

UNIVERSIDAD NACIONAL DE CHIMBORAZO VICERRECTORADO DE INVESTIGACIÓN, VINCULACIÓN Y POSGRADO

DIRECCIÓN DE POSGRADO

TESIS PREVIA A LA OBTENCIÓN DEL GRADO DE:

MAGÍSTER EN INGENIERÍA AMBIENTAL CON MENCIÓN EN RECURSOS HÍDRICOS

TEMA:

"IDENTIFICACIÓN DE UNA ZONA DE INTERÉS HÍDRICA EN EL ÁREA DE CONSERVACIÓN Y USO SUSTENTABLE (ACUS) EN LA PROVINCIA DE BOLIVAR"

AUTOR:

Ing. Alexander Xavier Larrea Berrones

TUTOR:

Ing. Benito Guillermo Mendoza Trujillo, PhD.

Riobamba – Ecuador 2024

ii

Certificación del Tutor

Certifico que el presente trabajo de titulación denominado: "IDENTIFICACIÓN DE UNA ZONA DE INTERES HÍDRICA EN EL ÁREA DE CONSERVACIÓN Y USO SUSTENTABLE (ACUS) EN LA PROVINCIA DE BOLIVAR", ha sido elaborado por el Ingeniero Alexander Xavier Larrea Berrones, el mismo que ha sido orientado y revisado con el asesoramiento permanente de mi persona en calidad de Tutor. Así mismo, refrendo que dicho trabajo de titulación ha sido revisado por la herramienta antiplagio institucional; por lo que certifico que se encuentra apto para su presentación y defensa respectiva.

Es todo cuanto puedo informar en honor a la verdad.

Riobamba, 06 de enero, de 2025

Ing. Benito Guillermo Mendoza Trujillo, PhD.

TUTOR

iii

Declaración de Autoría y Cesión de Derechos

Yo, Alexander Xavier Larrea Berrones, con número único de identificación 0604210526.

declaro y acepto ser responsable de las ideas, doctrinas, resultados y lineamientos

alternativos realizados en el presente trabajo de titulación denominado: "Identificación de

una zona de interés hídrica en el Área de Conservación y Uso Sustentable (ACUS) en

la provincia de Bolívar" previo a la obtención del grado de Magíster en Ingeniería

Ambiental con mención en Recursos Hídricos.

• Declaro que mi trabajo investigativo pertenece al patrimonio de la Universidad

Nacional de Chimborazo de conformidad con lo establecido en el artículo 20 literal j)

de la Ley Orgánica de Educación Superior LOES.

• Autorizo a la Universidad Nacional de Chimborazo que pueda hacer uso del referido

trabajo de titulación y a difundirlo como estime conveniente por cualquier medio

conocido, y para que sea integrado en formato digital al Sistema de Información de la

Educación Superior del Ecuador para su difusión pública respetando los derechos de

autor, dando cumplimiento de esta manera a lo estipulado en el artículo 144 de la Ley

Orgánica de Educación Superior LOES.

Riobamba, enero del 2025

Ing. Alexander Xavier Larrea Berrones

N.U.I. 060421052-6

Agradecimiento

Quiero expresar mi más profundo agradecimiento a todas las personas e instituciones que hicieron posible la realización de este proyecto. En primer lugar, agradezco a Dios y a la virgen María por la perseverancia y sabiduría para culminar este trabajo.

A la Universidad Nacional de Chimborazo por brindarme la oportunidad de formarme como profesional y por los conocimientos impartidos por sus distinguidos docentes, quienes siempre estuvieron dispuestos a compartir su experiencia y sabiduría. Agradezco de manera especial a mi tutor Dr. Benito Mendoza, por su orientación y mentoría.

A mi familia, por su amor incondicional, su apoyo constante y su paciencia infinita durante todo este proceso, particularmente, agradezco el consejo y amor de mis abuelitos; Graciela Valencia y Eriberto Berrones. Ustedes son mi mayor motivación y fuente de inspiración.

Finalmente, agradezco a mi pareja y amigos, que de una u otra forma, estuvieron presentes para compartir conocimientos, brindarme su apoyo y animarme a seguir adelante.

Dedicatoria

Dedico este trabajo, de manera muy especial a mi madre Mery Berrones, a mi padre Francisco Larrea, a mi hermana Dayanna Larrea, por haberme inculcado valores de esfuerzo, perseverancia y amor por el conocimiento. Su sacrificio y apoyo incondicional han sido pilares fundamentales en mi vida y en el logro de esta meta.

Finalmente, dedico este proyecto a todos aquellos que creen en la importancia de cuidar nuestro planeta, preservando los ecosistemas y trabajando por un desarrollo sustentable. Que este esfuerzo inspire más acciones en pro de nuestra madre tierra.

Alexander Xavier Larrea Berrones

Índice General

Certificación	del Tutorii
Declaración d	de Autoría y Cesión de Derechosiii
Agradecimie	ntoiv
Dedicatoria	v
Índice Genera	alvi
Índice de Tab	olasx
Índice de Fig	urasxi
Resumen	xiii
Abstract	xiv
Introducción	1
Capítulo 1 Go	eneralidades2
1.1 Plante	eamiento del problema
1.2 Justific	cación de la investigación3
1.3 Objeti	ivos
1.3.1 C	Objetivo General3
1.3.2 C	Objetivos específicos
Capítulo 2 E	stado del Arte y la Práctica4
2.1 Anteco	edentes Investigativos4
2.2 Funda	mentación Legal5
2.2.1 L	egislación internacional5
2.2.2 L	Ley de recursos hídricos
2.3 Funda	mentación Teórica6
2.3.1 C	Ciclo hidrológico6

2.3.2	Cuenca hidrográfica	6
2.3.3	Recarga hídrica	6
2.3.4	Geomorfología de la cuenca hidrográfica	6
2.3.5	Evaluación hidrológica	7
2.3.6	Áreas protegidas	7
2.3.7	Áreas de conservación y uso sustentable	7
2.3.8	Categoría de áreas protegidas	7
2.3.9	Conservación de la biodiversidad	8
2.3.10	Desarrollo sostenible	8
2.3.11	Servicios ecosistémicos	8
2.3.12	Estrategias de conservación	9
Capítulo 3	3 Diseño Metodológico	9
3.1 En	nfoque de la Investigación	9
3.2 Dis	seño de la Investigación	10
3.3 Ár	rea de estudio	10
3.4 Té	cnicas e instrumentos de muestreo y recolección de datos	12
3.5 Fas	ses metodológicas	12
3.5.1	Selección de insumos	13
3.5.2	Delimitación y priorización de unidades hidrográficas	14
3.5.3	Delimitación y priorización de unidades hidrográficas	16
3.5.4	Cálculo de los parámetros de forma, red y relieve de las u	unidades
hidrográficas ¡	prioritarias	17
3.5.5	Identificación de los puntos de monitoreo	19
3.5.6	Recolección de muestras de suelo	19
3.5.7	Pruebas de infiltración	20

