

UNIVERSIDAD NACIONAL DE CHIMBORAZO FACULTAD DE INGENIERÍA CARRERA INGENIERÍA INDUSTRIAL

Implementación de un sistema de control de flujo en las Estaciones

Hidráulicas del Laboratorio de Controles Industriales de la Universidad

Nacional de Chimborazo

Trabajo de Titulación para optar al título de Ingeniero Industrial

Autor:

Naranjo Molina Dayana Mishell

Tutor:

Ing. Ángel Alberto Silva Conde Mgs.

Riobamba, Ecuador. 2025

DECLARATORIA DE AUTORÍA

Yo, Dayana Mishell Naranjo Molina, con cédula de ciudadanía 0604546119, autora del trabajo de investigación titulado: Implementación de un sistema de control de flujo en las Estaciones Hidráulicas del laboratorio de Controles Industriales de la Universidad Nacional de Chimborazo, certifico que la producción, ideas, opiniones, criterios, contenidos y conclusiones expuestas son de mí exclusiva responsabilidad.

Asimismo, cedo a la Universidad Nacional de Chimborazo, en forma no exclusiva, los derechos para su uso, comunicación pública, distribución, divulgación y/o reproducción total o parcial, por medio físico o digital; en esta cesión se entiende que el cesionario no podrá obtener beneficios económicos. La posible reclamación de terceros respecto de los derechos de autor (a) de la obra referida, será de mi entera responsabilidad; librando a la Universidad Nacional de Chimborazo de posibles obligaciones.

En Riobamba, 14/01/2025.

Dayana Mishell Naranjo Molina C.I: 0604546119

DICTAMEN FAVORABLE DEL PROFESOR TUTOR

Quien suscribe, Ángel Alberto Silva Conde catedrático adscrito a la Facultad de Ingeniería, por medio del presente documento certifico haber asesorado y revisado el desarrollo del trabajo de investigación titulado: Implementación de un sistema de control de flujo en las Estaciones Hidráulicas del Laboratorio de Controles Industriales de la Universidad Nacional de Chimborazo, bajo la autoría de Dayana Mishell Naranjo Molina; por lo que se autoriza ejecutar los trámites legales para su sustentación.

Es todo cuanto informar en honor a la verdad; en Riobamba, a los 13 días del mes diciembre de 2024

Ing. Ángel Alberto Silva Conde Mgs. TUTOR

CERTIFICADO DE LOS MIEMBROS DEL TRIBUNAL

Quienes suscribimos, catedráticos designados Miembros del Tribunal de Grado para la evaluación del trabajo de investigación Implementación de un sistema de control de flujo en las Estaciones Hidráulicas del laboratorio de Controles Industriales de la Universidad Nacional de Chimborazo, presentado por, Dayana Mishell Naranjo Molina, con cédula de identidad número 0604546119, bajo la tutoría de Mgs. Angel Alberto Silva Conde certificamos que recomendamos la APROBACIÓN de este con fines de titulación. Previamente se ha evaluado el trabajo de investigación y escuchada la sustentación por parte de su autor; no teniendo más nada que observar.

De conformidad a la normativa aplicable firmamos, en Riobamba 14/01/2025

Mgs. Carlos Leonel Burgos Arcos

CARLOS LEONEL CARLOS LEONEL EUNICOS ARCOS

ARIO VICENTE

PRESIDENTE DEL TRIBUNAL DE GRADO

PhD. Mario Vicente Cabrera Vallejo

MIEMBRO DEL TRIBUNAL DE GRADO

PIDEL ENESTO VALLE-JU GALLANDU

Mgs. Fidel Ernesto Vallejo Galllardo

MIEMBRO DEL TRIBUNAL DE GRADO

Dirección Académica VICERRECTORADO ACADÉMICO

CERTIFICACIÓN

Gue, NARANJO MOLINA DAYANA MISHELL con CC: 0604546119, estudiante de la Carrera INGENIERÍA INDUSTRIAL, Facultad de INGENIERÍA; ha trabajado bajo mi tutoría el trabajo de investigación titulado " IMPLEMENTACIÓN DE UN SISTEMA DE CONTROL DE FLUJO EN LAS ESTACIONES HIDRÁULICAS DEL LABORATORIO DE CONTROLES INDUSTRIALES DE LA UNIVERSIDAD NACIONAL DE CHIMBORAZO", cumple con el 7%, de acuerdo al reporte del sistema Anti plagio TURNITIN, porcentaje aceptado de acuerdo a la reglamentación institucional, por consiguiente autorizo continuar con el proceso.

Riobamba, 07 de enero de 2025

Ing. Ångel Alberto Silva Conde Mgs. TUTOR

DEDICATORIA

Al concluir esta hermosa etapa de mi vida, quiero dedicar este trabajo de investigación a mi madre Carmita, por ser mi soporte en cada etapa de mi vida. Su confianza en mis capacidades han sido la fuerza que me impulsa a seguir mis sueños con determinación.

A mi padre Ricardo, por enseñarme que cada desafío es una oportunidad para crecer y que todo es alcanzable con esfuerzo y dedicación.

A Fernandita y Marco Vinicio, quienes me brindaron su apoyo incondicional y me acogieron con su calidez desde el primer momento en que llegué a sus vidas. Me siento profundamente agradecida por todo lo que me han brindado, por recibirme siempre con los brazos abiertos y por acompañarme de manera tan generosa en este camino.

A Marco Andrés, mi mayor soporte durante todo este proceso. Este logro es tanto mío como tuyo, porque detrás de cada esfuerzo está el inmenso amor, la paciencia y el apoyo incondicional que siempre me has brindado. Espero que, juntos, sigamos viendo cómo cada uno de nuestros sueños se hace realidad.

Y a mis peluditos, cuya presencia transformó mi vida por completo. Sus besitos cargados de amor han sido el mejor consuelo en tantas noches de desvelo y cansancio. Ustedes me enseñaron que los ángeles no siempre tienen alas, algunos llegan a nosotros con cuatro patitas, gracias Alaska y Leo.

Dayana Mishell Naranjo Molina

AGRADECIMIENTO

A Dios quien ha estado a mi lado en cada paso de este proceso, por escuchar mis oraciones e iluminar mi camino en los momentos de duda e incertidumbre.

A mi tutor, Msc. Ángel Silva, le agradezco profundamente por su inquebrantable apoyo y guía a lo largo del desarrollo de mi proyecto de investigación. Su experiencia y orientación siempre estuvieron presentes, y me permitieron alcanzar el éxito en este trabajo.

A la Universidad Nacional de Chimborazo, por brindarme la oportunidad de formarme en un entorno académico de calidad. Agradezco profundamente a todos mis docentes, quienes me acompañaron y guiaron a lo largo de mi formación y contribuyendo a mi crecimiento tanto personal como académico. Gracias a su apoyo y dedicación, hoy puedo avanzar con confianza hacia el futuro en el ámbito profesional.

Dayana Mishell Naranjo Molina

ÍNDICE GENERAL;

DECLARATORIA DE AUTORÍA	
DICTAMEN FAVORABLE DEL PROFESOR TUTOR	
CERTIFICADO DE LOS MIEMBROS DEL TRIBUNAL	
CERTIFICADO ANTIPLAGIO	
DEDICATORIA	
AGRADECIMIENO	
ÍNDICE GENERAL	
ÍNDICE DE FIGURAS	
RESUMEN	
ABSTRACT	
CAPITULO I. INTRODUCCIÓN	
1. Planteamiento del problema	
1.1 Formulación del problema	
1.2 Justificación	
1.3 Objetivos	
CAPITULO II· MARCO TEÓRICO	18
2.1 Antecedentes de la investigación	
2.2 Fundamentación teórica	
2.2.1 Fluido	
2.2.2 Flujo	
2.2.3 Tipos de flujos en tuberías	
2.2.4 Caudal	
2.2.5 Caudal volumétrico	
2.2.6 Fuerza	
2.2.7 Presión	
2.2.8 Trabajo	
2.2.9 Potencia	
2.2.10 Propiedades de fluidos marauncos	
2.2.11 HIUTAULICA	
2.2.12 Hidrodinámica	
2.2.14 Sistema hidráulico	
2.2.15 Elementos básicos de un sistema hidráulico	
CAPÍTULO III: METODOLOGÍA	
3.1 Diseño de la investigación	
3.2 Tipo de investigación	

3.4 Población de estudio y tamaño de muestra	•••••
3.5 Hipótesis	•••••
3.6 Métodos de análisis y procesamiento de datos	
3.6.1 Análisis descriptivo de la estación hidráulica	
3.6.1.1 Descripción y funcionamiento de los componentes de la estación hidráulica	
3.6.1.2 Acoples hidráulicos	
3.6.1.3 Tuberías de cobre	
3.6.1.4 Válvula de bola	
3.6.1.5 Válvula solenoide	
3.6.1.6 Subplaca de la válvula solenoide	
3.6.1.7 Actuador hidráulico	
3.6.1.8 Manguera de alta presión	
3.6.1.9 Racor	
3.6.2 Unidad de potencia hidráulica	
3.6.3 Fluido hidráulico	•••••
APÍTULO IV. RESULTADOS Y DISCUSIÓN	•••••
4.1 Análisis de datos en tiempo real	•••••
4.1.1 Flujo de aceite en función de la velocidad del motor	
4.2 Exceso de flujo en las estaciones hidráulicas	
4.2.1 Causas y efectos del exceso de flujo del sistema hidráulico	
4.2.2 Mantenimiento del sistema hidráulico	
4.3 Diseño y construcción del módulo de control	
4.3.1 Estructura Interna	
4.3.2 Descripción y funcionamiento de los componentes	
4.3.2.1.1 Partes del PLC	
4.3.2.1.2 Funciones básicas	
4.3.2.1.3 Programación	
4.3.2.1.4 Lenguaje de programación	
4.3.2.2.1 Funciones básicas:	
4.3.2.2.2 Comunicación del HMI	
4.3.2.2.3 Estructura dimensional	
4.3.2.3 Variador de frecuencia LS modelo SV022iG5A-2	
4.3.2.3.1 Funciones básicas:	
4.3.2.4.1 Conductores	
4.3.2.4.2 Breaker dos v tres polos de 4 a v 16 a	
4.3.3 Construcción del gabinete	
4.3.3.3.1 Sujeción de la pantalla HMI	
4.4 Instalación de componentes y dispositivos electrónicos	
4 4 1 Instalación de borneras y variador de frecuencia	
4.4.2 Conexiones	•••••
4.4.2.1.1 Conexiones desde las entradas del variador de frecuencia a las salidas del PI C	•••••
4 4 2 1 2 Conexiones de entradas del PLC con naro emergencia breaker 2 polos	•••••
4 4 2 1 3 Conexión del PLC con el nanel de operación y la fuente panel de 24y	•••••
4.3.3 Diagrama de conexiones	
4.5 Programación del variador de frecuencia	
4.5.1 Descripción de los componentes	
16 Programazión de la pantalla HMI	

4.7.1 Inspección del sistema hidráulico	
4.7.2 Pruebas de funcionamiento	
4.7.3 Recolección de datos iniciales	
4.7.3.1.1 Curvas de caudal de la bomba antes de la implementación del módulo	
4.7.3.1.2 Rampa de arranque y parada del variador de frecuencia	
4.7.4 Recolección de datos después de la implementación	100
4.7.5 Comparación de curvas.	105
CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES	118
5.1 Conclusiones	118
5.2 Recomendaciones	119
Bibliografía	120
Anexos	122

ÍNDICE DE TABLAS

Tabla 1 Ficha técnica del acople de cobre	30
Tabla 2 Ficha técnica de la tubería de cobre	30
Tabla 3 Ficha técnica de la válvula de bola	31
Tabla 4 Ficha técnica de la válvula solenoide	32
Tabla 5 Ficha técnica subplaca de la válvula solenoide	33
Tabla 6 Ficha técnica del actuador hidráulico	33
Tabla 7 Ficha técnica manguera de alta presión	34
Tabla 8 Ficha técnica del racor	35
Tabla 9 Ficha técnica del motor eléctrico de inducción trifásico	39
Tabla 10 Ficha técnica de la bomba de engranajes	41
Tabla 11 Ficha técnica de la junta	43
Tabla 12 Ficha técnica del manómetro	43
Tabla 13 Ficha técnica del filtro hidráulico	44
Tabla 14 Ficha técnica del medidor de aceite	45
Tabla 15 Ficha técnica del depósito de aceite	46
Tabla 16 Ficha técnica PLC	54
Tabla 17 Ficha técnica HMI	58
Tabla 18 Ficha técnica de variador de frecuencia	59
Tabla 19 Ficha técnica breaker 3 polos	61
Tabla 20 Ficha técnica breaker 2 polos	61
Tabla 21 Conexiones entre entradas del variador y salidas del PLC	73
Tabla 22 Grupos de parámetros del variador de frecuencia	91
Tabla 23 Comandos para controlar el variador de frecuencia	96
Tabla 24 Cálculo del flujo	101
Tabla 25 Frecuencia vs velocidad	101
Tabla 26 Cálculo para hallar el caudal	102
Tabla 27 Relación frecuencia, velocidad y caudal	102
Tabla 28 Tiempos teóricos del movimiento del pistón.	103
Tabla 29 Tiempos de avance del pistón a distintas velocidades	115
Tabla 30 Tiempo de avance y retroceso del pistón a velocidad de 10 hz	129
Tabla 31 Tiempo de avance y retroceso del pistón a velocidad de 20 hz	130
Tabla 32 Tiempo de avance y retroceso del pistón a velocidad de 30 hz	130

Tabla 33	Tiempo de avance y retroceso del pistón a velocidad de 40 hz	131
Tabla 34	Tiempo de avance y retroceso del pistón a velocidad de 50 hz	131
Tabla 35	Tiempo de avance y retroceso del pistón a velocidad de 60 hz	132

ÍNDICE DE FIGURAS

3
4
9
5
7
8
9
7
1
3
5
6
7
7
0
2
3
0
4
4 5
4 5 6
4 5 6 7
4 5 6 7 8
4 5 6 7 8 9
4 5 6 7 8 9 0
4 5 6 7 8 9 0 1
4 5 6 7 8 9 0 1 2
4 5 6 7 8 9 0 1 2 3
4 5 6 7 8 9 0 1 2 3 5 0 1 2 3 5
4 5 6 7 8 9 0 1 2 3 5 6
4567890123567
45678901235678
456789012356789
4 5 6 7 8 9 0 1 2 3 5 6 7 8 9 0
45678901235678901

Figura 36	Diagrama de conexiones construido en el software CADe SIMU83
Figura 37	Alimentación para borneras y breakers
Figura 38	Elementos que proporcionan el flujo de corriente
Figura 39	Diagrama de alimentación para el variador de frecuencia
Figura 40	Diagrama de conexiones del PLC y pantalla HMI mediante cable rs232 87
Figura 41	Diagrama de alimentación del panel de control
Figura 42	Componentes externos que conforman al variador de frecuencia
Figura 43	Componentes internos que conforman al variador de frecuencia
Figura 44	Identificación del variador de frecuencia
Figura 45	Grupos de parámetros
Figura 46	Identificación de teclas de dirección del variador de frecuencia
Figura 47	Configuración del variador de frecuencia
Figura 48	Conexión de la pantalla HMI al PC94
Figura 49	Programación del HMI con el programa op series edit tool
Figura 50	Configuración de la pantalla HMI96
Figura 51	Curva característica de caudal vs velocidad
Figura 52	Curva característica de potencia vs velocidad
Figura 53	Rampa de arranque y paro del variador de frecuencia
Figura 54	Tiempo de avance del pistón a distintas velocidades
Figura 55	Tiempo de retroceso del pistón a distintas velocidades 105
Figura 56	Comparación de curva característica vs tiempo de avance 106
Figura 57	7 Comparación entre curva característica y curva después de la
imple	mentación
Figura 58	Breakers de la fuente de electricidad 113
Figura 59	Inspección visual de la estación hidráulica122
Figura 60	Instalación de software Xinje PLC program tool 123
Figura 61	Lenguaje Ladder124
Figura 62	Instalación cable RS232125
Figura 63	Conexión cableada del motor al módulo de control126
Figura 64	Instalación de componentes eléctricos en el gabinete 127
Figura 65	Verificación de componentes de las estaciones hidráulicas128
Figura 66	Sujeción de módulo de control129
Figura 67	Bosquejo externo del módulo de control133

RESUMEN

En el ámbito fabril, la automatización requiere la constante actualización de sistemas para satisfacer las demandas tecnológicas, optimizar procesos y mejorar la eficiencia.

La presente investigación describe el diseño y construcción de un módulo con características industriales, que al ser implementado en un sistema oleohidráulico permite regular el flujo de aceite hidráulico.

Para ello, empleó la investigación aplicada con diseño descriptivo, que permitió analizar y documentar detalladamente las condiciones operativas, deficiencias detectadas y necesidades del sistema hidráulico. Este proceso incluyó el análisis de especificaciones técnicas, atributos y limitaciones de los componentes que conforman la estación hidráulica mediante una revisión bibliográfica.

Se aplicó distintas técnicas de recolección de datos antes y después de la implementación del tablero para dar seguimiento a la operación de la bomba de engranajes, también se utilizó la observación directa para identificar el funcionamiento del sistema hidráulico después de su mantenimiento y verificar que no existan fugas.

En el desarrollo práctico se esquematizó al tablero de control considerando las necesidades del sistema hidráulico. La construcción del tablero incluyó a distintos elementos de automatización, como el HMI; que sirve como la interfaz para interactuar con la máquina y está conectado de manera integral con el PLC, que fue programado previamente y evita la necesidad de manipular manualmente el variador de frecuencia que regula el funcionamiento del motor. Esta construcción permite que el sistema sea autónomo y proporciona una experiencia práctica y aplicada a docentes y estudiantes en el área de sistemas hidráulicos.

Palabras claves: sistema hidráulico, módulo, control, fluido hidráulico, PLC, HMI, variador de frecuencia.

ABSTRACT

Automation requires constant system updates to meet technological demands, optimize processes, and improve efficiency in the industrial field. This research describes designing and constructing an industrial-characteristic module that regulates hydraulic oil flow when implemented in a hydraulic system. Therefore, applied research with a descriptive design was used. It allowed for a detailed analysis and documentation of the hydraulic system's operational conditions, deficiencies, and needs. This process included analyzing the technical specifications, attributes, and limitations of the components that make up the hydraulic station through a literature review. The researcher applied data collection techniques before and after the control panel's implementation to monitor the gear pump's operation. It was also necessary to use direct observation to identify the hydraulic system's functioning after maintenance and ensure there were no leaks. In the practical development stage, the researcher designed the control panel, considering the hydraulic system's needs. The panel's construction included various automation elements, such as the HMI. It is the interface for interacting with the machine connected to the PLC. The PLC was pre-programmed, eliminating the need to manually operate the frequency inverter that regulates the motor's function. This construction makes the system autonomous and provides a practical, hands-on experience for teachers and students in hydraulic systems.

Keywords: hydraulic system, module, control, hydraulic fluid, PLC, HMI, frequency inverter.

Reviewed by: Mgs. Jessica María Guaranga Lema ENGLISH PROFESSOR C.C. 0606012607

Expresiones abreviadas y siglas usadas

PLC	Programmable Logic Controller / Contolador Lógico Programable
HMI	Human Machine Interface / Interfaz Humano Máquina
V	Voltios
Α	Amperios
kW	Kilovatio
kVA	Kilovoltio - Amperio
VDC	Voltios de Corriente Continua
СМ	Common
L1	Línea 1
L2	Línea 2
L3	Línea 3
RPM	Revoluciones por minuto del motor
GPM	Galones por minuto
Кра	Kilopascales
Pulg	Pulgadas

CAPITULO I. INTRODUCCIÓN

En la industria, los avances tecnológicos han transformado los procesos productivos, ya que mejoran la eficiencia, productividad y la calidad. Entre estas innovaciones, la automatización obliga a revitalizar constantemente diversos sistemas, lo que posibilita la optimización de procesos.

