

UNIVERSIDAD NACIONAL DE CHIMBORAZO FACULTAD DE CIENCIAS DE LA SALUD CARRERA DE FISIOTERAPIA

Entrenamiento interválico de alta intensidad en pacientes con síndrome metabólico

Trabajo de Titulación para optar al título de Licenciada en Fisioterapia

Autor:

Gunsha Lamiña Karina Marisol

Tutor:

Dr. Yanco Danilo Ocaña Villacrés

Riobamba, Ecuador. 2025

DECLARATORIA DE AUTORÍA

Yo, Karina Marisol Gunsha Lamiña, con cédula de ciudadanía 0650289945, autora del trabajo de investigación titulado: Entrenamiento interválico de alta intensidad en pacientes con síndrome metabólico, certifico que la producción, ideas, opiniones, criterios, contenidos y conclusiones expuestas son de mí exclusiva responsabilidad.

Asimismo, cedo a la Universidad Nacional de Chimborazo, en forma no exclusiva, los derechos para su uso, comunicación pública, distribución, divulgación y/o reproducción total o parcial, por medio físico o digital; en esta cesión se entiende que el cesionario no podrá obtener beneficios económicos. La posible reclamación de terceros respecto de los derechos de autor (a) de la obra referida, será de mi entera responsabilidad; librando a la Universidad Nacional de Chimborazo de posibles obligaciones.

En Riobamba, 15 de julio de 2025.

Karina Marisol Gunsha Lamiña

C.I: 0650289945

UNIVERSIDAD NACIONAL DE CHIMBORAZO FACULTAD DE CIENCIAS DE LA SALUD CARRERA DE FISIOTERAPIA

CERTIFICADO DEL TUTOR

Yo, **Dr. Yanco Danilo Ocaña Villacrés** docente de la carrera de Fisioterapia de la Universidad Nacional de Chimborazo, en mi calidad de tutor del proyecto de investigación denominado "Entrenamiento interválico de alta intensidad en pacientes con síndrome metabólico" elaborado por la señorita Karina Marisol Gunsha Lamiña certifico que, una vez realizadas la totalidad de las correcciones el documento se encuentra apto para su presentación y sustentación.

Es todo cuanto puedo certificar en honor a la verdad facultando al interesado hacer uso del presente para los trámites correspondientes.

Riobamba, 27 de octubre del 2025

Atentamente,

Dr. Yanco Danilo Ocaña Villacrés.

TUTOR

CERTIFICADO DE LOS MIEMBROS DEL TRIBUNAL

Quienes suscribimos, catedráticos designados Miembros del Tribunal de Grado para la evaluación del trabajo de investigación "Entrenamiento interválico de alta intensidad en pacientes con síndrome metabólico" presentado por Karina Marisol Gunsha Lamiña con cedula de identidad número 0650289945, bajo la tutoría del Dr. Yanco Danilo Ocaña Villacrés, certificamos que recomendamos la APROBACIÓN de este con fines de titulación. Previamente se ha evaluado el trabajo de investigación y escuchada la sustentación por parte de su autor, no teniendo nada más que observar.

De conformidad a la normativa aplicable firmamos, en Riobamba octubre de 2025.

Mgs. María Belén Pérez García
PRESIDENTE DEL TRIBUNAL DE GRADO

Mgs.Gabriela Alejandra Delgado Masache MIEMBRO DEL TRIBUNAL DE GRADO

Mgs. María Fernanda López Merino
MIEMBRO DEL TRIBUNAL DE GRADO

CERTIFICACIÓN

Que, Gunsha Lamiña Karina Marisol, con CC: 0650289945, estudiante de la Carrera Fisioterapia, Facultad de Ciencias de la Salud; ha trabajado bajo mi tutoría el trabajo de investigación titulado "Entrenamiento interválico de alta intensidad en pacientes con síndrome metabólico", cumple con el 14%, de acuerdo al reporte del sistema Anti plagio Compilatio, porcentaje aceptado de acuerdo a la reglamentación institucional, por consiguiente, autorizo continuar con el proceso.

Riobamba, 28 de octubre de 2025

Dr. Yanco Danilo Ocaña Villacrés.

TUTOR

Telefonos (593-3) 3730880 - Ext. 1255

DEDICATORIA

Quiero dedicar este trabajo a Dios, por guiar mi camino, brindarme salud y haberme otorgado la sabiduría y fortaleza necesarias para lograr cada anhelo que me he propuesto durante toda esta trayectoria estudiantil.

Con profundo amor, a mis queridos padres Carlos Gunsha y Cristina Lamiña, mis mejores maestros de vida. Ellos son mi mayor ejemplo de esfuerzo, responsabilidad, respeto, humildad y constancia. Su apoyo ha sido fundamental en este reto estudiantil; sin ustedes, no hubiera logrado los objetivos que me he propuesto para ser una persona de bien.

A mis dos hermanas mayores, Verito y Jenny, mis compañeras de vida, por ser ejemplo, guía y fortaleza en cada etapa de mi vida. Quienes han sido una motivación muy importante para alcanzar un logro más; han estado presentes en los momentos más difíciles como en los buenos, cada una ha sido un pilar fundamental en este largo proceso.

A mis hermanas pequeñas, Vanesa y Emily, quienes han sido mi alegría y mi mayor inspiración. Cada uno de mis logros lleva un pedacito de ustedes, porque pensar en su futuro me impulsó a continuar en esta travesía. Siempre estaré presente para acompañarlas a cumplir sus sueños.

A mi compañero de aventuras, quién ha sido una persona muy importante en este camino. Su apoyo incondicional y su fe en mí, incluso cuando yo dudaba, ha sido lo más valioso. Gracias por el apoyo en los momentos difíciles, por celebrar junto a mí cada logro por más pequeño que sea, y por recordarme que todo esfuerzo tiene sentido.

A mi fiel amigo de cuatro patas, Alan, por estar en los momentos difíciles y los momentos de alegría; por acompañarme las noches largas de estudio, con tu silencio lleno de compañía y tu amor incondicional.

A mis ángeles en el cielo, mi abuelita María Natividad y mi padrino Roberto, quienes continúan siendo una luz en mi vida. Gracias, mamita, por enseñarme el valor de la humildad y por acompañarme en mi educación cuando mis padres no pudieron estar presentes. A ti, padrino, gracias por creer en mí y por motivarme a seguir estudiando; sin tus palabras y tu apoyo, no estaría en el lugar donde me encuentro hoy.

A todos ustedes, con amor infinito y mucha gratitud.

Karina Gunsha

AGRADECIMIENTO

Expreso mi más sincero agradecimiento a Dios por brindarme la sabiduría necesaria para concluir esta etapa de mi vida y por siempre hacerme ver que en los peores momentos está presente.

A toda mi familia por su amor incondicional, por ser mi base, mi fuerza y mi refugio. Cada uno de ustedes ha sido una parte esencial en este camino, brindándome amor, apoyo y comprensión en los momentos más importantes. Gracias por creer en mí, por sus palabras de aliento cuando más las necesité y por enseñarme el verdadero significado de la unión familiar.

Expreso con profundo agradecimiento a la Universidad Nacional de Chimborazo por bridarme la oportunidad de formarme académica y personalmente. Agradezco a mis queridos docentes, personal administrativo y a todas las personas que forman parte de esta prestigiosa institución, por su compromiso, dedicación y calidad humana. Llevare siempre con orgullo el nombre de la universidad.

A mi tutor de tesis Dr. Yanco Ocaña, por su guía, y paciencia a lo largo del desarrollo de este trabajo. Gracias por su tiempo, por impulsarme y acompañarme con profesionalismo y generosidad en cada etapa del proceso.

Con amor y gratitud infinita

Karina Gunsha

ÍNDICE GENERAL

DECLARATORIA DE AUTORIA
DICTAMEN FAVORABLE DEL PROFESOR TUTOR
CERTIFICADO DE LOS MIEMBROS DEL TRIBUNAL
CERTIFICADO ANTIPLAGIO
DEDICATORIA
AGRADECIMIENTOS
ÍNDICE GENERAL
ÍNDICE DE TABLAS
ÍNDICE DE FIGURAS
RESUMEN
ABSTRACT
CAPÍTULO I. INTRODUCCION
1.1. Antecedentes
CAPÍTULO II. MARCO TEÓRICO
2.1. Origen del síndrome metabólico
2.1.2. Síndrome metabólico
2.1.3. Manifestaciones clínicas
2.1.4. Fisiopatología
2.1.5. Factores de riesgo
2.1.6. Etiología
2.1.7. Diagnóstico
2.2. Tratamiento enfocado en abordaje preventivo y HIIT
2.2.1. Cambios en el estilo de vida
2.2.2. Control de la obesidad
2.2.3. Disminución de niveles de colesterol LDL
2.2.4. Aumento en niveles de colesterol HDL
2.2.5. Manejo de presión arterial
2.2.6. Manejo de la hiperglicemia en ayunas
2.3. Entrenamiento interválico de alta intensidad (HIIT)

2.5. Tipos de HIIT	23
2.6. Componentes básicos del HIIT	24
2.7. Programación HIIT	24
2.8. Prescripción mediante escalas de esfuerzo percibido	25
2.9. Protocolo HIIT	25
2.10. Efectos del entrenamiento interválico de alta intensidad en síndrome r	netabólico 26
CAPÍTULO III. METODOLOGIA	28
3.1. Diseño de la Investigación	28
3.2. Tipo de Investigación	28
3.3. Nivel de la Investigación	28
3.4. Método de la Investigación	28
3.5. Según la cronología de la investigación	28
3.6. Población	29
3.7. Muestra	29
3.8. Criterios de inclusión	29
3.9. Criterios de exclusión	29
3.10. Técnicas de recolección de datos	29
3.11. Métodos de análisis y procesamiento de datos	30
3.12. Análisis de artículos científicos según la escala de PEDro	31
CAPÍTULO IV. RESULTADOS Y DISCUSIÓN	39
4.1 Resultados	39
4.2 Discusión	59
CAPÍTULO V. CONCLUSIONES y RECOMENDACIONES	61
5.1 Conclusiones	61
5.2 Recomendaciones	62
BIBLIOGRÁFIA	63
ANEXOS	70

ÍNDICE DE TABLAS

Tabla 1. Ejercicio en casa26
Tabla 2. Valoración de la calidad metodológica de los estudios controlados aleatorizados
mediante la Escala de PEDro
Tabla 3. Síntesis de los resultados de ensayos controlados aleatorios seleccionados 39
ÍNDICE DE FIGURAS
Figura 1. Diagrama de flujo PRISMA del proceso de selección. *
Figura 2. Escala de PEDRo Español. *

RESUMEN

El síndrome metabólico es un grupo de afecciones y se caracteriza por la presencia de varios factores de riesgo como resistencia a la insulina, dislipidemia aterogénica, obesidad central e hipertensión, en conjunto, pueden llevar a graves problemas de salud. Se considera a una persona con síndrome metabólico si cumple con tres de los cinco criterios: obesidad central, hipertrigliceridemia, escasa lipoproteína de alta densidad, presión arterial elevada y glicemia basal elevada.

El presente trabajo de investigación tiene como finalidad analizar los efectos del entrenamiento interválico de alta intensidad en pacientes con síndrome metabólico. Este trabajo de investigación es de tipo documental, bibliográfico, descriptivo, inductivo y retrospectivo fundamentado en la búsqueda de estudios relevantes publicados en bases de datos científicas en línea, según los ítems propuestos por *Physiotherapy Evidence Database* para el aseguramiento de la calidad.

La búsqueda permitió la consulta de artículos científicos obtenidos en bases de datos científicas, como Medline, ResearchGate, Scopus y PEDRo enfocada en ensayos controlados aleatorizados publicados entre 2017-2025. Los estudios analizados han permitido identificar la importancia y eficacia del entrenamiento interválico de alta intensidad como estrategia terapéutica efectiva para el manejo de factores de riesgo del síndrome metabólico.

La evidencia revela que la incorporación de este entrenamiento puede ofrecer beneficios significativos en reducción de grasa visceral, circunferencia de la cintura, entre otros y en mejorar de la calidad de vida de pacientes con síndrome metabólico.

Palabras claves: Entrenamiento interválico; síndrome metabólico; obesidad; dislipidemia; hipertensión; resistencia a la insulina.

ABSTRACT

Metabolic syndrome is characterized by a cluster of risk factors—including insulin

resistance, atherogenic dyslipidaemia, central obesity, and hypertension—that

collectively increase the risk of serious health problems. An individual is considered to

have metabolic syndrome when at least three of the following five criteria are present:

central obesity, hypertriglyceridemia, low high-density lipoprotein cholesterol (HDL-C),

elevated blood pressure, and elevated fasting plasma glucose.

The objective of this study was to analyse the effects of high-intensity interval training

(HIIT) in patients with metabolic syndrome.

This research employed a documentary, bibliographic, descriptive, inductive, and

retrospective approach, based on the search for relevant studies in online scientific

sources. Methodological quality was assessed using the criteria proposed by the

Physiotherapy Evidence Database (PEDro).

The search encompassed scientific articles from MEDLINE, Scopus, PEDro, and

ResearchGate, focusing on randomized controlled trials published between 2017 and

2025. The analysed studies indicate that HIIT is an effective therapeutic strategy for

managing risk factors associated with metabolic syndrome.

The evidence suggests that incorporating HIIT can provide significant benefits—such as

reductions in visceral fat and waist circumference—while also improving patients'

quality of life.

Keywords: Interval training; metabolic syndrome; obesity; dyslipidemia; hypertension;

insulin resistance.

Mario Nicolas Salazar Ramos

Time Stamping
Security Data

Revised by Mario N. Salazar 0604069781

CAPÍTULO I. INTRODUCCION

1.1. Antecedentes

El Síndrome metabólico es considerado en el siglo XXI como un problema principal de salud pública, de acuerdo con la Federación Internacional de Diabetes da a conocer que cuarta parte de toda la población mundial sufre esta patología, según el Programa Nacional de Educación sobre el Colesterol brinda información similar, en la cual el Síndrome Metabólico afecta alrededor del 20 % en países occidentales en la población adulta (1). Suelen existir variaciones en cuanto a la prevalencia de dicho síndrome en base a los diferentes criterios de diagnóstico y entre los distintos grupos étnicos. Varios factores como ambientales, socioculturales, sexo, edad y raza pueden alterar dichas estimaciones (1). La prevalencia del Síndrome Metabólico en América Latina según datos de diversas investigaciones publica porcentajes de 25,3% en mujeres y 23.2 % en varones (2).

Por otra parte, el *Instituto Nacional de Estadísticas y Censos* no publica datos estadísticos, pero en base a estudios y encuestas nacionales aplicados a la población ecuatoriana, da a conocer cifras de acuerdo a los datos de la Encuesta Nacional de Salud y Nutrición ENSANUT-ECU 2011- 2013 la prevalencia de síndrome metabólico es 27.7% en edades de entre 10 y 59 años. Donde la mayor prevalencia por grupo de edad en un orden decreciente está entre 50 a 59 años (53%), de 40 a 49 años (47.1%) y de 30 a 39 años (36.8%). La prevalencia general en el sexo femenino es 29.9%, y sexo masculino prevalencia del 48.4% (3).

El síndrome metabólico está definido como un conjunto de alteraciones metabólicas entre los cuales se incluyen la resistencia a la insulina, dislipidemia aterogénica, obesidad central e hipertensión. En cuanto a su fisiopatología, se encuentra constituida por diversas entidades genéticas y adquiridas que abarca resistencia a la insulina y la inflamación crónica de bajo grado. En el caso de no ser tratado el Síndrome Metabólico, principalmente se va a asociar con un mayor riesgo de generar diabetes y enfermedades cardiovasculares (4). Además, se caracteriza por ser un síndrome silencioso que representa un importante problema de salud pública a nivel mundial, la predisposición genética y factores ambientales son el papel fundamental en la generación del síndrome (1).

El entrenamiento interválico de alta intensidad (HIIT, por sus siglas en inglés) es un entrenamiento que se caracteriza por esfuerzos de alta intensidad (85% a 250% VO₂ máximo

durante 6 segundos a 4 minutos) y van alternados con periodos de descanso o recuperación activa de baja intensidad (20% a 40% VO₂ máximo durante 10 segundos a 5 minutos (5). El VO₂ máximo se define como la capacidad de transportar y consumir oxígeno durante un trabajo intenso o extenuante; se relaciona con la aptitud cardiorrespiratoria, mide la capacidad aeróbica y define los límites de la función cardiovascular (6).