3.5.8	Modelación hidrológica	20
3.5.9	Delimitación de zonas de interés hídrico	20
3.5.10	Propuesta de preservación	21
Capítulo 4	Análisis y Discusión de los Resultados	21
4.1 Aná	lisis descriptivo de los resultados	21
4.1.1	Delimitación de unidades hidrográficas prioritarias	21
4.1.2	Caracterización de la microcuenca del río Piñanato	23
4.1.3	Caracterización de la microcuenca del río Suquibi	25
4.1.4	Caracterización de la microcuenca del río Chimbo	26
4.1.5	Puntos de muestreo	27
4.1.6	Análisis de la capacidad de infiltración	29
4.1.7	Modelamiento hidrológico	31
4.1.8	Delimitación de áreas de protección hídrica	37
4.2 Disc	cusión de los Resultados	41
Capítulo 5.		43
Conclusion	es	43
Recomenda	aciones	44
Referencias	s Bibliográficas	45
Apéndice		48
Apéndice	A. Puntos de monitoreo	48
Apéndice	B. Hoja de ruta	50
Apéndice	C. Identificación satelital	52
Apéndice	D. Capacitación técnica metodológica	53
Apéndice	E. Ficha de Infiltración	54
Apéndice	F. Parámetros morfométricos	56

Apéndice G. Modelo hidrológico	59
Apéndice H. Resultados del modelamiento UHP	.61
Apéndice I. Resultados del modelamiento UHS	63
Apéndice J. Resultados del modelamiento UHC	65
Apéndice K. Registro fotográfico	67

Índice de Tablas

Tabla 1. Categorías de manejo de áreas protegidas de la UCIN
Tabla 2: Parámetros morfométricos de la Unidad Hidrográfica Piñanato (U.H.P)24
Tabla 3: Parámetros morfométricos de la U.H.S
Tabla 4: Parámetros morfométricos de la Unidad Hidrográfica Chimbo (U.H.C)26
Tabla 5: Intersección de la cobertura y la taxonomía de las Unidades Hidrográficas
Prioritarias de nivel 528
Tabla 6: Asignación de CN para la UHP31
Tabla 7: Asignación de CN para la UHS32
Tabla 8: Asignación de CN para la UHC32
Tabla 9: Actores involucrados
Tabla 10: Programa de Fortalecimiento de la Conservación Hídrica en el ACUS de Bolívar
41

Índice de Figuras

Figura 1: Tipos de servicios ecosistémicos	8
Figura 2. Mapa de ubicación del Área de Conservación y Uso Sustentable Bolívar	11
Figura 3: Infiltrómetro de doble anillo y permeámetro de carga variable	12
Figura 4: Diagrama de flujo de la metodología aplicada a la investigación	13
Figura 5: Insumos recolectados en base a la Provincia de Bolívar	15
Figura 6: División Política de la Provincia de Bolívar.	16
Figura 7: Proceso de la delimitación automática (PFAFSTETTER)	19
Figura 8: Delimitación de la microcuenca del río Piñanato.	22
Figura 9: Delimitación de la microcuenca del río Suquibi	22
Figura 10: Delimitación de la microcuenca del río Chimbo	23
Figura 11: Curva hipsométrica de la U.H.P	25
Figura 12: Curva hipsométrica de la Unidad Hidrográfica Suquibi (U.H.S)	25
Figura 13: Curva Hipsométrica de la U.H.C	27
Figura 14: Identificación de puntos de muestreo	28
Figura 15: Capacidad de infiltración en la UHP	29
Figura 16: Capacidad de infiltración en la UHS	30
Figura 17: Capacidad de infiltración en la UHC	30
Figura 18: Curvas IDF LIHP	33

Figura 19: Curvas IDF UHS	34
Figura 20: Curvas IDF UHC	34
Figura 21: Relación de Precipitación a Escorrentía de la UHP	35
Figura 22: Relación de Precipitación a Escorrentía de la UHS	36
Figura 23: Relación de Precipitación a Escorrentía de la UHC	36
Figura 24: Fuentes de agua priorizadas	37
Figura 25: Zonas de interés hídrico	38
Figura 26: Zonas de Interés Hídrico parte 2	39

Resumen

El presente trabajo aborda la identificación, priorización y propuesta de estrategias de conservación para las fuentes de agua en el Área de Conservación y Uso Sustentable (ACUS) de la provincia de Bolívar, Ecuador. Mediante el uso de herramientas de modelación hidrológica como HEC-HMS, análisis de curvas IDF y estudios de las características de las cuencas Piñanato, Suquibi y Chimbo, estimando los caudales medios e identificando las fuentes hídricas prioritarias con base en su ubicación, uso predominante (consumo humano), volúmenes de caudal y cruce de información con las parroquias locales.

Se determinaron un total de 8 concesiones hídricas prioritarias, cuya conservación resulta fundamental para garantizar el abastecimiento de agua y la sostenibilidad ambiental. A partir de esta priorización, se propuso un plan de manejo basado en actividades como la reforestación, el control del uso del suelo, el fortalecimiento institucional y la educación ambiental, con la colaboración de actores clave como el Proyecto NDT (CONDESAN), la Gobierno Provincial de Bolívar, juntas parroquiales, cabildos comunitarios y las universidades (UNACH, ESPOCH y UEB)

En este contexto, los resultados destacan la importancia de conservar las áreas de mayor recarga hídrica y de implementar medidas efectivas para proteger la calidad y disponibilidad del agua. Este estudio evidencia cómo la integración de herramientas técnicas, la participación comunitaria y la colaboración interinstitucional son esenciales para la gestión sostenible de los recursos hídricos en zonas de alta sensibilidad ambiental.

Palabras claves: recursos hídricos, conservación, cuencas hidrográficas, áreas protegidas, modelación hidrológica.

Abstract

This study urgently focuses on identifying, prioritizing, and proposing conservation strategies for water sources within the Conservation and Sustainable Use Area (ACUS) of Bolívar Province, Ecuador. The research estimates average flows using hydrological modeling tools such as HEC-HMS, IDF curve analysis, and studies of the Piñanato, Suquibi, and Chimbo watersheds. It identifies priority water sources based on location, predominant use (human consumption), flow volumes, and cross-referencing with local parish data. Eight priority water concessions were identified, whose conservation is critical for ensuring water supply and environmental sustainability. Based on this prioritization, a management plan was proposed, including reforestation, land-use control, institutional strengthening, and environmental education. Key stakeholders in this effort include the NDT Project (CONDESAN), the Provincial Government of Bolívar, parish councils, community boards, and universities (UNACH, ESPOCH, and UEB). In this context, the findings underscore the importance of conserving areas with significant water recharge potential and implementing effective measures to protect water quality and availability. This study demonstrates how integrating technical tools, community participation, and interinstitutional collaboration is essential for the sustainable management of water resources in environmentally sensitive regions.

Keywords: water resources, conservation, watersheds, protected areas, hydrological modeling.

Reviewed by:

Mgs. Kerly Cabezas

ENGLISH PROFESSOR

I.D. 0604042382

Introducción

El manejo sostenible de cuencas hidrográficas es de vital importancia para la conservación del medio ambiente, ya que, permite aprovechar los recursos naturales disponibles de forma equilibrada sin causar daño o alteraciones graves al ecosistema. La disponibilidad de agua a nivel mundial se ve afectado por diversos factores, como, el crecimiento poblacional, gestión inadecuada y degradación del recurso hídrico (Mier, 2022).

