categorizadas por momento (pasado/actual) y tipo (violencia, consumo, emocional).

Campo Tipo de Dato Descripción

id uuid ID del registro

encuesta_id uuid Relación con la encuesta (FK)

violencia_fisica_familiar boolean Ha sufrido violencia física en la familia

violencia_fisica_escolar boolean Violencia física en la escuela

violencia_fisica_otro boolean Violencia física en otro ámbito

violencia_psicologica_familiar boolean Violencia psicológica en la familia

violencia_psicologica_escolar boolean Violencia psicológica en la escuela

violencia_psicologica_otro boolean Violencia psicológica en otro ámbito

violencia_sexual_familiar boolean Violencia sexual en la familia

violencia_sexual_escolar boolean Violencia sexual en la escuela

violencia_sexual_otro boolean Violencia sexual en otro contexto

alcohol_pasado boolean Consumo de alcohol en el pasado

alcohol_actual boolean Consumo de alcohol actual

tabaco_pasado boolean Consumo de tabaco en el pasado

tabaco_actual boolean Consumo actual de tabaco

drogas_pasado boolean Consumo de drogas en el pasado

drogas_actual boolean Consumo de drogas actual

ansiedad_pasada boolean Presencia de ansiedad en el pasado

ansiedad_actual boolean Ansiedad actual

depresion_pasada boolean Depresión pasada

depresion_actual boolean Depresión actual

intento_suicidio_pasado boolean Intento de suicidio en el pasado

113

intento_suicidio_actual boolean Intento de suicidio actual

10.2.14. Tabla: higiene_saneamiento

Evalúa la participación del estudiante en prácticas de higiene y ambientes saludables.

Campo Tipo de Dato Descripción

id uuid ID del registro

encuesta_id uuid Relación con encuesta (FK)

participa_riesgos_vectores boolean Participa en actividades contra vectores

participa_espacios_saludables boolean Participa en ambientes saludables

participa_lavado_manos boolean Participa en lavado de manos

participa_agua_segura boolean Participa en consumo de agua segura

numero_vectores integer Número de sesiones sobre vectores

numero_espacios_saludables integer Sesiones sobre espacios saludables

numero_lavado_manos integer Sesiones de lavado de manos

numero_agua_segura integer Sesiones sobre agua segura

11. Backend del sistema (NODE.JS)

El backend del sistema fue desarrollado utilizando Node.js con el framework Express.js,

bajo una arquitectura modular y orientada a servicios REST. Este componente es responsable

de procesar las peticiones de la aplicación móvil y de la plataforma web, aplicando la lógica

de negocio, validaciones, seguridad, y conectividad con la base de datos PostgreSQL.

Está diseñado para ser escalable, seguro y fácilmente mantenible, utilizando estándares

modernos como autenticación con JWT, control de roles, y una estructura clara por carpetas

y controladores.

11.1. Estructura general del proyecto

El backend está organizado en carpetas según la responsabilidad de cada parte del

sistema:

backend/

├── controllers/ ← Lógica de negocio de cada módulo

├── routes/ ← Definición de rutas API

├── models/ ← Conexión con la base de datos

├── middlewares/ ← Autenticación y control de acceso

├── config/ ← Conexiones y configuración global

├── utils/ ← Funciones auxiliares

├── services/ ← Reutilización de lógica específica

├── app.js ← Configuración principal de Express

├── server.js ← Punto de entrada del backend

└── .env ← Variables de entorno (.env)

114

Figura 1. Estructura de carpetas del backend

11.2. Autenticación y seguridad

• El backend utiliza tokens JWT (JSON Web Token) para autenticar a los usuarios.

• Al iniciar sesión, el usuario recibe un token que debe enviar en cada petición

protegida.

• El middleware verificarToken se encarga de validar la autenticidad y vigencia del

token.

115

• El middleware verificarRol([‘admin’, ‘encuestador’]) restringe el acceso a rutas

según el rol.

📌 Estos middlewares están definidos en la carpeta /middlewares/.

11.3. Rutas principales (endpoints REST)

Cada módulo funcional del sistema (nutrición, salud oral, etc.) tiene un archivo de rutas

ubicado en la carpeta routes/. Estas rutas son consumidas por la app móvil y por la web.

Ejemplo (módulo alimentación):

const express = require("express");

const router = express.Router();

const pool = require("../db"); // Conexión a PostgreSQL

const { verificarToken, verificarRol } = require("../middlewares/authMiddleware");

// Función para validar UUIDs

const esUUIDValido = (id) =>

 /^[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-

F]{12}$/.test(id);

// ✅ Obtener todos los registros

router.get("/", verificarToken, verificarRol(["admin", "encuestador"]), async (req, res) => {

 try {

 const result = await pool.query("SELECT * FROM alimentacion_nutricion ORDER BY

id ASC");

 res.json(result.rows);

 } catch (err) {

 console.error("❌ Error en GET /alimentacion_nutricion:", err.message);

 res.status(500).json({ error: "Error en el servidor" });

 }

116

});

// ✅ Obtener un registro por ID

router.get("/:id", verificarToken, verificarRol(["admin", "encuestador"]), async (req, res) =>

{

 try {

 const { id } = req.params;

 if (!esUUIDValido(id)) {

 return res.status(400).json({ error: "ID no válido" });

 }

 const result = await pool.query("SELECT * FROM alimentacion_nutricion WHERE id =

$1", [id]);

 if (result.rows.length === 0) {

 return res.status(404).json({ error: "Registro no encontrado" });

 }

 res.json(result.rows[0]);

 } catch (err) {

 console.error("❌ Error en GET /alimentacion_nutricion/:id:", err.message);

 res.status(500).json({ error: "Error en el servidor" });

 }

});

// ✅ Obtener TODOS los registros por cédula

router.get("/cedula/:cedula", verificarToken, verificarRol(["admin", "rector"]), async (req,

res) => {

 try {

 const { cedula } = req.params;