Existen diversos equipos que fomentan la productividad, incluidos los sistemas hidráulicos. Estos sistemas operan mediante la transmisión de energía a través de fluidos presurizados, permitiendo movimientos mecánicos.

Actualmente, la transmisión hidráulica tiene una aplicación generalizada en casi todas las áreas industriales, especialmente en los campos mecánicos y electromecánicos. La incorporación de tecnologías modernas, como circuitos cerrados electrohidráulicos, microprocesadores avanzados para la fabricación de equipos, continúa optimizando el desempeño de sistemas hidráulicos. La implementación de accionamientos y sistemas hidráulicos favorece la evolución de las maquinarias y amplía las oportunidades de automatización en los procesos productivos. (Pérez Pupo & Navarro Ojeda, 2020, p. 20)

Es necesario disponer de estas estructuras en centros de educación superior para que los universitarios tengan la oportunidad de comprender y familiarizarse con la hidráulica, rama de la ingeniería que estudia el comportamiento de los fluidos y su aplicación dentro de equipos industriales.

Esta investigación tiene el propósito de implementar un módulo que controle el flujo en una estación hidráulica, lo que permitirá la ejecución de actividades técnicas encaminadas en configurar diferentes parámetros como son los límites en el caudal del fluido hidráulico. Este objetivo se alcanzará determinando las causas y efectos del exceso de flujo del sistema hidráulico, diseñando y construyendo un tablero de control que incluya componentes que son ampliamente utilizados en la industria; ya que el sistema hidráulico es vital para la ejecución de prácticas experimentales.

1. Planteamiento del problema

En las universidades del Ecuador se incluye la investigación científica y bibliográfica en el desarrollo profesional de los estudiantes. En todas las áreas de ingeniería los laboratorios de experimentación permiten desarrollar capacidades para usar equipos que existen en el ámbito laboral.

El Laboratorio de Controles Industriales de la Universidad Nacional de Chimborazo es un espacio destinado para la adquisición de conocimientos con respecto a sistemas que son utilizados en la industria, lo que prepara a estudiantes de Ingeniería Industrial a enfrentarse a futuras situaciones dentro del campo profesional. Uno de los equipos presentes en el laboratorio es un banco de pruebas hidráulicas, que utiliza la presión de un fluido para simular diversos procesos industriales, proporcionando experiencias prácticas orientadas al control y operación de máquinas. Este equipo permite, por ejemplo, estudiar la actuación de sistemas de control de movimiento en prensas, ascensores y otros mecanismos industriales.

La unidad de potencia hidráulica alberga a una bomba de engranajes, la cual impulsa el aceite a presión cuando es accionada por un motor eléctrico de inducción trifásico. Estos elementos cuando son activados y asumiendo que la bomba funciona en condiciones ideales (máxima potencia); crea una presión relativa en su entrada desde el depósito hidráulico a través de una tubería de succión, el aceite fluye desde la bomba por medio de la tubería de salida de la bomba que tiene el diámetro más pequeño en el calibre de la toma. El fluido ingresa al sistema por medio de mangueras de alta presión, su dirección es regulada por válvulas solenoides, además; las válvulas de bola permiten o impiden el paso de aceite. Además, las mangueras de alta presión están conectadas a ambos extremos del cilindro hidráulico, permitiendo generar un movimiento lineal. El mal diseño de este equipo, la ausencia de un mantenimiento general e implementación de un tablero automatizado que controle el flujo; genera sobrepresión en todo el sistema hidráulico y pérdidas de aceite. Esto impide la ejecución de prácticas experimentales, lo que limita el acceso de estudiantes y docentes a este equipo, lo que ocasiona disparidad dentro de la comprensión teórica y práctica.

1.1 Formulación del problema

¿Cómo la implementación de un sistema de control puede regular la velocidad de flujo de aceite de una bomba de engranajes y que a su vez este sistema automatizado pueda contribuir a la formación académica – experimental de estudiantes y docentes?

1.2 Justificación

La automatización va en constante evolución, mejora la eficiencia operativa dentro de distintos entornos y su aplicación permite la modernización de máquinas ya sean de control, producción, logísticas, robóticas, etc.

La Facultad de Ingeniería Industrial tiene como finalidad la formación de estudiantes con habilidades para diseñar, construir y operar sistemas automatizados. El laboratorio de controles industriales alberga equipos que permiten la simulación de procesos; uno de estos equipos es la estación hidráulica.

Actualmente el laboratorio cuenta con este banco hidráulico construido por la empresa AINSA. S.A., el mismo que fue adquirido con fines académicos a esta compañía varios años atrás. El banco permitiría la recreación de procesos que se utilizan en la industria de manera práctica, sin embargo; no cuenta con un dispositivo que controle el flujo de aceite, impidiendo el uso de esta máquina en condiciones seguras.

En este trabajo de investigación se buscó contribuir de forma significativa a la automatización de sistemas, al proporcionar información técnica de los componentes del equipo hidráulico. Se realizó el diseño y construcción de un tablero de control constituido con salidas y entradas de tipo digitales y análogas.

En vista de lo expuesto con anterioridad, se optó por la implementación del módulo junto al sistema hidráulico, se realizó un mantenimiento integro y pruebas de funcionamiento, donde se generaron datos en tiempo real mediante el medio electrónico; así se monitoreó el caudal que es una variable física real. La puesta en práctica del equipo contribuirá en la adquisición de experiencia a estudiantes y personal académico de forma segura y controlada.

1.3 Objetivos

1.3.1 General

Implementar un sistema de control de flujo en las estaciones hidráulicas del laboratorio de Controles Industriales de la Universidad Nacional de Chimborazo

1.3.2 Específicos

- Determinar las causas y efectos del exceso de flujo en las estaciones hidráulicas mediante el uso de instrumentación y fichas técnicas para diseñar un sistema con un nivel de operación óptimo y seguro.
- Diseñar e implementar un módulo con PLC y una interfaz gráfica, para el control y monitoreo del sistema hidráulico.
- Elaborar un manual de operación del módulo de control hidráulico, mediante la aplicación de software de ingeniería para el desarrollo de prácticas de laboratorio.

CAPITULO II: MARCO TEÓRICO

2.1 Antecedentes de la investigación

La hidráulica ha estado presente desde la antigüedad, cuando se aprovechaba la energía del agua en movimiento para generar potencia. Durante siglos, mecanismos como ruedas con aspas, similares al "volante griego", fueron utilizados para accionar molinos con diferentes fines. Ya en el año 4000 a. C. en China, se implementaron válvulas de madera para regular el flujo de agua a través de tuberías de bambú. Un ejemplo clave de su aplicación temprana es el dique de mampostería construido por los griegos sobre el río Nilo, al sur de Ciro, utilizado para controlar el agua para riego mediante sistemas de canales, compuertas y tuberías de ladrillo cerámico.

La trasmisión de energía a través de fluidos, en el ámbito hidráulico, se remonta al descubrimiento de la ley de Pascal en 1650. Esta ley establece que la presión ejercida sobre un fluido en reposo se distribuye de manera uniforme y sin disminución en todas las direcciones dentro de un sistema cerrado. Pascal demostró este principio mediante un experimento en el que un corcho comprimido hacia abajo en un recipiente lleno de vino provocaba la fractura de la base del recipiente.

No obstante, para aplicar esta ley de manera efectiva en sistemas prácticos, era necesario desarrollar un mecanismo que permitiera el movimiento controlado de un fluido,

lo que requería la creación de un pistón que encajara perfectamente en un cilindro. Este avance técnico no se alcanzó hasta aproximadamente un siglo después, cuando se perfeccionaron los mecanismos necesarios para operar de acuerdo con los principios de la hidráulica. (p. 20)

La aparición de conjuntos eléctricos que puedan simular diferentes procesos industriales ha sido beneficiosa para la formación de profesionales en el área mecánica, industrial, entre otras disciplinas. Los autores Pérez y Navarro (2020) consideraron que:

Para accionar los elementos de trabajo de los equipos se utilizan dispositivos hidráulicos y neumáticos que proporcionan la velocidad y fuerza necesarias. La velocidad se controla cambiando el volumen del fluido de trabajo que llega al actuador, y la fuerza se debe a una variación en la presión (p. 26).

El paso del fluido dentro de las estaciones debe ser controlado por distintos dispositivos de tipo electrónico para que pueda funcionar de forma correcta. Para que funcionen distintos procesos industriales, fue necesario el desarrollo de sistemas que controlen dichos procedimientos. Con la constante evolución nace la automatización, trayendo grandes avances para controlar mecanismos, evitando así el contacto directo del humano en actividades de alto riesgo; lo que redujo significativamente gastos operativos.

2.2 Fundamentación teórica Principios básicos

2.2.1 Fluido

Para el autor Cerdá Foliu (2023) El fluido es un conjunto de partículas que, en conjunto, forman una sustancia visible y manipulable en el ámbito macroscópico, gracias a la gran cantidad de moléculas que lo componen. En los sistemas hidráulicos, el fluido actúa como el medio de transferencia de energía, permitiendo que la potencia generada en una parte del sistema se traslade a otra. Aunque se pueden utilizar diferentes tipos de fluidos, cada uno se elige según las características y necesidades específicas del equipo o sistema. (pág. 15)

2.2.2 Flujo

El autor Burbano García atribuye que: El flujo es el movimiento de un fluido, ya sea líquido o gas, a través de una región determinada. En términos técnicos, es el desplazamiento de un fluido desde un punto hacia otro dentro de un sistema, pudiendo ocurrir en sistemas abiertos o cerrados. Este movimiento es fundamental en aplicaciones hidráulicas y neumáticas, ya que permite la transferencia de energía y la realización de trabajo en diferentes puntos del sistema. (pág. 71)

2.2.3 Tipos de flujos en tuberías

Cuando nos referimos a tipos de flujo dentro de tuberías, encontramos dos tipos:

Laminar: Las partículas fluyen de forma paralela, recreando una especie de lámina o capa.

Turbulento: Las partículas que fluyen de forma desorganizada en todos los sentidos. (Diaz Ortiz, 2006, pág. 123)

2.2.4 Caudal

El caudal es la cantidad de flujo de líquido que pasa por medio de un sistema dentro de un periodo de tiempo. Se expresa en litros "L" por segundo cuando se trata de un líquido.

Por ello nace la ecuación:

$$Q = \frac{V}{T}$$

Donde: Q: Caudal V: Velocidad del fluido

T: Tiempo

La velocidad de caudal es la rapidez en la que un fluido pasa de un lugar determinado a otro a lo largo de tuberías en sistemas hidráulicos. (Tipler & Mosca, 2006, pág. 384)

2.2.5 Caudal volumétrico

El caudal volumétrico es la cantidad total de fluido que transita por una determinada sección transversal de un conducto en un intervalo determinado de tiempo. Este parámetro puede aplicarse a secciones de diversas formas y se calcula utilizando la relación entre la velocidad del fluido y el área de la sección por donde este se desplaza. La ecuación que describe este fenómeno es:

$$Q = v \times A$$

Donde:

Q: Caudal v: Velocidad del fluido A: Área de la tubería (Moran & Shapiro, 2004, pág. 184)

2.2.6 Fuerza

Ley de Newton

La ley de Newton establece que la fuerza es el resultado de multiplicar la masa por la aceleración.

$$F = m \times a$$

Donde: F: fuerza m: masa a: aceleración (Cerdá Filiu, 2023)

2.2.7 Presión

Según el autor Herráez Domínguez (2007) "Si se sumerge un objeto en un líquido, las moléculas de las que están formado el líquido van a bombardear al objeto; ocasionando una fuerza, esta fuerza es la presión" (p. 16).

Esto quiere decir que cuando se inserta una fuerza sobre una superficie, se considera que se realiza presión. Mientras la zona en la que se aplica fuerza sea grande, más diminuta será la presión; y si por el contrario la zona en donde se aplica fuerza es más pequeña la presión va a ser mayor.

Por ello nace la ecuación:

P = F / S

P: Presión

F: Fuerza

S: Superficie

2.2.8 Trabajo

Si una fuerza constante actúa sobre un objeto, y como resultado, el objeto se mueve en línea recta, se dice que esta fuerza realiza un trabajo sobre un objeto. El trabajo depende de la fuerza aplicada, distancia que recorre el objeto en la dirección de la fuerza y el ángulo entre la fuerza y el desplazamiento. (Burbano Garcia, Gracia Muñoz, & Burbano de Ercilla, 2003, pág. 143)

La fórmula que representa este fenómeno es:

 $W = F \times d$

W: Trabajo F: Fuerza D: Desplazamiento

2.2.9 Potencia

Si una fuerza aplicada produce movimiento en un objeto, se genera un trabajo, y la potencia es la medida de cuán rápido se lleva a cabo ese trabajo en relación con el tiempo.

$$P = \frac{W}{\Delta t}$$

P: Potencia
W: Trabajo
Δt: Tiempo transcurrido
(Cerdá Filiu, 2023, pág. 10)

2.2.10 Propiedades de fluidos hidráulicos 2.2.10.1 Viscosidad

Es la resistencia interna que presenta un líquido al movimiento de sus partículas cuando se somete a una fuerza o presión.

2.2.10.2 Tensión superficial

Característica de la superficie de un líquido que le permite oponerse a fuerzas externas.

2.2.10.3 Densidad

Es la proporción de masa contenida en una unidad de volumen. La densidad indica el grado de proximidad entre los átomos que conforman un fluido; a mayor cercanía entre ellos, el fluido es más denso. Este parámetro se define como la relación entre la masa del fluido y el volumen que ocupa.

Su ecuación es:

$$d = \frac{m}{v}$$

Donde: m: masa v: volumen d: densidad

2.2.10.4 Peso específico

Es la relación entre el peso de un material y el volumen que ocupa. (Cerdá Filiu, 2023, pág. 5)

2.2.11 Hidráulica

La hidráulica es una disciplina que pertenece a la ingeniería mecánica, estudia a los líquidos en movimiento, esta disciplina se divide en dos ramas: la hidrostática que analiza el comportamiento de líquidos encerrados bajo presión y la hidrodinámica que estudia los líquidos no encerrados. (Solé, 2011, pág. 2)

2.2.12 Hidrostática

Principio de Pascal

Cuando se aplica presión sobre un fluido encerrado, esa presión se distribuye uniformemente en todas las direcciones y puntos dentro del contenedor del fluido. Esto significa que cualquier cambio en la presión en un área del fluido se transmite sin pérdida y de igual manera a todos los puntos de las paredes del recipiente que lo contiene. (Cerdá Filiu, 2023)

En la figura No. 1 se ilustra un ejemplo del principio de presión hidrostática en un sistema cerrado. Dentro del cilindro, un fluido (en este caso, aceite) permanece confinado, y al aplicar una fuerza sobre el émbolo, se incrementa la presión del fluido. Esta presión adicional se transmite a través del fluido y genera suficiente energía para desplazar una carga, como el movimiento de un automóvil. El manómetro en el sistema permite observar los cambios en la presión, ya sea incrementos o disminuciones, brindando un control visual de la presión interna del sistema.

Figura 1

Ejemplo de presión hidrostática.

Fuente. (Burbano Garcia, Gracia Muñoz, & Burbano de Ercilla, 2003)

2.2.13 Hidrodinámica

La hidrodinámica estudia los líquidos no encerrados, estos no pueden transmitir energía de presión.

La figura No. 2 ilustra un ejemplo de presión hidrodinámica. Al aplicar fuerza sobre el émbolo, esta fuerza se transmite al fluido, generando su movimiento. Sin embargo, debido a que el fluido no se encuentra confinado, no se produce un aumento o disminución significativa de presión en el sistema. Este flujo constante de fluido se puede aprovechar para accionar distintos dispositivos, como turbinas, que convierten la energía del flujo en trabajo mecánico.

Figura 2

Fuente. (Burbano Garcia, Gracia Muñoz, & Burbano de Ercilla, 2003)

2.2.14 Sistema hidráulico

El autor Pérez (2018) expuso que:

La energía de los fluidos" es la tecnología que se ocupa de la generación, el control y la transmisión de potencia usando fluidos a presión. Estos sistemas -hidráulicos o neumáticos-, utilizan un líquido o un gas respectivamente. Los sistemas hidráulicos hacen uso de líquidos como aceites minerales, sintéticos, etc., mientras que los neumáticos utilizan aire como medio de transmisión de energía (p. 18).

2.2.15 Elementos básicos de un sistema hidráulico 2.2.15.1 Depósito hidráulico

Almacena el fluido hidráulico que circula por los diferentes componentes del sistema hidráulico. Los depósitos pueden ser abiertos, bajo presión atmosférica, o cerrados, algunos bajo presión que funcionan como acumuladores. Dentro de las funciones del depósito hidráulico están:

- Compensa las pérdidas de fluido ocasionadas por fugas inevitables que pueden ocurrir durante la operación.
- Actúa como regulador térmico para estabilizar la temperatura del fluido.
- Protege al fluido de contaminación.

(Pérez Pupo & Navarro Ojeda, 2020, p. 91)

2.2.15.2 Válvulas hidráulicas

Controlan el flujo dentro de un sistema hidráulico, mediante la presión generada por la red de suministro. Permiten dirigir, detener o modular el paso del fluido presurizado en función de las necesidades operativas del sistema. Su diseño está optimizado para soportar altas presiones y caudales característicos.

Tipos de válvulas

Válvula reguladora de caudal

Las válvulas reguladoras controlan el flujo en sistemas hidráulicos, permitiendo ajustar aspectos como el inicio o la detención del movimiento, la dirección, y la cantidad de fluido en un circuito. Esto permite manejar el desplazamiento lineal o rotacional en estos sistemas.

Existen distintos métodos de activación para estas válvulas, que permiten abrir o cerrar sus componentes según la necesidad. Estas posiciones de cambio pueden ser tanto fijas como ajustables, lo que aporta flexibilidad y precisión en el control del sistema.

Válvula direccional

Uno de los dispositivos usados en la hidráulica es la válvula de bola, los autores Gancedo y Merayo (2000) mencionaron que "La válvula de bola es un tipo de válvula que puede estar compuesta por múltiples orificios y pueden ser utilizadas en vez de dos o más válvulas de tipo rectilínea, esto reduce costos e instalaciones en las tuberías" (p. 22).

Por otro lado, el autor García (2023) menciona que:

Para definir el funcionamiento de este dispositivo se toma en cuenta que dentro del cuerpo de este encontramos una esfera que se encuentra perforada y gracias a un vástago esta esfera puede moverse. Si la esfera está abierta, el líquido se mueve por los orificios. Si la esfera se encuentra cerrada, la esfera gira y bloquea el flujo. Para que se produzca estos movimientos se utiliza un actuador que es una palanca que se acciona de forma manual (p.23).

Válvula limitadora de presión

Diseñadas para controlar la presión máxima en un sistema hidráulico. Al sobrepasarse un límite preestablecido, se abren y desvían el flujo adicional al depósito, se colocan en una línea secundaria y permanecen cerradas en operación normal.

Válvula de alivio de presión

Situadas en el flujo principal entre la bomba y el equipo consumidor, regula el exceso de presión primaria para entregarla a un valor de presión secundaria menor. (Pérez Pupo & Navarro Ojeda, 2020, p. 70)

2.2.15.3 Actuador

El autor Thangam, (2023) indica que los actuadores son dispositivos capaces de transformar energía de entrada en movimiento. Se clasifican en 2 tipos, los lineales que desplazan objetos en línea recta y los rotativos que transforman la energía en movimiento de giro mediante un eje.