En Ecuador, los análisis referentes a cuencas hidrográficas son limitados y en la mayor parte del territorio se desconoce su importancia. Esta problemática ocasiona una distribución ineficiente del recurso hídrico a las poblaciones contiguas a estas fuentes de agua, así también, la creciente presión sobre los recursos naturales, derivada de actividades como la agricultura intensiva, la expansión urbana y el cambio climático, ha puesto en riesgo la sostenibilidad hídrica (Maldonado, 2024).

En este sentido, las Áreas de Conservación y Uso Sustentable (ACUS) surgen como una estrategia para equilibrar la protección de los recursos naturales con el desarrollo socioeconómico local (Acosta, 2021). La provincia de Bolívar, ubicada en la región central del Ecuador, se caracteriza por una diversidad de ecosistemas y una rica oferta hídrica, que son esenciales para el bienestar de sus comunidades y la preservación de su biodiversidad (Salazar, 2024).

El presente trabajo de investigación tiene como objetivo identificar y caracterizar las zonas de interés hídrico dentro del ACUS en la provincia de Bolívar, utilizando herramientas de análisis geoespacial y criterios técnicos de conservación. Los resultados obtenidos permiten realizar un análisis espacial de la priorización de áreas de interés hídrico y proponer medidas de conservación y recuperación mediante un plan de gestión.

Capítulo 1

Generalidades

1.1 Planteamiento del problema

La provincia de Bolívar se enfrenta a una serie de desafíos interconectados en la gestión y conservación de sus recursos hídricos, que son vitales para la sostenibilidad ambiental y el bienestar humano. Estos desafíos están influenciados por una combinación de factores, que van desde el crecimiento poblacional hasta las prácticas industriales contaminantes (Chicaiza, 2024).

En primer lugar, el crecimiento poblacional en la provincia ejerce presión sobre los recursos hídricos, resultando en una mayor demanda de agua para el consumo humano, la agricultura y la industria. Esta demanda promueve la sobreexplotación de fuentes de agua superficiales y subterráneas, agotando los acuíferos locales y disminuyendo la disponibilidad de agua para usos diversos (Cobeña-Navarrete et al., 2023).

Además, la captación de agua en condiciones de mala calidad es una preocupación significativa en la región, muchas comunidades rurales dependen de fuentes de agua contaminadas por desechos industriales, agroquímicos y desechos humanos, lo que resulta en problemas de salud pública y degradación ambiental (Hervas & Tiviano, 2021).

En este sentido, el mínimo abastecimiento para el consumo humano es crítico, ya que, a pesar de los esfuerzos para garantizar el acceso al agua potable muchas comunidades en Bolívar aún carecen de sistemas de suministro adecuados, lo que les expone a riesgos de enfermedades transmitidas por el agua y condiciones insalubres de vida (Sanabria Yépez et al., 2022).

Por otra parte, la deforestación es un factor adicional que agrava la crisis hídrica en la provincia, la pérdida de cobertura forestal ha degradado también ecosistemas acuáticos, aumentando la erosión del suelo, reduciendo la infiltración del agua y aumentando los riesgos de inundaciones y deslizamientos de tierra (Larrea & Maldonado, 2022).

Por último, la contaminación hídrica causada por las industrias quesera y minera representa una amenaza significativa para la calidad del agua en Bolívar, los vertidos de desechos y productos químicos contaminantes contribuyen a la eutrofización, la acidificación y la toxicidad de los cuerpos de agua(Palacios, 2019).

En este sentido, el problema central que aborda esta investigación radica la carencia de identificación de las zonas de interés hídrico dentro del ACUS en Bolívar, limitando la capacidad de implementar estrategias de conservación efectivas que protejan tanto el recurso hídrico como a las comunidades que dependen de él.

1.2 Justificación de la investigación

En este contexto, surge la necesidad urgente de identificar y caracterizar las zonas de interés hídrico dentro del ACUS en la provincia de Bolívar. Con un conocimiento claro de las áreas prioritarias para la conservación hídrica, las acciones de manejo y protección del recurso pueden ser insuficientes o ineficaces, determinando las zonas críticas para la conservación de los recursos hídricos, con el fin de contribuir a una gestión más eficiente y sostenible del agua en la región, asegurando su disponibilidad y calidad para las generaciones actuales y futuras. Además, este trabajo busca generar conocimiento técnico y científico sobre las áreas críticas para la conservación hídrica en la provincia de Bolívar, e incidir en la toma de decisiones a nivel local y regional, promoviendo un enfoque integral y sostenible en la gestión de los servicios ecosistémicos.

1.3 Objetivos

1.3.1 Objetivo General

• Identificar una zona de interés hídrica en el Área de Conservación y Uso Sustentable (ACUS) de la Provincia de Bolívar.

1.3.2 Objetivos específicos

- Definir las cuencas hidrográficas de nivel 5 a traves de la metodología pfasteter prioritarias en el Área de Conservación y Uso Sustentable (ACUS) de la provincia de Bolívar.
- Analizar las propiedades hídricas de las cuencas hidrográficas de nivel 5 prioritarias en el (ACUS) de la provincia de Bolívar.
- Delimitar la zona de interés hídrico y elaborar propuestas de preservación en el Área de Conservación y Uso Sustentble (ACUS) de la provincia de Bolívar.

Capítulo 2

Estado del Arte y la Práctica

2.1 Antecedentes Investigativos

La provincia de Bolívar, ubicada en la sierra central de Ecuador, se enfrenta a una creciente preocupación por la gestión sostenible de sus recursos hídricos, así también, el avance de la frontera agrícola por causa del crecimiento poblacional, las prácticas agropecuarias y la degradación de la tierra, amenazan el buen vivir de la población, por lo tanto, la zonificación de áreas de conservación y restauración ecológica es un proceso fundamental para ordenar el territorio en miras de consolidar un desarrollo sostenible y mantener los servicios ecosistémicos que sustentan la vida (Hervas & Tiviano, 2021).

A nivel internacional, se han desarrollado metodologías para la identificación de zonas de interés hídrico en áreas protegidas. Estudios como el de Poole et al. (2020) y Grafton et al. (2021) han propuesto el uso de herramientas de análisis geoespacial y modelación hidrológica para identificar áreas prioritarias para la conservación hídrica en regiones vulnerables. Estos enfoques han demostrado ser efectivos para integrar variables ambientales, sociales y económicas en la planificación de la gestión del agua.

A nivel nacional, varios estudios han abordado la problemática de los recursos hídricos en diferentes provincias de Ecuador. El Plan Nacional de Recursos Hídricos del Ecuador (2020) identifica la gestión del agua como un tema clave para la sostenibilidad del país, señalando la importancia de integrar el enfoque ecosistémico en las estrategias de manejo. Sin embargo, las investigaciones centradas en la provincia de Bolívar han sido limitadas, lo que evidencia una brecha en el conocimiento sobre las dinámicas hidrológicas específicas de la región.