117

 const result = await pool.query(`

 SELECT an.*, e.nombres, e.apellidos

 FROM alimentacion_nutricion an

 JOIN encuestas enc ON enc.id = an.encuesta_id

 JOIN estudiantes e ON e.cedula = enc.cedula_estudiante

 WHERE e.cedula = $1

 ORDER BY an.id DESC

 `, [cedula]);

 if (result.rows.length === 0) {

 return res.status(404).json({ mensaje: "No hay registros de alimentación para esta

cédula" });

 }

 res.json(result.rows); // ✅ Devolver todos los registros

 } catch (err) {

 console.error("❌ Error en GET /alimentacion_nutricion/cedula/:cedula:", err.message);

 res.status(500).json({ error: "Error en el servidor" });

 }

});

// ✅ Crear nuevo registro

router.post("/", verificarToken, verificarRol(["admin", "encuestador"]), async (req, res) =>

{

 try {

 const {

 encuesta_id, peso, talla, imc,

 estado_imc, peso_para_edad, talla_para_edad

 } = req.body;

118

 if (!esUUIDValido(encuesta_id)) {

 return res.status(400).json({ error: "El ID de la encuesta no es válido" });

 }

 const encuestaExiste = await pool.query("SELECT id FROM encuestas WHERE id = $1",

[encuesta_id]);

 if (encuestaExiste.rows.length === 0) {

 return res.status(400).json({ error: "La encuesta no existe" });

 }

 const result = await pool.query(

 `INSERT INTO alimentacion_nutricion (

 id, encuesta_id, peso, talla, imc,

 estado_imc, peso_para_edad, talla_para_edad

) VALUES (

 gen_random_uuid(), $1, $2, $3, $4, $5, $6, $7

) RETURNING *`,

 [encuesta_id, peso, talla, imc, estado_imc, peso_para_edad, talla_para_edad]

);

 res.status(201).json(result.rows[0]);

 } catch (err) {

 console.error("❌ Error en POST /alimentacion_nutricion:", err.message);

 res.status(500).json({ error: "Error en el servidor" });

 }

});

// ✅ Actualizar un registro

router.put("/:id", verificarToken, verificarRol(["admin"]), async (req, res) => {

 try {

119

 const { id } = req.params;

 const {

 peso, talla, imc,

 estado_imc, peso_para_edad, talla_para_edad

 } = req.body;

 if (!esUUIDValido(id)) {

 return res.status(400).json({ error: "ID no válido" });

 }

 const existe = await pool.query("SELECT id FROM alimentacion_nutricion WHERE id

= $1", [id]);

 if (existe.rows.length === 0) {

 return res.status(404).json({ error: "Registro no encontrado" });

 }

 const result = await pool.query(

 `UPDATE alimentacion_nutricion SET

 peso = $1,

 talla = $2,

 imc = $3,

 estado_imc = $4,

 peso_para_edad = $5,

 talla_para_edad = $6

 WHERE id = $7 RETURNING *`,

 [peso, talla, imc, estado_imc, peso_para_edad, talla_para_edad, id]

);

 res.json(result.rows[0]);

 } catch (err) {

120

 console.error("❌ Error en PUT /alimentacion_nutricion/:id:", err.message);

 res.status(500).json({ error: "Error en el servidor" });

 }

});

// ✅ Eliminar un registro

router.delete("/:id", verificarToken, verificarRol(["admin"]), async (req, res) => {

 try {

 const { id } = req.params;

 if (!esUUIDValido(id)) {

 return res.status(400).json({ error: "ID no válido" });

 }

 const existe = await pool.query("SELECT id FROM alimentacion_nutricion WHERE id

= $1", [id]);

 if (existe.rows.length === 0) {

 return res.status(404).json({ error: "Registro no encontrado" });

 }

 await pool.query("DELETE FROM alimentacion_nutricion WHERE id = $1", [id]);

 res.json({ message: "Registro eliminado correctamente" });

 } catch (err) {

 console.error("❌ Error en DELETE /alimentacion_nutricion/:id:", err.message);

 res.status(500).json({ error: "Error en el servidor" });

 }

});

// ✅ Sincronizar registros desde Flutter

router.post("/sincronizar", verificarToken, verificarRol(["admin", "encuestador",

"odontologo"]), async (req, res) => {

121

 try {

 const { registros } = req.body;

 if (!Array.isArray(registros) || registros.length === 0) {

 return res.status(400).json({ error: "No se enviaron registros válidos" });

 }

 let insertados = 0;

 for (const registro of registros) {

 const {

 id, encuesta_id, peso, talla, imc,

 estado_imc, peso_para_edad, talla_para_edad

 } = registro;

 if (!esUUIDValido(id) || !esUUIDValido(encuesta_id)) {

 console.warn(`⛔ ID inválido: ${id} o ${encuesta_id}`);

 continue;

 }

 const encuestaExiste = await pool.query("SELECT id FROM encuestas WHERE id =

$1", [encuesta_id]);

 if (encuestaExiste.rows.length === 0) {

 console.warn(`❌ La encuesta ${encuesta_id} no existe (registro omitido)`);

 continue;

 }

 const yaExiste = await pool.query("SELECT id FROM alimentacion_nutricion WHERE

id = $1", [id]);

 if (yaExiste.rows.length > 0) {

 console.log(`⚠️ Registro duplicado (omitido): ${id}`);

 continue;

122

 }

 await pool.query(

 `INSERT INTO alimentacion_nutricion (

 id, encuesta_id, peso, talla, imc,

 estado_imc, peso_para_edad, talla_para_edad

) VALUES ($1, $2, $3, $4, $5, $6, $7, $8)`,

 [id, encuesta_id, peso, talla, imc, estado_imc, peso_para_edad, talla_para_edad]

);

 insertados++;

 }

 res.json({ mensaje: `✅ ${insertados} registros de alimentación sincronizados

correctamente` });

 } catch (err) {

 console.error("❌ Error en POST /alimentacion_nutricion/sincronizar:", err.message);

 res.status(500).json({ error: "Error al sincronizar registros de alimentación" });

 }

});

module.exports = router;

11.4. Lógica de sincronización

Cada módulo incluye una ruta tipo POST /modulo/sincronizar, utilizada por la app móvil

para enviar los datos almacenados localmente cuando se recupera la conexión a internet.