2.2.15.4 Cilindro hidráulico

El autor Pérez (2020) indica que el cilindro hidráulico es un actuador hidráulico volumétrico en el que el enlace de salida realiza un movimiento alternativo de traslación. El eslabón de salida del cilindro puede ser un vástago, un émbolo o un cuerpo de cilindro hidráulico, si el vástago o el émbolo están fijos. (p. 141)

2.2.15.5 Bomba hidráulica

Dispositivo que transforma la energía mecánica suministrada por un motor, en energía hidráulica mediante el desplazamiento de un fluido a presión. Este fluido, generalmente aceite, es el medio por el cual se trasmite la potencia dentro del sistema. (Pérez Pupo & Navarro Ojeda, 2020)

CAPÍTULO III: METODOLOGÍA

3.1 Diseño de la investigación

Esta investigación se clasifica como aplicada, con el propósito principal de convertir el conocimiento teórico en soluciones prácticas para optimizar el flujo hidráulico en sistemas industriales. Se orienta a resolver un problema práctico previamente identificado en el laboratorio de controles industriales.

Tiene un enfoque experimental, se considera que este diseño se presenta manipulando una variable experimental no comprobada en condiciones rigurosas para describir por qué sucede algo (Ramos, 2021). Mediante pruebas supervisadas, se recopilaron datos cuantitativos que permitieron analizar cómo responde el sistema hidráulico a la implementación de un tablero de control.

3.2 Tipo de investigación

Descriptiva, este tipo de investigación permite describir conjuntos homogéneos de fenómenos. Se utilizan criterios sistemáticos para establecer la estructura o comportamiento de los fenómenos, proporcionando información sistemática y comparable con la de otras fuentes (Guevara y otros, 2020). Por medio del análisis se vio necesario desarrollar un tablero que controle el flujo de aceite hidráulico de una bomba de engranajes.

3.3 Técnicas de recolección de datos

Cuando se trata de técnica de recolección de datos, los autores Hernández & Avila, (2020) dicen:

En toda investigación es necesario llevar a cabo la recolección de datos, de esta manera este es un paso fundamental para tener éxito en la obtención de resultados. Llevar

adecuadamente la recolección de datos y la escogencia del método de recolección de datos es una tarea que todo investigador debe conocer y debe tener mucha práctica en ella (p. 51).

Algunas técnicas de recolección de datos que se utilizaron son:

- La observación directa, porque se contempló el funcionamiento del sistema hidráulico junto a todos sus componentes como son la bomba de engranajes, el variador de frecuencia entre otros; vistos en condiciones diferentes y se recogió datos de los cambios que se observó.
- Revisión bibliográfica debido a que se desarrolló una investigación de diversos módulos que permitieron desarrollar la investigación.

3.4 Población de estudio y tamaño de muestra

Dentro del proyecto de investigación, la población es el conjunto total de mediciones generadas en un periodo continuo de operación del sistema hidráulicos después de la implementación del tablero de control. A partir de la población, se definió como muestra al subconjunto de datos representativos de la población seleccionados para el análisis. Los datos incluyen las mediciones de avance y retroceso del vástago del pistón, frecuencias de operación, y presión de la unidad de potencia.

3.5 Hipótesis

La implementación de un tablero de control diseñado bajo principios teóricos de control industrial permitirá regular el flujo de aceite en las Estaciones Hidráulicas del Laboratorio de Controles Industriales de la Universidad Nacional de Chimborazo, mediante la incorporación de dispositivos de control programados. Su desarrollo estará respaldado por un análisis integral de las causas y efectos del exceso de flujo mediante herramientas de instrumentación y documentación técnica. Además, la elaboración de un manual técnico garantizará instrucciones para el uso, mantenimiento y supervisión del sistema hidráulico. Esta automatización y mantenimiento del sistema hidráulico proporcionará estabilidad operacional y evitará fugas en el sistema hidráulico.

3.6 Métodos de análisis y procesamiento de datos

Se utilizaron métodos de análisis para identificar los requerimientos funcionales de la estación hidráulica, considerando que, el diseño y características técnicas de los elementos que conforman el sistema cumplan con los parámetros de control hidráulico. En el desarrollo y operación de las estaciones se emplearon métodos de procesamiento de datos para interpretar las lecturas obtenidas de la bomba de engranajes, así como para realizar los ajustes requeridos. El motor fue conectado directamente a las terminales de salidas del variador para su posterior manipulación.

Para regular la velocidad del motor de inducción trifásico, se vinculó el variador de frecuencia y el PLC utilizando el puerto RS485 y el protocolo ModBus RTU. Esta conexión permitió que el PLC envíe instrucciones al variador, como control de velocidad, sentido de giro y condiciones de arranque o parada del motor. Posteriormente, el PLC fue conectado al

HMI mediante el puerto RS232, para crear pantallas que muestran las variables registradas en el PLC.

3.6.1 Análisis descriptivo de la estación hidráulica

La estación hidráulica es un sistema integrado que utiliza fluido hidráulico para generar, controlar y transmitir energía en aplicaciones industriales. Su diseño integra componentes que trabajan en conjunto para cumplir funciones específicas.

A continuación, se describen sus elementos principales y funcionamiento general:

3.6.1.1 Descripción y funcionamiento de los componentes de la estación hidráulica Figura 3 Descripción de la estación hidráulica

Fuente. Adaptado por la autora, 2024.

- 1. Acoples hidráulicos
- 2. Tubería de cobre
- 3. Válvulas de bola
- 4. Válvulas solenoides
- 5. Subplaca de válvulas solenoides
- 6. Acoples hidráulicos
- 7. Actuadores hidráulicos
- 8. Mangueras de alta presión
- 9. Racores

3.6.1.2 Acoples hidráulicos

Los acoples conectan los diferentes componentes del sistema hidráulico, permiten que el fluido circule de manera controlada y sin fugas. Pueden ser permanentes o reutilizables, dependiendo el tipo de rosca y las necesidades específicas del sistema. La elección de un acople se basa en los requerimientos de presión que demanda el sistema. El acople MSM, tiene un diámetro exterior de 2/4'' y un espesor de pared de 0.9 mm, proporciona una alta resistencia mecánica y térmica para soportar presiones y temperaturas asociadas con el paso de fluidos hidráulicos. (Grinnell, 2020).

Tabla 1

Ficha técnica del acople de cobre

Especificaciones Técnicas		
Marca	MSM	
Tipo de tubería	Cobre	
Diámetro exterior	2/4"	
Espesor de pared	0.9 mm	
Longitud	0,5 m	

Fuente. (IUSA, 2012)

3.6.1.3 Tuberías de cobre

Las tuberías de cobre son ideales para sistemas hidráulicos gracias a sus propiedades de alta conductividad térmica y resistencia a la corrosión. El diseño de la tubería de cobre MSM, tiene un diámetro exterior de 1/4" y un espesor de pared de 0,6 mm; proporciona una estructura sólida capaz de resistir la presión interna del sistema sin deformarse. La conductividad térmica del cobre facilita la disipación de calor generado en la operación del sistema y ayuda a mantener la viscosidad del aceite hidráulico. (MSM, 2010)

Tabla 2

Ficha técnica de la tubería de cobre

Especificaciones Técnicas	
Marca	MSM
Tipo de tubería	Cobre rígido
Diámetro exterior	1/4"
Diámetro interior	0,04"

Espesor de pared	0.6 mm
Conductividad térmica	401 W/(m·K)
Presión nominal	1200 PSI

Fuente. (MSM, 2010)

3.6.1.4 Válvula de bola

La válvula de bola utiliza una bola hueca, perforada y pivotante con el propósito de controlar el flujo a través de ella. Se encuentra abierta cuando el orificio de la bola se encuentra alineado con el flujo, y se encuentra cerrada cuando se gira 90 grados. La válvula de bola tiene como propósito supervisar el flujo de un líquido o un gas mediante una apertura, cierre u obstrucción parcial en sus orificios. Esto las convierte en un mecanismo regulador fundamental para todo tipo de industria. (Pietro Fiorentini S.p.A., 2017).

La válvula de bola FOSET código 49000, cuenta con un diseño compacto que soporta una presión máxima de 600 PSI, ideal para aplicaciones hidráulicas. Su conexión roscable tipo 1/2" - 14 NTP permite una instalación sencilla, con apertura rápida mediante un giro de ¹/₄ de vuelta. Fabricada en latón niquelado, ofrece durabilidad y resistencia a la corrosión.

Tabla 3

Ficha técnica de la válvula de bola

Especificaciones Técnicas	
Marca	FOSET
Código del equipo	49000
Medida	1/2"
Presión máxima de trabajo	600 PSI
Paso reducido	200 PSI
Paso completo	300 PSI
Conexión	Roscable con tipo de cuerda ½ NTP
Operación	Apertura rápida de ¼ de vuelta
Tipo de rosca	14 NTP
Material	Latón niquelado

Fuente. (Truper, 2024)

3.6.1.5 Válvula solenoide

El funcionamiento de la válvula solenoide KOMPASS D5-02-3C60 se basa en un mecanismo electromagnético que regula y dirige el paso del fluido dentro del sistema hidráulico. Cuando la válvula está cerrada, un resorte de retorno aplica presión al émbolo, asegura su contacto con el orificio y detiene el flujo de aceite hidráulico. Al energizar la bobina del solenoide, se crea un campo magnético que eleva el émbolo, este movimiento alterna las tres distintas posiciones de la válvula, abriendo o cerrando los conductos para permitir o bloquear el paso del fluido a través de las cuatro vías. Tiene un caudal máximo de 100 l/min y una presión de operación de 315 bar. El tiempo de activación es de 0.5 segundos. (Kompass, 2015)

Tabla 4

Especificaciones Técnicas		
Marca	KOMPASS	
Código del equipo	D5 - 02 - 3C60	
Tipo de actuador	Solenoide de 2 vías	
Posiciones	3	
Vías	4	
Caudal máximo	100 l/min	
Presión máxima de trabajo	315 bar	
Tiempo de activación	0.5 seg	
Voltaje	AC 220V	
Protección	IP65	
Consumo energético	3,5 VA	
Entrada	Terminal	

Ficha técnica de la válvula solenoide

Fuente. (Kompass, 2015)

3.6.1.6 Subplaca de la válvula solenoide

La subplaca para la válvula solenoide KOMPASS D5-02-3C60 funciona como una base que permite montar la válvula e integra puertos de entrada y salida para el paso del flujo. Está diseñada para operar a 3000 PSI, ofrece un puerto lateral tipo NTP de 3/8^{°°}. Su diseño modular permite reemplazar válvulas fácilmente y optimizar el mantenimiento en sistemas hidráulicos. (Bailey, 2024)

Tabla 5

Ficha técnica subplaca de la válvula solenoide

Especificaciones Técnicas		
Marca	Bailey Hydraulics	
Código del equipo	DO5 SD05	
Tamaño de puerto	3/8''	
Presión máxima de trabajo	3000 PSI	
Tipo de conexión de entrada	NPT	
Material	Acero	

Fuente. (Bailey, 2024)

3.6.1.7 Actuador hidráulico

El actuador hidráulico ENERPAC RR-404 está conformado por el vástago, que es un componente móvil que conecta al pistón con el exterior del cilindro, permitiendo la transmisión de fuerza, y por el émbolo, que soporta la presión del fluido, sella y lubrica las superficies internas del cilindro. Este dispositivo es capaz de mover al pistón en ambas direcciones (extensión y retracción) mediante la presión hidráulica aplicada en ambos lados del pistón. Su construcción en acero le otorga resistencia mecánica y durabilidad. Tiene un diámetro de pistón de 25 mm y su presión máxima de operación es de 725 bar, ofreciendo un rendimiento eficiente para sistemas hidráulicos de alta demanda. (Enerpac, 2021)

Tabla 6

Ficha técnica del actuador hidráulico

Especificaciones Técnicas		
Marca	ENERPAC	
Código del equipo	RR-404	
Tipo de actuador	Doble efecto	
Material	Acero	
Posiciones	2	
Diámetro del pistón	25 mm	
Presión máxima de operación	725 bar	

Fuente. (Enerpac, 2021)

3.6.1.8 Manguera de alta presión

La manguera hidráulica MSHA ITALY 4Q06, es una manguera flexible de alta presión que conecta componentes móviles, permitiendo compensar las imprecisiones en los ensamblajes y facilitan la conexión de acoples rápidos. Actúa como amortiguador de los picos de presión de corta duración en el fluido hidráulico. Opera con una presión máxima de trabajo de 10.000 PSO y una presión nominad de 5.800 PSI. Tiene un radio de curvatura de 102 mm y un diámetro externo de 15 mm, está protegida por una cubierta de caucho sintético que le brinda durabilidad y resistencia al desgaste. (Enerpac, 2021)

Tabla 7

Ficha técnica manguera de alta presión

Especificaciones Técnicas	
Marca	MSHA ITALY
Código del equipo	4Q06
Medida	1/4''
Presión máxima de trabajo	10,000PSI
Presión nominal de trabajo	5800 PSI
Presión de explosión	13,050 PSI
Rango de temperatura	-40 ^o F
Radio de curvatura	102 mm
Diámetro externo	15 mm
Cubierta	Caucho sintético

Fuente. (Enerpac, 2021)

3.6.1.9 Racor

Permite la conexión de mangueras, tuberías y otros elementos del sistema hidráulico. Está fabricado en acero estirado, soporta presiones de hasta 250 bar y temperaturas de trabajo de 120 C^{0.} Con una medida de 1/4, su construcción permite una conexión robusta y duradera. Las dimensiones específicas incluyen una longitud total de 27 mm, longitud de rosca 12 mm, longitud adicional de 26mm, diámetro interno de 6 mm, paso de rosca de 12x1,5mm. Los tamaños de los hexágonos de 14 mm y 12 mm permiten un correcto ajuste.

Figura 4

Descripción del racor

Fuente. (Disumtel, 2024)

Tabla 8

Ficha técnica del racor

Especificaciones Técnicas	
Marca	TE
Código del equipo	4Q06
Material	Acero estirado
Medida	1/4''
Presión de trabaio	250 BAR
Temperatura de trabaio	120 ^o C
L	27 mm
L1	12 mm
L2	26 mm
D1	6mm
F1	12 x 1,5 mm
CH1	14 mm
CH2	12 mm

Fuente. (Disumtel, 2024)

3.6.2 Unidad de potencia hidráulica

La unidad de potencia hidráulica está conformada por una bomba de engranajes capaz de alcanzar una velocidad máxima de 4000 rpm. Como esta bomba no genera por si sola la presión necesaria para impulsar el fluido, depende de un motor eléctrico de inducción trifásico. Este motor convierte la energía eléctrica en energía mecánica de rotación, utilizando tres corrientes alternas que crean un campo magnético giratorio. Este campo induce fuerzas que hacen girar el rotor, el cual transfiere el movimiento a la bomba, permitiendo que esta impulse el fluido a presión a través de los componentes del sistema. Ambos dispositivos están conectados a través de la junta, que permite que la energía eléctrica se transforme en movimiento rotacional mecánico, que es transferida a la bomba para activas el sistema hidráulico. (Pérez Pupo & Navarro Ojeda, 2020)

El fluido almacenado en el depósito hidráulico es aspirado por la tubería de succión, está conectado con la bomba de engranajes, su diámetro es más grande en el calibre de la toma. Desde la bomba, el fluido pasa por la tubería de presión, su diámetro es más pequeño en el calibre de la toma permitiendo el transporte de aceite presurizado hacia las mangueras de alta presión, válvulas y actuadores. El manómetro monitorea la presión a la que sale el fluido hidráulico y está complementado por una válvula aliviadora de presión.

El indicador de nivel de aceite permite verificar la cantidad de fluido disponible. En el retorno de aceite hacia el depósito hidráulico, está instalado un filtro hidráulico que retiene partículas no deseadas y garantiza que el depósito hidráulico se mantenga limpio.
Vista frontal de componentes de la unidad de potencia hidráulica

Fuente. Adaptado por la autora, 2024.

- 1. Motor
- 2. Tubería de succión
- 3. Junta
- 4. Tubería de presión
- 5. Manómetro
- 6. Filtro de aceite

- 7. Indicador nivel de aceite
- 8. Depósito hidráulico

Vista lateral de componentes de la unidad de potencia hidráulica

Fuente. Adaptado por la autora, 2024.

- 9. Bomba de engranajes
- 10. Acople rápido
- 11. Filtro hidráulico

3.6.2.1 Motor eléctrico de inducción trifásico

El motor es un dispositivo diseñado para convertir la energía eléctrica en energía mecánica mediante el principio de inducción electromagnética. El motor eléctrico de

inducción trifásico se alimenta con una corriente alterna trifásica, que está compuesta por tres corrientes eléctricas alternas desfasadas entre sí. Estas corrientes crean un campo magnético rotatorio dentro del estator, que induce una corriente en el rotor, generando un par motor que provoca el movimiento rotacional del eje del motor. (Pérez Pupo & Navarro Ojeda, 2020, p. 162)

Tabla 9

Ficha técnica del motor eléctrico de inducción trifásico

Especificaciones Técnicas	
Marca	SIEMENS
Código del equipo	25000001119
Tipo motor	1LA7 096-4YA60
	3 HP
Potencia HP - kW	2,23 kW
	220V
Intensidad nominal	9,60 A
Eficiencia	79 %
Velocidad nominal	1708 rpm
Torque nominal	12,51 Nm
Peso	14,9 kg
Carcasa	Aluminio
Protección mecánica	IP55

Fuente. (SIEMENS, 2016)

3.6.2.2 Bomba de engranajes

La bomba funciona mediante el principio de engranajes, donde el fluido es atrapado entre los dientes de los engranajes, lo que permite su desplazamiento y aumento de presión a medida que los engranajes giran. La configuración de la bomba está optimizada para aplicaciones que requieren un caudal moderado y alta presión. de engranajes modelo PC4197A8, de la marca KOMPASS, es un equipo diseñado para operar a una velocidad máxima de 4000 rpm, con un caudal de 3.5 l/min. Su presión máxima de trabajo alcanza 3335.87 PSI, mientras que su presión nominal de trabajo se sitúa en 2900.75 PSI. La bomba dispone de un diámetro de succión de 3/4" y un diámetro de descarga de ½". El montaje de la bomba es horizontal y el equipo tiene un peso de 1.27 kg. (Kompass, Unitech, 2012)

Especificaciones técnicas de la bomba de engranajes

Tabla 10

Ficha técnica de la bomba de engranajes

Especificaciones Técnicas	
Marca	KOMPASS
Código del equipo	P107
Tipo de bomba	PC4197A8 De engranajes

Tipo de brida	Rotación en sentido horario
Potencia	1,56 HP
Velocidad máxima	4000 rpm
Velocidad mínima	600 rpm
Caudal	3.5 l/min
Presión máxima de trabajo	3335.87 PSI
Presión nominal de trabajo	2900.75 PSI
Diámetro de succión	3/4"
Diámetro de descarga	1/2"
Diámetro engranaie conductor	40 mm
Diámetro engranaje conducido	40 mm
Forma de montaie	Horizontal
Peso	1.27 kg

Fuente. (Kompass, Unitech, 2012)

6.2.2.3 Junta

Permite la unión entre el manómetro y la bomba, este elemento transfiere la potencia y RPM del motor eléctrico a la bomba de engranajes.

Tabla 11

Ficha técnica de la junta

Especificaciones Técnicas	
Marca	SOX
Material	L-a1009
Material	Nitrilo butaniedo
Rango de temperatura de trabajo	-40 C ⁰ a 100 C ⁰
Diámetro	25 mm
Torque	16.3 Nm

Fuente. (Kompass, Unitech, 2012)

6.2.2.4 Manómetro

Un manómetro es un instrumento de medida de presión en fluidos confinados. Estos dispositivos miden la diferencia entre la presión real o absoluta y la presión atmosférica, llamándose a este valor, presión manométrica. Es el nombre genérico de los instrumentos que miden presión. Generalmente se usa para designar a los instrumentos que miden presión atmosférica (Morales, 2017).

El manómetro contiene glicerina para amortiguar las vibraciones y estabilizar la aguja.

Tabla 11

Ficha técnica manómetro

Especificaciones Técnicas	
Marca	KOMPASS
Código del equipo	AT63
Rosca	3/8 "
Temperatura Máxima	60 ⁰ C
Rango de medición	0 a 100 bar
Precisión	$\pm 1\%$ de la escala completa
Material del cuerpo	Acero inoxidable
Escala	Analógica
Temperatura	Desde -20°C hasta +60°C.