Por otro lado, investigaciones como la de Jarrín (2019) han analizado los impactos de la deforestación y la expansión agrícola en la disponibilidad de agua en regiones andinas de Ecuador, destacando la interrelación entre la pérdida de cobertura vegetal y la degradación de los servicios ecosistémicos. Estas investigaciones sugieren que la conservación de los bosques y páramos es crucial para la regulación del ciclo hídrico y la recarga de acuíferos. Sin embargo, no existe un estudio específico que evalúe estas dinámicas dentro del contexto del ACUS en Bolívar, así también, el informe del Área de Conservación y Uso Sustentable elaborado por SENAGUA, (2019), desarrolla la zonificación provincial para la obtención del área de estudio. Los antecedentes revisados subrayan la necesidad de realizar una investigación enfocada en la identificación de zonas de interés hídrico dentro del ACUS en Bolívar, utilizando enfoques integradores que consideren tanto las dinámicas ambientales como los impactos socioeconómicos. Este estudio contribuirá a llenar el vacío de conocimiento existente y proporcionará herramientas valiosas para la gestión sostenible de los recursos hídricos en la provincia.

2.2 Fundamentación Legal

La gestión y conservación de los recursos hídricos en Ecuador está respaldada por un robusto marco legal, que busca garantizar el derecho al agua y promover el uso sostenible de este recurso vital. En el contexto de la provincia de Bolívar, y específicamente dentro del Área de Conservación y Uso Sustentable (ACUS), la presente investigación se enmarca en diversas normativas nacionales e internacionales que regulan la protección y gestión de los recursos hídricos y los ecosistemas asociados (Tello & Sánchez, 2019).

2.2.1 Legislación internacional

Convención sobre la Diversidad Biológica (1992): La Convención sobre la Diversidad Biológica establece la obligación de los Estados signatarios de conservar y utilizar de manera sostenible los recursos biológicos. En su artículo 8, la convención resalta la importancia de la conservación in situ, la cual incluye la protección de los ecosistemas y hábitats naturales, y el mantenimiento y recuperación de poblaciones viables de especies en su entorno natural. Este enfoque se aplica directamente a la conservación de las zonas hídricas críticas dentro de áreas protegidas como el ACUS (Herrera, 2022).

Agenda 2030 para el Desarrollo Sostenible: El Objetivo de Desarrollo Sostenible (ODS) 6 de la Agenda 2030 establece la meta de garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos. Este objetivo se relaciona directamente con la investigación, ya que la identificación de zonas hídricas prioritarias contribuye a mejorar la gestión y protección de los recursos hídricos en la provincia de Bolívar, promoviendo la sostenibilidad y equidad en el acceso al agua (Del Pilar, 2020).

2.2.2 Ley de recursos hídricos

Constitución de la República del Ecuador (2008): La Constitución del Ecuador garantiza el derecho al agua en varios artículos. El artículo 12 reconoce al agua como un derecho humano fundamental, y el artículo 318 establece que el agua es patrimonio estratégico de uso público, lo cual implica que su manejo debe priorizar la sostenibilidad y el interés colectivo. Además, el artículo 395 establece que las políticas ambientales deben garantizar la conservación y regeneración de los ciclos naturales, particularmente el agua, lo que respalda la identificación de zonas hídricas críticas en el ACUS (Salazar, 2024).

Código Orgánico del Ambiente (2017) Este código regula la protección de la naturaleza y los recursos naturales. El artículo 36 enfatiza la protección de áreas protegidas, como el ACUS, y promueve la conservación de ecosistemas estratégicos para la sostenibilidad hídrica. El artículo 70 subraya la importancia de proteger los ecosistemas que intervienen en la regulación del ciclo hidrológico, un principio clave para la identificación de zonas de interés hídrico en Bolívar. Además, el artículo 95 establece la necesidad de planes de manejo ambiental que consideren la sostenibilidad del agua (I. Mendoza, 2022).

Decreto Ejecutivo No. 1038 (2016) Este decreto establece los lineamientos para la gestión de las Áreas de Conservación y Uso Sustentable (ACUS), definiendo la necesidad de elaborar planes de manejo que incluyan la conservación de los recursos hídricos (Tello & Sánchez, 2019).

La identificación de zonas de interés hídrico en el ACUS de la provincia de Bolívar se alinea con los principios y disposiciones legales mencionados, contribuyendo al cumplimiento de las obligaciones ambientales y sociales del Ecuador, y asegurando la conservación y uso racional del agua para las generaciones futuras.

2.3 Fundamentación Teórica

2.3.1 Ciclo hidrológico

El ciclo hidrológico implica el movimiento del agua en la superficie terrestre, en la atmósfera y bajo tierra. En este proceso, el agua de océanos, mares, lagos, ríos y embalses se evapora, y esta evaporación es más intensa cuando la temperatura es alta y el ambiente es seco. Además, la vegetación también contribuye a la evaporación a través de la transpiración. Los factores climáticos, como la temperatura del aire, la intensidad del viento, la humedad relativa y la cantidad de radiación solar, junto con la densidad y el tipo de cobertura vegetal, son elementos clave que afectan a este ciclo (B. Mendoza, 2023).

2.3.2 Cuenca hidrográfica

La cuenca hidrográfica es un área definida topográficamente, drenada por un curso de agua o un sistema conectado de cursos de agua, que dispone de una salida simple para que todo el caudal efluente sea descargado (Larrea & Maldonado, 2022).

2.3.3 Recarga hídrica

La recarga hídrica es el proceso mediante el cual el agua se incorpora de forma natural desde fuentes externas, como la precipitación o el flujo de aguas superficiales y subterráneas, hacia los acuíferos. Este fenómeno tiene lugar en las llamadas zonas de recarga, caracterizadas por una alta capacidad de infiltración. En términos de gestión ambiental, es importante evaluar las tasas de recarga hídrica para proteger las zonas de recarga crítica, controlar la explotación de los acuíferos y mantener un equilibrio hídrico sostenible.

2.3.4 Geomorfología de la cuenca hidrográfica

Es el estudio de las formas y características del relieve dentro de una cuenca hidrográfica, así como a los procesos geológicos y geomorfológicos que las modelan. Esto incluye el análisis de la topografía, pendiente, altitud, y configuración del terreno, así como de los ríos, valles, colinas, montañas, suelos y otros componentes del paisaje (Jaya & Rodriguez, 2023).

2.3.5 Evaluación hidrológica

La evaluación hidrológica cuantifica las partes del ciclo hidrológico, como la precipitación, infiltración, escorrentía, evaporación, y almacenamiento de agua, con el objetivo de entender cómo se distribuye y se mueve el agua dentro de un sistema natural (Larrea & Maldonado, 2022).

Su importancia radica a nivel del ecosistema y norma el desarrollo de la actividad de una comunidad, como, regular el flujo de agua para evitar inundaciones y desprendimientos, gestión, sustento del agua dulce que es usada para el consumo humano, generación eléctrica, y preservar la belleza paisajista (B. Mendoza, 2021).