Proceso:

• La app envía los datos a POST /modulo/sincronizar.

• El backend verifica si ya existe un registro para esa encuesta_id.

• Si no existe, crea el registro.

• Si existe, actualiza el registro existente.

• Retorna confirmación para marcar como sincronizado en la app.

123

Este mecanismo evita duplicación de datos y permite sincronización módulo por módulo.

11.5. Conexión a la base de datos (PostgreSQL)

• El backend se conecta a PostgreSQL usando el módulo pg o pg-promise.

• La configuración de conexión está definida en el archivo /config/db.js.

• Las operaciones SQL se realizan directamente o a través de funciones en /models/.

Ejemplo de conexión:

const { Pool } = require("pg");

require("dotenv").config();

const pool = new Pool({

 user: process.env.DB_USER,

 host: process.env.DB_HOST,

 database: process.env.DB_NAME,

 password: process.env.DB_PASSWORD,

 port: process.env.DB_PORT

});

pool.connect()

 .then(() => console.log("✅ Conexión exitosa a PostgreSQL"))

 .catch(err => console.error("❌ Error de conexión a PostgreSQL", err));

module.exports = pool;

11.6. Ejecución del backend

El backend se ejecuta desde la raíz del proyecto con el siguiente comando:

• node server.js

124

Figura 2. Backend ejecutándose correctamente en consola

12. Aplicación móvil (Flutter)

La aplicación móvil del sistema de Censo de Salud fue desarrollada en Flutter, un framework

multiplataforma de código abierto que permite compilar aplicaciones nativas para Android

desde una única base de código en Dart.

Esta app está diseñada para ser utilizada por personal de salud en campo (encuestadores u

odontólogos), y se caracteriza por su capacidad de funcionar completamente sin conexión a

internet, almacenando los registros localmente mediante SQLite y sincronizándolos luego

con el servidor backend cuando se restablece la conexión.

12.1. Estructura del proyecto

El proyecto Flutter se organiza en carpetas según funciones:

lib/

├── main.dart

├── screens/ ← Pantallas de cada módulo

├── models/ ← Modelos de datos por módulo

├── database/ ← Funciones SQLite locales

├── services/ ← Lógica de sincronización y API

├── widgets/ ← Componentes visuales reutilizables

├── utils/ ← Funciones de ayuda (edad, colores, etc.)

├── login/ ← Pantalla y lógica de autenticación

└── dashboard/ ← Menú principal y navegación

125

126

Figura 4. Estructura de carpetas del proyecto flutter

12.2. Registro offline y almacenamiento local

Una de las funcionalidades clave de la aplicación móvil es su capacidad para operar sin

conexión a internet, lo cual es esencial en entornos rurales o lugares donde la conectividad

es limitada o intermitente. Para lograr esto, se implementó una estrategia de persistencia

local de datos utilizando SQLite, una base de datos ligera y embebida soportada por Flutter

a través del paquete sqflite.

12.2.1. ¿Cómo funciona el almacenamiento local?

• Cada módulo de salud (alimentación, salud oral, etc.) tiene una tabla local SQLite

independiente.

• Cuando un usuario completa un formulario y pulsa “Guardar”, el registro no se envía

inmediatamente al servidor, sino que se inserta en la base local SQLite.

• Esta inserción se realiza usando funciones insert() desde la clase DatabaseHelper o

equivalentes, por ejemplo:

await db.insert('tamizaje_visual', {

127

 'encuesta_id': idEncuesta,

 'ojo_izquierdo_sin_lentes': valor1,

 'ojo_derecho_sin_lentes': valor2,

 'resultado_sin_lentes': resultadoFinal,

 'sincronizado': 0 // 0 = pendiente de sincronizar

});

Todos los registros insertados localmente tienen un campo sincronizado que indica si ese

dato ya fue enviado al backend (0 = no, 1 = sí).

12.2.2. Estructura de la base local

Cada tabla en SQLite replica parcialmente la estructura de su equivalente en PostgreSQL,

manteniendo los campos necesarios para:

• Registrar los datos capturados en el formulario

• Relacionar con la encuesta principal mediante encuesta_id

• Marcar el estado de sincronización

• En algunos casos, llevar un timestamp local de creación

Ejemplo de tabla local salud_mental:

import 'package:sqflite/sqflite.dart';

import 'package:censo_salud/database/db_helper.dart';

import 'package:censo_salud/models/salud_mental_model.dart';

class SaludMentalDB {

 static const String tabla = 'salud_mental';

 // 🔹 Crear la tabla (estructura según la base de datos PostgreSQL)

 static Future<void> crearTabla(Database db) async {

 await db.execute('''

 CREATE TABLE IF NOT EXISTS $tabla (

 id TEXT PRIMARY KEY,

 encuesta_id TEXT,

128

 violencia_fisica_familiar INTEGER,

 violencia_fisica_escolar INTEGER,

 violencia_fisica_otro INTEGER,

 violencia_psicologica_familiar INTEGER,

 violencia_psicologica_escolar INTEGER,

 violencia_psicologica_otro INTEGER,

 violencia_sexual_familiar INTEGER,

 violencia_sexual_escolar INTEGER,

 violencia_sexual_otro INTEGER,

 alcohol_pasado INTEGER,

 alcohol_actual INTEGER,

 tabaco_pasado INTEGER,

 tabaco_actual INTEGER,

 drogas_pasado INTEGER,

 drogas_actual INTEGER,

 ansiedad_pasada INTEGER,

 ansiedad_actual INTEGER,

 depresion_pasada INTEGER,

 depresion_actual INTEGER,

 intento_suicidio_pasado INTEGER,

 intento_suicidio_actual INTEGER

)