Fuente. (Hydraulik, 2015)

6.2.2.5 Filtro hidráulico

El filtro hidráulico evita que la contaminación atmosférica ingrese al depósito. Retiene impurezas de hasta 10 micras. (Donalson , 2020).

Tabla 12

Ficha técnica filtro hidráulico

Especificaciones Técnicas	
Marca	KOMPASS
Código del equipo	D5 - 02 - 3C60
Temperatura máxima	107 °C
Retención / filtración nominal	10 micras
Diámetro exterior	60 mm

Rosca de montaje	1,5"
Pérdida de carga	7 PSI
Caudal máximo	80 l/min
Presión de trabajo	150 PSI
Cuerpo del filtro	Acero inoxidable
Material	Tela mecánica
Rango de temperatura de trabajo	-20°C a 107°C
Juntas	Sellos de nitrilo

Fuente. (Kompass, Unitech, 2012)

6.2.2.6 Medidor de aceite

Los productos visuales de análisis de aceite proporcionan un control continuo de la claridad, el color, los sedimentos y la contaminación por agua y partículas en el aceite. Es un indicador visual que indica la cantidad de aceite que hay el depósito hidráulico, lo que es importante para tener en cuenta el nivel que se requiere para que funcione el sistema hidráulico. (TECASEN, 2017).

Tabla 13

Ficha técnica del medidor de aceite

Especificaciones Técnicas	
Marca	KOMPASS
Código del equipo	LS445
Material	Acero inoxidable
Tamaño	20 cm
Temperatura máxima	100 ⁰ C
Exactitud	: $\pm 1\%$ del valor medido o ± 0.5 cSt (depen- diendo del modelo y calibración)
Temperatura de operación	0°C a 50°

Fuente. (Kompass, Unitech, 2012)

6.2.2.8 Depósito hidráulico

El depósito hidráulico tiene una capacidad de almacenamiento de 50 L y asegura su correcta circulación dentro del sistema. Permite regular la temperatura del fluido al disipar el

calor generado en la operación y equilibra los cambios de volumen por expansión térmica, manteniendo la estabilidad del sistema.

Tabla 14

Ficha técnica del depósito hidráulico

Especificaciones Técnicas	
Marca	John Deere
Código del equipo	301D
Material	Acero
Dimensiones	100 x 60 x 80 cm
Peso	50 kg
Color	Amarillo
Capacidad	50L
Material	Acero

Fuente. (Deere, 2021)

3.6.3 Fluido hidráulico

El fluido hidráulico brinda lubricación al sistema y a su vez funciona como un medio de transmisión de energía.

3.6.3.1 Propiedades del fluido

- La anticorrosión para evitar que los conductos se oxiden.
- Buena conductividad térmica para absorber y liberar el calor de forma sencilla, con estas características actúa como refrigerante del sistema.

3.6.3.2 Viscosidad

Según el autor (Díaz, 2006, p. 11) "La viscosidad muestra el desplazamiento relativo entre las moléculas, por el rozamiento o fricción que ocurre entre estas y por ello es la característica que delimita la cantidad que tiene de resistencia opuesta a fuerzas cortantes".

Los aceites tienen mayor viscosidad a diferencia de muchos líquidos, y también tienen la capacidad de fluir a temperaturas altas y bajas. La elección del aceite hidráulico es esencial para garantizar el rendimiento óptimo del sistema, para abordar las variaciones de temperatura que pueden surgir en el interior y entorno de la máquina, se utiliza la norma ISO 68 para aceites hidráulicos. Esta norma permite evaluar la viscosidad del aceite en función de la temperatura.

Especificaciones Técnicas	
Marca	Castroll
Código	ATF Dexx II
Tipo aceite	Fluido para transmisión hidráulica
Densidad	0.870 g/ml
Color	Rojo
Viscosidad	7.5 mm ² / s

Punto de vertido	-45 °C
Punto de inflamación	203 ^o C
Punto Fluidez	-42 °C

Fuente. (Castrol, 2021)

Figura 8

Representación detallada del sistema hidráulico en el programa FluidSIM

Fuente. Adaptado por la autora, 2024.

- 1. Cilindro hidráulico
- 2. Válvula de bola
- 3. Conexiones
- 4. Válvula de bola
- 5. Electroválvula solenoide
- 6. Válvulas de bola
- 7. Motor eléctrico
- 8. Bomba
- 9. Válvula de alivio de presión

10. Depósito

11. Conexiones

12. Manómetro

CAPÍTULO IV. RESULTADOS Y DISCUSIÓN

4.1 Análisis de datos en tiempo real

4.1.1 Flujo de aceite en función de la velocidad del motor

En el sistema oleohidráulico está integrado una unidad de potencia, la cual contiene una bomba de engranajes que, al ser activada por un motor eléctrico de inducción trifásico, impulsa aceite a presión. Bajo condiciones operativas ideales, donde la bomba opera a potencia nominal, se genera una presión relativa en la entrada proveniente del depósito hidráulico a través de una tubería de succión. El aceite se desplaza desde la bomba a través de una tubería de salida de diámetro reducido en comparación con la toma inicial. El fluido es dirigido al sistema mediante mangueras de alta presión, cuyo flujo es controlado por válvulas solenoides. Las válvulas de bola regulan el paso de aceite, permiten o bloquean su circulación. Además, las mangueras de alta presión están conectadas a ambos extremos del cilindro hidráulico, facilitando la generación de un movimiento lineal.

Para que la bomba produzca mayor potencia, es necesario aumentar la velocidad del motor, lo cual incrementa el flujo de aceite en el sistema.

4.2 Exceso de flujo en las estaciones hidráulicas

4.2.1 Causas y efectos del exceso de flujo del sistema hidráulico

Para determinar las causas y efectos, se utilizó un diagrama de Ishikawa.

Fuente. Adaptado por la autora, 2024.

4.2.1 Causas

Al trabajar con líquidos a alta presión, es común que se presenten excesos en el flujo por diversas razones, entre las cuales se encuentran:

- El mal manejo de la máquina, que da como resultado la incapacidad para controlar y operar el equipo.
- Ausencia de una guía para los usuarios sobre el uso, mantenimiento y manejo del equipo.
- La ausencia de un módulo de control impide poner en marcha al sistema hidráulico ya que no es posible mantener un flujo constante y a baja presión.
- El personal del laboratorio no está capacitado para utilizar el sistema.
- Las mangueras no son certificadas y no están constituidas de un buen material.
- Las condiciones ambientales adversas dan como resultado presencia de polvo e impurezas en el aire.

- No se lleva un seguimiento sobre el rendimiento del sistema ya que no se ha puesto en funcionamiento.

4.2.2 Efectos

- Después de un análisis físico y visual se determinó que el paso excedente de fluido genera fricción y desgaste entre los sellos hidráulicos, también la velocidad de flujo ejerce sobrepresión en mangueras y tubos lo que resulta en un estiramiento y deformación de estos componentes.
- Desgaste prematuro y aparición de fugas en acoples del sistema por ausencia de mantenimiento.
- El exceso de flujo provoca fugas y daños estructurales en las tuberías.
- Aparición de errores operativos por la ausencia de una guía.
- Incremento del consumo energético.
- Incremento de costos de mantenimiento.
- Pérdida de fluido ocasionado por las filtraciones en el sistema.
- Sobrepresión de la bomba.
- Ausencia de prácticas de laboratorio, los estudiantes no saben cómo operar la unida de potencia ni los elementos que componen el sistema hidráulico

Evidencias de fugas en el sistema

Fuente. Adaptado por la autora, 2024.

4.2.2 Mantenimiento del sistema hidráulico

Para eliminar las fugas de aceite en el sistema hidráulico, se llevó a cabo un mantenimiento técnico y supervisado mediante el siguiente procedimiento:

Actividades	Descripción

Desconexión del sistema	Se verificó que el sistema esté completamente apagado y desconectado de la fuente de energía para evitar cualquier riesgo eléctrico.	
Preparación	Se colocó recipientes bajo las tuberías del sistema para recoger posibles residuos de aceite y evitar derrames.	
Inspección inicial	Se realizó una inspección detallada para identificar puntos exactos de fuga.	
Desmontaje	Se desarmó cuidadosamente las subplacas de las válvulas solenoides para acceder fácilmente a las tuberías flexibles y acoples hidráulicos. Se evaluó el estado de acoples hidráulicos. Se realizó un recambio de piezas en aquellas que estaban en mal estado.	
Limpieza de componentes	Se limpió todos los componentes hidráulicos desmontados, eliminando restos de aceite y suciedad del panel.	
Aplicación de teflón	Se aplicó cinta de teflón en las roscas de los acoples y elementos de unión. Se aseguró que no sobresaliera la cinta hacia el interior de las conexiones para evitar obstrucciones en el flujo de aceite.	
Reensamblaje de componentes	Se ajustaron los acoples y tuberías para su sellado optimo, en sus posiciones correctas, se remontaron las subplacas de válvulas solenoides.	

Fuente. Adaptado por la autora, 2024.

4.3 Diseño y construcción del módulo de control

El módulo que controlará la sobrepresión que ocasiona la bomba, está constituidos por distintos componentes electrónicos, sistemas combinados de hardware y software, entre otros.

4.3.1 Estructura Interna

- PLC XINJE modelo (XD3-16RT-E)
- Variador de frecuencia LS modelo SV022iG5A-2
- Panel de operación modelo OP320-A-S
- Breaker tres polos 16A
- Breaker dos polos 4A
- Fuente de alimentación de 24v Panal
- Pulsador de emergencia

4.3.2 Descripción y funcionamiento de los componentes

Dentro de los componentes del tablero están algunos elementos de automatización lo que permite que el sistema sea autónomo, lo que da el paso a una mejor formación dentro de la adquisición de conocimientos de los estudiantes que realizarán prácticas en este equipo. El panel de control o HMI es la interfaz que se utiliza para tener contacto con la máquina, y está interconectado con el PLC previamente programado; así no se manipula manualmente al variador de frecuencia que controla la bomba.

4.3.2.1 PLC XINJE Modelo (XD3-16RT-E)

El PLC funciona leyendo señales de sensores y entradas, procesando esas señales de acuerdo con un programa predefinido y enviando señales de control a salidas como relés o válvulas. El programa se escribe en un lenguaje de programación específico para PLC, como Ladder o diagrama de bloques.

4.3.2.1.1 Partes del PLC

Figura 10

PLC Xinje partes

Fuente. (Andes, 2022)

- Terminales de entrada y energía
- Etiqueta del terminal de entrada
- Puerto de instalación de tarjeta BD
- COM2
- COM1
- Placa de cubierta para el puerto COM
- Etiqueta de terminal de salida
- Terminales de potencia de salida de 24 V DC
- Salida de Led
- Puerto para conectar con la expansión
- Orificios de instalación
- Tornillos para instalar/quitar los terminales

- Entrada de Led
- Salida de Led
- Cable de expansión
- Terminales de salida
- Acción de Led
- Puerto para conectar con la expansión
- Los terminales de entrada y salida

4.3.2.1.2 Funciones básicas

- Entradas digitales (16): Detectan señales de sensores, interruptores u otros dispositivos.
- Salidas de relé (8): Controlan dispositivos como motores, contactores o solenoides.
- Salidas de transistor (2): Controlan dispositivos de baja tensión como LEDs o válvulas.
- Memoria: Almacena el programa de control y los datos.

4.3.2.1.3 Programación

- Software XDPRO: Software utilizado para programar el PLC en lenguaje Ladder, diagrama de bloques o SFC.
- Puerto de programación: Puerto RS232 para conectar el PLC al ordenador.

Tabla 16

Ficha técnica PLC.

Especificaciones Técnicas		
Marca	Xinje	
Código del equipo	XD3 - 16RT - E	
SKU	68200	
Alimentación	100 – 240VAC	
Protocolos de comunicación	ModBus	
Entradas digitales	8 NPN	
Salidad digitales	8 (2 NPN + 6 relé)	
Serie	XD3	
CPU	32 bits operaciones aritméticas	
Datos de registro	11048 (Words)	

Fuente. (Ebl, 2024)

Figura 11 *PLC XINJE*

Fuente. Adaptado por la autora, 2024.

4.3.2.1.4 Lenguaje de programación

Para programar el PLC se usó el lenguaje Ladder o también llamado lenguaje de escalera ya que en cada escalón se puede ir conectando líneas que indican el paso o no de flujo de corriente. Dentro de este lenguaje se encuentra distintos elementos que se muestran en la Figura No 12.

Símbolo	Nombre	Descripción
$\dashv\vdash$	Contacto NA	Se activa cuando hay un uno lógico en el elemento que representa, esto es, una entrada (para captar información del proceso a controlar), una variable interna o un bit de sistema.
/	Contacto NC	Su función es similar al contacto NA anterior, pero en este caso se activa cuando hay un cero lógico, cosa que deberá de tenerse muy en cuenta a la hora de su utilización.
-()-	Bobina NA	Se activa cuando la combinación que hay a su entrada (izquierda) da un uno lógico. Su activación equivale a decir que tiene un uno lógico. Suele representar elementos de salida, aunque a veces puede hacer el papel de variable interna.
-(/)	Bobina NC	Se activa cuando la combinación que hay a su entrada (izquierda) da un cero lógico. Su activación equivale a decir que tiene un cero lógico. Su comportamiento es complementario al de la bobina NA.
—(s)—	Bobina SET	Una vez activa (puesta a 1) no se puede desactivar (puesta a 0) si no es por su correspondiente bobina en RESET. Sirve para memorizar bits y usada junto con la bina RESET dan una enorme potencia en la programación.

Símbolos de elementos del lenguaje Ladder

Fuente. (Aragon Pazmiño, 2024)

4.3.2.2 Panel de operación modelo OP320-A-S

El panel de operación OP320-A-S es una interfaz gráfica que funciona para controlar y monitorizar dispositivos industriales como PLCs, variadores de frecuencia, controladores de temperatura y otros.

4.3.2.2.1 Funciones básicas:

- Muestra información sobre el estado del dispositivo, como valores de variables, alarmas y mensajes de error.
- Control: Permite al usuario interactuar con el dispositivo, como ajustar parámetros, iniciar o detener procesos y modificar configuraciones.
- Se puede conectar a un PLC o a una red de control para recibir datos y enviar comandos.
- Permite al usuario crear y modificar programas de control para el dispositivo

4.3.2.2.2 Comunicación del HMI

La comunicación entre HMI y PLC se realizó mediante un cable conectado al puerto $\mathrm{RS}-232.$

Panel de operación

Fuente. Adaptado por la autora, 2024.

4.3.2.2.3 Estructura dimensional

- La estructura dimensional del panel de operación sigue un tamaño estándar
- Físicamente la pantalla consta de 3.7 pulg.
- Tiene 20 teclas para su posterior maniobra
- Sus dimensiones externas son 172 mm x 94 mm x 30 mm
- Posee soporte unilateral
- Su material externo es de metal

Figura 14

Estructura dimensional del panel de operación

Fuente. (Ebl, 2024)

Tabla 17 *Ficha técnica HMI*

Especificaciones Técnicas		
Marca	TouchWin	
Código del equipo	OP320-A-S	
Tipo de pantalla	Cristal líquido con blacklight	
Tamaño de pantalla	3.7"	
Resolución de pantalla	192 x 64 px	
Panel Táctil	Pantalla resistiva de 4 hilos	
Alimentación	24 VDC	
Capacidad de memoria	64 kB FlashROM/1kB SRAM	
Tipo de comunicación	RS232/RS485	

Fuente. (Ebl, 2024)

4.3.2.3 Protocolo de comunicación RS-232c

La comunicación serie S-232C utilizó líneas de transmisión (Tx), recepción (Rx) y tierra para la transmisión de datos. También pueden utilizarse líneas adicionales de control y temporización. Los datos se transmitieron en serie, bit a bit, en una trama predefinida a lo largo de las líneas Tx y Rx. Los bits de inicio y parada enmarcan los bits de datos para marcar el inicio y el final de la transmisión. Los bits de paridad también pueden utilizarse para la comprobación básica de errores. La comunicación RS-232C puede ser full dúplex, lo que permite la transmisión simultánea en ambas direcciones. (Ballejos, 2024)

4.3.2.3 Variador de frecuencia LS modelo SV022iG5A-2

El variador de frecuencia LS modelo SV022iG5A-2 es un dispositivo electrónico que funciona para controlar la velocidad de un motor eléctrico trifásico.

4.3.2.3.1 Funciones básicas:

- Permite ajustar la velocidad del motor en un rango de 0,1 a 400 Hz (1000 Hz opcional).
- Proporciona un par constante al motor en un amplio rango de velocidades.
- Ofrece diferentes modos de frenado para detener el motor de forma segura y eficiente.

- Protege al motor y al variador de sobre corrientes, sobretensiones, sobre temperatura y otras condiciones de fallo.
- Permite conectar el variador a un ordenador o a una red de control para su monitorización y configuración.

Tabla 18

Ficha técnica de variador de frecuencia

Especificaciones Técnicas			
Marca		LS	
Número de modelo del equipo		SV022iG5A-2	
Potencia		2.2 kW	
	Capacidad Nominal	4,5 kVA	
ה ומייו	Corriente	12 A	
Rango de Salida	Tensión	Trifásico 200 – 230V	
	Frecuencia	$0,1 - 400 \; \text{Hz}$	
Rango de entrada	Tensión	Trifásico 200 – 230V (+10%, -15%)	
	Frecuencia	50 – 60Hz (±5%)	
Peso		1,84 kg	

Fuente. (LS, 2004)

Variador de frecuencia LS modelo SV022IG5A-2

Fuente. Adaptado por la autora, 2024.

4.3.2.4 Elementos eléctricos 4.3.2.4.1 Conductores

El material aislante usualmente PVC, recubre completamente los cables para evitar contacto entre ellos y garantizar la seguridad de quienes realizan instalaciones eléctricas. Existen dos tipos principales de conductores:

- Rígidos, que a diferencia de los cables flexibles; está formado por un solo alambre de forma cilíndrica.
- Flexibles, que están formados por agrupaciones eléctricamente unidas entre sí de alambres finos; para que se pueda formar un solo conductor ya que no tiene material aislante. (Martín Castillo, Caballero Escudero, Carbajosa Domínguez, Gómez Venegas, & Miranda Blanco, 2022, pág. 8)

4.3.2.4.2 Breaker dos y tres polos de 4 a y 16 a

También llamado interruptor de circuito o disyuntor, este dispositivo se emplea para proteger cables y equipos eléctricos contra cortocircuitos y sobrecargas de corriente. Su funcionamiento es el siguiente:

Protección contra cortocircuitos:

Cuando la corriente que atraviesa el circuito sobrepasa el límite establecido (4 a 16 amperios según el diseño), el interruptor automático o breaker se activa de inmediato. Esto interrumpe el flujo eléctrico, previniendo que las conexiones se sobrecalienten y evitando el riesgo de un posible incendio.

Protección contra sobrecargas:

Si se conectan demasiados dispositivos a un solo circuito, la corriente total puede superar el límite de (4 o 16 amperios). En este caso, el breaker se dispara y evita que los dispositivos se dañen por la sobrecarga de corriente.

Tabla 19

Ficha técnica breaker 3 polos

Especificaciones Técnicas	
Marca	Camsco
Código del equipo	SM3PC60K
Amperaje	13.7 bar
Corriente no minal	3 A
Tensión nominal de aislamiento	400 V

Fuente. (Camsco, 2021)

Tabla 20

Ficha técnica breaker 2 polos

Especificaciones Técnicas	
Marca	Camsco
Código del equipo	SM2P20KA
Amperaje	80 A
Corriente nominal	3 A
Tensión nominal de aislamiento	400 V

Fuente. (Camsco, 2021)

4.3.2.4.3 Fuente de alimentación de 24v panal

Una fuente de alimentación de 24V tipo panal es un dispositivo electrónico que convierte la corriente alterna (CA) de la red eléctrica en corriente continua (CC) a 24 voltios. Este tipo de fuente de alimentación se caracteriza por su diseño compacto y ligero, similar a un panal de abejas, lo que la hace ideal para aplicaciones donde el espacio es limitado.