2.3.6 Áreas protegidas

El concepto de áreas protegidas indica que estos son lugares específicos que pueden o no ser reconocidos legalmente dentro de un país y tienen como objetivo la conservación de los valores culturales y los beneficios proporcionados por los sistemas ecológicos, estos espacios tienen un papel importante en la preservación de la biodiversidad y funciones de los ecosistemas, relacionados con la gestón de los recursos y el buen vivir (Chicaiza, 2024).

2.3.7 Áreas de conservación y uso sustentable

Las ACUS son áreas locales de vital importancia que pueden ser establecidas por las comunidades, sectores públicos, organizaciones de conservación ambiental, etc. estos espacios permiten relacionar la diversidad biológica y el desarrollo socioeconómico, sin poner en riesgo la integridad de los servicios ecosistémicos y mejorar la calidad de vida de las poblaciones locales (SENAGUA, 2019).

2.3.8 Categoría de áreas protegidas

Las categorías de áreas protegidas, se clasificó en seis categorizaciones dentro de la Conferencia Internacional para la Protección de la Fauna y la Flora Silvestre (Tabla 1).

Tabla 1. Categorías de manejo de áreas protegidas de la UCIN

Número	Categorías	Ejemplo
Ι	Protección estricta	 Reserva natural estricta
		 Área natural silvestre
II	Conservación y protección del ecosistema	 Parque Nacional
III	Conservación de los rasgos naturales	 Característica natural
		• Monumento
IV	Conservación mediante gestión activa	 Área de gestión de hábitat
		 Área de gestión de especies

Fuente: (Palacios, 2019).

2.3.9 Conservación de la biodiversidad

La conservación de la diversidad biológica abarca las acciones y estrategias destinadas a preservar la riqueza ecológica en distintas escalas espaciales y niveles de organización biológica, desde los genes hasta los sistemas ecológicos y paisajes (Santillán, 2022). Las diferentes escalas de la biodiversidad son fundamentales al momento de desarrollar estrategias de conservación, ya que para definir el objetivo de conservación es necesario identificar la escala a la que pertenece (Palacios, 2019).

2.3.10 Desarrollo sostenible

El concepto de desarrollo sostenible ha ido evolucionando con el tiempo. Inicialmente, surgió con el propósito de generar conciencia sobre la necesidad de equilibrar el desarrollo socioeconómico con la protección del medio ambiente, destacando que este progreso no puede alcanzarse sin la preservación de la naturaleza. Décadas más tarde, el concepto se ajustó al que actualmente tiene gran relevancia, definiendo el desarrollo sostenible como aquel que busca satisfacer las necesidades presentes de todos sin comprometer los recursos que las generaciones futuras requerirán para su propio bienestar (Santillán, 2022).

2.3.11 Servicios ecosistémicos

Figura 1: Tipos de servicios ecosistémicos

Fuente: (Mier, 2022).

Los servicios ecosistémicos son los beneficios que los seres humanos obtienen directa o indirectamente de los ecosistemas (figura 1). Estos servicios proporcionan recursos esenciales, regulan el clima y los ciclos biogeoquímicos, y ofrecen servicios culturales y recreativos. La conceptualización de los servicios ecosistémicos ha sido clave para reconocer el valor de la biodiversidad y los ecosistemas en la sostenibilidad de la vida en el planeta (Larrea & Maldonado, 2022).

2.3.12 Estrategias de conservación

En un escenario global donde el cambio climático altera los patrones de precipitación, intensifica sequías e incrementa el riesgo de inundaciones, la conservación de los servicios ecosistémicos hidrológicos es más relevante que nunca. La implementación de estrategias de conservación no solo protege los recursos hídricos, sino que también fortalece la resiliencia de las comunidades frente a los desafíos ambientales. Por ello, integrar estas estrategias en políticas públicas y planes de manejo territorial es crucial para garantizar un futuro sostenible (Larrea & Maldonado, 2022).

Los enfoques integrados reconocen la importancia de incorporar actores diversos y promover políticas públicas que armonicen el desarrollo económico con la conservación ambiental. Entre los enfoques más destacados se encuentran:

- Pago por servicios ecosistémicos (PSE): Proporcionar incentivos económicos a comunidades o propietarios de tierras por prácticas de conservación.
- **Corredores biológicos**: Establecimiento de conectividad entre áreas protegidas para facilitar el movimiento de especies (Margarita, 2019).

Capítulo 3

Diseño Metodológico

3.1 Enfoque de la Investigación

El enfoque de esta investigación es de tipo cuantitativo, ya que se basa en la recolección y análisis de datos para identificar y caracterizar zonas de interés hídrico en el Área de Conservación y Uso Sustentable (ACUS) de la provincia de Bolívar. Este estudio también tiene un enfoque descriptivo y exploratorio, dado que busca detallar las características geográficas, ecológicas y climáticas de la región para comprender mejor la dinámica de los recursos hídricos y su relación con las actividades humanas y la conservación del medio ambiente.

La investigación empleará técnicas de análisis geoespacial, como el uso de Sistemas de Información Geográfica (SIG) y datos satelitales, para identificar las áreas prioritarias dentro

del ACUS que requieren acciones de conservación hídrica. Además, se considerará la recolección de información de campo a través de mediciones directas, estudios hidrológicos y consultas con actores clave, lo que permitirá una visión integral del estado de los recursos hídricos en la región.

El enfoque cuantitativo se complementará con un análisis de la legislación y políticas ambientales relevantes, lo que permitirá contextualizar los hallazgos en el marco de la normativa vigente y proponer recomendaciones específicas para la gestión sostenible del recurso hídrico. Este enfoque integral busca no solo identificar las zonas críticas, sino también proporcionar una base sólida para la toma de decisiones en la gestión hídrica y la conservación del entorno natural en la provincia de Bolívar.

3.2 Diseño de la Investigación

El diseño de esta investigación será de tipo experimental, con un enfoque cuantitativo. Se centrará en la identificación de zonas de interés hídrico dentro del Área de Conservación y Uso Sustentable (ACUS) de la provincia de Bolívar, evaluando cómo diferentes intervenciones o cambios en las condiciones ambientales influyen en la dinámica de los recursos hídricos.

3.3 Área de estudio

La presente investigación se llevará a cabo en el Área de Conservación y Uso Sustentable (ACUS) de la provincia de Bolívar, ubicada en la región central de Ecuador (Figura 2). Bolívar se caracteriza por su diversidad geográfica y climática, que incluye desde zonas montañosas en la cordillera de los Andes hasta áreas de transición hacia la región costera. Esta variedad topográfica contribuye a la existencia de una amplia gama de ecosistemas, que van desde páramos hasta bosques secos y húmedos, los cuales desempeñan un papel crucial en la regulación del ciclo hidrológico de la región (Barragán, 2022).

El ACUS en Bolívar está destinado a la protección de los recursos naturales, con énfasis en la conservación de la biodiversidad y la gestión sostenible de los recursos hídricos. Dentro de este territorio se encuentran cuencas hidrográficas de gran importancia, que abastecen de agua a comunidades locales para su consumo, la agricultura, la ganadería y otras actividades productivas. Sin embargo, el área también enfrenta desafíos ambientales significativos, como la deforestación, la degradación del suelo, y la contaminación de fuentes hídricas por actividades industriales y agrícolas.