 ''');

 }

 // 🔹 Insertar nuevo registro

129

 static Future<void> insertar(SaludMentalModel model) async {

 final db = await DBHelper.database;

 await db.insert(

 tabla,

 model.toMap(),

 conflictAlgorithm: ConflictAlgorithm.replace,

);

 print("✅ Registro de salud mental insertado localmente: ${model.id}");

 }

 // 🔹 Obtener todos los registros

 static Future<List<SaludMentalModel>> obtenerTodos() async {

 final db = await DBHelper.database;

 final res = await db.query(tabla);

 return res.map((e) => SaludMentalModel.fromMap(e)).toList();

 }

 // 🔹 Eliminar todos los registros (después de sincronizar)

 static Future<void> eliminarTodos() async {

 final db = await DBHelper.database;

 await db.delete(tabla);

 print("🗑️ Registros de salud mental eliminados localmente");

 }

}

12.2.3. Ventajas de esta implementación

• Independencia de conectividad: la app puede funcionar en cualquier lugar.

• Persistencia confiable: incluso si la app se cierra, los datos se mantienen.

130

• Control de errores: si ocurre un error en la sincronización, el registro permanece en

SQLite y puede reenviarse más tarde.

• Facilidad de sincronización modular: cada módulo se puede sincronizar por

separado, evitando colapsos por lotes masivos.

12.2.4. Gestión desde Flutter

• Se implementa un servicio por módulo (AlimentacionService, VisualService, etc.)

que contiene las funciones para:

o Guardar localmente (guardarLocal)

o Leer registros pendientes (obtenerNoSincronizados)

o Marcar como sincronizado (actualizarEstado)

• Estas funciones acceden a la base local mediante la instancia global del helper

(DatabaseHelper.instance).

En resumen:

Cada vez que el encuestador completa un módulo, los datos se guardan localmente en SQLite

con sincronizado = 0. Luego, un proceso posterior se encarga de sincronizarlos al backend

cuando haya conexión disponible.

12.3. Sincronización con el backend

La sincronización de datos entre la aplicación móvil y el servidor se realiza mediante el envío

de registros locales almacenados en SQLite hacia la API RESTful desarrollada en Node.js.

Este proceso está diseñado para ser modular, controlado y tolerante a errores, permitiendo

que los registros se transmitan uno por uno y por módulo.

12.3.1. ¿Cuándo se sincroniza?

La sincronización se puede activar:

• De forma automática, al acceder a la pantalla de sincronización (SincronizarScreen)

cuando hay conexión.

• O manualmente, en caso de que se implemente un botón de "Sincronizar ahora"

(opcional).

La lógica interna verifica que:

• Haya conexión a internet.

• Existan registros pendientes (sincronizado = 0) en la base local.

12.3.2. Flujo técnico de sincronización

1. Se accede a la tabla SQLite del módulo (por ejemplo, tamizaje_visual).

131

2. Se recuperan todos los registros con sincronizado = 0.

3. Por cada registro:

o Se envía mediante una petición HTTP POST al endpoint del backend:

POST /tamizaje_visual/sincronizar

Se incluye el token JWT en los headers para autenticar la petición:

Authorization: Bearer eyJhbGci...

Si el servidor responde con código 200 OK, el registro se actualiza localmente:

actualizarEstado(idLocal, 1); // sincronizado = 1

Si hay un error (por ejemplo, error 500 o sin conexión), el registro permanece intacto en

SQLite para reintento posterior.

12.3.3. Estructura de la petición

El cuerpo (body) de la petición se arma en formato JSON desde Flutter. Por ejemplo, para

tamizaje visual:

{

 "encuesta_id": "2ac3e1f9-f675-4304-9e38-...",

 "ojo_izquierdo_sin_lentes": "20/40",

 "ojo_derecho_sin_lentes": "20/30",

 "resultado_sin_lentes": "CON ERROR DE REFRACCIÓN"

}

Esto se envía utilizando la clase http de Flutter:

final response = await http.post(

 Uri.parse('$API_URL/tamizaje_visual/sincronizar'),

 headers: {

 'Content-Type': 'application/json',

 'Authorization': 'Bearer $token',

 },

132

 body: jsonEncode(registro),

);

12.3.4. Resultados esperados

La app responde con un mensaje tipo SnackBar:

✅ “Tamizaje sincronizado correctamente”

❌ “Error al sincronizar, intente más tarde”

Se evita duplicar registros en el servidor porque la API verifica si esa encuesta_id ya tiene

un módulo registrado antes de crear o actualizar.

12.3.5. Ventajas del enfoque modular

• Permite sincronizar módulo por módulo incluso si solo uno fue completado.

• Si un módulo falla, los demás pueden continuar.

• Compatible con múltiples encuestadores trabajando al mismo tiempo.

• Escalable para nuevos módulos de salud.

Figura 6. Registro de sincronización exitosa

12.4. Lógica de visibilidad por tipo de usuario

El sistema implementa una lógica de control de visibilidad que determina qué módulos puede

ver o acceder un usuario, en función de:

• Su rol (admin, encuestador, odontologo, rector)

• El tipo de encuesta asociada (salud o salud_oral)

Esto permite que cada usuario vea solo las secciones del sistema que le corresponden, lo cual

mejora la experiencia, previene errores y refuerza la seguridad de los datos

133

12.4.1. Control basado en roles

Al iniciar sesión en la app móvil, el backend devuelve un token JWT que contiene

información del usuario, incluyendo su rol. Este rol se decodifica y se almacena localmente

(por ejemplo, en SharedPreferences o en una variable global).