El HIIT se caracteriza por series repetidas de esfuerzo relativamente intenso que van intercaladas con periodos de recuperación de esfuerzo leve o descanso. Las articulaciones implicadas van a depender de que tipo de ejercicio se realice ya sean sentadillas va a incluir tobillos, rodillas y caderas, flexiones de hombro, codo, etc. El principal objetivo del HIIT es mejorar el consumo máximo de oxígeno (VO₂ máx), tomando en consideración como el camino eficiente para mantener la salud y reducir la mortalidad en las personas y se necesita de menos tiempo para su ejecución. Con relación a los beneficios fisiológicos el HIIT podría contribuir a obtener mejores resultados relacionados a la presión sanguínea, nivel de glucosa en sangre y grasa visceral. En pacientes clínicos, en aquellos con enfermedad cardiovascular crónica el HIIT ayuda a mejorar la capacidad aeróbica, función endotelial y diversas funciones cardiacas (5). Por lo expuesto el objetivo del siguiente trabajo fue analizar los efectos del entrenamiento interválico de alta intensidad en pacientes con síndrome metabólico; usando la recopilación bibliográfica de artículos científicos.

CAPÍTULO II. MARCO TEÓRICO

2.1. Origen del síndrome metabólico

El síndrome metabólico (SM) inicialmente conocido como síndrome X, síndrome de resistencia a la insulina o síndrome de Reaven. Se caracteriza por una reducción en la sensibilidad a la insulina, acompañada de obesidad central, dislipidemia, hiperglicemia, hipertensión arterial, inflamación crónica y un mayor riesgo de eventos trombóticos. La Organización Mundial de la Salud (OMS) en 1998 propuso el término "síndrome metabólico" para agrupar estas condiciones que, en conjunto, incrementan significativamente el riesgo cardiovascular. Diversos estudios prospectivos en poblaciones han demostrado que el SM duplica el riesgo de eventos relacionados con enfermedad vascular aterosclerótica y multiplica entre 3,5 y 5 veces la probabilidad de desarrollar diabetes tipo 2 (7).

La American Heart Association (AHA) y el National Heart, Lung and Blood Institute (NHLBI), dieron a conocer sus criterios en 2005. Similares a los del Adult Treatment Panel III (ATP III), debe cumplir con tres de los cinco criterios: obesidad central por perímetro abdominal, hipertrigliceridemia, lipoproteína de alta densidad (HDL) bajo, presión arterial (PA) elevada >130/85, glucemia basal elevada (8).

2.1.2. Síndrome metabólico

El síndrome metabólico es un conjunto de características hereditarias y relacionados entre sí, que se ha vinculado con varios factores fisiopatológicos, entre ellos la dislipidemia aterogénica, la resistencia a la insulina, obesidad central e hipertensión. La base genética de dicho síndrome ha sido bien documentada e incluye múltiples posiciones cromosómicas, diversos polimorfismos que se encuentran asociados a genes candidatos y diferentes variantes genéticas, que se relacionan al síndrome, ya sea como una manifestación directa o componentes relacionadas principalmente con el proceso metabólico (9).

2.1.3. Manifestaciones clínicas

El síndrome metabólico suele presentarse sin sintomatología evidente. Durante la exploración física puede observarse signos como circunferencia abdominal aumentada o presión arterial elevada. La detección de estos indicadores debe alertar al médico a investigar otras alteraciones

bioquímicas asociadas al SM para facilitar un diagnóstico oportuno. En alguno de los casos, aunque con menor frecuencia, pueden hallarse signos como lipodistrofia o acantosis nigricans, los cuales suelen aparecer en situaciones de resistencia a la insulina más severa. La historia clínica y los antecedentes personales deben incluir la evaluación de los síntomas relacionados con la diabetes mellitus tipo 2, enfermedad cardiovascular, EPOC, apnea del sueño y síndrome de ovario poliquístico. También los antecedentes familiares son esenciales para estimar el riesgo de desarrollar enfermedad cardiovascular o diabetes (10).

2.1.4. Fisiopatología

La fisiopatología tradicional se define por la acumulación de depósitos grasos, aumento en el plasma de ácidos grasos libres (AGL) y acumulación ectópica de lípidos. Esto es el resultado de una condición clínica multifactorial originada por la interacción de variantes genética, mecanismos epigenéticos y factores ambientales, como inactividad física o alimentación inadecuada que generan a obesidad. El desbalance entre ingesta calórica y gasto energético lleva a cabo cambios en la composición del tejido adiposo blanco, de manera esencial el visceral o abdominal, con variaciones tanto en el tamaño y número de adipocitos, mayor secreción de adipoquinas proinflamatorias como TNF-α, IL-6 y leptina, la infiltración de células inmunes proinflamatorias. Estos procesos desencadenan a dislipidemia aterogénica, inflamación sistémica de bajo grado y resistencia a la insulina (RI) (11).

Expansión del tejido adiposo provoca una liberación excesiva de ácidos grasos libres (AGL). En el hígado, dichos AGL conducen a una mayor producción de glucosa, triglicéridos y secreción de lipoproteínas de muy baja densidad (VLDL), también, reducen la sensibilidad a la insulina en el músculo al inhibir la absorción de glucosa. Por otra parte, adipocitos hipertrofiados son invadidos por células inmunes proinflamatorias y presentan alteraciones en el perfil de secreción de adipoquinas (aumenta la liberación de TNF-α, IL-6 y leptina). En conjunto conllevan a dislipidemia aterogénica, inflamación sistémica de bajo grado y resistencia a la insulina. Están implicados otras moléculas como angiotensina 2 (AT2), especies reactivas de oxígeno (ROS), proteína transportadora de retinol tipo 4 (RBP4), proteína quimiotáctica de monocitos 1(MCP-1) (11).

Por lo tanto, la fisiopatología explicada nos da a conocer que la interacción entre los factores genéticos, epigenéticos y ambientales es compleja ya que da como resultado la expansión disfuncional del tejido adiposo, esencialmente el visceral. Entonces, dicho proceso va a

favorecer la liberación excesiva de ácidos grasos libres (AGL) y la alteración del perfil secretor de adipoquinas lo que va a generar un entorno inflamatorio crónico de bajo grado y la resistencia a la insulina. Dichas alteraciones van a promover la dislipidemia aterogénica afectando el metabolismo hepático y muscular, generando un desequilibrio metabólico sistémico. En forma integrada, estos mecanismos interrelacionados son determinantes clave en la aparición y progresión del síndrome metabólico.

2.1.5. Factores de riesgo

- Resistencia a la insulina: Se distingue por presentar una menor actividad de insulina a nivel celular, se manifiestan en distintas vías metabólicas, principalmente a nivel del metabolismo glucídico, lipídico y proteico, los órganos más afectados son hígado, músculo y tejido adiposo, pero puede involucrar a otros sistemas. Además, se caracteriza por la disminución de la capacidad de la insulina para activar el transporte de glucosa en las células musculares y adiposas esto debido a un inconveniente del sistema de transporte de glucosa en esos tejidos, un rasgo particular de esta condición es la incapacidad para suprimir la producción de glucosa hepática debido a un aumento persistente de la gluconeogénesis (12).
- **Dislipidemia aterogénica:** Es un incremento de niveles plasmáticos de triglicéridos totales (TG) y un a su vez un descenso de colesterol de las lipoproteínas de alta densidad (cHDL). Ambas alteraciones lipídicas que conceptualiza la dislipidemia aterogénica, hallamos un aumento de lipoproteínas ricas en triglicéridos (TG) y portadoras de apolipoproteína B (apoB) y generalmente un incremento moderado, en ocasiones con valores cercanos a la normalidad, de la concentración de colesterol de las lipoproteínas de baja densidad (cLDL), con predominio de partículas LDL pequeñas y densas (13). La dislipidemia aterogénica tiene gran relevancia debido a su relación con distintas enfermedades que presentan una alta prevalencia en la población general y que conllevan un elevado riesgo cardiovascular (VCR), tales como sobrepeso (37%), obesidad (17%), diabetes (14%) y síndrome metabólico (30%) (13).
- Obesidad central o abdominal: Es la presencia de depósitos de grasa en exceso en la región abdominal, la grasa mesentérica está formada por tejido adiposo que se adhiere al intestino que cubre la parte posterior de la pared abdominal y está formada por un doble pliegue del peritoneo. Permite el almacenamiento de grasa en la región abdominal

y consiste en una red de vasos sanguíneos para un flujo constante de moléculas de ácidos grasos y lípidos. Esta parte del cuerpo es metabólicamente muy activa y puede tener una absorción constante de grasa que cualquier otra parte del cuerpo. Con un exceso de deposición de grasa, hay mayor liberación de ácidos grasos libres en la circulación y conduce a aterogénesis, hiperlipidemia, hipertensión y enfermedades cardiovasculares (ECV) (14).

La antropometría se ha utilizado ampliamente por su bajo costo, perfil de seguridad favorable, facilidad de uso y aplicabilidad a todos los tamaños corporales. Medidas antropométricas de la obesidad abdominal incluyen circunferencia de la cintura, relación cintura-cadera y relación cintura-estatura (15).

La circunferencia de la cintura es un índice de obesidad central sugerido por Institutos Nacionales de la Salud (NIH), OMS, Asociación Americana del Corazón (AHA) y la Fundación Internacional de la Diabetes (IFD) para la identificación del riesgo de enfermedades metabólicas y cardiovasculares. Los puntos de corte para la circunferencia de la cintura varían según el sexo y etnia. No existe consenso sobre la mejor ubicación anatómica para medir la circunferencia de la cintura; la OMS recomienda el punto medio entre la última costilla palpable y la cresta ilíaca, y los NIH recomiendan la altura del ombligo (15).

• **Hipertensión:** Se considera como hipertensión arterial cuando los valores de la presión arterial alcanzan o superan los 140/90 mmHg. Los factores de riesgo asociados a HTA se agrupan en modificables dieta y estilos de vida y no modificables edad, género y herencia. Factores de riesgo modificables de la HTA pueden dividirsecomo comportamentales, esto quiere decir aquellos que están ligados al estilo de vida, susceptibles de cambios en los hábitos adquiridos, como tabaquismo, dieta inadecuada rica en calorías o grasas, pobres en consumo de vegetales y frutas, baja actividad física, ingesta de sodio, estrés, entre otros que podría involucrarse con el riesgo para el desarrollo de enfermedades asociadas (16).

2.1.6. Etiología

El síndrome metabólico (SM) son anormalidades metabólicas que en conjunto se consideran factores de riesgo, y se caracteriza por la aparición simultánea o secuencial de obesidad central, dislipidemias, anormalidades en el metabolismo de la glucosa e hipertensión arterial, asociado

a resistencia a la insulina, considerada como la base del desarrollo del conjunto de anormalidades que lo conforman, sugiriendo a la obesidad abdominal o central como responsable del desarrollo de la insulinoresistencia, donde las adipoquinas producidas por el tejido adiposo abdominal actuarían directa o indirectamente en el desarrollo de los componentes del síndrome, es importante mencionar que su etiología exacta no está clara, se sabe que existe una complicada interacción entre factores genéticos, metabólicos y ambientales (17).

2.1.7. Diagnóstico

Se establece cuando una persona presenta tres o más de los cinco criterios definidos por el Programa Nacional de Educación sobre el Colesterol (NCEP/ATP III). Estos criterios son:

- Presión arterial sistólica ≥130 mm/Hg y/o presión arterial diastólica ≥85 mm/Hg.
- Triglicéridos en sangre ≥ 150mg/dl
- Colesterol HDL < 40 mg/dL en hombres y < 50 mg/dL en mujeres
- Glucosa en ayunas $\geq 100 \text{ mg/dL}$
- Circunferencia abdominal ≥ 88 cm mujeres y ≥ 102 cm en hombres

Los niveles de insulina en sangre no se incluyen como criterio diagnóstico debido a que su medición no es rentable como método de tamizaje en poblaciones grandes, en su lugar se utiliza la medición de la circunferencia abdominal como indicado confiable de resistencia a la insulina, por su fácil aplicación clínica. Entonces para el diagnóstico de resistencia a la insulina se utiliza HOMA-IR (Homeostatic Model Assessment for Insulin Resistance) toma en cuenta los niveles de glucemia e insulinemia en ayuno y debe ser \geq a 2,5 para diagnosticarse resistencia a la insulina (10).

Para una valoración clínica más completa se puede utilizar medidas antropométricas como el índice de cintura-cadera, relación cintura-talla y conicidad, que permite analizar la distribución de la grasa corporal. La medición de circunferencias de antebrazo, cintura, cadera y pliegues cutáneos ayuda a estimar la proporción de masa muscular y grasa en el cuerpo (10).

2.2. Tratamiento enfocado en abordaje preventivo y HIIT

El tratamiento se enfoca en medidas tanto farmacológicas como no farmacológicas entre las cuales se incluyen principalmente cambios en el estilo de vida con dieta y actividad física esto con el objetivo de mejorar cada uno de sus componentes (10). El síndrome metabólico (SM)

conlleva a un alto riesgo de enfermedad cardiovascular (ECV) y la probabilidad de tomar medidas preventivas en dichos sujetos es importante diagnosticar el riesgo de SM en la población, también un desarrollo de programas para impedir la aparición de los factores que lo forman y de esta manera disminuir tanto la prevalencia y mortalidad por ECV sujetadas a él (18).

2.2.1. Cambios en el estilo de vida

La actividad física es un elemento fundamental en el gasto y balance energético, se ha evidenciado que logra un impacto muy positivo sobre el SM y sus componentes, principalmente al revertir la resistencia a la insulina en el tejido muscular y reducir de la lipogénesis hepática (disminuir la producción de grasa en el hígado). Importante mencionar que alcanzar pautas mínimas de actividad física (al menos 150 minutos por semana de actividad de intensidad moderada o 75 minutos por semana de actividad de intensidad vigorosa) tiene beneficios importantes en el riesgo metabólico (10).

2.2.2. Control de la obesidad

Obesidad es un factor central del síndrome metabólico (SM), por ello una estrategia principal es pérdida de peso, con ello suele mejorar la resistencia a la insulina y otros componentes del SM. Una recomendación es reducción de la ingesta calórica con aumento de actividad física. Por cada kilogramo de peso perdido mediante la dieta, reduce 2-3% de grasa visceral y da lugar a beneficios metabólicos como menor inflamación sistémica, disminución de lípidos en sangre y reducción de glucosa e insulina en ayunas (10).

Si tras 3-6 meses de dieta y ejercicio no logra perder peso, pueden optar tratamientos farmacológicos como liraglutida, fentermina, sibutramina u orlistat, en casos de obesidad con factores de riesgo cardiovascular. La cirugía bariátrica aplica a pacientes con IMC \geq 40 kg/m² o \geq 35 kg/m² con comorbilidades asociadas que no logran pérdida de peso significativo luego de 2 años de dieta, ejercicio y fármacos (10).

2.2.3. Disminución de niveles de colesterol LDL

La decisión de iniciar tratamiento hipolipemiante debe basarse en el riesgo cardiovascular del paciente. En individuos con SM y DM tipo 2 es importante que el colesterol LDL (lipoproteína de baja densidad o colesterol malo) disminuya a <70mg/dl y más en aquellos con antecedente de eventos cardiovasculares. Es importante seguir una dieta baja en grasas saturadas (<7% de calorías), grasas trans (lo mínimo posible) y colesterol (< 200 mg/día). Las medidas farmacológicas tenemos estatina fármaco de primera línea y logran reducción hasta el 50% en monoterapia, otras opciones tenemos el ezetimibe e inhibidores del PCSK9 (proteína que se une a los receptores de LDL) (10).

2.2.4. Aumento en niveles de colesterol HDL

A parte de la pérdida de peso y dejar de fumar, existen muy pocas estrategias eficaces para elevar los niveles de colesterol HDL (lipoproteína de alta densidad o colesterol bueno). Medicamentos como estatina, fibratos y secuestrados de ácidos biliares tienen muy poco efecto (5-10%), otros fármacos como ezetimible o ácidos grasos omega 3 no tienen impacto alguno sobre este tipo de colesterol. El compuesto con un efecto claramente definido en el aumento de HDL es el ácido nicotínico, cuya eficacia va a depender de la dosis y puede llegar a elevar los niveles hasta un 30% con respecto a los valores iniciales. No obstante, la evidencia que respalde que el aumento de HDL proporcione beneficios en eventos cardiovasculares agudos independientemente de la reducción de LDL es limitada, principalmente en pacientes con síndrome metabólico (10).

2.2.5. Manejo de presión arterial

En pacientes con síndrome metabólico, la mejor elección es un antihipertensivo inhibidor de la enzima convertidora de angiotensina o un antagonista del receptor de angiotensina II debido a que ambos medicamentos contribuyen a reducir el riesgo de desarrollar diabetes tipo 2. Es importante que personas con hipertensión siga una dieta baja en sodio, rica en frutas, verduras y productos lácteos bajos en grasa. La monitorización regular de presión arterial en el hogar ayuda a mantener un control adecuado de dicha condición (10).

2.2.6. Manejo de la hiperglicemia en ayunas

En personas con síndrome metabólico y diabetes mellitus tipo 2, un control intensivo de la glucemia puede ayudar a mejorar los niveles de triglicéridos en ayunas y colesterol LDL. Para quienes aún no han desarrollado diabetes, las intervenciones no farmacológicas, principalmente los cambios en el estilo de vida orientados a la pérdida de peso, son a estrategia inicial recomendada, ya que tienen un fuerte impacto en el metabolismo de la glucosa y reducen significativamente el riesgo de desarrollar diabetes mellitus tipo 2 (10).