El área de estudio abarca varias cuencas hidrográficas dentro del ACUS, donde se identifican ecosistemas clave para la captación y regulación del agua. Estas cuencas incluyen ríos, lagunas y acuíferos subterráneos que son esenciales para la vida y el desarrollo económico de la provincia de Bolívar. Además, el ACUS está conformado por comunidades rurales que dependen directamente de los recursos naturales para su sustento, lo que hace crucial la implementación de estrategias de conservación hídrica que beneficien tanto al entorno natural como a las poblaciones **humanas.**

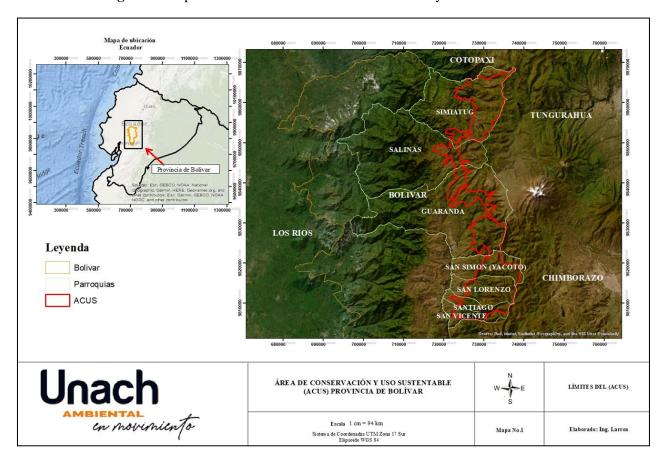


Figura 2. Mapa de ubicación del Área de Conservación y Uso Sustentable Bolívar

Fuente: Autor

Nota: El Área de Conservación y Uso Sustentable (ACUS) de la Provincia de Bolívar se encuentra ubicado con los límites de las provincias de Chimborazo, Tungurahua y Cotopaxi, así también, afecta directamente a las parroquias de Simiátug, Salinas, Guaranda, San Simón, San Lorenzo, Santiago y San Vicente.

3.4 Técnicas e instrumentos de muestreo y recolección de datos

Para el cumplimiento de los objetivos propuestos en el presente estudio, se utilizaron varios métodos, realizados por etapas, mismos que fueron sustentados en la revisión bibliográfica, el proceso metodológico comenzó con la selección y actualización de insumos, mismos que fueron cuidadosamente recolectados mediante plataformas confiables y verificables, así también, se utilizó geo visores, imágenes satelitales del área de influencia, softwares especializados en procesamiento geoespacial como ARC MAP, HEC HMS y métodos de campo enfocados en la identificación precisa de puntos de muestreo, específicamente, para la correcta recolección de datos sobre las propiedades hídricas de las microcuencas hidrográficas prioritarias. Para la selección de puntos de muestreo se realizó un análisis territorial que incluyó imágenes satelitales y el cruce de capas de taxonomía de suelos y cobertura. vegetal. Este proceso permitió identificar las clases de cobertura predominantes y definir áreas representativas para el muestreo en las microcuencas delimitadas. En campo, se emplearon instrumentos como el Infiltrómetro para medir la capacidad de infiltración del suelo y el permeámetro de carga variable para determinar la permeabilidad y conductividad hidráulica de las muestras de suelo. Estos datos contribuyen a una caracterización detallada de la dinámica hídrica en la zona de estudio, clave para la delimitación de las áreas de interés.

Figura 3: Infiltrómetro de doble anillo y permeámetro de carga variable

Fuente: (Larrea & Maldonado, 2022).

3.5 Fases metodológicas

La metodología se organiza en cinco fases: delimitación de unidades hidrográficas (Fase 1); análisis de las propiedades hídricas (Fase 2); modelamiento hidrológico (Fase 3); la delimitación de áreas de protección hídrica (Fase 4) y la evaluación de los resultados (fase 5). Cada fase incluye actividades específicas que contribuyen a una evaluación integral de la oferta y demanda hídrica y al desarrollo de estrategias de conservación.

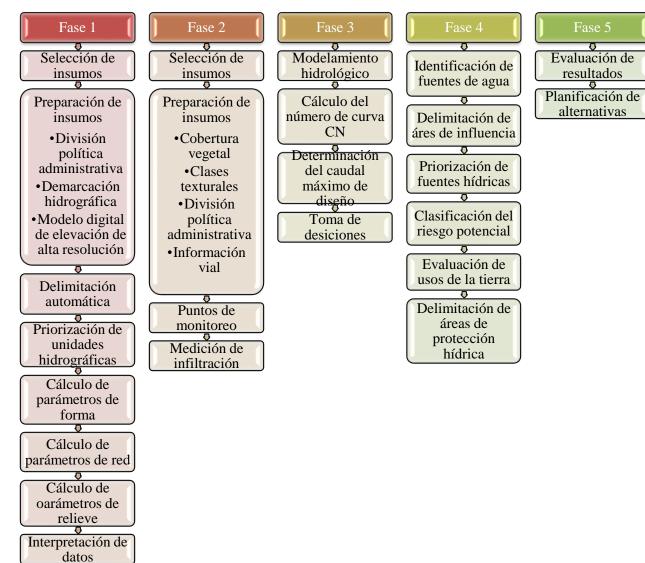


Figura 4: Diagrama de flujo de la metodología aplicada a la investigación.

3.5.1 Selección de insumos

En esta fase se evaluó el área de estudio y se reconoció la importancia del uso de información primaria, así también, una revisión de antecedentes, incluyendo la evaluación de unidades hidrográficas relevantes.

La preparación de insumos se centró en el mapeo sobre la zona potencial de agua, en base a diferentes parámetros de influencia, su interconexión y contribución a los movimientos y acumulaciones hídricas, así también, la elaboración de mapas temáticos para obtener un análisis específico del área de estudio (Herrera, 2022).

3.5.1.1 División política administrativa

El insumo se lo obtuvo del geo portal del Instituto Geográfico Militar (IGM), en formato Shapefile, así también, se solicitó la distribución comunal, a la organización denominada "Producción Humana" en el mismo formato para su procesamiento en el software ARC MAP.

3.5.1.2 Demarcación hidrográfica

Este recurso es de acceso libre y se encuentra disponible en el geo portal del Ministerio del Ambiente, Agua y Transición Ecológica (MAATE).

3.5.1.3 Modelo Digital de Elevación (MDE)

El 23 de octubre del 2024 se realizó un Intercambio de experiencias y capacitación para el fortalecimiento técnico de metodologías participativas en la ciudad de Quito/Ecuador en donde el (MATE) facilitó el insumo en alta resolución en formato editable para su correcto procesamiento y ejecución (figura 5).