Fuente de alimentación de 24v panal

Fuente. Adaptado por la autora, 2024.

4.3.2.4.4 Pulsador de emergencia

Un pulsador de paro de emergencia, también conocido como botón de emergencia o seta de emergencia, es un dispositivo que se utiliza para detener de forma rápida y segura una máquina o proceso en caso de una situación de peligro.

El pulsador de paro de emergencia funciona de la siguiente manera:

Activación: Cuando se presiona el botón, se activa un interruptor interno que envía una señal eléctrica a un circuito de control.

Detención: El circuito de control recibe la señal y activa un mecanismo de parada que detiene la máquina o proceso.

Reinicio: Una vez que se ha solucionado la situación de peligro, el pulsador de paro de emergencia se debe reiniciar manualmente para reanudar la operación.

Figura 17 *Pulsador de emergencia*

Fuente. Adaptado por la autora, 2024.

4.3.3 Construcción del gabinete

Para la construcción del tablero se dibujó un modelado en 3D en el programa SolidWorks siguiendo las dimensiones de los dispositivos electrónicos que se van a instalar en el mismo.

La Figura No 18 muestra un bosquejo en 3D del gabinete utilizado para alojar los dispositivos electrónicos del módulo de control. Este diseño proporcionó una visión clara de la estructura de la carcasa, lo que ayudó a prevenir inconvenientes tanto en la fase de diseño como en la fabricación final.

Fuente. Adaptado por la autora, 2024.

Gabinete del módulo de control

Fuente. Adaptado por la autora, 2024.

4.3.3.1 Montaje de piezas metálicas

Para el ensamble de estos componentes metálicos se colocó regletas ranuradas y rieles en la base del fondo del gabinete. Para ello se midió con una cinta métrica los espacios donde se van a instalar los distintos dispositivos, como el gabinete tiene agujeros para ajustar las regletas; no se necesitó ninguna herramienta de perforación.

Montaje de piezas metálicas.

Fuente. Adaptado por la autora, 2024.

- 1. Regletas ranuradas
- 2. Riel Din
- 3. Base del fondo del gabinete

4.3.3.3.1 Sujeción de la pantalla HMI

La pantalla HMI debe estar accesible para el operario; por ello, su ubicación fue definida en la parte frontal o tapa del gabinete. Se realizó una abertura de 17,6 cm x 9,8cm, agregándole 0,2 cm a cada lado del tamaño original del panel de control; luego instaló el dispositivo y se sujetó el mismo en la parte trasera con tornillos.

La Figura No 21 muestra la vista frontal del gabinete que a su vez alberga el HMI, su ubicación tiene mucha relevancia porque así la pantalla tiene fácil acceso y es visible para poder interactuar con el módulo.

Vista frontal del gabinete

Fuente. Adaptado por la autora, 2024.

Vista posterior de la tapa del gabinete, sujeción de la pantalla.

Fuente. Adaptado por la autora, 2024.

4.4 Instalación de componentes y dispositivos electrónicos

Antes de ubicar los dispositivos en el gabinete se realizó un plano en el software AutoCad 2022, mediante este dibujo se tuvo un diseño claro y las ubicaciones que dio a cada componente con su respectivo espacio.

Dibujo en solidworks del módulo de control y sus componentes

Fuente. Adaptado por la autora, 2024.

4.4.1 Instalación de borneras y variador de frecuencia

Antes de la instalación de los dispositivos de automatización, se aseguró que el gabinete esté limpio y no tenga impurezas u obstrucciones. Se colocó al PLC junto a los cables que permiten alimentación y conexión, sujetándolo con tornillos dentro de los relés previamente colocados, luego se instaló las borneras en la base del gabinete. Estas con el fin

de conectar distintos conductores eléctricos para que la electricidad fluya entre todos los componentes.

Figura 24

Instalación de borneras

Fuente. Adaptado por la autora, 2024.

La Figura No 25 muestra la instalación del variador de frecuencia montado en un riel DIN, el cual mejora la seguridad del dispositivo y facilita las interconexiones eléctricas.

Instalación del variador de frecuencia

Fuente. Adaptado por la autora, 2024.

Sucesivamente se instaló al variador de frecuencia junto a sus cables eléctricos en el relé utilizando tornillos, fue necesario dar un espacio entre el fondo y el variador para que pueda disipar el calor mediante el ventilador que está incorporado en el mismo. Se realizó el mismo procedimiento con los breakers de dos y tres polos que se sitúan junto al PLC.

4.4.2 Conexiones

Las conexiones están conformadas por un sistema eléctrico trifásico, se etiquetaron las líneas de alimentación como L1, L2 y L3. Estas líneas van a trasladar la corriente desde la fuente hacia los dispositivos, además de que también se conectó al conductor tierra que da seguridad si se presentan cortos o fallos.

- Se realizó la conexión desde las borneras L1 L2 L3 y tierra con cable AWG #16 hacia los breakers de tres polos.

- El breaker polos abre y cierra circuitos, se realizó el cableado del breaker de tres polos y se puenteo las líneas L1 y L2 al breaker de dos polos. Esta acción da una conexión continua entre los dos puntos.

La Figura No 26 muestra la conexión de las líneas fase (L1 L2 L3) y tierra desde las borneras hacia los breakers de tres polos, también muestra la conexión de la línea L1 y L2 al breaker de dos polos creando así una conexión continua.

Figura 26

Conexión de líneas fase, borneras y breakers.

Fuente. Adaptado por la autora, 2024.

4.4.2.1 Conexiones de entradas del variador de frecuencia con el PLC

Para conectar el PLC al variador, se conectaron las salidas L1 L2 L3 del breaker de tres polos hacia las entradas de alimentación R S T del variador de frecuencia. Las 3 fases alimentarán al variador de frecuencia.

- Las borneras U V W desde el variador de frecuencia son las salidas de potencia, fueron conectadas a las borneras de la bomba.
- Se conectó la protección de tierra del variador de frecuencia hacia una bornera da seguridad en caso de presentarse alguna sobrecarga.
Figura 27

Conexiones de entradas del variador de frecuencia con el PLC

Fuente. Adaptado por la autora, 2024.

4.4.2.1.1 Conexiones desde las entradas del variador de frecuencia a las salidas del

PLC

Tabla 21

Conexiones entre entradas del variador y salidas del PLC

Input Variador	Output PLC
СМ	COM1 conectado al COM2
P6	Y2
P7	Y3
P8	Y4
P4	Y5

Fuente. Adaptado por la autora, 2024.

- CM (Common): Se conectó al COM1y se puenteó al COM2 del PLC.

- **P6:** La entrada P6 del variador se conectó a la salida Y2 del PLC, esta conexión sirve para controlar funciones del variador como la velocidad el motor.
- P7: La entrada P7 actúa de forma similar que la entrada P6 ya que se conectó a la salida Y3 del PLC, esto permite que el PLC envíe señales de control a través de Y3 y son recibidas por el variador en P7.
- P8: La entrada P8 que pertenece al variador se conectó a la salida Y4 del PLC, lo que permite el envío de señales de control desde el PLC al variador mediante la salida Y4.
- **P4:** La entrada P4 que pertenece al variador de frecuencia se conectó a la salida Y5 del PLC, esta conexión permite enviar señales del control al PLC a través de Y5, estas serán recibidas y ejecutadas por el variador de frecuencia en P4.

La Figura No 28 muestra las entradas que forman parte del variador de frecuencia, mismas que son puntos de conexión para controlar al variador mediante señales externas del PLC.

Entradas del variador de frecuencia

Fuente. Adaptado por la autora, 2024.

En la Figura No 29 se visualiza las salidas del PLC, mediante estas se puede controlar y activar el variador de frecuencia de acuerdo con las necesidades del operador.

Salidas del PLC

Fuente. Adaptado por la autora, 2024.

4.4.2.1.2 Conexiones de entradas del PLC con paro emergencia, breaker 2 polos

Se conectaron las entradas del PLC al paro de emergencia, con el fin de detectar la activación de este dispositivo y tomar acciones correspondientes en el programa del PLC; como detener el funcionamiento del sistema de forma segura.

Conexiones del PLC con el paro de emergencia

Fuente. Adaptado por la autora, 2024.

- 1. Alimentación del PLC con L1 y L2 provenientes de las salidas del Breaker de dos polos.
- 2. Entradas del PLC conectadas al paro emergencia (COM, X0)
- El breaker de dos polos tiene fases de alimentación L1 y L2, estos conductos alimentan al PLC, por ello se conectaron desde las salidas del breaker de dos polos.
- Los terminales del paro de emergencia son COM (común) y X0. El terminal COM fue conectado a una entrada común del PLC y X0 se conectaron adicionalmente a una entrada digital del PLC.

La Figura No 31 muestra los terminales que conforman el paro de emergencia, mismo que se detendrá cuando el operador lo desee o exista una urgencia en la operación.

Figura 31 Terminales del paro de emergencia

Fuente. Adaptado por la autora, 2024.

- Cuando el paro de emergencia es activado, se cierra el circuito entre COM y X0 lo que indica al PLC que debe detener el funcionamiento del sistema de manera inmediata y segura.

4.4.2.1.3 Conexión del PLC con el panel de operación y la fuente panel de 24v

Las conexiones del panel de operación y el PLC permiten establecer comunicaciones mediante el cable RS232.

La Figura No 32 indica las conexiones del panel de operación, dichas conexiones vienen del PLC.

Conexión del PLC con panel de operación

Fuente. Adaptado por la autora, 2024.

1. Se utilizó el cable RS232 para establecer una conexión de comunicación serial entre el PLC y el panel de operación, se conectó un extremo del cable con el puerto del PLC y el otro extremo al panel de operación.

Conexión del cable RS232 con el PLC

Fuente. Adaptado por la autora, 2024.

1. La fuente de alimentación proporciona energía para alimentar el panel, desde la fuente de poder sale un cable positivo y otro negativo. El cable positivo suministra tensión eléctrica y el cable negativo completa el circuito.

La Figura No 42 muestra las conexiones entre la fuente de alimentación y la conexión de las salidas del breaker de dos polos al panel de operación.

Conexión de las salidas del breaker de dos polos al panel de operación

Fuente. Adaptado por la autora, 2024.

3

2. Las salidas del breaker de dos polos (L1 y L2) se usan para alimentar al panel de operación, la salida L1 se conecta al terminal L (fase) de la fuente de alimentación, mientras que la salida L2 se conecta al terminal N (neutro).

La Figura No 35 muestra la conexión de las salidas del breaker de dos polos para proporcionar energía al panel de operación.

Conexión de las salidas del breaker de dos polos al panel de operación.

Fuente. Adaptado por la autora, 2024.

4.3.3 Diagrama de conexiones

Se utilizó el software que simula circuitos CADe SIMU para crear un esquema eléctrico con todos los componentes del módulo de control.

La Figura No 36 muestra el diagrama de conexiones construido en el software CADe SIMUS, el cual detalla la manera en que la energía eléctrica es distribuida desde la fuente de alimentación hacia los distintos dispositivos que conforman el gabinete.

Figura 36

Diagrama de conexiones construido en el software CADe SIMU

4.4.3.1 Alimentación para borneras y breakers

Para un mejor entendimiento se recreó las conexiones de los componentes que constituyen el tablero. En la figura No 45 se ilustra un diagrama que representa la alimentación para las borneras y breakers. Estas conexiones seguran un flujo de corriente seguro, protegiendo el módulo de anomalías.

Alimentación para borneras y breakers

Fuente. Adaptado por la autora, 2024.

- 1. Alimentación L1, L2, L3.
- 2. Borneras
- 3. Bornera de tierra
- 4. Breaker 3 polos
- 5. Breaker 2 polos
 - Alimentación L1, L2, L3: Es la fase de alimentación eléctrica trifásica, la corriente se distribuye por las 3 líneas y cada conductor lleva corriente en diferente fase para que haya una mejor distribución de electricidad.
 - **3 borneras:** La borneras permiten la alimentación a través de sus puntos de conexión, a estas le llega la alimentación de las líneas L1, L2 y L3.
 - **Bornera de tierra:** Conectada directamente desde la corriente a la línea de tierra (Fg) y al PLC.
 - **Breaker 3 polos:** Puede interrumpir el paso de corriente de las líneas L1, L2 y L3. Recibe la corriente que fluye de las 3 líneas y si detecta alguna anormalidad o excedente en la corriente va a cortar el paso de energía.
 - **Breaker 2 polos:** Está conectado en paralelo al breaker de 3 polos, este breaker protege al PLC y a la fuente.

Elementos que proporcionan el flujo de corriente

Fuente. Adaptado por la autora, 2024.

- 1. Línea tierra
- 2. Alimentación L2
- 3. Alimentación L1
- 4. Neutro L2
 - Línea tierra: La línea tierra está conectada directamente a la fuente de alimentación, esta brinda seguridad a los dispositivos del tablero y previene cortos.
 - Alimentación L2: La línea L2 es uno de los cables que está conectado al conversor para convertir la corriente alterna de la fuente en corriente continua.
 - Alimentación L1: La línea L2 es uno de los cables que también está conectado al conversor, esta corriente alterna de entrada es de 220V se transforma en corriente de salida hacia la pantalla HMI en 24V.
 - **Neutro L2:** La línea L2 conectada al PLC funciona como el conductor que da retorno de corriente, es decir; la corriente que fluye por este cable volverá a su origen para que la electricidad fluya a través del sistema.

4.4.3.2 Alimentación para el variador de frecuencia y PLC

La alimentación eléctrica se aplica tanto para el PLC como al variador de frecuencia mediante una fuente de corriente alterna trifásica.

Diagrama de alimentación para el variador de frecuencia

Fuente. Adaptado por la autora, 2024.

- R(L1): Esta fase de la fuente trifásica es la alimentación principal para el variador de frecuencia.
- S(L2) y T(L3): Estas fases de la fuente trifásica se conectan al variador para completar el suministro trifásico de energía.

Alimentación para PLC

R(L1), S(L2) y T(L3): Son las fases de la fuente trifásica que se utilizan para alimentar el PLC asegurando un suministro de energía estable.

4.3.3.3 Conexiones PLC y pantalla HMI

En ambos dispositivos hay puertos adaptables para el cable RS-232, este cable tiene un conector DB9 que está conformado por 9 pines en ambos extremos del cable.

Figura 40

Diagrama de conexiones del PLC y pantalla HMI mediante cable rs232

Fuente. Adaptado por la autora, 2024.

1. Cable RS-232: Este conductor establece un protocolo de comunicación entre el PLC y el HMI.

4.3.3.4 Alimentación panel de control

El panel de control se alimenta con corriente continua (DC) de 24 voltios (V) en lugar de una corriente alterna, para que la energía fluya con estabilidad y asegurar el buen funcionamiento de los componentes. Por otro lado, las líneas U, V y W son las salidas que se conectan al motor.

La Figura No 49 representa un diagrama en donde el panel de control recibe alimentación de corriente continua.

Figura 41 *Diagrama de alimentación del panel de control*

Fuente. Adaptado por la autora, 2024.

Salidas: (conectado al motor) U, V, W.

4.5 Programación del variador de frecuencia

El variador de frecuencia está equipado con teclas de navegación superiores e inferiores, las cuales facilitan el desplazamiento a través del menú que presenta diversas categorías de configuraciones.

4.5.1 Descripción de los componentes Figura 42

Componentes externos que conforman al variador de frecuencia

Fuente. Adaptado por la autora, 2024.

- 1. Led's Visualización de parámetros
- 2. Botón RUN: Iniciar
- 3. Botón RESET: Para el sentido
- 4. Botón ENTER
- 5. Botones que cambian parámetros derecha izquierda subir bajar.
- 6. Tapa frontal

Componentes internos que conforman al variador de frecuencia

Fuente. Adaptado por la autora, 2024.

- 7. Borneros de entradas y salidas
- 8. Bornes de potencia
- 9. Borne de tierra
- 10. Ventilador
- 11. Salidas de conexión

Para la programación se utilizó el grupo FM (input terminal). Se utilizó P6, P7, y P8; donde cada una de estas entradas se le puede asignar una función. Las funciones por asignar pueden ser frecuencia baja, frecuencia media y frecuencia alta; así como el uso del P4 al cual se le asigno la función de run.

Identificación del variador de frecuencia

El variador de frecuencia tiene 4 grupos de diferentes parámetros:

Tabla 22

C	1		1 1	• 1	1	<i>c</i> ·
(runos	de	narametros	del	variador	de	trecuencia
Grapos	uc	parametros	aci	<i>i</i> an <i>i</i> and <i>i</i> i	uc	Jiechenena

Parámetros del Variador de Frecuencia			
Drive Group	Tenemos los parámetros básicos de funcionamiento cómo la frecuencia		
Drive Group	objetiva, tiempo de aceleración y desaceleración configurables.		

FU group 1	Están los parámetros para ajustar la frecuencia y el voltaje de salida
FU group 2	Se encuentran los parámetros de función avanzada como la operación PID y operación de un segundo motor.
I/O Group	Encontramos los parámetros necesarios para componer una secuencia utilizando terminales de entrada/salida multifunción.

La Figura No 45 muestra los grupos de parámetros que pueden ser usados para tener acceso a diferentes configuraciones y funciones del variador.

Figura 45

Grupos de parámetros

Drive group	Basic parameters necessary for the inverter to run. Parameter such as Target frequency, Accel/Decel time settable.
Function group 1	Basic function parameters to adjust output frequency and
	voltage.
Function group 2	Advanced function parameters to set parameters for such as
	PID Operation and second motor operation.
I/O (Input/Output)	Parameters necessary to make up a sequence using Multi-
group	function input/output terminal.

Fuente. (LS, SV-iG5A User Manual, 2005)

Con el botón derecho o izquierdo se puede desplazar a los cuatro diferentes grupos de funciones.

Identificación de teclas de dirección del variador de frecuencia.

Fuente. (LS, SV-iG5A User Manual, 2005)

Figura 47

Configuración del variador de frecuencia

Fuente. Adaptado por la autora, 2024.

4.6 Programación de la pantalla HMI

La programación se realiza mediante la conexión del cable RS232 al puerto serial de la computadora. Para verificar que la conexión sea adecuada, se debe confirmar en el panel OP que aparezca el puerto correspondiente, es identificado como command 8.

Conexión de la pantalla HMI al PC.

Fuente. Adaptado por la autora, 2024.

La Figura No 49 indica la construcción del panel realizado en el programa OP Series Edit Tool, donde se agregó a la pantalla una portada con el comando Screen.

File Edit Tool Help AFF Scree Description AA PF CONTROL 0 24 Ingenieria Industrial DW Bomba hidraulica 3 ET ENT ABC Screen Altribute Description: INICIO Previous Screen No. \$ \$ Next Screen No. 2 New Delete 2

Programación del HMI con el programa Op Series Edit Tool

Fuente. Adaptado por la autora, 2024.

- 1. Screen
- 2. Screen Atribute
- 3. Function Key
- 4. Texto
- Screen: Este comando permite agregar descripciones a la pantalla, generar pantallas y los botones facilitan el paso de una pantalla a otra.
- Screen Atribute: Este comando permite agregar descripciones tales como texto, en Previous Screen se puede colocar directamente en la pantalla anterior, en New Screen se puede colocar el número de pantallas que se desee insertar.
- Function Key: En la barra de los botones se extrae de function key.
- Se agregó la función del botón ENTER para permitir la transición a la siguiente pantalla.
- **Texto:** Permite insertar ventanas de texto en cualquier lugar de la pantalla, las cuales pueden ser visualizadas en el panel físico.

La Figura No 50 ilustra la configuración realizada en el programa OP Series Edit Tool, en el cual se generaron ventanas de INICIO y CONTROL cada una con diferentes descripciones y funcionalidades.