Según el rol, se define lo siguiente:

Rol Acceso permitido

encuestador Todos los módulos excepto Salud Oral

odontologo Solo módulo de Salud Oral

admin Acceso total (si se habilita en producción)

rector No accede a app móvil (solo usa plataforma web)

12.4.2. Control basado en tipo de encuesta

Cada estudiante tiene una encuesta asignada con un campo tipo_encuesta, que puede ser:

• "salud" → Permite registrar nutrición, visual, mental, vacunación, higiene

• "salud_oral" → Solo permite salud oral

Al cargar la información del estudiante en la app, se verifica este campo para decidir qué

módulos habilitar visualmente en la pantalla principal (ModuloSaludScreen).

12.4.3. Ejemplo técnico en Flutter

if (tipoEncuesta == 'salud') {

 // Mostrar todos los módulos excepto salud oral

} else if (tipoEncuesta == 'salud_oral') {

 // Mostrar solo módulo de salud oral

}

Y además:

if (rol == 'odontologo') {

 // Mostrar solo botón de Salud Oral

} else if (rol == 'encuestador') {

 // Mostrar todos menos oral

}

Esto se aplica dinámicamente al construir los botones del menú de módulos.

134

12.4.4. Beneficios de esta lógica

• Simplifica la interfaz para cada usuario.

• Minimiza errores al evitar registros no permitidos.

• Mejora el rendimiento visual en dispositivos con poca capacidad.

• Aumenta la seguridad y confidencialidad de los datos.

• 12.5. Funcionalidades clave de la aplicación móvil

• La app móvil desarrollada en Flutter concentra diversas funcionalidades integradas

que permiten a los usuarios (encuestadores, odontólogos) registrar datos de forma

eficiente y segura, trabajar sin conexión y sincronizar su trabajo con el servidor

central. A continuación, se detallan las características principales:

12.5.1. Autenticación segura

• La app solicita cédula y contraseña en el inicio de sesión.

• Se valida contra el backend mediante una petición POST /login.

• Si las credenciales son válidas, el backend retorna un token JWT, que se almacena

localmente.

• Todas las peticiones futuras a la API incluyen ese token para mantener la sesión

activa.

12.5.2. Consulta y carga del estudiante

• La app permite buscar estudiantes por cédula.

• Muestra su información básica: nombres, curso, edad, sexo, tipo de encuesta.

• Calcula automáticamente la edad a partir de la fecha de nacimiento, con formato en

años completos.

12.5.3. Formularios por módulo

• Cada módulo de salud cuenta con su propio formulario validado.

• Se utilizan componentes estándar como TextFormField, DropdownButton,

Checkbox, DatePicker, etc.

• Se incluyen validaciones automáticas por campo (no vacío, tipo de dato correcto,

rangos válidos).

• Algunos módulos realizan cálculos internos (IMC, conteo de piezas, clasificación

visual, etc.).

12.5.4. Almacenamiento local en SQLite

• Cada formulario, al ser completado, guarda los datos en la base de datos SQLite.

• Se marca el registro con sincronizado = 0 para posterior envío.

• La información se mantiene en el dispositivo incluso si se cierra la app.

12.5.5. Sincronización automática

135

• Cuando hay conexión a internet, los registros pendientes se envían al backend.

• Se sincroniza módulo por módulo, sin afectar los ya registrados.

• Al recibir confirmación del servidor, el campo sincronizado se actualiza a 1.

12.5.6. Control de visibilidad por rol y tipo de encuesta

• Según el rol (encuestador, odontologo, etc.), se muestran o esconden módulos en el

menú principal.

• Según el tipo de encuesta (salud, salud_oral), se activa solo lo que corresponde.

12.5.7. Interfaz intuitiva y responsiva

• Se utilizan Card, ListTile y botones estilizados (ElevatedButton) para facilitar el uso.

• Los formularios están organizados de forma clara, con títulos, subtítulos y secciones

diferenciadas.

• Los mensajes de éxito y error se muestran mediante SnackBar con colores e íconos.

12.5.8. Seguridad y restricciones

• La app no permite editar datos ya sincronizados.

• No permite eliminar registros desde la interfaz.

• No se permite exportar datos desde la app, solo consultar o registrar.

13. PLataforma web administrativa (React)

La plataforma web del sistema fue desarrollada utilizando React.js, con enfoque modular,

diseño profesional y conexión directa con la base de datos del sistema de salud mediante

API REST. Está orientada a usuarios administradores y rectores, quienes pueden consultar

registros, aplicar filtros, visualizar estadísticas de salud y gestionar usuarios del sistema.

13.1. Estructura del proyecto React

El proyecto sigue una arquitectura clara y escalable basada en carpetas modulares. La

organización general del código fuente es la siguiente:

📁 src/ contiene todos los archivos relevantes de la aplicación:

src/

├── assets/ # Imágenes y recursos estáticos

├── components/ # Componentes reutilizables como RutaProtegida

├── context/ # Manejo de sesiones

├── pages/ # Todas las pantallas del sistema divididas por secciones

│ ├── analitica/ # Páginas de analítica por módulo

│ ├── usuarios/ # Gestión de usuarios

│ ├── estudiantes/ # Consulta y visualización de estudiantes

├── services/ # Lógica para llamar a la API (axios)

├── utils/ # Funciones auxiliares y archivos de configuración visual

├── App.jsx # Navegación principal (ruteo)

136

├── config.js # Dirección base del backend

└── main.jsx # Archivo de entrada

137

Figura 8. Estructura de carpetas del proyecto React (Visual Studio Code)

13.2. Inicio de sesión y control de sesión

• El login solicita cédula y contraseña.

• Tras validar las credenciales, el backend responde con un token JWT.

• El token se guarda en localStorage.

• Para proteger las rutas se utiliza el componente RutaProtegida.jsx, que evita el acceso

a páginas si el usuario no está autenticado.