3.5.1.1 Cobertura vegetal y taxonomía

La cobertura vegetal, entendida como las propiedades biofísicas de la superficie terrestre, corresponden a los diversos fines para los cuales los individuos utilizan estos atributos, influyen en el funcionamiento de los ecosistemas terrestres. Además, la textura del suelo es un atributo clave que afecta la capacidad de recarga hídrica. La interacción entre la cobertura vegetal y la taxonomía del suelo es crucial, ya que estos parámetros determinan la capacidad de infiltración, retención de agua y conservación de nutrientes, todos fundamentales para la sostenibilidad y funcionalidad de los ecosistemas terrestres la descarga se la realizó a través del geo portal del Sistema Nacional de Información de Tierras Rurales (SIGTIERRAS) (figura 6).

3.5.2 Delimitación y priorización de unidades hidrográficas

La delimitación de la cuenca se incorpora en los planes de manejo y gestión de recursos hídricos. En esta fase, los límites establecidos se implementan en la práctica, orientando las acciones de conservación, monitoreo y uso sostenible de los recursos de la cuenca (Jaya & Rodriguez, 2023). Para la identificación de las microcuencas prioritarias de nivel 5 dentro del ACUS, se utilizó la metodología PFAFSTETTER (figura 7), que permite la clasificación y caracterización de las cuencas en función de factores hidrográficos y ambientales. La información obtenida de la metodología PFASTETER permitió definir las microcuencas de mayor relevancia hídrica que intervienen en el Área de Conservación y Uso Sustentable (ACUS) de la provincia de Bolívar

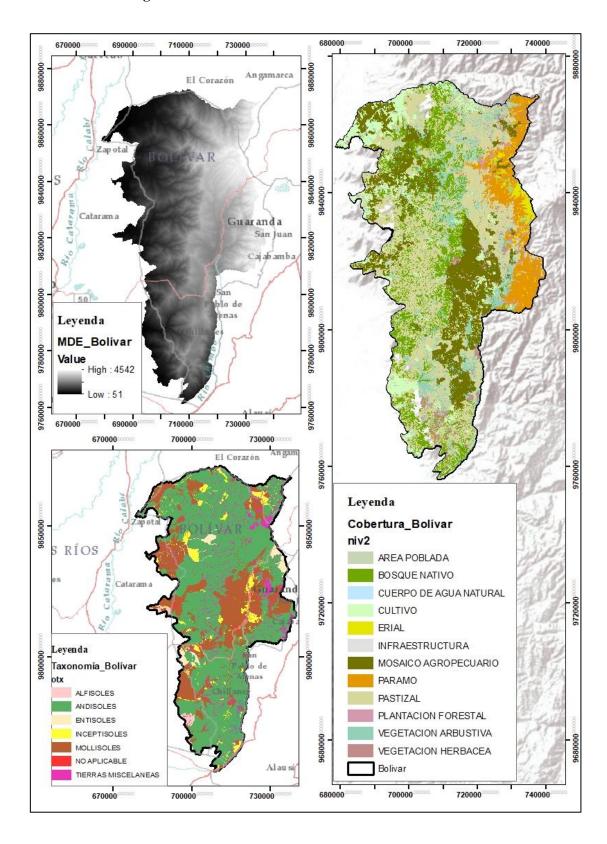


Figura 5: Insumos recolectados en base a la Provincia de Bolívar

Fuente: Autor

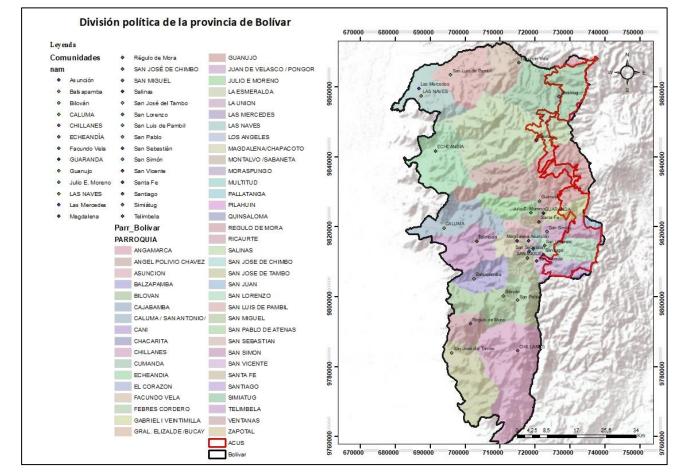


Figura 6: División Política de la Provincia de Bolívar.

Fuente: Autor

3.5.3 Delimitación y priorización de unidades hidrográficas

La delimitación de la cuenca se incorpora en los planes de manejo y gestión de recursos hídricos. En esta fase, los límites establecidos se implementan en la práctica, orientando las acciones de conservación, monitoreo y uso sostenible de los recursos de la cuenca (Jaya & Rodriguez, 2023).

Para la identificación de las microcuencas prioritarias de nivel 5 dentro del ACUS, se utilizó la metodología PFAFSTETTER (figura 7), que permite la clasificación y caracterización de las cuencas en función de factores hidrográficos y ambientales. La información obtenida de la metodología PFASTETER permitió definir las microcuencas de mayor relevancia hídrica que intervienen en el Área de Conservación y Uso Sustentable (ACUS) de la provincia de Bolívar (SENAGUA, 2019).

3.5.4 Cálculo de los parámetros de forma, red y relieve de las unidades hidrográficas prioritarias

3.5.4.1 Parámetros de forma

Los parámetros de forma permiten caracterizar la configuración espacial de la cuenca y sus propiedades geométricas, fundamentales para entender su dinámica hídrica.

- Área de la Cuenca (A): Es la superficie total que abarca la cuenca, expresada en km² o m². Se calcula mediante herramientas SIG, delimitando el contorno de la cuenca.
- **Perímetro de la Cuenca (P)**: Es la longitud total del borde de la cuenca, expresada en km o m. También se obtiene con herramientas SIG y define el contorno de la cuenca.
- Factor de Forma (Ff): Indica la forma de la cuenca, siendo una medida de la relación entre el área y el cuadrado de la longitud del cauce principal. Se calcula con la fórmula:

$$\mathbf{Ff} = \frac{\mathbf{A}}{\mathbf{L}\mathbf{c}^2} \, (1)$$

• Ancho medio de la cuenca (B): Es una medida de la anchura promedio de la cuenca, calculada como:

$$\mathbf{B} = \frac{\mathbf{A}}{\mathbf{L}\mathbf{c}} (2)$$

Donde:

A: Área de la cuenca

Lc: Longitud del cauce principal

- Longitud del cauce principal: Es la distancia lineal desde el punto de inicio hasta la desembocadura del cauce principal, expresada en km o m. Puede obtenerse a partir de herramientas SIG (Larrea & Maldonado, 2022).
- **Índice de Compacidad:** Evalúa la relación entre el perímetro de la cuenca y la circunferencia de un círculo de área equivalente. Se calcula como:

$$\mathbf{Ic} = 0.28 \, \frac{\mathbf{P}}{\sqrt{\mathbf{A}}} \, (3)$$

• **Relación de elongación:** Representa el grado de alargamiento de la cuenca y se define como:

$$\mathbf{Re} = \frac{\sqrt[2]{\mathbf{A}/\pi}}{\mathbf{Lc}} (4)$$

• Relación de circularidad: Indica la similitud de la cuenca con un círculo.

$$\mathbf{Rci} = \frac{4\pi * A}{P^2} (5)$$

3.5.4.2 Parámetros de relieve

Los parámetros de relieve describen la pendiente y elevación de la cuenca, aspectos que influyen en la velocidad de escorrentía y en los procesos erosivos.