El tratamiento farmacológico, la metformina resulta eficaz en la prevención de diabetes al disminuir la producción hepática de glucosa y mejorar su captación muscular. La tiazolidinedionas promueve genes relacionados con el metabolismo de carbohidratos, aumentando GLUT-4 (proteína transportadora de glucosa) en el músculo y niveles de adiponectina. Los agonistas del receptor GLP-1 (péptido similar al glucagón tipo 1, hormona intestinal) contribuye al control glucémico al estimular la secreción de insulina, retrasa el vaciamiento gástrico y reduce el apetito, favoreciendo la pérdida de peso. Los inhibidores de DPP-4 (dipeptidil peptidasa-4) potencian la acción del GLP-1, aunque su papel en la resistencia a la insulina requiere mayor investigación (10).

2.3. Entrenamiento interválico de alta intensidad (HIIT)

Entrenamiento Interválico de Alta Intensidad son ejercicios cortos e intermitentes de actividad vigorosa intercalados con periodos de recuperación pasiva o activa. Considerado una alternativa eficaz para mejorar el acondicionamiento físico y reducir el sobrepeso y la obesidad (19). Además, son ejercicios que se caracterizan por ráfagas relativamente cortas de actividad vigorosa realizada con una carga de trabajo relativa alta que corresponde a $\geq 90\%$ del VO₂máx, >75% de la potencia máxima, a $\geq 90\%$ de la velocidad mínima de carrera requerida para obtener el VO₂máx, y en un rango de tasa de esfuerzo percibido de "duro" a "muy duro" (\geq 6 en una escala de 10 Borg y \geq 15 en una escala de 6 a 20). La duración de cada esfuerzo puede variar desde unos pocos segundos hasta varios minutos, dependiendo de cuán intensa sea la actividad, y suelen repetirse varias veces con intervalos de descanso breves o actividad ligera entre cada uno (20).

2.4. Bases fisiológicas del HIIT

Considerar que por concepto el tiempo total en HIIT (es el resultado de la suma de todos los intervalos de ejercicio), que debería ser mayor que el tiempo que el deportista puede alcanzar en una sesión de ejercicio continuo a la misma intensidad hasta el agotamiento. Esto quiere decir que, si un deportista a 19 km/h soporta 10 min hasta el agotamiento, la suma tiempos de 6 intervalos de 3 min ejecutados en 19 km/h da un total de 18 min en una sesión, superando dichos 10 min. El objetivo del entrenamiento interválico aeróbico de alta intensidad es lograr un mayor tiempo en intensidades de ejercicio que no podrían ser mantenidos de manera continua durante un largo tiempo (21).

Es importante la toma de distintas decisiones a la hora de estructurar una sesión de HIIT. El punto de partida hace referencia a la selección de la intensidad que se basa en datos fisiológicos conseguidos de manera directa (ergoespirometría) o indirecta. Como segundo punto importante es la decisión del tiempo hasta la fatiga que el paciente es capaz de resistir a dicha intensidad y si ese tiempo es idóneo para conseguir las adaptaciones que se aspira obtener. Si el tiempo no es el adecuado, la alternativa sería diseñar un entrenamiento interválico manteniendo la intensidad, pero con intervalos más cortos para de esta manera obtener el agotamiento (21). Lograr una mejora del VO₂max implica conseguir mejorías en todos los órganos y sistemas del organismo humano ya que de manera directa o indirecta participan en el proceso de llevar el oxígeno desde el aire atmosférico hasta las mitocondrias. Es por ello que el VO₂max es

organismo humano ya que de manera directa o indirecta participan en el proceso de llevar el oxígeno desde el aire atmosférico hasta las mitocondrias. Es por ello que el VO₂max es considerado una variable muy integradora fisiológicamente, no solo en el rendimiento de resistencia aeróbica, sino para el fitness cardiorrespiratorio del paciente de la salud en general (21).

2.5. Tipos de HIIT

El HIIT se puede clasificarse en tres grupos, de acuerdo al tiempo de actividad y los periodos de descanso, de la siguiente manera 3:

- 1. Intervalos largos de HIIT: 4 minutos de alta intensidad con 3 minutos de recuperación activa o pasiva.
- 2. Intervalos moderados de HIIT: 1 a 2 minutos de ejercicio de alta intensidad con 1 a 4 minutos de recuperación con ejercicios de baja intensidad.

3. Intervalos cortos de HIIT: 15 a 60 segundos de actividad de alta intensidad con descansos de 15 a 20 segundos con ejercicio de baja intensidad (22).

2.6. Componentes básicos del HIIT

- Intensidad del intervalo: se puede establecer con la frecuencia cardiaca máxima (FCM) o con la percepción subjetiva del esfuerzo y en cuanto a las intensidades deberán ser cercanas al 90% (5).
- **Duración del intervalo:** establecido en un rango de 90 a 150 segundos. Este tiempo del intervalo deberá ser determinado, una vez conocido el tiempo que necesita el sujeto para alcanzar su velocidad aeróbica máxima (5).
- Intensidad de la recuperación: la recuperación activa debería ser transitoria e intensa, donde se requiere conservar un mínimo de VO₂ y los siguientes intervalos sean eficientes. Si en el entrenamiento se pretende maximizar la capacidad de trabajo durante los siguientes intervalos, se debería realizar una recuperación pasiva (caminar por 2 min) (5).
- **Duración de la recuperación:** no es exacta, va a depender de la percepción subjetiva del deportista, conocimiento y experiencia del entrenador (5).
- **Número de intervalos:** no se encuentra protocolizado, estos dependen de la intensidad del ejercicio y estado del sujeto (5).

2.7. Programación HIIT

El HIIT se basa en la intensidad y es importante conocer la frecuencia cardíaca máxima (FCmáx) para determinar la intensidad del ejercicio. La FCmáx va a indicar la intensidad con la que trabaja el sujeto y se expresa en porcentaje, siendo directamente proporcional a la intensidad. Existen diversos métodos para calcular la FCmáx, pero se recomienda realizar una prueba de esfuerzo. Sin embargo, existe una fórmula comúnmente utilizada que consiste en realizar una resta entre la cantidad de 220 menos la edad (Ejemplo para un sujeto de 40 años: FCmax= 220 – 40 = 180 pulsaciones por minuto (ppm.)). Una vez conocido el valor de la FCmáx, se puede determinar el 100% de la intensidad del ejercicio (23).

2.8. Prescripción mediante escalas de esfuerzo percibido.

La escala de esfuerzo percibido puede ser la de Borg, se ha vuelto común en el entrenamiento tanto de fuerza como cardiovascular. Su uso habitual se debe a su alta validez y fiabilidad. Esta escala es muy precisa, ya que considera aspecto como el descanso, el disconfort y otros factores subjetivos que pueden influir en el rendimiento del deportista (23).

La escala de esfuerzo percibido de Borg se aplica para evaluar la percepción de esfuerzo durante la actividad física. Esta herramienta facilita pautas para ajustar la intensidad del ejercicio, es decir, la carga de trabajo, y de esta manera determinar las distintas intensidades en deportes y rehabilitación. El concepto de esfuerzo percibido se basa en la evaluación subjetiva que refleja la opinión del individuo sobre la intensidad del esfuerzo realizado (24). Se aplica un intervalo numérico de 6 a 20. Mientras se ejecuta el ejercicio, se le solicita al sujeto que asigne un número para manifestar la sensación subjetiva de la cantidad de trabajo realizado. Cada número se va a relacionar con una descripción verbal (25).

- 6: Sin ningún esfuerzo.
- 9: Esfuerzo muy ligero (similar a caminar lento).
- 13: Moderadamente dificil (un esfuerzo manejable, pero con algo de dificultad).
- 17: Muy dificil (requiere gran esfuerzo y complicado de mantener).
- 19: Extremadamente dificil (casi insostenible).
- 20: Esfuerzo máximo (el límite absoluto que se puede soportar) (25).

2.9. Protocolo HIIT

La aplicación del HIIT en la práctica es fundamental para optimizar los resultados a largo plazo de los pacientes. Para el entrenamiento en gimnasio, el protocolo se puede adaptar a diversas máquinas, como ergómetros de remo, elípticas o ergometría de brazos según preferencias o las limitaciones musculoesqueléticas. Las alternativas las cintas de correr o cicloergómetros en casa pueden incluir caminar en cuestas empinadas, trotar, subir escaleras, subir escalones, marchar con las rodillas en alto o bailar. En cuanto a la duración de los intervalos se puede cronometrar con pistas musicales de 3 a 4 minutos o utilizando colinas específicas o postes de luz como referencia al hacer ejercicio al aire libre. Es fundamental educar a los pacientes sobre los principios de la sobrecarga progresiva para mantener la intensidad deseada (26).

Ejemplo:

Este tipo de entrenamiento se puede realizar en casa con la utilización de una colchoneta, un cronómetro o reloj. La velocidad de cada ejercicio puede ser mayor o menor, según el nivel de condición física, pero anima al participante a lograr su máximo potencial. Se recomienda realizar un calentamiento de 5 minutos caminando o marchando en el mismo lugar antes del entrenamiento, y enfriamiento de 5-10 minutos con movimientos más lentos que permitan disminuir gradualmente la frecuencia cardíaca, junto con estiramientos, para finalizar el entrenamiento (27).

Tabla 1. Ejercicio en casa

Sentadillas (variación para mayor intensidad: sentadillas con salto) Flexiones en el suelo (modificación: en un ángulo de 45 grados sobre una silla resistente o contra la pared) Saltos de tijera (modificación: alternar golpeteos con los dedos del pie derecho e izquierdo hacia los costados mientras se llevan los brazos por encima de la cabeza como si se tratara de un salto de tijera) Fondos de tríceps usando una silla o cama resistente 30 segundos de levaciones alternas de rodillas (variación para mayor intensidad: 30 segundos de segundos de segundos de rodillas (variación para mayor intensidad: 30 segundos de segundos de segundos de rodillas (variación para mayor intensidad: 30 segundos de segundos de rodillas (variación para mayor intensidad: 30 segundos de segundos de rodillas (variación para mayor intensidad: 30 segundos de rodillas (variación para mayor intensidad:	Ejercicio	Tiempo
Flexiones en el suelo (modificación: en un ángulo de 45 grados sobre una silla resistente o contra la pared) Saltos de tijera (modificación: alternar golpeteos con los dedos del pie derecho e izquierdo hacia los costados mientras se llevan los brazos por encima de la cabeza como si se tratara de un salto de tijera) Fondos de tríceps usando una silla o cama resistente 30 segundos Elevaciones alternas de rodillas (variación para mayor intensidad: 30 segundos	Estocadas o zancadas laterales, alternando de derecha a izquierda	30 segundos
una silla resistente o contra la pared) Saltos de tijera (modificación: alternar golpeteos con los dedos del pie 30 segundos derecho e izquierdo hacia los costados mientras se llevan los brazos por encima de la cabeza como si se tratara de un salto de tijera) Fondos de tríceps usando una silla o cama resistente 30 segundos Elevaciones alternas de rodillas (variación para mayor intensidad: 30 segundos se	Sentadillas (variación para mayor intensidad: sentadillas con salto)	30 segundos
Saltos de tijera (modificación: alternar golpeteos con los dedos del pie 30 segundos derecho e izquierdo hacia los costados mientras se llevan los brazos por encima de la cabeza como si se tratara de un salto de tijera) Fondos de tríceps usando una silla o cama resistente 30 segundos Elevaciones alternas de rodillas (variación para mayor intensidad: 30 segundos segundo	Flexiones en el suelo (modificación: en un ángulo de 45 grados sobre	30 segundos
derecho e izquierdo hacia los costados mientras se llevan los brazos por encima de la cabeza como si se tratara de un salto de tijera) Fondos de tríceps usando una silla o cama resistente 30 segundos Elevaciones alternas de rodillas (variación para mayor intensidad: 30 segundos	una silla resistente o contra la pared)	
por encima de la cabeza como si se tratara de un salto de tijera) Fondos de tríceps usando una silla o cama resistente 30 segundos Elevaciones alternas de rodillas (variación para mayor intensidad: 30 segundos	Saltos de tijera (modificación: alternar golpeteos con los dedos del pie	30 segundos
Fondos de tríceps usando una silla o cama resistente 30 segundos Elevaciones alternas de rodillas (variación para mayor intensidad: 30 segundos	derecho e izquierdo hacia los costados mientras se llevan los brazos	
Elevaciones alternas de rodillas (variación para mayor intensidad: 30 segundos	por encima de la cabeza como si se tratara de un salto de tijera)	
	Fondos de tríceps usando una silla o cama resistente	30 segundos
trotar elevando las rodillas)	Elevaciones alternas de rodillas (variación para mayor intensidad:	30 segundos
,	trotar elevando las rodillas)	
Abdominales (modificación: abdominales sobre una pelota de 30 segundos	Abdominales (modificación: abdominales sobre una pelota de	30 segundos
estabilidad o abdominales en el suelo)	estabilidad o abdominales en el suelo)	

15 segundos de marcha lenta en el mismo lugar, luego de cada ejercicio. Al finalizar el entrenamiento un descanso de 1 minuto y repetir la sesión 2 veces más (27).

2.10. Efectos del entrenamiento interválico de alta intensidad en síndrome metabólico

De acuerdo con la evidencia científica, durante el síndrome metabólico y la diabetes tipo 2, el HIIT contribuye a la mejora de la acción de la insulina, principalmente en el músculo esquelético, al reducir los marcadores proinflamatorios y aumentar el flujo sanguíneo, la capacidad oxidativa y los transportadores GLUT4. La evidencia sugiere que el entrenamiento a intervalos no modifica la resistencia a la insulina en el hígado (evaluada mediante HOMA-IR e

insulina en ayunas) durante el síndrome metabólico y la diabetes tipo 2. Considerando que la acción de la insulina y el metabolismo de la glucosa en el hígado contribuyen a la lipogénesis de novo, es posible que los TG generados a partir de la glucosa sigan afectando al cerebro (28). Por el contrario, la evidencia experimental indica que el HIIT redujeron la HbA1c durante la diabetes tipo 2 y el síndrome metabólico, sugiere que los niveles de productos finales de glicación avanzada (AGE) podrían ser más bajos después del entrenamiento a intervalos. Por lo tanto, predecimos que el daño inducido por (AGEs) en la barrera hematoencefálica (BHE) y el cerebro tras el entrenamiento a intervalos podría atenuarse o revertirse (28).

Finalmente, varios estudios demuestran que el HIIT redujo la glucosa posprandial (PPG concentraciones de glucosa en sangre después de una comida) en poblaciones con síndrome metabólico, y en pacientes con diabetes tipo 2, la hiperglucemia aguda deteriora la función cognitiva y el estado de ánimo. Se desconoce el impacto de la hiperglucemia aguda en la función cerebral en pacientes con síndrome metabólico. Por lo tanto, se necesitan estudios para identificar los efectos de la hiperglucemia aguda en el cerebro en pacientes con síndrome metabólico. Estos datos podrían complementar los hallazgos relativos a la atenuación de la PPG inducida por el HIIT en pacientes con síndrome metabólico (28).

CAPÍTULO III. METODOLOGIA

3.1. Diseño de la Investigación

La presente investigación se realizó mediante una revisión documental, que se fundamentó en la búsqueda, recopilación, análisis de información científica, obtenida a partir de bases de datos científicas, sin excluir información considerada de importancia, relacionados con el entrenamiento interválico de alta intensidad en síndrome metabólico, lo que permitirá identificar la efectividad del entrenamiento interválico de alta intensidad.

3.2. Tipo de Investigación

La investigación realizada fue de tipo bibliográfica debido a que se realizó una lectura y análisis detallado de artículos digitales de diversas bases de datos científicas como Medline, Scopus, Research Gate y PEDro (Physiotherapy Evidence Database), gracias a lo que se obtuvo información sobre el entrenamiento interválico de alta intensidad en pacientes con síndrome metabólico.

3.3. Nivel de la Investigación

Se utilizó el nivel descriptivo, debido a que se realizó la búsqueda en varias literaturas dentro del campo de la fisioterapia logrando recopilar características de cada artículo y aquellos que han sido publicados en años anteriores describiendo a la patología y el entrenamiento interválico de alta intensidad.

3.4. Método de la Investigación

Se aplicó el método inductivo, ya que se determinará la efectividad entrenamiento interválico de alta intensidad en síndrome metabólico a partir del análisis detallado de diversas investigaciones realizadas por distintos autores.

3.5. Según la cronología de la investigación

La investigación fue de carácter retrospectivo, debido a que se recopilará información de diversos documentos ya publicados, para realizar una lectura, análisis e interpretación acerca del entrenamiento interválico de alta intensidad en síndrome metabólico.