13.3. Gestión de usuarios

Accedida por el rol admin, esta sección incluye:

• Página de menú (UsuariosMenuPage.jsx) con acceso a registrar, ver y editar

usuarios.

• Registro de usuarios con validación de campos (RegistrarUsuarioPage.jsx).

• Visualización y edición en tabla (VerUsuariosPage.jsx), con:

o Filtros de búsqueda

o Cambiar estado (Activo/Inactivo) mediante switch

138

o Botón para editar datos del usuario seleccionado

13.4. Consulta de estudiantes

• Página VerEstudiantesPage.jsx

• Permite filtrar por:

o Unidad educativa

o Curso

o Cédula del estudiante

• Muestra los módulos de salud registrados (oral, nutrición, visual, etc.)

• Al hacer clic, se visualiza la información registrada por módulo

• Los datos no son editables desde la web (modo solo lectura)

13.5. Módulo de analítica

El módulo de analítica es uno de los componentes más relevantes del sistema. Está

implementado mediante las siguientes páginas:

• AnaliticaPage.jsx: contenedor general que renderiza filtros y los módulos

correspondientes

• FiltrosAnalitica.jsx: selector de unidad educativa, curso, sexo, edad y fecha

• AnaliticaNutricion.jsx, AnaliticaSaludOral.jsx, etc.: componentes para cada módulo

• GraficoBarras.jsx y GraficoPastel.jsx: componentes visuales que usan Recharts

Cada módulo puede:

• Aplicar filtros en tiempo real

• Mostrar gráficos estadísticos por categoría

• Exportar a Excel los registros fuera del rango normal

Figura 10. Módulo de analítica con filtros y gráficos por módulo de salud

13.6. Exportación de datos

139

Implementado en exportarExcel.js con uso de las librerías:

• xlsx: para generar archivos Excel

• file-saver: para permitir la descarga directa

Características:

• Cada módulo tiene un botón para exportar casos anormales

• El archivo se genera con nombre y columnas descriptivas

• Exporta los datos filtrados con todos los campos clave

Ejemplo del código de export.js

import axios from "axios";

import * as XLSX from "xlsx";

import { saveAs } from "file-saver";

import { toast } from "react-toastify";

import { API_BASE } from "../config";

const exportarAExcel = async ({ tipo, titulo, filtros, token }) => {

 try {

 let endpoint = "";

 if (tipo === "visual") {

 endpoint = `${API_BASE}/analitica/tamizaje/detalle`;

 } else if (["imc", "peso", "talla"].includes(tipo)) {

 endpoint = `${API_BASE}/analitica/nutricion/detalle`;

 } else if (tipo === "vacunacion-regular") {

 endpoint = `${API_BASE}/analitica/vacunacion/regular/detalle`;

 } else if (tipo === "vacunacion-campania") {

 endpoint = `${API_BASE}/analitica/vacunacion/campania/detalle`;

 } else if (tipo === "salud-oral-morbilidad") {

 endpoint = `${API_BASE}/analitica/salud-oral/detalle-morbilidad`;

140

 } else if (tipo === "salud-oral-prevencion") {

 endpoint = `${API_BASE}/analitica/salud-oral/detalle-prevencion`;

 } else if (["violencia", "consumo", "emocional"].includes(tipo)) {

 endpoint = `${API_BASE}/analitica/salud-mental/detalle`;

 } else if (tipo === "higiene") {

 endpoint = `${API_BASE}/analitica/higiene/detalle`;

 } else {

 toast.error("❌ Tipo de reporte no soportado.");

 return;

 }

 const esNutricion = ["imc", "peso", "talla"].includes(tipo);

 const esSaludMental = ["violencia", "consumo", "emocional"].includes(tipo);

 const params = esNutricion || esSaludMental ? { tipo, ...filtros } : filtros;

 const res = await axios.get(endpoint, {

 headers: { Authorization: `Bearer ${token}` },

 params,

 });

 const datos = res.data;

 if (!datos || datos.length === 0) {

 toast.warning(`⚠️ No hay datos para exportar en: ${titulo}`);

 return;

 }

 let datosFormateados = [];

 if (tipo === "visual") {

141

 datosFormateados = datos.map((r) => ({

 "Fecha de Encuesta": new Date(r.fecha_encuesta).toLocaleDateString("es-EC"),

 "Apellidos": r.apellidos,

 "Nombres": r.nombres,

 "Edad": r.edad,

 "Curso": r.curso,

 "Profesor/a": r.profesor,

 "Sin Lentes OD": r.od_sin_lentes,

 "Sin Lentes OI": r.oi_sin_lentes,

 "Con Lentes OD": r.od_con_lentes,

 "Con Lentes OI": r.oi_con_lentes,

 "Resultado": r.resultado,

 }));

 } else if (esNutricion) {

 datosFormateados = datos.map((r) => ({

 "Fecha de Encuesta": new Date(r.fecha_encuesta).toLocaleDateString("es-EC"),

 "Apellidos": r.apellidos,

 "Nombres": r.nombres,

 "Edad": r.edad,

 "Curso": r.curso,

 "Profesor/a": r.profesor,

 "Resultado": r.resultado,

 }));

 } else if (tipo.startsWith("vacunacion")) {

 datosFormateados = datos.map((r) => ({

142

 "Apellidos": r.apellidos,

 "Nombres": r.nombres,

 "Cédula": r.cedula,

 "Edad": r.edad,

 "Curso": r.curso,

 "Profesor/a": r.profesor,

 "Vacuna": r.vacuna,

 "Estado": r.estado,

 "Fecha": r.fecha ? new Date(r.fecha).toLocaleDateString("es-EC") : "Sin fecha",

 }));