Configuración de la pantalla HMI

Fuente. Adaptado por la autora, 2024.

- 5. CONTROL
- 6. Botón de salto
- 7. Buttoms
- 8. Commands
- **CONTROL:** En la primera pantalla INICIO se encuentra una carátula de la bomba hidráulica.
- Se agregó la pantalla CONTROL para integrar los encargados de controlar al variador de frecuencia.
- Botón de Salto: Permite pasar de forma rápida de una pantalla a otra.
- Buttoms: Es el texto que se verá en el panel,
- **Commands:** Se colocó botones de 0 a 6 para insertar las distintas frecuencias necesarias para controlar el variador y que este a su vez monitoreará al motor.

Tabla 23

Во	otones	
0	0Hz	
1	10Hz	
2	20Hz	
3	30Hz	
4	40Hz	

Comandos para controlar el variador

5	50Hz
6	60Hz

4.7 Implementación del módulo y pruebas de funcionamiento

El módulo de control fue ubicado junto a las estaciones hidráulicas para asegurar la conexión física y electrónica entre ambos equipos.

4.7.1 Inspección del sistema hidráulico

Tras la ejecución del mantenimiento correctivo del sistema hidráulico, se realizó un análisis físico detallado para asegurar la integridad del sistema. Durante este procedimiento, se verificó la ausencia de fugas en la base de la unidad de potencia, así como en las conexiones de los elementos que conforman la estación, tales como acoples, válvulas y actuadores.

4.7.2 Pruebas de funcionamiento

- Se realizó una inspección visual y física para verificar que todos los componentes del sistema están correctamente instalados y listos para operar. Dentro de los elementos inspeccionados están las mangueras y acoples, dado que un mal ajuste o aislamiento puede provocar fugas cuando circula el fluido.
- Se comprobó mediante el indicador de nivel de aceite que el depósito hidráulico esté lleno de este fluido.
- Se puso en marcha el sistema y se constató que la unidad de potencia funciona adecuadamente.
- Se tomó lecturas del manómetro para verificar si la presión a la que sale el fluido se encuentra dentro de los límites de operación aceptables.

4.7.3 Recolección de datos iniciales

- Se recopiló datos de salida de flujo de la bomba visualizando las lecturas de presión del manómetro.
- Se midió la temperatura del aceite para verificar si existe sobrecalentamiento.
- Se registró los datos tomados en las pruebas de funcionamiento donde están especificados los ajustes de frecuencia, el tiempo de avance y retroceso del pistón.

4.7.3.1 Registro de curvas características

El registro de curvas características implicó la obtención de datos experimentales.

4.7.3.1.1 Curvas de caudal de la bomba antes de la implementación del módulo

La curva característica representa gráficamente la relación entre el caudal del aceite en gpm (galones por minuto) y velocidad de rotación del impulsor en rpm (revoluciones por minuto).

Elementos de las curvas de caudal de la bomba

- **Caudal:** Describe la cantidad de aceite que la bomba puede succionar en relación con la velocidad y presión requeridos por el sistema.
- **Presión:** Representa la fuerza generada por la bomba, en el plano se ubica en el eje vertical y se mide en bar, psi o $l \times pulg^2$.
- **Velocidad:** La velocidad está ubicada en el eje horizontal del plano y mediante este se identifica la variación del caudal de la bomba en relación con la velocidad de rotación del eje. Su unidad de medida se expresa en rpm (revoluciones por minuto).
- **Potencia:** Es la energía transferida de la bomba al fluido por unidad de tiempo, su unidad de medida se expresa en HP (caballos de fuerza).

La Figura No 51 indica la relación que existe entre la velocidad y el caudal de la bomba de engranajes, a medida que la velocidad aumenta, también lo hace el caudal.

Figura 51

Fuente. Adaptado por la autora, 2024.

Figura 52 Curva característica de potencia vs velocidad.

4.7.3.1.2 Rampa de arranque y parada del variador de frecuencia

La rampa de arranque del variador define la aceleración aplicada al motor cuando se pone en marcha. Al inicio de su funcionamiento, la frecuencia se incrementa y en consecuencia el motor pasa de estar en reposo 0Hz hasta alcanzar la velocidad deseada por el operador. Por otro lado, la parada es la disminución inmediata de la aceleración hasta que su funcionamiento llegue a 0 Hz.

Existen distintos tipos de rampas, entre ellas están:

Cuadrática: El motor aumenta su velocidad al principio y desacelera de forma gradual hasta llegar a la velocidad nominal de operación.

Lineal: El motor aumenta su velocidad desde el reposo hasta la velocidad nominal de forma constante y gradual, se aplica menor corriente hasta que se active el arranque.

Arranque rápido: El motor aumenta su velocidad desde el reposo hasta la velocidad nominal de forma rápida y en un periodo corto de tiempo.

Elementos de la rampa de arranque del variador de frecuencia

- **Frecuencia máxima:** La frecuencia máxima que puede operar el motor mediante el variador de frecuencia es 60 Hz.
- Frecuencia de funcionamiento: La frecuencia que estabiliza al motor durante la operación es de 30 Hz.

- **Run:** Es un comando para que el variador de frecuencia ponga en marcha el motor.
- Aceleración: La frecuencia aumenta de 0 Hz hasta la frecuencia de funcionamiento deseada que es 30 Hz.
- **Frecuencia de funcionamiento constante:** Cuando se alcanza la frecuencia de funcionamiento 30 Hz, se debe mantener constante durante el funcionamiento del equipo.
- Desaceleración: La frecuencia de funcionamiento disminuye de forma gradual hasta llegar a 0 Hz, la desaceleración depende del tiempo de desaceleración configurado en el variador. Es importante que la desaceleración sea gradual para evitar daños en el sistema.

En la Figura No 53 ilustra la rampa de arranque y paro del variador de frecuencia. Dentro de esta rampa, se aprecia el tiempo de aceleración o desaceleración y se encuentra sobre Frecuencia Máxima, cuando se define la Fr en 60 Hz el tiempo de aceleración o desaceleración en un tiempo de 5 seg y frecuencia de funcionamiento en 30 Hz, para que pase de 0Hz a 30 Hz transcurren 2.5 seg.

Figura 53

Rampa de arranque y paro del variador de frecuencia.

Fuente. Adaptado por la autora, 2024.

4.7.4 Recolección de datos después de la implementación

Las lecturas de la bomba contienen distintos parámetros físicos que serán comparados con las curvas características que vienen por defecto de la bomba para demostrar el impacto positivo de la implementación.

4.7.4.1 Tiempos Teóricos

Los tiempos teóricos de movimiento del pistón se obtuvieron a partir de las curvas características extraídas de la ficha técnica de la bomba, se sigue el siguiente procedimiento:

- Primero se calcula el volumen del cilindro.
- Se determina el caudal que conduce la bomba en las frecuencias que se requieren (de 10Hz a 60 Hz).
- Se despeja el tiempo de la fórmula del caudal:

$$Q = \frac{V}{t}$$
$$t = \frac{V}{Q}$$

Donde:

Q: Caudal.

V: Volumen.

T: tiempo.

Tabla 24

Cálculo de flujo

Velocidad	L/min
300	0,9
500	1,2
700	1,4
900	1,7
1200	1,8
1500	2,8
1550	3,1
1800	3,9
2100	4,2
2150	4,3
2400	4,4
2500	4,4

Fuente. Adaptado por la autora, 2024.

Tabla 25

Tabla frecuencia vs velocidad

Frecuencia	Velocidad (rpm)
0 Hz	0
10 Hz	417
20 Hz	833
30 Hz	1250

40 Hz	1667
50 Hz	2083
60 Hz	2500

Con estos valores se realizó una interpolación simple para encontrar los caudales en cada una de las frecuencias.

La Tabla No 26 muestra una regla de 3 compuesta para hallar el caudal de la bomba.

Tabla 26

Cálculo Para Hallar El Caudal

Velocidad	GPM
300	0,9
417	Х
500	1,2

Fuente. Adaptado por la autora, 2024.

Para hallar el caudal se utilizó una interpolación lineal, se identificó los puntos conocidos de velocidad según la curva característica de la bomba.

$$Lim \sup = 500$$
$$Lim \, inf = 300$$
$$Q = \frac{1.2 - 0.9}{500 - 300} * (417 - 300) * 0.9$$
$$Q = 1.08 \, gpm$$

La Tabla No 27 muestra la relación entre la frecuencia, velocidad del motor y caudal para la construcción del grafico caudal vs velocidad.

Tabla 27

Relación frecuencia, velocidad y caudal

Velocidad	Caudal
(rpm)	(gpm)
0	0,00
417	1,08
833	1,60
1250	1,97
	Velocidad (rpm) 0 417 833 1250

40 Hz	1667	3,47
50 Hz	2083	4,18
60 Hz	2500	4,40

- El tiempo se calculó como producto de la división entre el volumen del pistón y el caudal de la bomba, se calculó 6 tiempos cada uno corresponde a un ciclo de operación.

La Tabla No 28 indica los tiempos teóricos obtenidos después de los cálculos aplicados tomando en cuenta la frecuencia, caudal y velocidad.

Tabla 28

Frec	uencia (rp.	Velocidad	(anm)	Caudal	1/m	Caudal	Tiempo (s)	teórico
	(ipi	111 <i>)</i>	(gpm)		1/111		()	
0 Hz		0		0,00		0,00	0,	00
10 H	Z	600		1,90		7,19	6,	07
20 H	Z	1200		2,93		11,10	3,	93
30 H	Z	1800		4,57		17,28	2,	52
40 H	Z	2400		6,27		23,72	1,	84
50 H	Z	3000		7,18		27,17	1,	61
60 H	z	3600		7,80		29,52	1,	48

Tiempos teóricos del movimiento del pistón.

Fuente. Adaptado por la autora, 2024.

4.7.4.2 Curvas de tiempo de ciclo.

Las curvas de tiempo de ciclo determinan la operación que efectúa el cilindro (avance y retroceso del pistón). Por ello, se tomaron distintos tiempos a diferentes frecuencias de 10Hz a 60Hz y posteriormente se ubicaron dichos tiempos diferentes curvas.

La Figura No 54 presenta el promedio 3 distintos tiempos tomados con un cronómetro durante el avance del pistón a una velocidad de 10 Hz a 60 Hz.

Figura 54 *Tiempo de avance del pistón a distintas velocidades.*

La Figura No 55 muestra el promedio 3 distintos tiempos tomados con un cronómetro durante el retroceso del pistón a una velocidad de 10 Hz a 60 Hz.

Figura 55

Tiempo de retroceso del pistón a distintas velocidades.

Fuente. Adaptado por la autora, 2024.

Mediante los datos de avance y retroceso del pistón se pudo determinar que, a medida que se aumenta la frecuencia de operación en el módulo, el tiempo de avance y retroceso disminuye notablemente. Este dato indica que existe una relación inversa entre la frecuencia y el tiempo.

Los tiempos de retroceso son más constantes que el tiempo de avance del pistón.

4.7.5 Comparación de curvas.

La comparación de curvas muestra los tiempos teóricos obtenidos anteriormente y los tiempos que se midieron durante el avance y retroceso del pistón en las estaciones hidráulicas.

La Figura No 56 muestra la comparación entre la curva característica extraída de la ficha técnica de la bomba y la curva de tiempo de avance del pistón, aquí se puede apreciar que los resultados son correctos por las semejanzas de las curvas pese a los errores que se tienen al tomar los tiempos.

Comparación de curva característica vs tiempo de avance.

Fuente. Adaptado por la autora, 2024.

La Figura No 57 muestra una comparación entre la curva característica que se obtuvo en la ficha técnica de la bomba y la curva que se obtuvo después de la implementación del módulo de control. Se pudo determinar que la curva característica brinda datos de cómo funciona la bomba en condiciones ideales, el caudal avanza a medida que aumenta su frecuencia, pero estas variables no se pueden controlar y produce una sobrepresión en el sistema. Por otro lado, se puede observar la curva bajo el control del módulo en donde se puede ajustar la frecuencia y mantenerla en diferentes puntos. Esta comparación muestra el impacto positivo del módulo de control en las estaciones hidráulicas.

Fuente. Adaptado por la autora, 2024.

Universidad Nacional de Chimborazo

Facultad de Ingeniería Ingeniería Industrial

MANUAL DE OPERACIÓN PARA EL MANEJO DEL MÓDULO DE CONTROL HIDRÁULICO

Elaborado por:

Dayana Mishell Naranjo Molina
Introducción

Actualmente los sistemas hidráulicos son capaces de generar y dirigir la energía de forma efectiva en distintas aplicaciones industriales. Estos equipos son usados para el funcionamiento de prensas, elevación de cargas, dirección de movimiento, etc.

Por ello es importante la implementación de un módulo que controle sistemas hidráulicos, ya que a través de estos se puede manejar el funcionamiento de estos. Este módulo puede controlar distintas variables industriales como son: la presión, dirección y distribución de fluido, temperatura, fuerza ejercida en los cilindros o actuadores y el nivel de fluido, esto con el fin de garantizar que el sistema funcione de forma controlada y segura dentro de los límites de operación.

Este manual de operación proporcionará la información clave sobre los equipos que conforman las estaciones hidráulicas, así como las instrucciones para poner en marcha el equipo. Esto permitirá el desarrollo práctico de estudiantes ejecutando los conocimientos teóricos adquiridos previamente.

Objetivo

El objetivo del presente manual de operación es proporcionar una guía para el uso correcto y seguro que se debe dar a las estaciones hidráulicas equipadas con el módulo de control en donde se detalla el uso adecuado de los componentes del sistema, incluyendo el variador de frecuencia.

Protocolo de activación del módulo de control y electroválvulas

El módulo garantiza que no se genere sobrepresión durante el funcionamiento de la bomba de engranajes, lo que permite su utilización junto con la estación hidráulica dentro de parámetros seguros, garantizando así el movimiento adecuado de los cilindros.

1. Antes de la operación

1.1. Preparación y revisión:

Actividades	Descripción
Desconexión del sistema	Verificar que el sistema esté completamente apagado y desconectado de la fuente de energía para evitar cualquier riesgo eléctrico.
Evaluación general del sistema hidráulico	Identificar signos de deterioro, óxido o piezas sueltas.
Inspección del módulo de control	Examinar la carcasa del módulo de control e identificar daños o corrosión. Verificar que los componentes electrónicos estén correctamente conectados y libres de suciedad. Asegurar que el módulo y electroválvula estén conectados a la fuente de poder.
Inspección de cables y conexio- nes eléctricas	Examinar todas las conexiones eléctricas en busca de signos de desgaste, deterioro, conexiones sueltas, etc.
Inspección de mangueras y conexiones hidráulicas	Examinar las mangueras para detectar grietas, abolladuras, fugas de aceite o desgaste excesivo. Comprobar la posición correcta de las mangueras evitando que estén dobladas o torcidas, lo que podría limitar el flujo del fluido.
Verificación de válvulas hidráu- licas	Observar las válvulas para asegurar que no haya fugas visibles o daños. Examinar el estado de los actuadores de las válvulas.
Comprobación del nivel de aceite	Revisar que el nivel de aceite en el depósito se encuentre dentro del rango adecuado.

	Verificar que la tapa del depósito esté bien sellada y		
	sin signos de contaminación del fluido. Revisar que el filtro de respiración esté limpio y sin		
	impurezas.		
	Inspeccionar los actuadores en busca de daño,		
Inspección de actuadores	desgaste, fugas de aceite.		

1.2. Calibración:

Actividades	Descripción
Calibración del HMI	Encender el sistema y verificar que el HMI esté operativo. Acceder al menú y configurar las frecuencias de operación. Establecer el límite inferior en 0 Hz y configurar el límite superior en 60 Hz. Guardar la configuración. Salir del menú y volver a la pantalla principal del HMI.
Prueba de funcionamiento	Acceder a la pantalla principal del HMI, insertar valores de 0 Hz a 60 Hz. Verificar que el HMI cambie de frecuencias sin problemas y que la pantalla refleje los cambios efectuados.

Fuente. Adaptado por la autora, 2024.

1.3. Preparación del módulo de control:

Actividades	Descripción
Verificación del suministro eléctrico	Verificar que el módulo de control esté desconectado de la alimentación eléctrica. Verificar que todos los interruptores de potencia estén en la posición OFF para minimizar el riesgo de descarga eléctrica.

	Utilizar un multímetro para confirmar la ausencia de voltaje en las terminales de entrada del módulo.
Inspección del módulo de con- trol	Revisar el estado físico del módulo, verificando daños en la carcasa. Verificar el estado de cables y conexiones eléctricas del módulo. Verificar la operatividad de los dispositivos de seguridad (paradas de emergencia, relés).
Prueba operativa en modo ma- nual	Realizar pruebas de paradas de emergencia para asegurar su respuesta efectiva. Inspección visual del manómetro para confirmar que la presión inicial esté dentro de los parámetros aceptables. Activar el motor utilizando con el comando el HMI. Aumentar gradualmente la frecuencia desde o Hz hasta el valor deseado, observando cómo responde el sistema a medida que se incrementa. Registrar tiempo de avance y retroceso del pistón a las diferentes frecuencias que se esté utilizando. Anotar las lecturas de presión y caudal mientras se realizan las pruebas. Verificar si hay fallos, como fugas, variaciones anormales de presión o ruidos anormales del sistema. Si se detecta algún fallo, apagar el sistema y realizar acciones correctivas necesarias según el manual de fallos y soluciones. Apagar el motor utilizando el comando de parada. Restaurar el sistema cambiando el modo de operación de manual a automático si es necesario para continuar con su funcionamiento habitual. Registrar si se presentó algún incidente o fallo durante la prueba.

2. Durante la operación

Accionamiento de interruptores de circuito

Los breakers deben estar accionados para que permitan el paso de corriente dispositivos electrónicos, dentro de estos se encuentran el breaker del módulo de control y el breaker de la electroválvula.

Activación de la electroválvula.

La electroválvula regula el paso del aceite, lo que da lugar al movimiento (avance y retroceso) del pistón que está ubicado en la parte interna del cilindro hidráulico.

La Figura No 58 muestra los distintos breakers que proporcionan electricidad para que puedan funcionar las electroválvulas y el módulo de control.

Figura 58

Breakers de la fuente de electricidad

Fuente. Adaptado por la autora, 2024.

Este dispositivo electroneumático está conformado por 3 líneas:

Cable blanco: Esta línea da paso a corriente alterna de 220V, para energizar la válvula solenoide.

Cable verde: Controla el flujo del aceite para que pueda avanzar el pistón. **Cable negro:** Controla el flujo del aceite para que pueda retroceder el pistón.

3. Activación del módulo de control.

Después de accionar el breaker del módulo, este automáticamente enciende a la bomba. Cuando la bomba está encendida, debe manipular manualmente los parámetros a los que arranca y para el variador de frecuencia, este dispositivo opera a parámetros de frecuencia.

Actividades	Descripción
Activación del sistema	Ajustar la frecuencia según la necesidad del operador de 0 Hz a 60 Hz. Esta configuración activa automáticamente al motor y pone en marcha al sistema de bombeo hidráulico. Manipular los breakers que activan a la electroválvula, y esta a su vez permite el paso y salida del flujo para que pueda avanzar o retroceder el pistón del cilindro. Supervisar la presión del sistema mediante el manómetro. Verificar el caudal del fluido en función de la velocidad del motor y asegurar de que se mantenga dentro de los parámetros óptimos. Verificar el avance y retroceso del pistón, asegurar que el pistón se desplace a las velocidades
Ajustes de frecuencia	Acceder a la interfaz principal del HMI. Ingresar valores en el rango de 0 Hz a 60 Hz. Registro de lecturas de presión y tiempo de ciclo de los actuadores. Documentar ajustes realizados o incidentes observados durante la operación.

3.1. Inicio de operación

Fuente. Adaptado por la autora, 2024.