3.6. Población

La población de interés para la investigación está constituida por 702 estudios científicos, cuya temática aporta con información relevante y actualizada sobre el entrenamiento interválico de alta intensidad en pacientes con síndrome metabólico.

3.7. Muestra

La muestra está constituida por 20 artículos científicos seleccionados, específicamente aquellos que cumplen con los criterios de inclusión definidos para esta investigación. Estos artículos constituyen la base de la revisión y permiten abordar de manera precisa el entrenamiento interválico de alta intensidad en síndrome metabólico.

3.8. Criterios de inclusión

Ensayos clínicos aleatorizados publicados dentro del periodo 2017–2025.

Información científica con al menos una de las variables del estudio.

Artículos científicos en idioma español e inglés.

Ensayos clínicos aleatorizados con una calificación según la escala de PEDro (Physiotherapy Evidence Database) igual o mayor a 6

3.9. Criterios de exclusión

Artículos científicos duplicados en las diferentes bases de datos.

Artículos pertenecientes a investigaciones desarrolladas en animales.

Artículos científicos incompletos

Artículos científicos de acceso restringido

3.10. Técnicas de recolección de datos

Los procedimientos para la recolección de datos implicaron una búsqueda en múltiples fuentes de información fidedigna, recopilando artículos científicos de tipo ensayo clínico aleatorizado en distintas bases de datos reconocidas como: PubMed, Research Gate y Scopus. Para optimizar los resultados de búsqueda, se aplicó una estrategia basada en el uso preciso de descriptores de Ciencias de la Salud Decs/mesh como: "Interval Training", "Metabolic Syndrome"; así como operadores boléanos: "AND" y "OR", con el fin de establecer combinaciones precisas durante la búsqueda. Esta estrategia permitió la selección de artículos científicos previamente validados, que aportaron evidencia relevante para el desarrollo de la presente investigación.

3.11. Métodos de análisis y procesamiento de datos

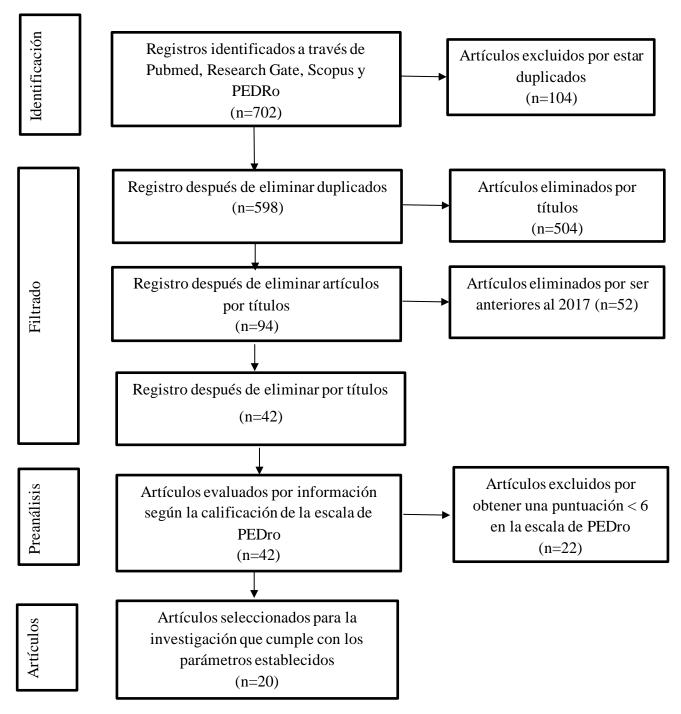


Figura 1. Diagrama de flujo PRISMA del proceso de selección. *

*Tomado de: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Moher D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic reviews. 2021; 10(1): 1-11 (29)

3.12. Análisis de artículos científicos según la escala de PEDro

Tabla 2. Valoración de la calidad metodológica de los estudios controlados aleatorizados mediante la Escala de PEDro

N°	AUTOR/AÑO	TÍTULO ORIGINAL	TÍTULO TRADUCIDO	BASE CIENTIFÍCA	CALIFICACIÓN ESCALA
					PEDro
1	Petro 2024 (30)	Efficacy of high-intensity interval training versus continuous training on serum myonectin and lipid outcomes in adults with metabolic syndrome: A post-hoc analysis of a clinical trial	Eficacia del entrenamiento en intervalos de alta intensidad frente al entrenamiento continuo sobre los niveles séricos de mionectina y lípidos en adultos con síndrome metabólico: un análisis post-hoc de un ensayo clínico	PubMed	7/10
2	Pashaei 2024 (31)	Effects of HIIT training and HIIT combined with circuit resistance training on measures of physical fitness, miRNA expression, and metabolic	Efectos del entrenamiento HIIT y del HIIT combinado con entrenamiento de resistencia en circuito sobre las medidas de aptitud física, expresión de miRNA y factores de riesgo	PEDro	7/10
		risk factors in	metabólico en mujeres de		

		overweight/obese middle-	mediana edad con		
		aged women	sobrepeso/obesidad		
3		Effect of resistance		PubMed	6/10
		training and high-	Efecto del entrenamiento de		
		intensity interval training	resistencia y del entrenamiento en		
	Kazemi	on metabolic parameters	intervalos de alta intensidad sobre		
		and serum level of	los parámetros metabólicos y el		
	2023	Sirtuin1 in	nivel sérico de Sirtuin1 en		
	(32)	postmenopausal women	mujeres posmenopáusicas con		
		with metabolic syndrome:	síndrome metabólico: un ensayo		
		a randomized controlled	controlado aleatorio.		
		trial			
4		"HIIT the Inflammation":		PubMed	7/10
		Comparative Effects of			
		Low-Volume Interval Training and Resistance	HIIT y la inflamación: efectos		
20	D.121		comparativos del entrenamiento		
	Reljic 2022 (33) Inflammatory Indices in Obese Metabolic Syndrome Patients Undergoing Caloric	interválico de bajo volumen y			
		ejercicios de resistencia sobre los			
		índices inflamatorios en pacientes			
		Syndrome Patients	con síndrome metabólico obeso		
		Undergoing Caloric	sometidos a restricción calórica		
		Restriction			

5	Mendelson 2022 (34)	Effects of high intensity interval training on sustained reduction in cardiometabolic risk associated with overweight/obesity. A randomized trial	Efectos del entrenamiento interválico de alta intensidad en la reducción sostenida del riesgo cardiometabólico asociado con el sobrepeso/obesidad. Un ensayo aleatorizado.	PEDro	6/10
6	Matos 2021 (35)	Two Weekly Sessions of High-Intensity Interval Training Improve Metabolic Syndrome and Hypertriglyceridemic Waist Phenotype in Older Adults: A Randomized Controlled Trial	Dos sesiones semanales de entrenamiento en intervalos de alta intensidad mejoran el síndrome metabólico y el fenotipo de cintura hipertrigliceridémica en adultos mayores: un ensayo controlado aleatorizado	PubMed	6/10
7	Reljic 2021 (36)	Effects of very low volume high intensity versus moderate intensity interval training in obese metabolic syndrome patients: a randomized controlled study	Efectos del entrenamiento en intervalos de muy bajo volumen y alta intensidad frente al entrenamiento en intervalos de intensidad moderada en pacientes obesos con síndrome metabólico:	PEDro	6/10

			un estudio controlado		
			aleatorizado		
8		The Effect of Exercise		PubMed	6/10
		Intensity and Volume on	El efecto de la intensidad y el		
		Metabolic Phenotype in	volumen del ejercicio sobre el		
		Patients with Metabolic	fenotipo metabólico en pacientes		
	Von Korn	Syndrome: A	con síndrome metabólico: un		
	2021	Randomized Controlled	ensayo controlado aleatorizado		
	(37)	Trial			
9	Ramos 2021 (38)	Exercise Training Intensity and the Fitness- Fatness Index in Adults with Metabolic Syndrome: A Randomized Trial	Intensidad del entrenamiento físico e índice de adiposidad- condición física en adultos con síndrome metabólico: un ensayo aleatorizado	PubMed	6/10
10	Ah Jo 2020 (39)	Effects of High-Intensity Interval Training Versus Moderate-Intensity Continuous Training on Epicardial Fat Thickness and Endothelial Function	Efectos del entrenamiento en intervalos de alta intensidad frente al entrenamiento continuo de intensidad moderada sobre el espesor de la grasa epicárdica y la función endotelial en el síndrome metabólico hipertensivo	PubMed	6/10

		in Hypertensive Metabolic Syndrome			
11	So 2020 (40)	Effects of using high- intensity interval training and calorie restriction in different orders on metabolic syndrome: A randomized controlled trial	Efectos del uso de entrenamiento en intervalos de alta intensidad y restricción calórica en diferentes órdenes sobre el síndrome metabólico: un ensayo controlado aleatorizado	Scopus	7/10
12	Ramos 2020 (41)	Effect of Different Volumes of Interval Training and Continuous Exercise on Interleukin- 22 in Adults with Metabolic Syndrome: A Randomized Trial	Efecto de diferentes volúmenes de entrenamiento por intervalos y ejercicio continuo sobre la interleucina-22 en adultos con síndrome metabólico: un ensayo aleatorizado	PubMed	6/10
13	Da Silva 2020 (42)	The Effects of Concurrent Training Combining Both Resistance Exercise and High-Intensity Interval Training or Moderate- Intensity Continuous	Los efectos del entrenamiento concurrente que combina ejercicios de resistencia y entrenamiento en intervalos de alta intensidad o entrenamiento	PEDro	6/10

		Training on Metabolic Syndrome	continuo de intensidad moderada sobre el síndrome metabólico		
14	Ramos 2020 (43)	Optimizing the Interaction of Exercise Volume and Metformin to Induce a Clinically Significant Reduction in Metabolic Syndrome Severity: A Randomised Trial	Optimización de la interacción del volumen de ejercicio y la metformina para inducir una reducción clínicamente significativa de la gravedad del síndrome metabólico: un ensayo aleatorizado	Scopus	6/10
15	Taylor 2020 (44)	Effect of High-Intensity Interval Training on Visceral and Liver Fat in Cardiac Rehabilitation: A Randomized Controlled Trial	Efecto del entrenamiento en intervalos de alta intensidad sobre la grasa visceral y hepática en la rehabilitación cardíaca: un ensayo controlado aleatorizado	PEDro	8/10
16	Lee 2020 (45)	Effect of High-Intensity Interval Training on Glycemic Control in Adults With Type 1 Diabetes and Overweight or Obesity: A	Efecto del entrenamiento en intervalos de alta intensidad sobre el control glucémico en adultos con diabetes tipo 1 y sobrepeso u obesidad: un ensayo controlado aleatorizado con cruce parcial	PEDro	6/10

		Randomized Controlled			
		Trial With Partial			
		Crossover			
17	Reljic 2020 (46)	Low-volume high- intensity interval training improves cardiometabolic health, work ability and well-being in severely obese individuals: a randomized-controlled trial sub-study	El entrenamiento en intervalos de alta intensidad y bajo volumen mejora la salud cardiometabólica, la capacidad de trabajo y el bienestar en personas con obesidad severa: un subestudio de ensayo controlado aleatorizado	PEDro	6/10
18	Byrd 2019 (47)	Personalized Moderate- Intensity Exercise Training Combined with High-Intensity Interval Training Enhances Training Responsiveness	El entrenamiento personalizado de ejercicios de intensidad moderada combinado con el entrenamiento en intervalos de alta intensidad mejora la capacidad de respuesta al	PubMed	6/10
19	Ramírez 2017 (48)	Similar cardiometabolic effects of high- and moderate-intensity training among	entrenamiento. Efectos cardiometabólicos similares del entrenamiento de intensidad alta y moderada entre adultos inactivos aparentemente	PubMed	7/10

		apparently healthy inactive adults: a randomized clinical trial	sanos: un ensayo clínico aleatorizado		
20	Ramos 2017 (49)	High-intensity interval training and cardiac autonomic control in individuals with metabolic syndrome: A randomised trial	Entrenamiento en intervalos de alta intensidad y control autonómico cardíaco en personas con síndrome metabólico: un ensayo aleatorizado	PubMed	6/10

CAPÍTULO IV. RESULTADOS Y DISCUSIÓN

4.1 Resultados

Tabla 3. Síntesis de los resultados de ensayos controlados aleatorios seleccionados.

N°	Autor/Año	Participantes	Intervención	Variables	Resultados
1		60 cumplieron con los criterios	Los adultos de los dos sexos con	Los participantes se sometieron	Cambios en los niveles circulantes
		de participación y fueron	síndrome metabólico, se	a un examen completo. Se	de mionectina sérica, colesterol
		asignados al azar. Asignados a	sometieron a un programa	registró la información	lipoproteína de baja densidad
		los grupos	supervisado de entrenamiento en	sociodemográfica,	(LDL), colesterol lipoproteínas de
		Entrenamiento interválico de	cinta rodante, 3 veces por	antecedentes personales y	alta densidad (HDL), triglicéridos
		alta intensidad (HIIT) (n = 29)	semana, a lo largo de 12	familiares. La presión arterial y	(TG), colesterol total (CT),
		Entrenamiento continuo de	semanas.	frecuencia cardíaca se midieron	colesterol total lipoproteína de alta
	Petro	intensidad moderada (MICT)	HIIT: seis intervalos con fases de	en sedestación y bipedestación.	densidad (CT/HDL) y los ácidos
	2024	(n = 31).	alta intensidad de un minuto al 90	La cuantificación de la	grasos libres no fueron
	(30)		% del consumo máximo de	actividad física, se usó el	significativos en ningún grupo,
			oxígeno (VO2pico) durante un	Cuestionario Global de	pero el HIIT mostró una tendencia
			total de 22 min.	Actividad Física (GPAQ)	al aumento después de
			MICT: entrenó al 60 % del	validada.	intervención, el enfoque
			VO ₂ pico durante 36 min.		estadístico dio a conocer un
					cambio significativo, con una p =
					0,042. Índice de masa grasa
					apendicular (AFMI) (p = 0,713) y

				masa magra apendicular (ALM) (p
				= 0,810).
2	Veintisiete mujeres con	Grupo HIIT: ejercicios de carrera	Evaluaron medidas	El HIIT mostró un aumento
	sobrepeso/obesidad de entre	(5 repeticiones x 4 min por	antropométricas como masa	significativo del miR-155 entre el
	35 y 50 años fueron asignadas	sesión) con recuperación activa	corporal, además capacidad	pre y el postentrenamiento (p =
	aleatoriamente a grupos	entre repeticiones durante 10	cardiovascular, fuerza	0,045). Además el programa de
	Entrenamiento interválico de	semanas con 5 sesiones	muscular, niveles de micro	HIIT aumentó la expresión de
	alta intensidad (HIIT) (n=14)	semanales.	reguladores de la expresión	miR-155 en las células
	Entrenamiento interválico de	Grupo HCRT: 10 semanas de	génica (miRNA) (miR-9, -15a,	mononucleares de sangre
	alta intensidad +	HIIT y entrenamiento de	-34a, -145 y -155), perfiles	periférica (PBMC). Cabe
Pashaei	entrenamiento de resistencia	resistencia con 3 sesiones	lipídicos colesterol total (CT),	mencionar que, tanto el HIIT
2024	en circuito (HIIT+HCRT)	semanales de HIIT y 2 sesiones	triglicéridos (TG), colesterol	como el HCRT mejoraron los
(31)	(n=13).	semanales de HCRT.	unido a lipoproteínas de baja	factores de riesgo metabólicos
(31)	Por una mala condición física		densidad; colesterol de	seleccionados, como los perfiles
	se perdió seguimiento en		lipoproteínas de baja densidad	lipídicos y el metabolismo de la
	ambos grupos resultando		(c-LDL) y colesterol unido a	glucosa y la insulina, en mujeres
	HIIT (n=12) y HIIT+HCRT		lipoproteínas de alta densidad	de mediana edad con
	(n=12)		(c-HDL) y resistencia a la	sobrepeso/obesidad.
			insulina. Evaluación del	
			modelo homeostático:	
			resistencia a la insulina	
			(HOMA-IR).	