 } else if (tipo === "salud-oral-morbilidad") {

 datosFormateados = datos.map((r) => ({

 "Fecha de Encuesta": new Date(r.fecha_encuesta).toLocaleDateString("es-EC"),

 "Apellidos": r.apellidos,

 "Nombres": r.nombres,

 "Edad": r.edad,

 "Curso": r.curso,

 "Profesor/a": r.profesor,

 "Cariadas (Sup)": r.cariadas_sup,

 "Cariadas (Inf)": r.cariadas_inf,

 "Obturadas (Sup)": r.obturadas_sup,

 "Obturadas (Inf)": r.obturadas_inf,

 "Perdidas (Sup)": r.perdidas_sup,

 "Perdidas (Inf)": r.perdidas_inf,

 "Sanas (Sup)": r.sanas_sup,

143

 "Sanas (Inf)": r.sanas_inf,

 "Total Piezas": r.total_piezas,

 "No Aplica": r.piezas_no_aplica,

 }));

 } else if (tipo === "salud-oral-prevencion") {

 datosFormateados = datos.map((r) => ({

 "Fecha de Encuesta": new Date(r.fecha_encuesta).toLocaleDateString("es-EC"),

 "Apellidos": r.apellidos,

 "Nombres": r.nombres,

 "Edad": r.edad,

 "Curso": r.curso,

 "Profesor/a": r.profesor,

 "Placa Bacteriana / Profilaxis": r.placa_bacteriana === "SÍ" ? r.fecha_placa : "NO",

 "Necesita Flúor": r.fluor === "SÍ" ? r.fecha_fluor : "NO",

 "Necesita Sellantes": r.sellantes === "SÍ" ? r.fecha_sellantes : "NO",

 }));

 } else if (esSaludMental) {

 datosFormateados = datos.map((r) => ({

 "Fecha de Encuesta": new Date(r.fecha_encuesta).toLocaleDateString("es-EC"),

 "Apellidos": r.apellidos,

 "Nombres": r.nombres,

 "Edad": r.edad,

 "Curso": r.curso,

 "Profesor/a": r.profesor,

 "Resultado": r.resultado,

144

 }));

 } else if (tipo === "higiene") {

 datosFormateados = datos.map((r) => {

 const fila = {

 "Fecha de Encuesta": r["Fecha de Encuesta"],

 "Apellidos": r["Apellidos"],

 "Nombres": r["Nombres"],

 "Sexo": r["Sexo"],

 "Edad": r["Edad"],

 "Curso": r["Curso"],

 "Profesor/a": r["Profesor"],

 };

 if (r["¿Participa en eliminación de riesgos de vectores?"] === "NO")

 fila["¿Participa en eliminación de riesgos de vectores?"] = "NO";

 if (r["¿Participa en espacios saludables?"] === "NO")

 fila["¿Participa en espacios saludables?"] = "NO";

 if (r["¿Participa en lavado de manos?"] === "NO")

 fila["¿Participa en lavado de manos?"] = "NO";

 if (r["¿Participa en consumo de agua segura?"] === "NO")

 fila["¿Participa en consumo de agua segura?"] = "NO";

 return fila;

 });

 }

 const ws = XLSX.utils.json_to_sheet(datosFormateados, { origin: "A1" });

145

 const cabeceras = Object.keys(datosFormateados[0]);

 cabeceras.forEach((key, i) => {

 const col = String.fromCharCode(65 + i) + "1";

 if (ws[col]) {

 ws[col].s = {

 font: { bold: true },

 alignment: { horizontal: "center" },

 fill: { fgColor: { rgb: "E8EAF6" } },

 };

 }

 });

 ws["!cols"] = cabeceras.map(() => ({ wch: 22 }));

 const wb = XLSX.utils.book_new();

 XLSX.utils.book_append_sheet(wb, ws, "Reporte");

 const nombreArchivo = `Reporte_${titulo.replace(/\s/g, "_")}.xlsx`;

 const excelBuffer = XLSX.write(wb, { bookType: "xlsx", type: "array" });

 const blob = new Blob([excelBuffer], { type: "application/octet-stream" });

 saveAs(blob, nombreArchivo);

 } catch (error) {

 console.error("❌ Error al exportar:", error.message);

 toast.error("❌ Error al exportar el reporte.");

 }

};

export default exportarAExcel;

13.7. Estilo visual e institucional

146

• Diseño moderno, claro y con colores institucionales del Ministerio de Salud

• Tipografía legible, distribución en tarjetas y gráficos amigables

• Logo institucional en el encabezado y botones bien distribuidos

13.8. Seguridad

• Autenticación protegida con JWT

• Verificación de rol antes de acceder a ciertas funciones

• Datos sensibles de los estudiantes no pueden ser modificados desde la web

14. INSTALACIÓN DEL SISTEMA

El sistema desarrollado está compuesto por tres partes principales:

• Un backend (API REST) desarrollado en Node.js con conexión a PostgreSQL.

• Una aplicación móvil desarrollada en Flutter, capaz de operar offline.

• Una plataforma web desarrollada en React.js, orientada a perfiles administrativos y

de consulta.

14.1 Almacenamiento del Proyecto

• El sistema fue almacenado localmente durante todo el proceso de desarrollo,

utilizando Visual Studio Code como entorno principal. No se utilizó un repositorio

Git remoto como GitHub o GitLab.

Módulo Lenguaje/Framework Carpeta local

Backend API Node.js + PostgreSQL BACKEND-CENSO-NODE

App móvil Flutter censo_salud

Plataforma web React.js CENSO-SALUD-WEB

📌 Se recomienda en futuros despliegues incorporar el uso de Git y almacenamiento remoto

para facilitar la colaboración, el versionado y los respaldos.

14.1 Instalación del backend (Node.js + PostgreSQL)

14.1.1 Requisitos previos

• Node.js v18 o superior

• PostgreSQL v15 o superior

• NPM (Node Package Manager)

• pgAdmin o cliente SQL

14.1.2 Estructura local

El proyecto backend se encuentra en la carpeta:

147

BACKEND-CENSO-NUEVO

Contiene los siguientes archivos y directorios relevantes:

• /routes: todas las rutas por módulo (alimentación, encuestas, estudiantes, etc.)