4. Después de la operación

Actividades Descripcion	Actividades	Descripción
-------------------------	-------------	-------------

Desconexión y apagado del sis- tema	Utilizar el comando de detención en el HMI para desactivar el motor de forma controlada. Disminuir progresivamente la frecuencia hasta alcanzar 0 Hz. Desconectar al módulo de control de la fuente de alimentación eléctrica.
Evaluación del sistema	Revisar que no existan fugas, daños visibles o signos de desgaste en mangueras, válvulas y otros componentes. Verificar en el manómetro que la presión en el sistema haya reducido completamente a niveles seguros.
Mantenimiento y limpieza	Eliminar residuos de aceite o líquidos que se hayan derramado durante la operación. Documentar toda actividad de mantenimiento realizada, incluyendo ajustes o reemplazos de componentes.

5. Tabla de fallos comunes y posibles soluciones

La Tabla No 29 presenta las posibles fallas que pueden presentarse en el sistema hidráulico, y distintos componentes del módulo de control.

Tabla 29

Componente Hidráulico	Posibles Fallas	Soluciones
Acoples de cobre	- Fugas, corrosión.	 Inspeccionar las conexiones. Apretar las conexiones, sustituir las juntas o sellos defectuosos. Reemplazar acoples dañados.
Electroválvula solenoide	- No funciona al aplicar corriente.	 Verificar si la fuente eléctrica funciona correctamente. Verificar el resorte de retorno, reemplazar si está dañado e inservible.
Filtro de aceite del sistema de bombeo	- Disminución del flujo.	 Inspeccionar y limpiar el filtro. Sustituir el filtro dañado o muy sucio.

Botón ENTER del variador de frecuencia	- No funciona.	 Revisar si el botón físico funciona. Verificar la programación del variador. Verificar si hay errores en la pantalla que impida la acción del botón.
Botón RUN del variador de frecuencia	- No se pone en marcha el motor.	 Inspeccionar y verificar que el botón esté completamente presionado. Revisar las conexiones de entrada. Verificar la configuración de los parámetros de inicio
Pantalla del HMI	- Pantalla sin respuesta, errores en la visualización, fallos en la comunicación.	 Revisar conexiones y el cable de comunicación RS232. Calibrar o reiniciar el panel. Actualizar el firmware del dispositivo si es necesario.
Botón paro de emergencia	- No se activa, no detiene el sistema.	 Verificar la conexión eléctrica del pulsador Sustituir el pulsador si está defectuoso. Ubicar al pulsador en un lugar accesible y señalizado. Realizar pruebas de funcionamiento.

Guía para el manejo del módulo de control

Funciones de cada componente:

Cable RS323: Cable conector que sirve para que exista comunicación entre el PLC y el HMI.

PLC XINJE XD3-16RT-E: Dispositivo que es programable ya que puede guardar información, recibe y envía información del variador de frecuencia para que se pueda controlar la velocidad del motor.

Breakers de 2 y 3 polos: Son unos interruptores conectados al que protegen a los demás dispositivos eléctricos al cortar la corriente eléctrica si detecta sobrecargas en la tensión.

Inversor de corriente: Dispositivo que convierte la corriente alterna (CA) de la red eléctrica en corriente continua (CC) del a 24 voltios.

Conductores eléctricos: Mediante estos materiales fluye la corriente entre los dispositivos.

Pulsador de emergencia: Dispositivo que da seguridad, en caso de una emergencia al accionarlo tiene la función de detener de forma inmediata al funcionamiento del módulo de control.

Borneras: Proporcionan la terminación de los conductores, con estos se puede conectar y desconectar los cables de forma fácil y de forma temporal.

Variador de frecuencia: Controla la velocidad del motor DE 0 Hz a 60 Hz, además de que protege al motor de cortos y sobrecorrientes.

HMI: Permite introducir comandos de forma manual, ajustar parámetros de operación del variador de frecuencia e iniciar o parar el funcionamiento del módulo de control sin necesidad de manipular el resto de los componentes.

Actividades	Descripción
Inicio del sistema	Realizar una inspección visual inicial. Verificar que las válvulas del sistema hidráulico se encuentren cerradas. Visualizar que no existan fugas de aceite en la tubería y componentes del sistema. Encender el tablero de control desde los breakers ubicados en el interior del gabinete, estos alimentan al PLC y HMI. Presionar la tecla ENTER en la pantalla e INICIO. Se puede observar un menú unos datos para seleccionar la velocidad de operación, está en Hz de 10 Hz a 60 Hz. Al pulsar uno de los comandos este se demorará 10 seg en desarrollar la acción.
Medidas de seguridad	Si existe algún problema durante la operación del módulo conjunto al sistema: Accionar el pulsador de emergencia para detener instantáneamente el sistema. Notificar cualquier situación anormal al personal académico a cargo. Accionar el pulsador de emergencia para detener instantáneamente el sistema.
Mantenimiento preventivo	Se recomienda realizar una inspección visual antes de poner en marcha el equipo en válvulas, actuadores y motor.

Se debe asegurar que la fuente esté bien conectada al
módulo para evitar sobre tensión eléctrica.
Es importante revisar que el fluido ubicado en el
tanque de almacenamiento esté en el nivel adecuado
para el funcionamiento del sistema.
Revisar si existen fugas de aceite, corrosión y desgaste
en los componentes del sistema.

CAPÍTULO V. CONCLUSIONES Y RECOMENDACIONES

5.1 Conclusiones

La implementación del módulo para controlar el caudal de aceite en las estaciones hidráulicas ubicadas en el Laboratorio de Controles Industriales de la Universidad Nacional de Chimborazo fue realizada con éxito. Este sistema permitió una operación controlada y eficiente en los cilindros del equipo, brindando de esta forma una oportunidad a estudiantes y docentes de la Facultad de Ingeniería Industrial para familiarizarse con este tipo de sistemas que son utilizados ampliamente en la industria.

Mediante el uso de fichas técnicas, instrumentación, diagrama de causas y efectos; se pudo identificar los factores que provocaban el exceso de flujo en el sistema, entre estas están: ausencia de un dispositivo que controle el caudal, ausencia de un manual de operación, mal manejo de la máquina, mangueras hidráulicas de mala calidad, ausencia de datos actualizados, presencia de polvo e impurezas, ausencia de capacitación del personal y ausencia de mantenimiento en el sistema. Los efectos de estas causas son: desgaste prematuro del sistema, aparición de fugas, riesgos operativos, desperdicio de aceite, sobrepresión en el sistema, ausencia de prácticas de laboratorio, fricción y desgaste entre los sellos hidráulicos, también por la velocidad del aceite ejerce presión en mangueras y tubos lo que resulta en un estiramiento de estos. La identificación de estos factores permitió actuar y mitigar riesgos como explosiones y daños en las partes que conforman el sistema hidráulico y las instalaciones que albergan el mismo.

Si se requiere que la bomba genere más potencia se debe acelerar el motor para así incrementar el flujo de aceite.

En el desarrollo y construcción del módulo se integraron distintos elementos electrónicos, mismos que fueron programados. Este tablero puede ser operado manualmente a través del HMI que está configurado con frecuencias de 0 Hz a 60 Hz, lo que evita la manipulación del variador facilitando así un mejor control operativo.

También se elaboró un manual de operación detallado para asegurar el correcto uso del sistema, considerando una guía adicional para la manipulación del módulo de control.

Ambos documentos sirven como referencia para los futuros usuarios y su aplicación garantiza el desarrollo de prácticas seguras y eficientes.

Los objetivos de la presente investigación se cumplieron efectivamente y se evidencian en la puesta en marcha de las estaciones hidráulicas.

5.2 Recomendaciones

Se recomienda realizar una inspección visual antes de activar el sistema en: conexiones eléctricas, tuberías, nivel de aceite, válvulas, acoples, mangueras de alta presión y demás componentes asegurando que estos estén en buen estado y correctamente instalados.

Es necesario incluir una capacitación sobre el correcto uso del sistema para familiarizar a los beneficiarios sobre el funcionamiento de este.

También es vital actualizar el manual de operación a medida que se implementen nuevos dispositivos en el sistema.

Poniendo en práctica estas recomendaciones se asegura que el sistema opere de forma exitosa.

Bibliografía

- CKOMP. (08 de Abril de 2024). *Principios del cilindro esclavo del embrague hidráulico*. https://es.compass-autoparts.com/blog/principles-of-hydraulic-clutch-slavecylinder_b7
- Donalson . (2020). ¿Cuál es la función de los filtros en su sistema hidráulico? https://www.donaldson.com/es-es/engine/filters/technical-articles/what-do-filtersin-your-hydraulic-system-do/
- Elmactechnologies. (Abril de 2021). Válvula de alivio de presión y vacío. https://elmactechnologies.com/wp-content/uploads/2021/04/PVRV-Datasheet-Spanish-Mar-21.pdf
- Gancedo Lamadrid , E., & Merayo Fernández, V. (2020). *Esquemas de Instaciones Hidráulicas*. Asturias: Universidad de Oviedo.
- GARÍN, E., BRANDA, J., & DIFEO, M. (2019). *Máquinas y Accionamientos Eléctricos* (*3M4*). Mar de Plata: UNIVERSIDAD NACIONAL de MAR DE PLATA.
- Gonzalez, I. (2018). Controles (puladores). Servicio nacional de Aprendizaje SENA.
- Grinnell. (2020). Sistema ranurado de cobre de GRINNELL Mechanical Products. https://www.grinnell.com/G_translate/copper_product_slick2b_ES.pdf

Guevara, G., Verdesoto, A., & Castro, N. (2020). Metodologías de investigación educativa (descriptivas, experimentales, participativas, y de investigación-acción). *Recimundo*, 4(3), 163-173. https://doi.org/DOI: 10.26820/recimundo/4.(3).julio.2020.163-173

Hernández Mendoza, S. L., & Duana Ávila, D. (2020). Técnicas e instrumentos de recolección de datos. *Boletín Científico de las Ciencias Económico Administrativas del ICEA*, 51.

- Herráez Domínguez, J. (2007). *ELEMENTOS DE FÍSICA APLICADA*. Valencia: UNIVERSITAT DE VALÉNCIA.
- Ibarcena, R. (2018). *Lectura Bomba Hidráulica*. https://www.academia.edu/42716927/Lectura_Bomba_Hidr%C3%A1ulica?auto=do wnload&work_id=116196638

Kimerius Aircraft. (2018). *El motor*. https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.kimerius.com%2F app%2Fdownload%2F5783855738%2FEl%2Bmotor.pdf&psig=AOvVaw0yNirP0h uSYaXz27wsMpYx&ust=1728842807726000&source=images&cd=vfe&opi=8997 8449&ved=0CAQQn5wMahcKEwiQi_z7t4mJAxUAAAAHQAAAAAQBA

Martínez, R. (2018). *acoples y juntas*. https://es.scribd.com/document/727171732/JUNTAS-Y-ACOPLES-UNIVERSALES

Morales, A. (2017). Instrumentación básica de procesos industriales. ISA.

Paulcciautopartes.com.ar. (2020). *Guía práctica.* https://www.paulucciautopartes.com.ar/descargas/GuiaPractica-Paulucci-PartesCilindroMaestro.pdf

Lozano, D., & Páez, J. (2016). La importancia de los actuadores. Universidad ECCI.

- Pérez Pupo , R. (2018). *Sistemas hidráulicos en la maquinaria agrícola*. Riobamba: Escuela Superior Politécnica de Chimborazo.
- Pérez Pupo, R., & Navarro Ojeda, M. (2020). *Oleodráulica*. Riobamba: Escuela Superior Politécnica de Chimborazo.
- Pietro Fiorentini S.p.A. (2017). Válvulas de bola. TIV Valves S.r.l.
- Ramírez, a. (2018). *Diseño tablero de control electrónico para sistemas hidráulicos*. Universaidad Tecnológica de Puebla.
- Ramos, C. (2021). Diseño de investigación experimental. *CienciAmérica*, 10(1), 1-7. https://doi.org/http://dx.doi.org/10.33210/ca.v10i1.356
- Renedo, C., Fernández, I., Carcedo, J., & Ortiz, F. (2020). *Hidráulica*. Universidad de Cantabria.
- Ruiz, A. (2021). *Filtros hidráulicos*. https://es.scribd.com/presentation/428144822/Filtros-Hidraulicos#:~:text=Reportar-,Los%20filtros%20hidr%C3%A1ulicos%20son%20componentes%20clave%20que

%20remueven%20suciedad%20de,protegiendo%20as%C3%AD%20las%20m%C3 %A1quinas%20hidr%C3%A1ulicas.

- S&P. (2019, Diciembre 09). *S&P.* ¿Qué es un motor trifásico? Características, tipologías y aplicaciones: https://www.solerpalau.com/es-es/blog/motor-trifasico/
- Secretaría General de Agricultura y Alimentación. (2021). *Tecnocontrol Electroválvulas*. https://inprocess.com.pe/datasheets/valvulas/valvulas-solenoides/Danfoss/Danfoss-Manual_Usuario.pdf
- STN Valves. (2018). Válvula de bola 2P STN. https://stnvalves.com/producto/valvula-de-bola-2p-stn100/
- Tameson. (Diciembre de 07 de 2017). Válvula Neumática de 3/2 vías Cómo Funciona. https://tameson.es/pages/valvula-neumatica-de-3-2-vias-como-funcionan
- TECASEN. (2017). Análisis Visual de Aceite 360°. https://tecasen.com/analisis-visual-de-aceite-voa-visual-oil-analysis/
- VACCA Engieneering. (2021). ¿Qué son los Sistemas de Bombeo? https://www.vacca.es/que-son-los-sistemas-debombeo/#:~:text=Si%20te%20preguntas%20qu%C3%A9%20son,de%20caudal%2 0en%20estos%20procesos.

Anexos

Figura 59

Inspección visual de la estación hidráulica.

Fuente. Adaptado por la autora, 2024.

La Figura No 59 muestra la inspección visual que se realizó antes de implementar el módulo de control para identificar todos los componentes que conforman el sistema.

Instalación de software Xinje PLC program tool

Fuente. Adaptado por la autora, 2024.

La Figura No 60 evidencia el lenguaje con el que está programado el PLC.

Lenguaje Ladder.

Fuente. Adaptado por la autora, 2024.

La Figura No 61 ilustra la lógica del sistema mediante secuencias de operación como arranque, paro del motor, velocidad etc.

Instalación cable RS232.

Fuente. Adaptado por la autora, 2024.

En Figura No 62 se evidencia la instalación del cable RS232 para la comunicación entre el PLC y la computadora por medio del programa PLC Tools.

Conexión del motor al módulo de control.

Fuente. Adaptado por la autora, 2024.

La Figura No 63 muestra la conexión manual que se realizó desde las líneas del motor al breaker del módulo.

Instalación de componentes eléctricos en el gabinete.

Fuente. Adaptado por la autora, 2024.

En Figura No 64 se evidencia la instalación de distintos componentes electrónicos (PLC, HMI, Variador de frecuencia, conductores, breaker, paro de emergencia) en el gabinete del módulo de control.

Verificación de componentes de las estaciones hidráulicas.

Fuente. Adaptado por la autora, 2024.

En la Figura No 65 se verificó que las tuberías estén correctamente conectadas al sistema de bombeo de aceite, también mediante una inspección visual se identificó que todos los dispositivos se encuentren en buen estado para realizar pruebas de funcionamiento.

Sujeción de módulo de control.

Fuente. Adaptado por la autora, 2024.

La Figura No 66 muestra la sujeción del módulo de control en las instalaciones del laboratorio de Controles Industriales en la Universidad Nacional de Chimborazo para brindar un mejor acceso, estabilidad, organización y seguridad.

Tabla 30

Tiempo de avance y retroceso del pistón a velocidad de 10 hz.

		Frecuencia-tiempo 1	
Frecuencia (Hz)		Tiempo ida (s)	Tiempo vuelta (s)
10	1	6,75	4,68

2	7,14	4,7
3	6,98	4,8
Tiempo promedio (s)	6,96	4,73

La Tabla No 30 indica 3 distintos tiempos tomados con un cronómetro durante el avance y retroceso del pistón a una velocidad de 10 Hz, después se realizó un promedio de estos tiempos para tener una semejanza a los tiempos reales. Así se puede corregir errores que pueden ocurrir dentro de la toma de datos.

Tabla 31

		Frecuencia-tiempo	2
Frecuencia (Hz)	Tiempo ida (s)	Tiempo vuelta (s)
	1	3,46	2,47
20	2	3,54	2,79
	3	3,64	2,53
Tiempo promec	lio (s)	3,55	2,60

Tiempo de avance y retroceso del pistón a velocidad de 20 hz.

Fuente. Adaptado por la autora, 2024.

La Tabla No 31 presenta 3 distintos tiempos tomados con un cronómetro durante el avance y retroceso del pistón a una velocidad de 20 Hz, después se realizó un promedio de estos tiempos para tener una semejanza a los tiempos reales. Así se puede corregir errores que pueden ocurrir dentro de la toma de datos.

Tabla 32

Tiempo de avance y retroceso del pistón a velocidad de 30 hz.

		Frecuencia-tiempo 3	
Frecuencia (Hz)		Tiempo ida (s)	Tiempo vuelta (s)
	1	2,05	2,08
30	2	2,22	1,7
	3	2,15	1,72

Tiempo promedio (s)	2,14	1,83	
---------------------	------	------	--

La Tabla No 32 presenta 3 distintos tiempos tomados con un cronómetro durante el avance y retroceso del pistón a una velocidad de 30 Hz, después se realizó un promedio de estos tiempos para tener una semejanza a los tiempos reales. Así se puede corregir errores que pueden ocurrir dentro de la toma de datos.

Tabla 33

		Frecuencia-tiempo	4
Frecuencia (Hz))	Tiempo ida (s)	Tiempo vuelta (s)
	1	1,74	1,78
40	2	1,9	1,7
	3	1,78	1,72
Tiempo promed	io (s)	1,81	1,73

Tiempo de avance y retroceso del pistón a velocidad de 40 hz.

Fuente. Adaptado por la autora, 2024.

La Tabla No 33 presenta 3 distintos tiempos tomados con un cronómetro durante el avance y retroceso del pistón a una velocidad de 40 Hz, después se realizó un promedio de estos tiempos para tener una semejanza a los tiempos reales. Así se puede corregir errores que pueden ocurrir dentro de la toma de datos.

Tabla 34

Tiempo de avance y retroceso del pistón a velocidad de 50 hz.

		Frecuencia-tiempo	5
Frecuencia (Hz))	Tiempo ida (s)	Tiempo vuelta (s)
	1	1,49	1,58
50	2	1,65	1,62
	3	1,52	1,78
Tiempo promed	io (s)	1,55	1,66

Fuente. Adaptado por la autora, 2024.

La Tabla No 34 presenta 3 distintos tiempos tomados con un cronómetro durante el avance y retroceso del pistón a una velocidad de 50 Hz, después se realizó un promedio de estos tiempos para tener una semejanza a los tiempos reales. Así se puede corregir errores que pueden ocurrir dentro de la toma de datos.

Tabla 35

		Frecuencia-tiempo	6
Frecuencia (Hz)		Tiempo ida (s)	Tiempo vuelta (s)
	1	1,28	1,61
60	2	1,32	1,6
	3	1,4	1,72
Tiempo promed	io (s)	1,33	1,64

Tiempo de avance y retroceso del pistón a velocidad de 60 hz.

Fuente. Adaptado por la autora, 2024.

La Tabla No 35 presenta 3 distintos tiempos tomados con un cronómetro durante el avance y retroceso del pistón a una velocidad de 60 Hz, después se realizó un promedio de estos tiempos para tener una semejanza a los tiempos reales. Así se puede corregir errores que pueden ocurrir dentro de la toma de datos.

Bosquejo externo del módulo de control

Fuente. Adaptado por la autora, 2024.

La Figura No 67 muestra el bosquejo inicial de la estructura metálica que protege los dispositivos de automatización, esto nos sirve para su posterior construcción en aluminio.