3 Cuarenta y cinco mujeres Para cada grupo 3 días de Se evaluaron medidas Se mostró que el peso, posmenopáusicas de 45-65 entrenamiento por semana antropométricas y fisiológicas circunferencia de cintura, índice años con síndrome metabólico durante 8 semanas. como peso, altura, índice de de masa corporal, masa grasa, se asignaron aleatoriamente a Iniciaron con calentamiento de masa corporal (IMC). Se lipoproteínas de baja densidad, de midieron la circunferencia de triglicéridos, colesterol, glucemia tres grupos: 1) Entrenamiento 10 min y ejercicios de cintura y cadera para calcular el en interválico de alta intensidad estiramiento, posterior ayunas, hemoglobina (HIIT) (n = 15)enfriamiento al finalizar los índice cintura-cadera. La masa glicosilada (HbA1c) y la presión Entrenamiento de ejercicios. arterial sistólica y diastólica 2) masa muscular grasa, Grupo HIIT: ejercicio aeróbico esquelética, presión arterial y la disminuyeron, y que la sirtuina 1 resistencia (RT) (n = 15)3) Grupo control (n = 15). interválico de alta intensidad, frecuencia cardíaca. proteína nuclear (SIRT1) aumentó Kazemi alternando caminata y carrera a consumo máximo de oxígeno significativamente en ambos 2023 paso ligero con 2 periodos de (VO2pico) se evaluó con la grupos de entrenamiento. Es (32)recuperación activa a ritmo prueba de caminata de 6 importante mencionar que presión moderado. sistólica. minutos. arterial colesterol. RT: Realizaron ejercicios, para HbA1c y glucemia en ayunas miembro superior e inferior disminuyeron más en el grupo de como prensa de piernas, prensa HIIT. La masa muscular de pecho, etc. Constaba 8-10 esquelética y la 1 repetición máxima (1RM) aumentaron más repeticiones, descanso Intensidad de ejercicios se fijó 75 en el grupo de entrenamiento de % de su 1RM (máximo en una resistencia. repetición) de los sujetos.

4 Un total de 104 participantes LOW-HIIT (14 min/sesión): Se Se realizaron medición de la A pesar de tener efectos similares asignados realizaron en cicloergómetros presión arterial, extracción de sobre el peso corporal, las fueron aleatoriamente a: freno electrónico, sangre evaluar modalidades de ejercicio de bajo con para Entrenamiento interválico de calentamiento 2 min. 5 intervalos concentraciones séricas de volumen tienen un impacto alta intensidad de bajo de 1 min a una intensidad de marcadores inflamatorios diferente en los resultados volumen (LOW-HIIT) (n=26) ejercicio 80-95 % de la FCmáx, proteína C reactiva (C-CRP), inflamatorios cardio Entrenamiento de resistencia recuperación de 1 min baja marcadores cardiometabólicos, metabólicos en pacientes con de una serie intensidad y enfriamiento 3 min. glucosa síndrome metabólico. El HIIT en ayunas, 1-RT (15 min/sesión): 5 min triglicéridos, colesterol total, (1-RT) (n=17)presenta una eficacia superior para Entrenamiento de resistencia calentamiento en bicicleta colesterol unido a lipoproteínas mejorar la inflamación en de tres series (3-RT) (n=19) ergométrica de baja intensidad. de baja densidad (LDL-C) y comparación con el 1-RT y la Reljic 2022 Electroestimulación corporal Realizaron 5 ejercicios de fuerza colesterol unido a lipoproteínas WB-EMS. El eiercicio (33)total (WB-EMS) (n=20) con máquinas de pesas. Carga de de alta densidad (HDL-C). resistencia parece requerir un Grupo control (CON) (n=22). marcadores entrenamiento progresivamente Además, los mayor volumen para promover un cada 4 semanas según un inflamatorios interleucina-1 impacto beneficioso sobre la porcentaje de la fuerza máxima beta (IL-1β), interleucina-6 inflamación. (Fmáx): 50–60 % (semanas 1–4), (IL-6), interferona-60–75 % (semanas 5–8) y 70–80 (IFN_y) y proteína % (semanas 9–12). transportadora de (3-RT (50 min/sesión): Similar lipopolisacáridos. 1RT realizó tres series. **WB-EMS** (20)min/sesión): usaron dispositivos y trajes de

			ejercicio específico, incluyó		
			manguitos para brazos y muslos,		
			cinturón lumbar y chaleco con		
			electrodos integrados para		
			generar estimulación eléctrica		
			muscular. Cada grupo realizó 2		
			veces por semana durante 12		
			semanas, o a un grupo control.		
5		60 sujetos (19 mujeres), no	Todas las sesiones de	Evaluaron las características	El HIIT/HIIT-RM condujo una
		activos con	entrenamiento fueron	antropométricas, composición	mayor mejora en el VO2máx, la
		sobrepeso/obesidad (edad: 54	supervisadas. En MICT, la carga	corporal, aptitud	potencia de salida en los umbrales
		± 11 años).	de trabajo de ciclismo se adaptó	cardiorrespiratoria (CRF),	ventilatorios y a la tasa máxima de
		Todos los sujetos fueron	al 50 % de potencia máxima de	oxidación de grasas, perfil	oxidación de grasas y la
		aleatorizados en tres grupos:	salida (PPO)	lipídico, equilibrio glucémico,	circunferencia de la cintura en
	Mendelson	Ejercicio continuo de ciclismo	HIIT: 45 minutos de ejercicio	inflamación leve, función	comparación con el MICT, y
	2022	de intensidad moderada	intermitente que se basó en 22	vascular, actividad física	tendió a disminuir la resistencia a
	(34)	(MICT; $n = 20$)	series de ciclismo empleado en 1	espontánea y motivación para	la insulina. Durante el período de
		Ejercicio interválico de alta	minuto al 100 % de PPO	comer en tres distintos	seguimiento de cuatro meses,
		intensidad (HIIT; n = 20)	intercaladas con 1 minuto de	momentos.	durante el cual se prescribió
		Ejercicio interválico de alta	recuperación pasiva. El HIIT-		ejercicio en autonomía, el HIIT
		intensidad con modulación de	RM se realizó igual que el		indujo una mayor preservación de
		la duración de la recuperación	programa de HIIT.		la aptitud cardiorrespiratoria
		(HIIT-RM; $n = 20$)			(CRF), disminuciones en la masa

grasa total y abdominal y el colesterol total/HDL. hombres y mujeres El GE realizó dos sesiones Evaluación 6 antropométrica Los participantes del grupo mayores fueron asignados semanales de HIIT durante 12 consistió en mediciones de experimental (GE) de los dos aleatoriamente a dos grupos: el semanas. Las sesiones de HIIT masa corporal, altura e índice sexos presentaron valores grupo experimental (GE) y el consistieron en 40 minutos de de masa corporal (IMC), reducidos de síndrome metabólico grupo control (GC), luego carrera/caminata en cinta: un además circunferencia de la (SM). fenotipo cintura excluidos ciertos calentamiento de 10 minutos al cintura (CC). Se utilizó una fueron hipertrigliceridémica (CHT). participantes resultando Grupo 50-60 % de la frecuencia báscula digital presión arterial, colesterol y v un experimental entrenamiento cardíaca máxima (FCmáx), estadiómetro integrados para glucemia. Después del interválico de alta intensidad seguido de 10 series de 1 minuto medir el peso y altura con entrenamiento, el número de Matos (HIIT) (n=58) y Grupo control al 85-90 % de la FCmáx, precisión. La CC se midió con hombres hipertensos disminuyó 2021 no realizó ningún tipo de intercaladas con 1 minuto de cinta métrica no elástica en el un 100 % y el de mujeres (35)ejercicio (n=46). caminata a un ritmo seleccionado punto medio entre la costilla disminuyó un 70 %. Además, se (un total de 20 minutos) y 10 inferior y la cresta ilíaca, al observó reducción del 75 % en enfriamiento final de una exhalación normal. minutos mujeres con diabetes, mediciones reducción del 100 % en los caminando ritmo Dichas un seleccionado. El GC no ejecutó realizaron dos veces para indicadores de síndrome ningún tipo de ejercicio intenso obtener mayor precisión. metabólico y una reducción de en el período de intervención. más del 80 % en el peso corporal total en participantes de los dos sexos.

7 Un total de 117 individuos El entrenamiento se realizó en Medición de presión arterial El estudio reveló que 28 minutos asignados cicloergómetros fueron con freno Muestras de sangre semanales de HIIT de bajo aleatoriamente electrónico, las sesiones de extrajeron con venopunción volumen mejoraron la capacidad entrenamiento de intervalos de ejercicio se realizaron dos veces antecubital, se analizaron cardiorrespiratoria (CRF) v el alta intensidad y bajo volumen por semana durante 12 semanas. concentraciones séricas de riesgo cardiometabólico (HIIT, n = 40), (ii) El HIIT, en una fase de glucosa, colesterol pacientes obesos con síndrome total, metabólico (MetS). El grupo HIIT entrenamiento de intervalos de calentamiento de 2 minutos, 5 colesterol unido a lipoproteínas intensidad moderada y bajo series a intervalos de 1 minuto al de baja densidad (LDL), obtuvo las mayores mejoras en volumen (MIIT, n = 37), (iii) 80-95 % de la FCmáx, colesterol unido a lipoproteínas VO2max y puntuación z de MetS. un grupo de control inactivo intercaladas con 1 minuto de de alta densidad (HDL) y aunque el MIIT también fue (CON, n = 40). Después de la recuperación a baja intensidad y triglicéridos. Reljic efectivo. La restricción calórica aleatorización y antes de la fase de enfriamiento de 3 Las 2021 mediciones sin ejercicio ayudó a reducir peso, (36)intervención, 10 participantes minutos. El protocolo MIIT (2 antropométricas pero solo los grupos que fueron se retiraron del estudio debido min de calentamiento, 5 series de composición corporal realizaron ejercicio mostraron a la insatisfacción con la intervalos de 1 min intercaladas circunferencia de cintura. beneficios en salud cardio asignación del grupo (MIIT = con 1 min de recuperación de La puntuación z del síndrome metabólica y calidad de vida. 7, CON = 3) y durante el baja intensidad y 3 min de metabólico se calculó para cada período de intervención, 20 enfriamiento; tiempo total de la sexo basadas en CC, presión participantes abandonaron sesión: 14 min). arterial media (PAM). (HIIT = 8, MIIT = 8, CON = 4)concentraciones séricas de glucosa en ayunas (GLU), por ciertos motivos. Un total 87 de participantes triglicéridos (TG) y colesterol HDL. completaron el estudio y

fueron incluidos en el análisis final (HIIT: n=32, MIIT: 22,

CON: n=33.

8

Von Korn

2021

(37)

Participantes evaluados para Los elegibilidad fueron (n=48), (n=19) por incumplimiento de semanas por otras razones quedando total participantes(n=29) fueron aleatorizados (n=11),interválico de alta intensidad 1 serie de 4 minutos (1HIIT) (n=8)entrenamiento (n=8).

fueron La pacientes aleatorizados tras posterior a ello se excluyeron consentimiento informado a 16 realizada por personal médico de criterios de inclusión (n=11), continuo de intensidad moderada cicloergómetro estacionario se cardíaca (FCR = FCmáx- carga a FCreposo)), 1HIIT entrenamiento continuo de min/semana, incluidos 4 min al altura y el peso. La altura y el intensidad moderada (MICT) 80 %-90 % de FCR) y 4HIIT peso se midieron con ropa entrenamiento (3x38 min/semana, incluidos 4x4 ligera según las técnicas min al 80 %-90 % de FCR). El estándar. La Circunferencia de HIIT comenzaron calentamiento de 10 minutos al la piel desnuda en la talla interválico de alta intensidad 4 35%-50% de la FC, seguido de circunferencia más ancha de la series de 4 minutos (4HIIT) una fase de intervalos de 4 cintura, entre el hueso ilíaco participante minutos de intervalo alto al 80% - superior y la caja torácica. bajo de 3 minutos al 35%-50% de decúbito supino después de 2

ejercicio prueba de entrenamiento experimentado máxima la Cintura (CC) se midió sobre

Observaron que el 1HIIT es dar su cardiopulmonar (PECP) fue eficaz, así como el MICT para reducir la gravedad del síndrome metabólico (SM), lo que ayuda a contribuir a la eficiencia del (n=8) (MICT, 5x30 min/semana, 35-50 utilizó un protocolo de rampa enfoque 1HIIT para disminuir el % de reserva de frecuencia personalizado para alcanzar la fenotipo de SM y el manejo de los prevista factores de riesgo. Se mostró (3x17 (ajustada al sexo, la edad, la mayor cambio en el índice de masa corporal (IMC) en el grupo 1HIIT, y un mayor cambio en la circunferencia de la cintura (CC) y triglicéridos (TG) se observó en el grupo 4HIIT. El índice cinturadisminuyó significativamente, sin diferencias significativas entre los grupos. El VO2máx mejoró estudio por 90% de la FC con un intervalo Presión arterial se midió en significativamente desde el inicio

	razones personales del grupo	la FC, repetido una vez en el	minutos de reposo y se realizó	hasta la finalización del estudio en
	4HIIT.	HIIT 1 y cuatro veces en el HIIT	un electrocardiograma en	toda la población del estudio.
		4.	reposo de 12 canales.	
	Noventa y nueve participantes	Grupo MICT 5 sesiones de	Índice de Adiposidad Física se	Se investiga los cambios en el
	fueron asignados	ejercicio por semana, el grupo	calculó como la relación entre	Índice de Adiposidad Física (IAF)
	aleatoriamente a: MICT	HIIT 3 veces por semana, debían	la aptitud cardiorrespiratoria,	tras los diferentes volúmenes de
	(n=34), 4HIIT (n=34) y 1HIIT	asistir a dos sesiones	expresada como equivalente	ejercicio en adultos con síndrome
	(n=31) de cada grupo fueron	supervisadas por semana el resto	metabólico (MET), y	metabólico. No se observaron
	excluidos ciertos participantes	sin supervisión. Sesiones de	Circunferencia de cintura/talla	diferencias estadísticamente
	por diversas razones al final de	ejercicio sin supervisión fueron	CC/F. La circunferencia de	significativas en los cambios del
	cada grupo fueron analizados:	actividades al aire libre como	cintura y la talla se midió al	IAF entre los grupos de ejercicio.
Ramos	entrenamiento continuo de	caminar, correr o andar en	menos dos veces en el punto	Es importante destacar que el
2021	intensidad moderada (MICT)	bicicleta. Grupo MICT entrenó	más estrecho entre el borde	HIIT, independientemente del
(38)	(n=26), entrenamiento	durante 30 minutos al 60-70 % de	costal inferior (décima costilla)	volumen de entrenamiento (HIIT
(36)	interválico de alta intensidad 4	la frecuencia cardíaca máxima	y la parte superior de la cresta	de alto volumen: 114 min/semana;
	series de 4 minutos (4HIIT)	(FCmáx)/RPE (índice de	ilíaca, perpendicular al eje	HIIT de bajo volumen: 51
	(n=25) y entrenamiento	esfuerzo percibido), 4HIIT y	longitudinal del tronco.	min/semana), indujo una mayor
	interválico de alta intensidad 1	1HIIT inició con calentamiento	Composición corporal se usó	proporción numérica de probables
	serie de 4 minutos (1HIIT)	10 min y concluyó con	absorciometría de rayos X de	respondedores a una mejora
	(n=26).	enfriamiento de 3 minutos al 50-	energía dual para evaluar los	clínicamente significativa del IAF
		70 % de la FCmáx. Grupo 4HIIT	índices de grasa corporal y	(HIIT de alto volumen: 60 %;
		4 series de 4 min al 85-95 % de	masa magra. Actividad Física	HIIT de bajo volumen: 65 %), en
		la FCmáx/RPE, con 3 minutos de	Moderada a Vigorosa usaron	

		recuperación activa al 50-70 %	acelerómetros para evaluar	comparación con 150 min/semana
		de la FCmáx, total 38 minutos.	tiempo promedio diario	de MICT (38 %).
		Grupo 1HIIT serie de 4 minutos	dedicado.	
		de ejercicio al 85-95 % de la		
		FCmáx/RPE, con un total de 17		
		minutos por sesión.		
10	Se incluyó 37 pacientes con	Participantes de los grupos HIIT	Posterior a un ayuno noctumo	Los participantes de HIIT y MICT
	hipertensión y Síndrome	y MICT realizaron ejercicio	de 8 horas, se extrajo sangre	mostraron ligera reducción de 1,1
	Metabólico (hombres = 19,	aeróbico en cinta de correr 3 días	venosa para medir metabolitos	% y 1,7 % en peso corporal,
	mujeres = 18), de este número	a la semana durante 8 semanas	de NO (NOx), células madre	frecuencia cardíaca en reposo,
	se excluyeron 3 participantes	bajo supervisión.	embrionarias (CPE), glucosa y	redujo significativamente en el
	por ciertos motivos quedando	HIIT: calentamiento de 5	lípidos. Evaluaron presión	grupo HIIT. La presión arterial
	(n=34), los participantes	minutos al 40 % de la FC de	arterial, frecuencia cardíaca en	sistólica (PAS) se redujo con HIIT
Ah Jo	fueron asignados	reserva y calentamiento de 5	reposo, talla y peso.	y MICT no hubo diferencias
2020	aleatoriamente al grupo HIIT	minutos al 60 % de la FC con	Luego de 2 días se realizó	significativas, en la función
(39)	(n = 17 y MICT (n = 17).	trote ligero, seguido de cinco	medición de la densidad	endotelial los participantes de los
		intervalos de 3 minutos al 80 %	mineral ósea (DMF), prueba de	grupos HIIT y MICT mostraron
		de la FC, con recuperación activa	esfuerzo físico (EFT) y prueba	una mejora en el diámetro de la
		de 3 minutos al 40 % de la FC	de esfuerzo gradual en cinta	arteria braquial y participantes del
		entre cada intervalo.	rodante.	grupo HIIT mostraron una mayor
		MICT: calentamiento de 5		reducción en el grosor de la grasa
		minutos al 40 % de la FC,		pericárdica.