• /middlewares: validación de tokens y roles

• db.js: conexión con la base de datos PostgreSQL

• server.js: archivo principal del servidor

Figura 11. Vista del backend en VSCode

14.1.3 Instalación y ejecución

1. Ingresar a la carpeta del backend:

Instalar dependencias:

3. Configurar archivo .env con los datos de conexión:

148

Crear la base de datos desde PostgreSQL:

Importar todas las tablas (ver diagrama y diccionario técnico).

Ejecutar el backend:

El backend quedará escuchando en el puerto 5000.

14.2 Instalación de la Aplicación Móvil (Flutter)

14.2.1 Requisitos

• Flutter SDK instalado

• Android Studio o Visual Studio Code

• Emulador o dispositivo Android

14.2.2 Estructura

Ubicada en:

149

Contiene las carpetas lib/models, lib/database, lib/screens, y lib/services.

Figura 12. Vista de carpetas del proyecto Flutter

14.2.3 Instalación y ejecución

1. Ingresar al directorio:

Descargar dependencias:

⚠️ La app funciona con almacenamiento local SQLite y sincroniza datos con el backend

cuando hay conexión disponible.

14.3 Instalación de la Plataforma Web (React.js)

14.3.1 Requisitos

• Node.js y npm instalados

• Navegador actualizado

14.3.2 Estructura

150

El proyecto está en:

Contiene subcarpetas como src/pages, src/utils, src/components, src/services.

Figura 13. Estructura del frontend React

14.3.3 Instalación y ejecución

1. Ingresar al directorio:

Instalar dependencias:

Configurar conexión al backend en src/config.js:

151

Ejecutar la app:

La app web estará disponible en:

http://localhost:5173

14.4 Recomendaciones de instalación en producción

• Backend: servidor Node (ej. VPS, Railway, Render)

• Base de datos: PostgreSQL en servidor seguro

• Web: Vercel, Netlify o servidor Apache/Nginx

• App móvil: compilar APK para distribución

15. Mantenimiento y futuros ajustes

El sistema de gestión del Censo de Salud fue diseñado con una arquitectura modular y

tecnologías escalables, lo cual permite su mantenimiento, actualización y expansión de

forma controlada y sostenible en el tiempo.

Esta sección describe las buenas prácticas, acciones recomendadas para el mantenimiento

preventivo y correctivo, así como las pautas para incorporar nuevos módulos o extender el

sistema hacia otros contextos geográficos o funcionales.

15.1. Buenas prácticas de mantenimiento

• Backups regulares de la base de datos

o Programar respaldos automáticos diarios o semanales.

o Guardar copias en ubicaciones seguras y externas al servidor principal.

• Actualización de dependencias

o Revisar periódicamente versiones de:

▪ Node.js

▪ NPM packages (backend y frontend)

▪ Flutter SDK

o Ejecutar npm outdated o flutter upgrade para mantener componentes actualizados

y seguros.

• Control de acceso y roles

o Revisar usuarios activos periódicamente.

o Eliminar cuentas obsoletas o sin uso.

o Cambiar contraseñas ante sospecha de incidentes.

http://localhost:5173/

152

• Monitoreo de logs y errores

o Configurar logs de servidor para capturar errores.

o Revisar logs ante comportamientos inusuales.

o Aplicar correcciones preventivas.

15.2. Procedimientos ante errores comunes

• Error de conexión al backend

o Revisar archivo .env o config.js.

o Verificar puerto de backend y disponibilidad del servidor.

• Problemas de sincronización en app móvil

o Verificar conectividad del dispositivo.

o Comprobar si el backend está corriendo.

o Revisar logs de errores en Flutter.

• Errores en consultas de la web

o Revisar token JWT en localStorage.

o Verificar expiración de sesión.

o Consultar consola del navegador para mensajes de error.

15.3. Cómo agregar un nuevo módulo de salud

Gracias a su diseño modular, el sistema permite incorporar nuevos módulos siguiendo los

pasos:

15.3.1. En la base de datos (PostgreSQL)

• Crear una nueva tabla que relacione su encuesta_id con los datos específicos del

módulo.

• Definir claves primarias UUID.

• Agregar campos created_at y updated_at si se requiere trazabilidad.

15.3.2. En el backend (Node.js)

• Crear archivo nuevo en /routes/ (ej. nuevomodulo.js).

• Crear controlador en /controllers/ para manejar la lógica CRUD y sincronización.

• Configurar validaciones específicas.

• Definir endpoint /nuevomodulo/sincronizar.

15.3.3. En la app móvil (Flutter)

• Crear modelo en lib/models/.

• Implementar nueva pantalla en lib/screens/.

• Crear métodos para guardar en SQLite y sincronizar.

• Incluir nuevo botón en ModuloSaludScreen si el rol lo permite.

153

15.3.4. En la web (React)

• Crear página en src/pages/ para consulta y visualización.

• Implementar servicio en src/services/.

• Integrar en el dashboard o analítica.

• Opcional: agregar gráficos en Recharts.

15.4. Escalabilidad futura

El sistema puede escalar en distintas dimensiones:

• Cobertura geográfica

o Incorporar nuevas provincias o cantones.

o Replicar estructura de unidades educativas en otras zonas.

• Funcionalidad

o Agregar nuevos módulos clínicos según necesidades del MSP.

o Integrar analítica avanzada con inteligencia artificial o machine learning.

• Infraestructura

o Migrar backend y base de datos a servidores cloud escalables.

o Implementar balanceo de carga en caso de alto tráfico.

15.5. Recomendaciones finales

• Mantener documentación técnica actualizada.

• Aplicar pruebas periódicas de carga y seguridad.

• Planificar sesiones de capacitación para nuevos usuarios.

• Documentar cambios en versiones y mantener historial de actualizaciones.