Conexiones eléctricas de botonera

Fuente. Adaptado por la autora, 2024.

Figura 69

Desmontaje de sistema hidráulico

Fuente. Adaptado por la autora, 2024.Figura 70Mantenimiento del sistema hidráulico

Fuente. Adaptado por la autora, 2024.

UNIVERSIDAD NACIONAL DE CHIMBORAZO

	Versión 1	
GUIA DE PRACTICA DE LABORATORIO PERIÓDO ACADÉMICO 2024 1S		Pagina 1 de 1
CARRERA:	SEMESTRE:	
PRÁCTICA NO.	TEMA:	DURACIÓN:
	Medición de la corriente del motor con respecto a la presión generada	1h

OBJETIVOS DE LA PRÁCTICA:

- Medir la corriente consumida por el motor en función de la presión del mismo.
- Controlar la velocidad del motor mediante el variador de frecuencia.
- Evaluar la relación entre frecuencia y presión.

EQUIPOS, MATERIALES E INSUMOS:

- Módulo de control.
- Pinza perimétrica.
- Manómetro de presión.
- Motor eléctrico de inducción trifásico.
- Hojas de registro.

PROCEDIMIENTO:

1. Conexión del variador de frecuencia:

- Conectar el variador de frecuencia al motor.
- Verificar que las conexiones eléctricas sean seguras y estén correctamente configuradas según las especificaciones del fabricante.

2. Configuración del PLC y HMI:

- Programar el PLC para controlar el variador de frecuencia a través del HMI.
- Configurar el HMI para que permita seleccionar diferentes frecuencias (0
 - Hz, 10 Hz, 20 Hz, 30 Hz, 40 Hz, 50 Hz, 60 Hz) mediante botones.

3. Medición de corriente:

- Conectar la pinza perimétrica alrededor de uno de los conductores del motor para medir la corriente.

4. Medición de presión:

- Verificar que el manómetro esté correctamente instalado para medir la presión generada por la bomba.

5. Preparación del sistema:

- Comprobar que todo el equipo esté correctamente conectado y configurado.
- Verificar en el medidor de aceite del depósito hidráulico que el fluido esté dentro de los del nivel operativo del sistema.

6. Establecer frecuencia base (0 hz):

- Establecer la frecuencia del variador a 0 Hz utilizando el HMI.
- Registrar la corriente medida (debería ser mínima, sino cero) y la presión (también debe ser mínima).

7. Medición a diferentes frecuencias:

- Ajustar la frecuencia a 10 Hz usando el HMI.
- Registrar la corriente mínima y máxima usando la pinza perimétrica.
- Registrar la presión mínima y máxima usando el manómetro.
- Registrar el proceso para frecuencias de 10 Hz a 60 Hz.

RESULTADOS:

Velocidad	Presión mí- nima	Presión má- xima	Corriente min	Corriente max
10 Hz				
20 Hz				
30 Hz				
40 Hz				
50 Hz				

60 Hz	

ANEXOS:

Anexo 1: Conexión de la pinza perimétrica alrededor de uno de los conductores del motor para medir la corriente.

Anexo 2: Toma de datos de la presión generada por la bomba.

REFERENCIAS BIBLIOGRÁFICAS:

 Cerdá Foliu, L. M. (2023). Sistemas hidráulicos y neumáticos. Madrid: Ediciones Paraninfo.
 Panado C. Farméndaz I. Caraada I. & Ortiz F. (2020). Hidráulico: Universidad de Can

Renedo, C., Fernández, I., Carcedo, J., & Ortiz, F. (2020). Hidráulica. Universidad de Cantabria. Ruiz, A. (2021).

Fuente. Adaptado por la autora, 2024.

UNIVERSIDAD NACIONAL DE CHIMBORAZO

GUÍA DE PR	Versión 1	
PERIÓD	Pagina 1 de 1	
CARRERA:	DOCENTE:	SEMESTRE:
PRÁCTICA NO.	TEMA:	DURACIÓN:
	Análisis de la relación entre la co- rriente del motor y la presión de la unidad de potencia.	1h

- Medir la corriente consumida por el motor en función de la presión generada por la bomba.
- Controlar la velocidad del motor mediante el variador de frecuencia.
- Evaluar la relación entre frecuencia y presión.

EQUIPOS, MATERIALES E INSUMOS:

- Módulo de control.
- Pinza perimétrica.
- Manómetro de presión.
- Unidad de potencia.
- Hojas de registro.

PROCEDIMIENTO:

1. Preparación del sistema

- Comprobar que todos los componentes estén correctamente conectados y en buen estado.
- Verificar el nivel de fluido hidráulico y la ausencia de fugas.
- 2. Configuración inicial

-	Configurar el variador	de frecuencia	y el PLC para	el control mediante HMI
---	------------------------	---------------	---------------	-------------------------

- Asegurarse de que el sistema esté en reposo antes de iniciar las mediciones.

3. Medición de datos

Frecuencia Base (0 Hz):

u (A):
u (A):

Corriente máxima (A):

Presión mínima	(PSI):	
	· /	

	(DOD)	
Presión máxima	(PSI):	· · · · · · · · · · · · · · · · · · ·

Mediciones a Diferentes Frecuencias:

Frecuencia (Hz): 10

Corriente mínima (A):	
-----------------------	--

Corriente máxima (A): _____

Presión mínima (PSI): _____

Presión máxima (PSI):

Frecuencia (Hz): 20

Corriente mínima (A): _____

Corriente máxima (A):	
-----------------------	--

Presión mínima (PSI): _____

Presión máxima (PSI): _____

Frecuencia (Hz): 30

Corriente mínima (A):		
Corriente máxima (A):	-	
Presión mínima (PSI):	_	
Presión máxima (PSI):		
Frecuencia (Hz): 40		
Corriente mínima (A):		
Corriente máxima (A):	-	
Presión mínima (PSI):	_	
Presión máxima (PSI):		
Frecuencia (Hz): 50		
Corriente mínima (A):		
Corriente máxima (A):	-	
Presión mínima (PSI):	_	
Presión máxima (PSI):		
Frecuencia (Hz): 60		
Corriente mínima (A):		
Corriente máxima (A):	-	

Presión mínima (PSI): _____

Presión máxima (PSI): _____

RESULTADOS:

Velocidad	Presión mí- nima	Presión má- xima	Corriente min	Corriente max
10 Hz				
20 Hz				
30 Hz				
40 Hz				
50 Hz				
60 Hz				
ANEXOS:			•	

Anexo 1: Configuración del variador de frecuencia y PLC

Anexo 2: Verificación de presión del manómetro.

CKOMP. (08 de Abril de 2024). *Principios de hidráulica*. https://es.compass-auto-parts.com/blog/principles-of-hydraulic-clutch-slave-cylinder_b7

Donalson. 2020). *Sistemas hidráulicos y neumáticos. https://www.donaldson.com/es-es/engine/filters/technical-articles/what-do-filters-in-your-hydraulic-system-do/*

		Versión 1
GUIA DE PRACTICA DE LABORATORIO PERIÓDO ACADÉMICO 2024 1S		Pagina 1 de 1
CARRERA:	DOCENTE:	SEMESTRE:
PRÁCTICA NO.	TEMA:	DURACIÓN:
	Activación de válvulas solenoides.	1h

OBJETIVOS DE LA PRÁCTICA:

- Familiarizarse con la operación y configuración de un módulo de control y válvulas solenoides en un sistema hidráulico.
- Aprender a inspeccionar y preparar el sistema hidráulico para una operación segura.
- Configurar y operar las válvulas solenoides para controlar el flujo de aceite y el movimiento de los cilindros hidráulicos.
- Evaluar la interacción entre el módulo de control y las válvulas solenoides para asegurar un funcionamiento eficiente y seguro.

EQUIPOS, MATERIALES E INSUMOS:

- Estación hidráulica
- Módulo de control
- Válvulas solenoides
- Multímetro
- Hojas de datos.

PROCEDIMIENTO:

1. Verificación de Conexiones:

- Inspeccionar que el módulo de control y las electroválvulas estén correctamente conectados a la fuente de poder.
- Revisar el estado de los cables conductores.
- Verificar el nivel de aceite en el tanque y asegurarse de que no haya fugas.
- Verificar que las mangueras de alta presión estén correctamente conectadas.
- Asegurarse de que las válvulas que no se van a utilizar estén cerradas e inactivas.

2. Activación de Breakers:

- Activar los breakers del módulo de control y de las electroválvulas para permitir el paso de corriente.

3. Cableado:

Funciones de cada cable

- Cable Blanco: Conecta la corriente alterna de 220V al solenoide de la válvula.
- Cable Verde: Controla el avance del pistón.
- Cable Negro: Controla el retroceso del pistón.

4. Configuración Inicial:

- Después de activar el breaker del módulo, configurar manualmente los parámetros de arranque y parada del variador de frecuencia.
- Verificar que el módulo gestione adecuadamente la operación del sistema para evitar condiciones inseguras.

5. Configuración de Frecuencia:

- Seleccionar la frecuencia deseada en el HMI para el motor de la bomba. (Este ajuste inicia automáticamente el motor y el sistema de bombeo).

6. Operación de Válvulas Solenoides:

- Manipular los breakers para activar las electroválvulas, permitiendo el flujo de aceite que mueve los pistones.

RESULTADOS:

Frecuencia Seleccionada (Hz): _____ Corriente Consumida (A): _____ Presión Generada (PSI): _____ Estado de Válvulas (Abierta/Cerrada): Observaciones:

- Resumir los hallazgos y el rendimiento del sistema.
- Discutir la efectividad de los procedimientos de seguridad implementados y proponer mejoras.

ANEXOS:

Anexo 1: Activación de válvulas solenoides.

Anexo 2: Configuración del módulo de control a diferentes frecuencias de operación.

GARÍN, E., BRANDA, J., & DIFEO, M. (2019). *Máquinas y Accionamientos Eléctricos (3M4)*. Mar de Plata: UNIVERSIDAD NACIONAL de MAR DE PLATA.

Hernández Mendoza, S. L., & Duana Ávila, D. (2020). Técnicas e instrumentos de recolección de datos. *Boletín Científico de las Ciencias Económico Administrativas del ICEA*, 51.

GUÍA DE PRÁCTICA DE LABORATORIO PERIÓDO ACADÉMICO 2024 1S		Versión 1
		Pagina 1 de 1
CARRERA:	DOCENTE:	SEMESTRE:
PRÁCTICA NO.	TEMA:	DURACIÓN:
	Programación de la pantalla HMI	1h

OBJETIVOS DE LA PRÁCTICA:

- Programar el variador de frecuencia SV022iG5A-2
- Configurar las entradas de terminales para diferencias frecuencias de la operación.

EQUIPOS, MATERIALES E INSUMOS:

- Pantalla HMI.
- Cable RS232.
- Computadora con puerto serial y el programa OP Series Edit Tool instalado.
- Variador de frecuencia SV022iG5A-2
- Estación hidráulica con bomba.
- Manual de operación del variador de frecuencia y de la HMI.
- Herramientas de conexión eléctrica.

PROCEDIMIENTO:

1. Conexión de la Pantalla HMI a la Computadora:

- Conectar la pantalla HMI al puerto serial de la computadora utilizando el cable RS232 (Figura 56).
- Verificar que la conexión sea correcta comprobando que el puerto aparezca en el panel OP de la computadora (command 8).
- 1. Configuración Inicial en OP Series Edit Tool:
- Abrir el programa OP Series Edit Tool en la computadora.

- Crear un nuevo proyecto o abre un proyecto existente para configurar la pantalla HMI.
- Acceder a las opciones de configuración para establecer la comunicación con la HMI a través del puerto serial.

2. Diseño de la Pantalla HMI:

- Screen (Pantalla): Agregar una nueva pantalla y utilizar este comando para generar múltiples pantallas y facilitar la navegación entre ellas.
- Screen Attribute (Atributos de Pantalla): Agregar descripciones a las pantallas, texto y definir el número de pantallas a insertar. Utiliza "Previous Screen" para navegar a la pantalla anterior y "New Screen" para agregar nuevas pantallas.
- Function Key (Tecla de Función): Extraer teclas de función de la barra de botones.
- Texto: Insertar ventanas de texto en cualquier lugar de la pantalla que se visualizarán en el panel físico (Figura 57).

3. Configuración de Pantallas Específicas:

- Pantalla INICIO: Crear una pantalla inicial con una carátula de la bomba hidráulica.
- Pantalla CONTROL: Crear una pantalla de control para manejar el variador de frecuencia (Figura 58).
- Programación de Funcionalidades:
- Botón de Salto: Agregar un botón que permita pasar rápidamente de una pantalla a otra.
- Buttons (Botones): Definir y etiquetar los botones que aparecerán en el panel. Estos botones permitirán la selección de frecuencias para el variador.
- Commands (Comandos): Insertar comandos que controlen el variador de frecuencia. Define botones numerados del 0 al 6, donde cada botón corresponde a una frecuencia específica (Tabla 18).

Tabla de Comandos para Controlar el Variador (Tabla 18):

Botones Frecuencia

0	0 Hz
1	10 Hz
2	20 Hz
3	30 Hz
4	40 Hz
5	50 Hz
6	60 Hz

4. Verificación y Prueba:

- Cargar el proyecto en la pantalla HMI.
- Verificar que las pantallas y botones funcionan correctamente.

- Conectar la pantalla HMI al variador de frecuencia y verificar que los comandos enviados desde la HMI controlan adecuadamente la frecuencia del variador.
- Realizar pruebas seleccionando diferentes frecuencias y observar la respuesta del sistema.

RESULTADOS:

- Documentar las pruebas realizadas y los resultados obtenidos.
- Anotar cualquier observación o discrepancia que pueda surgir durante la programación y la prueba de la HMI.

ANEXOS:

Anexo 1: Configuración del variador a través del HMI.

Fourters Marine	
Contractione La contractidad Discrete 1 storte 4 -storte Ziscorte 5 -50Hz	

Anexo 2: Configuración de la portada del HMI

Paulcciautopartes.com.ar. (2020). *Guía práctica*. https://www.paulucciautopartes.com.ar/descargas/GuiaPractica-Paulucci-PartesCilindroMaestro.pdf

Pérez Pupo , R. (2018). *Sistemas hidráulicos en la maquinaria agrícola*. Riobamba: Escuela Superior Politécnica de Chimborazo.

		Versión 1
GUIA DE PRACTICA DE LABORATORIO PERIÓDO ACADÉMICO 2024 1S		Pagina 1 de 1
CARRERA:	DOCENTE:	SEMESTRE:
PRÁCTICA NO.	TEMA:	DURACIÓN:
	Programación del variador de fre- cuencia.	1h

OBJETIVOS DE LA PRÁCTICA:

- Programar el variador de frecuencia SV022iG5A-2.
- Configurar las entradas de terminales para diferencias frecuencias de la operación.

EQUIPOS, MATERIALES E INSUMOS:

- Variador de frecuencia SV022iG5A-2.
- Estación hidráulica.
- Sistema de bombeo de aceite.
- HMI configurado con frecuencias de 0 Hz a 60 Hz.
- Computadora con software de programación del variador.

PROCEDIMIENTO:

1. Configuración de Parámetros Básicos:

- Encender el variador de frecuencia.
- Utilizar las teclas de dirección para navegar al "Drive Group".
- Configurar los parámetros básicos como la frecuencia objetivo, tiempo de aceleración y desaceleración.

2. Asignación de Funciones a Terminales de Entrada:

- Navegar al "I/O Group" utilizando las teclas de dirección.
- Asignar funciones a los terminales P6, P7, P8 para frecuencia baja, media y alta respectivamente. Asignar la función de "RUN" al terminal P4.
- Seguir el siguiente procedimiento para cada terminal:

- Seleccionar el terminal correspondiente (P6, P7, P8).
- Asignar la frecuencia deseada (por ejemplo, frecuencia baja a P6, media a P7 y alta a P8).
- Guardar la configuración presionando el botón ENTER.
- 3. Asignación de Funciones a Terminales de Entrada:
- Navegar al "I/O Group" utilizando las teclas de dirección.
- Asignar funciones a los terminales P6, P7, P8 para frecuencia baja, media y alta respectivamente. Asignar la función de "RUN" al terminal P4.
- Seguir el siguiente procedimiento para cada terminal:
- Seleccionar el terminal correspondiente (P6, P7, P8).
- Asignar la frecuencia deseada (por ejemplo, frecuencia baja a P6, media a P7 y alta a P8).
- Guardar la configuración presionando el botón ENTER.

4. Prueba de Funcionamiento:

- Seleccionar la frecuencia baja (P6) y presione el botón RUN.
- Verificar que la bomba opere a la frecuencia asignada.
- Medir la velocidad de la bomba y el tiempo de movimiento del pistón.
- Repetir el procedimiento para frecuencias media (P7) y alta (P8).

RESULTADOS:

- Anotar los tiempos de operación para cada frecuencia.
- Comparar los tiempos obtenidos con los tiempos teóricos calculados anteriormente.

ANEXOS:

Anexo 1: Configuración de terminales del variador de frecuencia.

Pérez Pupo, R., & Navarro Ojeda, M. (2020). *Oleodráulica*. Riobamba: Escuela Superior Politécnica de Chimborazo.

ACCA Engieneering. (2021). ¿*Qué son los Sistemas de Bombeo?* https://www.vacca.es/que-son-los-sistemas-de-bombeo/#:~:text=Si%20te%20preguntas%20qu%C3%A9%20son,de%20caudal%20en%20estos%20procesos.

GUÍA DE PRÁCTICA DE LABORATORIO PERIÓDO ACADÉMICO 2024 1S		Versión 1
		Pagina 1 de 1
CARRERA:	DOCENTE:	SEMESTRE:
PRÁCTICA NO.	TEMA:	DURACIÓN:
	Cálculo y verificación de los tiem- pos de movimiento del pistón de la estación hidráulica.	1h

OBJETIVOS DE LA PRÁCTICA:

- Calcular los tiempos de movimientos del pistón en función de la frecuencia de operación de la bomba.

- Usar curvas características de la ficha técnica de la bomba y los cálculos de tiempos teóricos.

EQUIPOS, MATERIALES E INSUMOS:

- Estación hidráulica
- Variador de frecuencia
- HMI
- Manual de operación de la estación hidráulica
- Cronómetro
- Calculadora

PROCEDIMIENTO:

1. Cálculo del volumen del cilindro

- Determinar el diámetro y la carrera del pistón del cilindro hidráulico aplicando las siguiente El área base se calcula de la siguiente forma:

$$A = \pi \times r^2$$

Donde:

R es el radio de la base del cilindro.

- Luego se aplica la fórmula completa para el volumen del cilindro:

V es el volumen del cilindro.

A es el área de la base del cilindro.

L es la longitud o altura del cilindro.

2. Determinación del caudal de la bomba.

Extraer la curva característica de la bomba.
Identificar el caudal (Q) de la bomba a diferentes frecuencias (de 0 Hz a 60 Hz).

3. Cálculos de tiempos teóricos

- Despejar el tiempo de la fórmula del caudal:

$$Q = \frac{V}{t}$$
$$t = \frac{V}{Q}$$

 $V = A \times L$

Donde:

Q: Caudal.

V: Volumen.

T: tiempo.

- Calcular los tiempos teóricos para cada frecuencia.

RESULTADOS:

Registrar los datos medidos para cada frecuencia.

Comparar los tiempos medidos con los tiempos teóricos calculados.

ANEXOS:

Anexo 1: Toma de tiempos avance y retroceso del pistón.

Secretaría General de Agricultura y Alimentación. (2021). *Tecnocontrol - Electroválvulas*. https://inprocess.com.pe/datasheets/valvulas/valvulas-solenoides/Danfoss/Danfoss-Ma-nual_Usuario.pdf

CKOMP. (08 de Abril de 2024). *Principios del cilindro esclavo del embrague hidráulico*. https://es.compass-autoparts.com/blog/principles-of-hydraulic-clutch-slave-cylinder_b7