		seguido de 35 minutos de carrera		
		continua al 60 % de la FC.		
11	Los participantes fueron de	Todos los sujetos participaron en	Realizaron mediciones	Se observaron diferencias
	edad 30-59 años 32 fueron	el programa que duró 8 semanas.	antropométricas y evaluaciones	significativas para los niveles de
	seleccionadas y fueron	HIIT 3 días a la semana: tres	de los factores de riesgo del	triglicéridos (TG). Durante el
	asignados aleatoriamente a: 1)	ejercicios de ciclismo de 3	Síndrome Metabólico (SM) y	período de intervención de 11
	HIIT luego de Restricción	minutos al 80-85 % del consumo	aptitud cardiorrespiratoria	semanas, la composición corporal
	calórica (RC) (n=16)	máximo de oxígeno (VO2pico)	(CRF) al inicio.	(peso corporal, IMC, CC y masa
	2) RC luego de HIIT (n=16) de	con 2 minutos de descanso activo	Ingesta total de energía en	grasa) y variables de condición
	este último fue excluido un	al 50 % del VO2pico entre series,	kilocalorías se evaluó al inicio,	física (VO2máx, frecuencia
	individuo por falta de datos de	lo que resultó en una sesión de 15	durante la intervención	cardiaca (FC) en reposo e ingesta
So	seguimiento.	minutos (incluyendo 1 minuto de	(semanas 1 a 11)	total de energía) cambiaron
2020		calentamiento y 1 minuto de	Durante la posintervención	significativamente dentro de cada
(40)		enfriamiento).	(semanas 12 a 19), se	grupo. Los TG disminuyeron
		Programa RC de 3 semanas: con	recogieron muestras de sangre	significativamente solo en el
		una frecuencia semanal (tres	de la vena antecubital tras un	grupo HIIT-luego CR, la leptina
		sesiones de 90 minutos),	ayuno nocturno de 12 horas. Se	disminuyó significativamente en
		comprendió conferencias,	les indicó que completaran las	ambos grupos. Cambios durante el
		sesiones prácticas y	dos pruebas una en el	programa de 8 semanas
		asesoramiento.	laboratorio para el pico de VO2	postintervención el IMC, CC y
			y otra en el hospital para	masa grasa solo mostraron
			mediciones como las de los	reducciones continuas
				significativas en el grupo HIIT.

			factores de riesgo del síndrome	
			metabólico.	
12	Treinta y nueve participantes	Entrenaron 5 y 3 veces por	Se realizó pruebas para medir	No observaron diferencias
	que fueron signados	semana los grupos MICT y HIIT	los resultados primarios y	significativas en el cambio de IL-
	aleatoriamente (estratificados	respectivamente, 2 sesiones con	secundarios IL22 y proteína C	22 entre los grupos de
	por edad, sexo y centro) en una	supervisión el resto sin	reactiva de alta sensibilidad	entrenamiento, sugieren que las
	de las intervenciones de	supervisión.	(PCRus), gravedad del	diferentes intensidades de los
	ejercicio de 16 semanas	Sesiones supervisadas: en cinta	síndrome metabólico;	ejercicios pueden tener efectos
	1) Entrenamiento continuo de	de correr o bicicleta ergométrica.	resistencia a la insulina (RI);	opuestos en los niveles circulantes
	intensidad moderada (MICT)	No supervisadas: actividades al	tejido adiposo visceral y	de IL-22, en cuanto a la
	(n = 10)	aire libre como caminar, correr,	capacidad cardiorrespiratoria	puntuación z del síndrome
Ramos	2) Entrenamiento interválico	nadar o remar.	(CRF). Se obtuvieron muestras	metabólico disminuyó luego de
2020	de alta intensidad (4HIIT) (n =	MICT: ejercicio continuo de 30	de sangre para la evaluación de	todos los programas de ejercicio,
(41)	13)	min al 60-70% de la frecuencia	biomarcadores (IL-22, PCRus,	la intervención de 4HIIT mejoró
	3) 1HIIT (n=16).	cardíaca máxima (FCmáx).	IR), medición de presión	significativamente la aptitud
		4HIIT: 38 min que incluyeron 4	arterial, absorciometría de	cardiorrespiratoria (CRF), tras el
		intervalos de 4 min al 85–95%	rayos X de energía dual y	entrenamiento ambos grupos de
		FCmáx, con 3 min de	evaluaciones antropométricas	HIIT mostraron una mayor
		recuperación activa al 50-70%	(índices de composición	magnitud de reducción de peso en
		FCmáx, más calentamiento (10	corporal) y prueba de esfuerzo	comparación con el MICT.
		min) y enfriamiento (3 min).	máximo (CRF).	
		1HIIT: similar protocolo, con		
		solo un intervalo de 4 minutos al		

		85–95% FCmáx, totalizando 17		
		minutos por sesión.		
13	Treinta y nueve hombres y	La duración de ejercicio fue de	Evaluación antropométrica	Tras la intervención, lo
	mujeres fueron asignados	12 semanas (3 sesiones/semana,	incluyó mediciones de masa	participantes de los grupos d
	aleatoriamente a uno de tres	50 min/sesión).	corporal, estatura,	RT+MICT y RT+HII'
	grupos:	La intensidad fue el 60 % y el 70	circunferencia de cintura, masa	disminuyeron moderadamente l
	(a) entrenamiento de	% de la frecuencia cardíaca	grasa y masa libre de grasa.	circunferencia de la cintura (CC
	resistencia (RT) más MICT	máxima (FCmáx) en el grupo de	Se midió la composición	presentaron una reducció
	(n=13)	entrenamiento de resistencia	corporal, el índice de masa	moderada del colesterol LDL (c
	(b) RT más HIIT (n=13)	RT+MICT.	corporal (IMC). Las muestras	LDL) y una ligera disminución d
Da Sil	va (c) grupo control (CON) – sin	Grupo de RT+HIIT varió entre el	de sangre fueron recolectadas y	la glucosa en ayunas, la insulina
2020	ejercicio formal (n=13).	55 %-65 % y 80 %-90 % de la	se utilizó suero sanguíneo para	También el grupo RT+MICT, s
(42)		FCmáx.	la cuantificación de cLDL,	observó una disminució
		Los resultados se evaluaron al	cHDL, colesterol total (CT),	significativa de los triglicérido
		inicio y al final de la intervención	TG, glucosa en ayunas (GA),	(TG). Los participantes del grup
		(12 semanas). Los participantes	proteína C reactiva de alta	CON presentaron una reducció
		del grupo CON no participaron	sensibilidad (PCR-us),	significativa únicamente del c
		en un programa de ejercicio	insulina, péptido C (PC), y	LDL.
		formal.	(HOMA-IR) se usó para	
			determinar la resistencia a la	
			insulina.	
14 Ramos	Noventa y nueve adultos con	Los grupos de HIIT y MICT	Se realizaron pruebas en	Tas diferentes volúmenes d
2020	síndrome metabólico fueron	entrenaron tres y cinco veces por	ayunas tanto de glucosa y perfil	ejercicio en personas co

	(43)	asignados aleatoriamente a un	semana, respectivamente, con un	lipídico, presión arterial en	síndrome metabólico que toman o
		programa de ejercicio de 16	día de descanso entre sesiones.	reposo (sistólica y diastólica) y	no toman metformina se obtuvo
		semanas que completaron:	Sesiones supervisadas se	medidas antropométricas	que en los participantes que
		(i) entrenamiento continuo de	realizaron en cinta de correr o	(circunferencia de cintura e	tomaron metformina y
		intensidad moderada (MICT)	bicicleta ergométrica.	IMC). Puntuación z del	completaron un entrenamiento de
		(n = 34)	Las sesiones no supervisadas	síndrome metabólico se calculó	alta intensidad (HIIT) de alto
		(ii) entrenamiento interválico	fueron actividades caminar,	de acuerdo al sexo, y	volumen, se observó una
		de alta intensidad y alto	correr, nadar o remar.	resistencia a la insulina se	proporción significativamente a
		volumen (HIIT) $(n = 34)$	Grupo MICT: entrenó 30	evaluó mediante el modelo	una reducción clínicamente
		(iii) HIIT de bajo volumen (n	minutos por sesión al 60-70 % de	HOMA-IR, usando la	significativa de la gravedad del
		= 31). De cada grupo fueron	su frecuencia cardíaca máxima.	calculadora HOMA2. La	síndrome metabólico en
		excluido ciertos participantes	Sesiones de 4HIIT y 1HIIT	aptitud cardiorrespiratoria	comparación con los participantes
		resultando los analizados:	comenzaron con un	(CRF) se evaluó mediante	que no tomaban metformina.
		MICT (n = 20)	calentamiento de 10 minutos y	prueba de ejercicio máximo	
		4HIIT (n = 22)	finalizaron con un enfriamiento	gradual (GXT).	
		1HIIT (n = 23)	de 3 minutos, con duración de		
			ejercicio de 38-17 minutos por		
			sesión.		
15		Cuarenta y dos participantes	Tras un calentamiento de 4	La grasa hepática se evaluó	Tras 3 meses de entrenamiento,
	Taylor	con enfermedad coronaria	minutos, el HIIT consistió en 4	mediante la cuantificación de	ambos grupos redujeron la grasa
	2020	fueron asignados	intervalos de alta intensidad de 4	lípidos intrahepáticos. La	hepática; sin embargo, el HIIT
	(44)	aleatoriamente a	minutos con una percepción del	composición corporal mediante	tendió a mostrar una mayor
			esfuerzo (RPE) de 15 a 18 (de	absorciometría de rayos X de	reducción, que fue el doble en

	HIIT (n= 19 al inicio, 13	intenso a muy intenso) en una	energía dual. Se midió el perfil	comparación con el MICT.
	analizados para grasa hepática	escala de Borg de 6 a 20,	lipídico, enzimas hepáticas,	Además, en ese mismo tiempo de
	al final)	intercalados con 3 minutos de	glucosa en ayunas y proteína C	entrenamiento, el HIIT redujo el
	Entrenamiento continuo de	recuperación activa. El MICT	reactiva de alta sensibilidad y la	tejido adiposo visceral (VAT) en
	intensidad moderada (MICT)	(cuidado habitual) consistió en	insulina plasmática. La	un 10 % en comparación con el 13
	(n=23 al inicio, 16 analizados	34 minutos de ejercicio de	resistencia a la insulina	% del MICT. Tanto el HIIT como
	para grasa hepática al final).	intensidad moderada con una	mediante el modelo	el MICT presentaron pequeñas
		RPE de 11 a 13 (de ligero a algo	homeostático.	reducciones en el peso corporal, el
		intenso) tras un calentamiento de		IMC, la circunferencia de la
		3 minutos (mínimo de 20		cintura, la masa grasa y la masa
		minutos por máquina de		libre de grasa durante 3 y 12
		ejercicio).		meses.
16	Treinta adultos fueron	La intervención HIIT tres veces	Recogieron muestras de sangre	La hemoglobina glicosilada
	asignados aleatoriamente a:	por semana durante 12 semanas.	venosa antecubital y muestras	(HbA1c) disminuyó un en el
	Grupo intervención HIIT	Una sesión semanal fue	de orina al azar por la mañana y	grupo de intervención después de
	(n=15)	supervisada en el gimnasio.	fueron analizadas. Prueba de	12 semanas, en cuanto a la
Lee	Grupo control (n=15).	El HIIT se realizó en un	hemoglobina glicosilada	composición corporal se mantuvo
2020	3 participantes abandonaron el	cicloergómetro o cinta de correr	(HbA1c) se analizó con	sin cambios en el grupo de
(45)	grupo de intervención en las 2	y como caminata o trote en casa,	cromatografía líquida de alta	intervención después de 12
	primeras semanas. Al final del	tuvo una duración de 33 minutos	resolución. Las Mediciones	semanas. Además, se observaron
	período de estudio 12 y 15	y consistió en 5 minutos de	cardiovasculares se tomaron	aumentos significativos en el peso
	participantes completaron la	calentamiento al 60 % de la	con el participante en decúbito	corporal, el IMC, la circunferencia
	intervención de HIIT y el	frecuencia cardíaca máxima	supino luego de 15 minutos de	de la cintura y la masa grasa total

	grupo de control,	(FCmáx), cuatro series de	reposo, las medidas	en el grupo control. La presión
	respectivamente.	intervalos de alta intensidad de 4	antropométricas incluyeron	arterial no varió en el grupo d
		minutos al 85-95 % de la FCmáx,	peso corporal, talla, índice de	intervención; y se observó un
		intercaladas con tres series de	masa corporal (IMC),	aumento de la leptin
		intervalos de recuperación de 3	perímetro de cintura y	(disminución del apetito,
		minutos al 50-70 % de la FCmáx,	composición corporal. La	aumento del gasto energético y
		y concluyó con 3 minutos de	aptitud cardiorrespiratoria se	regulación del balance energétic
		enfriamiento. Lo participantes	evaluó mediante una prueba de	circulante en el grupo d
		del GC siguieron con sus	esfuerzo máxima graduada en	intervención, pero no en el grup
		actividades diarias y dieta, sin	una cinta ergométrica.	control.
		recomendaciones ni restricciones		
		para el ejercicio.		
7	Un total de 49 participantes	El protocolo HIIT consistió en	Se midieron fotométricamente	Se reveló que ambos grupe
	completaron el estudio y	una fase de calentamiento de 2	los valores séricos de glucosa,	redujeron significativamente
	fueron incluidos en el análisis	minutos, 5 series interválicas de	triglicéridos, colesterol total,	peso corporal después de
	final Grupo intervención	1 minuto al 80-95 % de la	colesterol unido a lipoproteínas	intervención HIIT: (7,3 a 3,3 kg
Reljic	Entrenamiento interválico de	FCmáx, intercaladas con 1	de baja densidad (cLDL) y	CON: (5,2 a 2,1 kg). En amb
2020	alta intensidad (HIIT: n = 30)	minuto de recuperación de baja	colesterol unido a lipoproteínas	grupos, no revelaron cambi
(46)	y Grupo control (CON: n =	intensidad y una fase de	de alta densidad (cHDL).	significativos en la masa libre
	19).	enfriamiento de 3 minutos.	Midieron la presión arterial	grasa.
		Grupo control inactivo (CON),	sistólica y diastólica con un	Las pruebas post hoc so
		solo recibía asesoramiento	tensiómetro automático de	mostraron una disminuci
		nutricional, o a diferentes grupos	brazo, además se midió la	significativa de la circunference

		de ejercicio, que realizaban tipos	circunferencia de la cintura con	de la cintura en el grupo HIIT de
		específicos de entrenamiento a	una cinta métrica.	(9,8 a 5,1 cm). Análisis
		intervalos.		nutricionales revelaron que la
				ingesta energética diaria promedio
				disminuyó en ambos grupos HIIT:
				(733 a 342 kilocalorías (kcal));
				CON: (923 a 90 kcal).
18	Se reclutaron cincuenta y	Grupo de control sin ejercicio se	Se obtuvieron diversas	Después de 13 semanas, los
	cuatro hombres y mujeres no	indicó que sigan sus hábitos de	mediciones antropométricas,	cambios en el VO2máx y
	fumadores (de 21 a 55 años),	vida habituales. El MICT para	cardiovasculares y cardio	puntuación z del síndrome
	fueron asignados	ambos grupos de ejercicio se	metabólicas de todos los	metabólico en el grupo MICT +
	aleatoriamente a un grupo de	realizó en diversas modalidades	participantes al inicio y a las 13	HIIT personalizado fueron
	control sin ejercicio (n=15).	aeróbicas: cicloergómetros y	semanas. Las mediciones	significativamente favorables en
D 1	Un programa de	remo, elíptica y cinta de correr.	antropométricas incluyeron	comparación con los grupos
Byrd	entrenamiento continuo de	HIIT se realizó en la cinta de	altura, peso, circunferencia de	MICT estandarizado y control.
2019	intensidad moderada +	correr e iniciaron calentamiento	la cintura y porcentaje de grasa	Cambios de grasa corporal y la CC
(47)	entrenamiento interválico de	de 5 min a intensidad baja y	corporal. Han utilizado	desde el inicio hasta la semana 13
	alta intensidad	concluyeron con enfriamiento de	previamente una escala de	en los grupos MICT estandarizado
	(MICT + HIIT) personalizado	5 min. Programa de	evaluación de puntuación de	y MICT + HIIT personalizado
	basado en las pautas del	entrenamiento de resistencia para	riesgo continuo (puntuación z	fueron significativamente
	modelo de Entrenamiento	grupo estandarizado consistió en	del Síndrome metabólico	mayores en comparación con el
	Físico Integrado (IFT) del		(MetS)) para identificar	grupo control.
		multiarticulares realizados con	1	

	Ejercicio (ACE) (n=16), o un	máquinas. Programa de	(MetS) tras intervenciones de	
	programa MICT estandarizado	entrenamiento de resistencia	MICT y HIIT.	
	diseñado de acuerdo con las	grupo personalizado consistió en		
	pautas actuales del American	ejercicios		
	College of Sports Medicine	multiarticulares/multiplanares		
	(ACSM) (n=16).	realizados con peso libre y		
		máquinas.		
19	Un total de 28 sujetos, siete de	MICT: consistió en un	Se recopilaron	El presente estudio demuestra que
	ellos fueron excluidos por no	calentamiento (5 min), seguido	simultáneamente, peso, talla,	el entrenamiento de alta intensidad
	cumplir los criterios de	15-55 min de caminata/carrera en	índice de masa corporal (IMC),	(HIT) fue un estímulo más potente
	inclusión. Diez participantes	cinta (15-35 min durante la fase	la circunferencia de la cintura	que el entrenamiento continuo de
	fueron asignados	preparatoria de 2 semanas) y un	(CC) y presión arterial.	intensidad moderada (MICT) para
	aleatoriamente al grupo de	período final de	Las muestras de sangre se	mejorar un conjunto sensible de
Donato	entrenamiento continuo de	relajación/enfriamiento (10 min).	obtuvieron de la vena	factores de riesgo de síndrome
Ramírez 2017	intensidad moderada (MICT)	HIT: realizó una fase	antecubital. El perfil	metabólico. Además, el HIT
	y 11 al grupo entrenamiento de	preparatoria de 2 semanas con 4	bioquímico incluyó	produjo cambios más fuertes y
(48)	alta intensidad (HIT).	intervalos de 4 minutos al 60-	triglicéridos lipídicos	moderadamente significativos en
		80% de la frecuencia cardíaca de	plasmáticos, colesterol total, c-	la puntuación Z de síndrome
		reserva (FCR), intercalados con	HDL, c-LDL y glucosa	metabólico en términos de peso,
		4 minutos de recuperación activa	(medida mediante métodos	índice de masa corporal IMC y
		al 55% FCR. Desde la semana 3	colorimétricos enzimáticos).	grasa corporal. El HIT o el MICT
		hasta la 12, realizaron 4		redujeron significativamente los
		intervalos de 4 minutos al 85-		factores de riesgo individuales,

como los niveles de triglicéridos, 95% FCR. con 4 minutos de recuperación activa al 65% FCR la masa grasa, la obesidad y una vuelta a la calma de 5 abdominal y la presión arterial minutos. La duración total de media. cada sesión fue de 35 a 55 minutos. El grupo MICT entrenó cinco Las siguientes evaluaciones El 4HIIT mostró mayor magnitud Ramos 20 Individuos síndrome metabólico (n = 56) fueron veces por semana 30 minutos al realizadas (1) presión arterial de cambio en los índices de 2017 asignadas aleatoriamente a las 60-70 % de la FCmáx, mientras sistólica braquial (PAS) y función autonómica cardíaca (49)siguientes intervenciones de que los grupos HIIT entrenaron presión arterial diastólica (CAF) en comparación con MICT entrenamiento i) tres veces por semana. Las (PAD); (2) glucemia en ayunas y 1HIIT. Factores de riesgo de entrenamiento continuo de sesiones de HIIT su duración fue y perfil lipídico (triglicéridos y síndrome metabólico hubo una intensidad moderada (MICT) de 30 minutos a una intensidad colesterol unido a lipoproteínas mayor reducción de colesterol (n = 16); ii) entrenamiento objetivo del 60-70 % de la de alta densidad (cHDL); y (3) lipoproteínas de alta densidad interválico de alta intensidad 4 FCmáx. Ambos grupos de HIIT medidas (HDL) y la circunferencia de la antropométricas series de 4 minutos (4 HIIT) (n realizaron calentamiento previo (perímetro de cintura y peso). cintura (CC) tras 1HIIT en = 19); o iii) entrenamiento de 10 minutos y finalizados con La resistencia a la insulina comparación con 4HIIT de alto interválico de alta intensidad 1 un enfriamiento de 3 minutos. El también se determinó mediante volumen y MICT; y una mayor serie de 4 minutos (1 HIIT) (n grupo 4HIIT entrenó durante 38 la escala HOMA-IR, calculada reducción de la presión arterial = 21). minutos por sesión, que consistió con la calculadora HOMA2 tras MICT (PAS: -6 %; PAD: -7 %) y 1HIIT (PAS: -7 %; PAD: -5 en 4 series de intervalos de 4 versión 2.2. minutos al 85-95 % de la FCmáx, %), en comparación con 4HIIT separadas por 3 minutos de (PAS: -2 %; PAD: -4 %). (Presión

recuperación activa al 50-70 % de la FCmáx. El grupo 1HIIT completó solo una serie de ejercicio de 4 minutos al 85-95 % de la FCmáx (17 minutos por sesión).

arterial sistólica-Presión arterial diastólica). Curiosamente, 8 de los 56 participantes ya no tenían diagnóstico de síndrome metabólico. La magnitud de la reducción del peso y del porcentaje de grasa corporal total fue mayor después de 1HIIT y 4HIIT, respectivamente.

4.2 Discusión

En los últimos años, las entidades de salud promueven una serie de estrategias para implementar la actividad física en la población en general. A pesar de dicho trabajo, las estadísticas actuales acerca de la inactividad física en las personas se han incrementado y esta tendencia continúa, se proyecta que la proporción de individuos que no alcanzan los niveles recomendados de actividad física, pueden ser más propensos a padecer enfermedades metabólicas y puede ocasionar la mortalidad.

Este problema de salud global, puede tener diversas causas entre las principales tenemos la falta de tiempo para optar por un estilo de vida que incluya la actividad física. En este sentido, el entrenamiento interválico de alta intensidad (HIIT) se caracteriza en realizar series repetidas de ejercicio relativamente intenso intercaladas con periodos de recuperación de trabajo más suave o descanso y lo más importante se realiza por un corto periodo de tiempo.

Es por ello que, según diversas investigaciones recientes mencionan que el HIIT es una opción fisioterapéutica eficaz y ofrece importantes beneficios morfofisiológicos en el manejo del síndrome metabólico. Además, puede llegar a producir mejoras similares en los componentes del síndrome metabólico mostrando resultados en menos tiempo. La actividad física en general optimiza la salud tanto física como mental, en este contexto, el presente estudio busca analizar la efectividad de este tipo de entrenamiento.

En el análisis realizado de los 20 ensayos controlados aleatorizados, se logró evidenciar diversos efectos favorables que brinda el HIIT. Según Petro (30), Von Korn (37), Ah Jo (39), Ramos (43), Taylor (44), Byrd (47), Ramírez (48) y Ramos (49) con la aplicación del HIIT conjuntamente con el MICT se obtuvo mejoras sobre los factores de riesgo del síndrome metabólico. Es importante mencionar que el HIIT disminuyó significativamente el índice de masa corporal (IMC), así como otros factores como colesterol, triglicéridos, circunferencia de la cintura, peso corporal y el índice de masa grasa y magra apendicular, esto en comparación con otros programas de entrenamiento.

Kazemi (32) menciona que el HIIT junto con el entrenamiento de resistencia (RT), aumentó significativamente la sirtuina 1 proteína nuclear (SIRT1) su activación mejora la resistencia a la insulina y la homeostasis de la glucosa, además es eficaz para la prevención y el tratamiento del síndrome metabólico. Sin embargo, Kazemi (32) y Lee (45) indican que el HIIT disminuyó

considerablemente la hemoglobina glicosilada (HbA1c) así como también glucemia en ayunas, presión arterial sistólica y presión arterial diastólica.

Por otra parte, Ramos (41) dio a conocer resultados positivos del HIIT y MICT en cuanto a la interleucina-22 (IL-22), que forma parte de la familia de citocinas IL-10. La IL-22 aumentó en el grupo HIIT lo que contribuye al alivio del síndrome metabólico (SM) mediante la protección de las células beta y endoteliales pancreáticas frente al daño oxidativo y lipídico. Cabe destacar que en el grupo MICT la IL-22 disminuyó dando un contraste a mantener niveles de IL-22 normales con la aplicación de estos dos tipos de entrenamiento, ya que menciona que un aumento elevado de dicho componente puede ser perjudicial para la salud en determinados casos.

Mendelson (34), Reljic (36) y So (40) mencionan que el HIIT mejora a salud cardio metabólica. El HIIT logró mejoras significativas en el VO₂máx, la aptitud cardiorrespiratoria y en los factores de riesgo del síndrome metabólico. La acumulación de factores de riesgo cardio metabólicos adicionales en conjunto con obesidad, exceso de grasa abdominal, hipertensión, dislipidemia o hiperglucemia conocido como síndrome metabólico, va a aumentar el riesgo de padecer enfermedades graves, como enfermedades cardiovasculares (ECV), diversos tipos de cáncer y mortalidad prematura.

Todas las modalidades de entrenamiento ofrecieron beneficios positivos en el síndrome metabólico, es importante mencionar que el HIIT es una alternativa eficiente para disminuir los factores de riesgo generales del SM, ya que es una aplicación de entrenamiento donde se aplica muy poco tiempo y está indicado para toda la población en general para optar por un estilo de vida que incluya la actividad física.

CAPÍTULO V. CONCLUSIONES y RECOMENDACIONES

5.1 Conclusiones

El síndrome metabólico (SM) se asocia a un mayor riesgo de mortalidad en la población, tanto para su prevención y su recurrencia se debe adoptar un estilo de vida saludable que su enfoque principal incluya actividad física regular el cual es un pilar fundamental en la rehabilitación multidisciplinar en personas con SM. Con el propósito de mantener la funcionalidad y primordial la calidad de vida de estas personas.

El entrenamiento interválico de alta intensidad (HIIT) ha demostrado ser una alternativa eficiente para mejorar la salud en pacientes con síndrome metabólico. A través de estudios, se ha evidenciado que, con este tipo de entrenamiento de corta duración favorece la adherencia al ejercicio. Es uno de los métodos eficientes el cual proporciona resultados positivos en cuanto a los factores de riesgo que implica el síndrome metabólico. Entonces, se puede sostener que el entrenamiento interválico de alta intensidad es una de las mejores alternativas de ejercicio, particularmente porque se puede ejecutar en un corto tiempo. Incorpora una serie de ejercicios personalizados y un trabajo multidisciplinario con otros expertos de salud.

Esta perspectiva integral no solo potencia la condición física del paciente, sino también le brinda la posibilidad de continuar con sus actividades diarias con mayor confianza, influyendo de manera positiva en su calidad de vida.

5.2 Recomendaciones

Proporcionar información acerca de los riesgos y ventajas del HIIT, con el objetivo de impulsar el hábito de la actividad física en la vida diaria. Para conseguirlo, es aconsejable implementar programas educativos que destaquen la importancia del ejercicio en la prevención y tratamiento del síndrome metabólico, promoviendo hábitos saludables.

Es fundamental incorporar el HIIT de manera progresiva para garantizar su seguridad y eficacia, es importante asegurar una adecuada supervisión tanto médica como fisioterapéutica. La intensidad y duración del entrenamiento se debe adaptar a cada condición clínica y al nivel de entrenamiento del paciente es decir debe ser individualizado para evitar sobrecargas o esfuerzos. Importante incluir la colaboración de un equipo multidisciplinario para incrementar los efectos positivos del HIIT en la disminución de grasa visceral y hepática. Aquello implica controles médicos consecutivos y la intervención de un nutricionista que supervise la alimentación. Esto contribuye en conjunto a una sensación de bienestar y mejora en cuanto a la composición corporal y mayores resultados positivos en el entrenamiento.

BIBLIOGRÁFIA

- 1. Bovolini A, Garcia J, Andrade MA, Duarte JA. Metabolic Syndrome Pathophysiology and Predisposing Factors. Int J Sports Med [Internet]. 2021 [cited 2024 Nov 30];42(3):199–214. Available from: https://pubmed.ncbi.nlm.nih.gov/33075830/
- 2. Espinoza-Rivera S, Rivera PA, Sueldo YB. Prevalence and components of premorbid metabolic syndrome in workers insured by social health in an area of moderate altitude in Peru. Acta Medica Peruana. 2022 [cited 2024 Nov 30];39(4):362–8.
- 3. Apolo Montero A. Análisis descriptivo del síndrome metabólico en trabajadores de empresas situadas en la costa ecuatoriana. Revista San Gregorio. 2020 [cited 2024 Nov 30];18(2): p.4-7. Available from: http://scielo.senescyt.gob.ec/scielo.php?script=sci_arttext&pid=S2528-79072020000200162.
- 4. Fahed G, Aoun L, Zerdan MB, Allam S, Zerdan MB, Bouferraa Y, et al. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int J Mol Sci [Internet]. 2022 [cited 2024 Dec 1];23(2). Available from: https://pubmed.ncbi.nlm.nih.gov/35054972/
- 5. Gómez-Piqueras P, Sánchez-González M. Entrenamiento de intervalos de alta intensidad (hiit) en adultos mayores: una revisión sistemática. Pensar en Movimiento: Revista de ciencias del ejercicio y la salud [Internet]. 2019 [cited 2025 Jun 27];17(1):118–39. Available from: http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1659-
- 44362019000100118&lng=en&nrm=iso&tlng=es
- 6. Pedraza Montenegro A, Monares Zepeda E, Aguirre Sánchez JS, Camarena Alejo G, Franco Granillo J, Pedraza Montenegro A, et al. Determinación del umbral del consumo máximo de oxígeno (VO 2 máximo) estimado por fórmula como marcador pronóstico en pacientes con sepsis y choque séptico en una unidad de terapia intensiva. Medicina crítica (Colegio Mexicano de Medicina Crítica) [Internet]. 2017 [cited 2025 Jun 27];31(3):145–51. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2448-
- 89092017000300145&lng=es&nrm=iso&tlng=es

S071686401370230X

7. Fernando Carrasco N, José Eduardo Galgani F, Marcela Reyes J. Síndrome de resistencia a la insulina. estudio y manejo. Revista Médica Clínica Las Condes [Internet]. 2013 [cited 2025 Apr 21];24(5):827–37. Available from: https://www.elsevier.es/es-revista-revista-medica-clinica-las-condes-202-articulo-sindrome-resistencia-insulina-estudio-manejo-

- 8. Pineda CA. Síndrome metabólico: definición, historia, criterios. Vol. 39. Colombia médica; 2008 [cited 2025 Apr 21]. pp. 96-106. https://www.redalyc.org/pdf/283/28339113.pdf
- 9. Rana S, Ali S, Wani HA, Mushtaq QD, Sharma S, Rehman MU. Metabolic syndrome and underlying genetic determinants-A systematic review. Vol. 21, Journal of Diabetes and Metabolic Disorders. Springer Science and Business Media Deutschland GmbH; 2022 [cited 2025 Apr 21]. p. 1095–104. https://pubmed.ncbi.nlm.nih.gov/35673448/
- 10. Alejandro Castro Quintanilla D, Natalia Rivera Sandoval D, San Rafael Ángel de Alajuela H, Rica C. revista médica sinergia. Revista Médica Sinergia [Internet]. 2023 [cited 2025 Apr 23];8(2): e960–e960. Available from: https://www.revistamedicasinergia.com/index.php/rms/article/view/960/2071
- 11. Fragozo-Ramos MC. Metabolic syndrome: a literature review. Vol. 26, Medicina y Laboratorio. Universidad de Antioquia; 2022 [cited 2025 Apr 21] p. 47–62. https://doi.org/10.36384/01232576.559
- 12. Lozano ES. Resistencia a Insulina: Revisión de literatura. Rev Med Hondur [Internet]. 2022 [cited 2025 Apr 21];90(1):63–70. Available from: https://camjol.info/index.php/RMH/article/view/13824.
- 13. Ascaso JF, Millán J, Hernández-Mijares A, Blasco M, Brea Á, Díaz Á, et al. Dislipidemia aterogénica 2019. Documento de consenso del Grupo de Dislipidemia Aterogénica de la Sociedad Española de Arteriosclerosis. Clínica e Investigación en Arteriosclerosis [Internet]. 2020 [cited 2025 Apr 21];32(3):120–5. Available from: https://www.elsevier.es/es-revista-clinica-e-investigacion-arteriosclerosis-15-articulo-dislipidemia-aterogenica-2019-documento-consenso-S0214916820300024.
- 14. Dhawan D, Sharma S. Abdominal Obesity, Adipokines and Non-communicable Diseases. Journal of Steroid Biochemistry and Molecular Biology [Internet]. 2020 [cited 2025 Apr 21];203. Available from: https://pubmed.ncbi.nlm.nih.gov/32818561/
- 15. Fang H, Berg E, Cheng X, Shen W. How to best assess abdominal obesity. Curr Opin Clin Nutr Metab Care [Internet]. 2018 [cited 2025 Jun 29];21(5):360. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC6299450/
- 16. Álvarez-Ochoa R, Torres-Criollo LM, Ortega JPG, Coronel DCI, Cayamcela DMB, Pelaez V del RL, et al. Factores de riesgo de hipertensión arterial en adultos. Una revisión crítica.

- Revista Latinoamericana de Hipertensión [Internet]. 2022 [cited 2025 Apr 21];17(2). Available from: http://saber.ucv.ve/ojs/index.php/rev_lh/article/view/25572
- 17. Peinado Martínez M, Dager Vergara I, Quintero Molano KS, Mogollón Pérez M, Puello Ospina A. Síndrome metabólico en adultos: Revisión narrativa de la literatura. Archivos de medicina, ISSN-e 1698-9465, Vol 17, N° 2, 2021 [Internet]. 2021 [cited 2025 Apr 21];17(2):4. Available

https://dialnet.unirioja.es/servlet/articulo?codigo=7848788&info=resumen&idioma=ENG

- 18. Fernando Garza Benitoa, Ignacio J. Ferreira Monterob y Alfonso del Río Ligori. Prevención y tratamiento del síndrome metabólico Metabolic Syndrome: Prevention and Treatment. Servicio de Cardiología. Hospital Clínico Universitario Lozano Blesa. Zaragoza. España; 2020 [cited 2025 Apr 23]; p. 46-52.
- 19. Dos Santos LL, Silva ATB, Da Cruz MADSP, Da Rosa SE, Fortes MDSR, Nunes RDAM, et al. Effects of long and sprint high-intensity interval training on body mass composition, aerobic capacity, and biochemical markers of metabolic syndrome and liver damage in physical activity practitioners adults. Muscles Ligaments Tendons J. 2024 [cited 2025 Apr 23];14(2):256–68.
- 20. Atakan MM, Li Y, Koşar ŞN, Turnagöl HH, Yan X. Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective. Int J Environ Res Public Health [Internet]. 2021 [cited 2025 Apr 27];18(13):7201. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8294064/
- 21. López Chicharro J, Vicente Campos D. Bases fisiológicas y aplicaciones prácticas. Hiit entrenamiento interválico de alta intensidad. 2018;96.
- 22. Perez Becerra NM, Rodríguez Mojica YM. Papel del ejercicio interválico de alta intensidad (HIIT) en los programas de rehabilitación cardíaca. Revista Colombiana de Medicina Física y Rehabilitación. 2022 [cited 2025 Jun 28]; Dec 1;32(2):181–94. Available from: http://doi.org/10.28957/rcmfr.357
- 23. Martin-Rivera F. HIIT, aplicaciones prácticas. University of Valencia. 2016 [cited 2025 Jun 28]. Available from: https://www.researchgate.net/publication/305032124
- 24. Burkhalter N. Evaluation of Borg's perceived exertion scale in cardiac rehabilitation. Rev Lat Am Enfermagem [Internet]. 1996 [cited 2025 Jun 27];4(3):65–73. Available from: https://pubmed.ncbi.nlm.nih.gov/9070794/

- 25. Araya, Jaime Ibacache. "Percepción de esfuerzo físico mediante uso de escala de Borg." Salud Ocupacional Instituto de salud pública de Chile. 2019. [cited 2025 Jun 27]. Available from: https://www.ispch.cl/sites/default/files/Nota_T%C3%A9cnica_BORG%20_140819%20(2)_pd f.pdf
- 26. Taylor JL, Holland DJ, Spathis JG, Beetham KS, Wisløff U, Keating SE, et al. Guidelines for the delivery and monitoring of high intensity interval training in clinical populations. Prog Cardiovasc Dis [Internet]. 2019 [cited 2025 Jul 13];62(2):140–6. Available from: https://www.sciencedirect.com/science/article/pii/S0033062019300313?casa_token=SJfOn1K Ph0gAAAAA:PrK7DbMWtMgn9VErs4VV0CY0qZRRBabTDSQ9rHHyh4GZNpL61QfdO-1XkXbwDqoJKOgntPKRMA
- 27. Jiménez-Maldonado A, García-Suárez PC, Rentería I, Moncada-Jiménez J, Plaisance EP. Impact of high-intensity interval training and sprint interval training on peripheral markers of glycemic control in metabolic syndrome and type 2 diabetes. Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease [Internet]. 2020 [cited 2025 Jul 12];1866(8):165820. Available from: https://www.sciencedirect.com/science/article/pii/S0925443920301654
- 28. Jiménez-Maldonado A, García-Suárez PC, Rentería I, Moncada-Jiménez J, Plaisance EP. Impact of high-intensity interval training and sprint interval training on peripheral markers of glycemic control in metabolic syndrome and type 2 diabetes. Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease [Internet]. 2020 [cited 2025 Jul 12];1866(8):165820. Available from: https://www.sciencedirect.com/science/article/pii/S0925443920301654
- 29. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Moher D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic reviews. 2021; 10(1): 1-11
- 30. Petro JL, Fragozo-Ramos MC, Milán AF, Aristizabal JC, Calderón JC, Gallo-Villegas J. Efficacy of high-intensity interval training versus continuous training on serum myonectin and lipid outcomes in adults with metabolic syndrome: A post-hoc analysis of a clinical trial. PLoS One [Internet]. 2024 [cited 2025 May 1];19(7):e0307256–e0307256. Available from: https://europepmc.org/articles/PMC11257237
- 31. Pashaei Z, Malandish A, Alipour S, Jafari A, Laher I, Hackney AC, et al. Effects of HIIT training and HIIT combined with circuit resistance training on measures of physical fitness,

- miRNA expression, and metabolic risk factors in overweight/obese middle-aged women. BMC Sports Sci Med Rehabil [Internet]. 2024 [cited 2025 May 13];16(1). Available from: https://pubmed.ncbi.nlm.nih.gov/38812051/
- 32. Kazemi SS, Heidarianpour A, Shokri E. Effect of resistance training and high-intensity interval training on metabolic parameters and serum level of Sirtuin1 in postmenopausal women with metabolic syndrome: a randomized controlled trial. Lipids Health Dis [Internet]. 2023 [cited 2025 May 13];22(1). Available from: https://pubmed.ncbi.nlm.nih.gov/37858156/
- 33. Reljic D, Dieterich W, Herrmann HJ, Neurath MF, Zopf Y. "HIIT the Inflammation": Comparative Effects of Low-Volume Interval Training and Resistance Exercises on Inflammatory Indices in Obese Metabolic Syndrome Patients Undergoing Caloric Restriction. Nutrients [Internet]. 2022 [cited 2025 Apr 29];14(10). Available from: https://pubmed.ncbi.nlm.nih.gov/35631137/
- 34. Mendelson M, Chacaroun S, Baillieul S, Doutreleau S, Guinot M, Wuyam B, et al. Effects of high intensity interval training on sustained reduction in cardiometabolic risk associated with overweight/obesity. A randomized trial. J Exerc Sci Fit [Internet]. 2022 [cited 2025 May 13];20(2):172–81. Available from: https://pubmed.ncbi.nlm.nih.gov/35401768/
- 35. De Matos DiG, De Almeida-Neto PF, Moreira OC, De Souza RF, Tinoco Cabral BGDA, Chilibeck P, et al. Two Weekly Sessions of High-Intensity Interval Training Improve Metabolic Syndrome and Hypertriglyceridemic Waist Phenotype in Older Adults: A Randomized Controlled Trial. Metab Syndr Relat Disord [Internet]. 2021 [cited 2025 May 13];19(6):332–9. Available from: https://pubmed.ncbi.nlm.nih.gov/33761288/
- 36. Reljic D, Frenk F, Herrmann HJ, Neurath MF, Zopf Y. Effects of very low volume high intensity versus moderate intensity interval training in obese metabolic syndrome patients: a randomized controlled study. Sci Rep [Internet]. 2021 [cited 2025 Apr 29];11(1). Available from: https://pubmed.ncbi.nlm.nih.gov/33531522/
- 37. Von Korn P, Keating S, Mueller S, Haller B, Kraenkel N, Dinges S, et al. The Effect of Exercise Intensity and Volume on Metabolic Phenotype in Patients with Metabolic Syndrome: A Randomized Controlled Trial. Metab Syndr Relat Disord [Internet]. 2021 [cited 2025 May 13];19(2):107–14. Available from: https://pubmed.ncbi.nlm.nih.gov/33232639/
- 38. Ramos JS, Dalleck LC, Fennell M, Martini A, Welmans T, Stennett R, et al. Exercise Training Intensity and the Fitness-Fatness Index in Adults with Metabolic Syndrome: A

Randomized Trial. Sports Med Open [Internet]. 2021 [cited 2025 May 13];7(1). Available from: https://pubmed.ncbi.nlm.nih.gov/34951682/

- 39. Jo EA, Cho KI, Park JJ, Im DS, Choi JH, Kim BJ. Effects of High-Intensity Interval Training Versus Moderate-Intensity Continuous Training on Epicardial Fat Thickness and Endothelial Function in Hypertensive Metabolic Syndrome. Metab Syndr Relat Disord [Internet]. 2020 [cited 2025 May 13];18(2):96–102. Available from: https://pubmed.ncbi.nlm.nih.gov/31928506/
- 40. So R, Matsuo T. Effects of using high-intensity interval training and calorie restriction in different orders on metabolic syndrome: A randomized controlled trial. Nutrition [Internet]. 2020 [cited 2025 May 13];75–76. Available from: https://pubmed.ncbi.nlm.nih.gov/32279030/41. Ramos JS, Dalleck LC, Stennett RC, Mielke GI, Keating SE, Murray L, et al. Effect of different volumes of interval training and continuous exercise on interleukin-22 in adults with metabolic syndrome: A randomized trial. Diabetes, Metabolic Syndrome and Obesity [Internet]. 2020 [cited 2025 Apr 29];13:2443–53. Available from: https://pubmed.ncbi.nlm.nih.gov/32765023/
- 42. Da Silva MAR, Baptista LC, Neves RS, De França E, Loureiro H, Lira FS, et al. The Effects of Concurrent Training Combining Both Resistance Exercise and High-Intensity Interval Training or Moderate-Intensity Continuous Training on Metabolic Syndrome. Front Physiol [Internet]. 2020 [cited 2025 Apr 29];11. Available from: https://pubmed.ncbi.nlm.nih.gov/32595518/
- 43. Ramos JS, Dalleck LC, Keith CE, Fennell M, Lee Z, Drummond C, et al. Optimizing the interaction of exercise volume and metformin to induce a clinically significant reduction in metabolic syndrome severity: A randomised trial. Int J Environ Res Public Health [Internet]. 2020 [cited 2025 May 13];17(10). Available from: https://pubmed.ncbi.nlm.nih.gov/32456272/44. Taylor JL, Holland DJ, Mielke GI, Bailey TG, Johnson NA, Leveritt MD, et al. Effect of High-Intensity Interval Training on Visceral and Liver Fat in Cardiac Rehabilitation: A Randomized Controlled Trial. Obesity [Internet]. 2020 [cited 2025 May 13];28(7):1245–53. Available from: https://pubmed.ncbi.nlm.nih.gov/32475048/
- 45. Lee AS, Johnson NA, McGill MJ, Overland J, Luo C, Baker CJ, et al. Effect of high-intensity interval training on glycemic control in adults with type 1 diabetes and overweight or obesity:

- A randomized controlled trial with partial crossover. Diabetes Care [Internet]. 2020 [cited 2025 May 13];43(9):2281–8. Available from: https://pubmed.ncbi.nlm.nih.gov/32647051/
- 46. Reljic D, Frenk F, Herrmann HJ, Neurath MF, Zopf Y. Low-volume high-intensity interval training improves cardiometabolic health, work ability and well-being in severely obese individuals: a randomized-controlled trial sub-study. J Transl Med [Internet]. 2020 [cited 2025 May 13];18(1). Available from: https://pubmed.ncbi.nlm.nih.gov/33160382/
- 47. Byrd BR, Keith J, Keeling SM, Weatherwax RM, Nolan PB, Ramos JS, et al. Personalized moderate-intensity exercise training combined with high-intensity interval training enhances training responsiveness. Int J Environ Res Public Health [Internet]. 2019 [cited 2025 May 18];16(12). Available from: https://pubmed.ncbi.nlm.nih.gov/31200443/
- 48. Ramírez-Vélez R, Tordecilla-Sanders A, Téllez-T LA, Camelo-Prieto D, Hernández-Quiñonez PA, Correa-Bautista JE, et al. Similar cardiometabolic effects of high- and moderate-intensity training among apparently healthy inactive adults: A randomized clinical trial. J Transl Med [Internet]. 2017 [cited 2025 May 13];15(1). Available from: https://pubmed.ncbi.nlm.nih.gov/28558739/
- 49. Ramos JS, Dalleck LC, Borrani F, Beetham KS, Mielke GI, Dias KA, et al. High-intensity interval training and cardiac autonomic control in individuals with metabolic syndrome: A randomised trial. Int J Cardiol [Internet]. 2017 [cited 2025 May 19];245:245–52. Available from: https://pubmed.ncbi.nlm.nih.gov/28747269/

ANEXOS

Escala PEDro-Español

1.	Los criterios de elección fueron especificados	no 🗆 si 🗀	donde:
2.	Los sujetos fueron asignados al azar a los grupos (en un estudio cruzado, los sujetos fueron distribuidos aleatoriamente a medida que recibían los	no 🗆 si 🗇	
	tratamientos)	no u si u	donde:
3.	La asignación fue oculta	no 🗆 si 🔾	donde:
4.	Los grupos fueron similares al inicio en relación a los indicadores de pronostico más importantes	no 🗆 si 🗅	donde:
5.	Todos los sujetos fueron cegados	no 🗆 si 🗖	donde:
6.	Todos los terapeutas que administraron la terapia fueron cegados	no 🗆 si 🗖	donde:
7.	Todos los evaluadores que midieron al menos un resultado clave fueron cegados	no 🗆 si 🗀	donde:
8.	Las medidas de al menos uno de los resultados clave fueron obtenidas de más del 85% de los sujetos inicialmente asignados a los grupos	no 🗆 si 🗖	donde:
9.	Se presentaron resultados de todos los sujetos que recibieron tratamiento o fueron asignados al grupo control, o cuando esto no pudo ser, los datos para al menos un resultado clave fueron analizados por "intención de tratar"	no 🗆 si 🖫	donde:
10,	Los resultados de comparaciones estadísticas entre grupos fueron informados para al menos un resultado clave	no 🖸 si 🗖	donde:
11.	El estudio proporciona medidas puntuales y de variabilidad para al menos un resultado elave	no 🗆 si 🗅	donde:

La escala PEDro está basada en la lista Delphi desarrollada por Verhagen y colaboradores en el Departamento de Epidemiología, Universidad de Maastricht (Verhagen AP et al (1998). The Delphi list: a criteria list for quality assessment of randomised clinical trials for conducting systematic reviews developed by Delphi consensus. Journal of Clinical Epidemiology, 51(12):1235-41). En su mayor parte, la lista está basada en el consenso de expertos y no en datos empíricos. Dos fiems que no formaban parte de la lista Delphi han sido incluídos en la escala PEDro (tiems 8 y 10). Conforme se obtengan más datos empíricos, será posible "ponderar" los fiems de la escala, de modo que la puntuación en la escala PEDro refleje la importancia de cada fiem individual en la escala.

El propósito de la escala PEDro es ayudar a los usuarios de la bases de datos PEDro a identificar con rapidez cuales de los ensayos clínicos aleatorios (ej. RCTs o CCTs) pueden tener suficiente validez interna (criterios 2-9) y suficiente información estadística para hacer que sus resultados sean interpretables (criterios 10-11). Un criterio adicional (criterio 1) que se relaciona con la validez externa ("generalizabilidad" o "aplicabilidad" del ensayo) ha sido retenido de forma que la lista Delphi esté completa, pero este criterio no se utilizará para el cálculo de la puntuación de la escala PEDro reportada en el sitio web de PEDro.

La escala PEDro no debería utilizarse como una medida de la "validez" de las conclusiones de un estudio. En especial, avisamos a los usuarios de la escala PEDro que los estudios que muestran efectos de tratamiento significativos y que puntúen alto en la escala PEDro, no necesariamente proporcionan evidencia de que el tratamiento es clínicamente útil. Otras consideraciones adicionales deben hacerse para decidir si el efecto del tratamiento fue lo suficientemente elevado como para ser considerado clínicamente relevante, si sus efectos positivos superan a los negativos y si el tratamiento es costo-efectivo. La escala no debería utilizarse para comparar la "calidad" de ensayos realizados en las diferentes áreas de la terapia, básicamente porque no es posible cumplir con todos los ítems de la escala en algunas áreas de la práctica de la fisioterapia.

Última modificación el 21 de junio de 1999. Traducción al español el 30 de diciembre de 2012

Figura 2. Escala de PEDRo Español. *

* **Tomado de:** *Physiotherapy Evidence Database* (PEDRo). (2016). Available from: https://pedro.org.au/spanish/resources/pedro-scale/