• **Pendiente Media de la Cuenca**: Es el promedio de las pendientes en la cuenca y se obtiene mediante el análisis digital de elevación (MDE). Se calcula como:

$$Sm = \frac{\text{(Elevación inicial - Elevación final)}}{Lc} (6)$$

- Curva Hipsométrica: Muestra la relación entre el área acumulada y la elevación de la cuenca. Se obtiene a partir de la digitalización de la cuenca y se expresa gráficamente como una curva acumulativa (Arellado et al., 2019).
- Área sobre la Curva y Área bajo la Curva Hipsométrica: Se obtiene integrando el área bajo y sobre la curva hipsométrica, respectivamente. Estos parámetros proporcionan información sobre el estado de equilibrio de la cuenca.

3.5.4.3 Parámetros de red

Los parámetros de red describen la estructura y características de los cauces en la cuenca, influyendo en el tiempo de respuesta hídrica de la cuenca.

- **Pendiente media del cauce principal:** Se calcula la pendiente promedio del cauce principal mediante la diferencia de elevación entre su punto de inicio y la desembocadura, dividida por su longitud
- **Número de Cauces Totales:** Es la cantidad total de cauces que componen la red hidrográfica de la cuenca. Puede calcularse mediante el análisis de la red de drenaje a partir de un MDE.
- **Tiempo de Concentración (Tc)**: Es el tiempo que tarda el agua en escurrir desde el punto más lejano de la cuenca hasta la salida. Se calcula mediante la fórmula de Kirpich:

$$\mathbf{Tc} = 0.0195 * L c^{0.77} * S^{-0.385} (7)$$

• **Tiempo de Retardo** (**Tr**): Es el tiempo en que el caudal alcanza su punto máximo después de iniciada la precipitación. Se estima como el 60% del tiempo de concentración:

$$Tr = 0.6 * Tc (8)$$

_

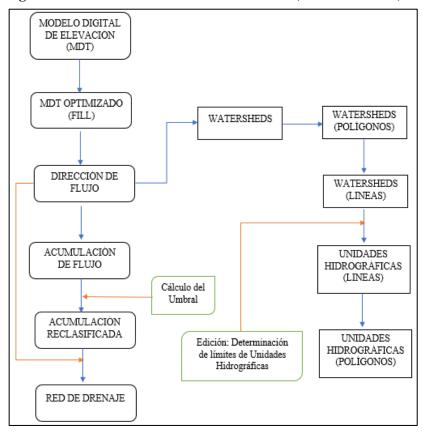


Figura 7: Proceso de la delimitación automática (PFAFSTETTER)

Fuente: Autor

3.5.5 Identificación de los puntos de monitoreo

Este proceso nace de la metodología propuesta por Rengifo y Puerta (2011), "En donde se realizó un intersect en el software ARC MAP de los dos mapas temáticos (cobertura vegetal y taxonomía del suelo)" (p. 42).

3.5.6 Recolección de muestras de suelo

Para la recolección de muestras de suelo en las unidades hidrográficas de nivel 5 prioritarias, se identificaron puntos representativos mediante el uso de Sistemas de Información Geográfica (SIG), considerando el tipo de suelo, la cobertura vegetal y las características topográficas, utilizando imágenes satelitales y capas de taxonomía. y cobertura. Con los puntos de muestreo definidos, el equipo de campo se trasladó a cada ubicación con herramientas de excavación, bolsas etiquetadas y GPS. En cada punto, se realizó la limpieza de la cobertura, para la extracción, con el uso del barreno a 4 profundidades diferentes de manera estratificada, las cuales fueron etiquetadas con datos de coordenadas, profundidad y tipo de cobertura y taxonomía. Las muestras se transportaron bajo condiciones controladas y, al llegar al laboratorio se almacenaron en condiciones adecuadas hasta su análisis (B. Mendoza et al., 2021).

3.5.7 Pruebas de infiltración

La capacidad de infiltración en el suelo fue medida mediante el Infiltrómetro de doble anillo proporcionado por el Laboratorio de Servicios Ambientales de la Universidad nacional de Chimborazo, en donde, a través de un cronómetro se registró el tiempo en el que el agua saturó el suelo seleccionado. Esto permitió evaluar la eficiencia de entrada del agua en el territorio bajo diversas condiciones (Hervas & Tiviano, 2021).

3.5.8 Modelación hidrológica

La modelación hidrológica para el cálculo de la oferta hídrica en las unidades hidrográficas prioritarias se realizó utilizando el software HEC-HMS, empleando el método de precipitación a escorrentía mediante el cálculo del Número de Curva (CN). Este enfoque permite simular la respuesta de la cuenca ante eventos de precipitación, considerando las características específicas del suelo, la cobertura vegetal y las condiciones de humedad.

Para ello, se definieron los valores de CN en función de la clasificación de suelos y la cobertura predominante en la cuenca, de acuerdo con los parámetros establecidos por el Servicio de Conservación de Recursos Naturales (SCS). Los valores de CN se ajustaron para cada subcuenca prioritaria, lo que permitió caracterizar la capacidad de infiltración y almacenamiento superficial en distintas condiciones de humedad.

En HEC-HMS, se configuró el modelo estableciendo la precipitación de diseño o evento de lluvia sobre la cuenca recopilado del Instituto Nacional de Meteorología e Hidrología (INAMHI) e información satelital,1 aplicando el modelo de escorrentía directa a partir del Número de Curva. El software calculó la corriente generada en función de los valores de CN y las condiciones de saturación del suelo. Finalmente, se obtuvieron las series de caudales resultantes, representativas de la oferta hídrica en la cuenca, lo cual permitió analizar el comportamiento hídrico en función de los factores de precipitación y características de la cuenca. Esta modelación es fundamental para la toma de decisiones en gestión hídrica y conservación de recursos en el área de estudio.

3.5.9 Delimitación de zonas de interés hídrico

La propuesta de zonas de protección hídrica se realizó mediante la metodología de SENAGUA, (2019), con un manejo adecuado para la comunidad cercana.

En ese sentido, se debe tener en cuenta que los lineamientos o acciones que estén dirigidas a la mitigación ambiental y que promuevan sociedades responsables de ambientes naturales, tiene como primer punto el entendimiento de las necesidades, visiones de los grupos sociales que se encuentran dentro del área de estudio.

3.5.9.1 Priorización de las fuentes hídricas

La priorización se realizó considerando las características propias de la zona y la problemática respecto al acceso o disponibilidad del agua existentes en territorio, así también, que pertenezcan al Área de Conservación y Uso Sustentable (ACUS) de la provincia de Bolívar.

3.5.10 Propuesta de preservación

Para la protección de captaciones es necesario realizar una delimitación de perímetros de protección que tienen como objetivo resguardar la calidad y cantidad del recurso.

En consecuencia, se realizó un análisis de las partes interesadas conocido como "Stakeholder analysis" para determinar los actores sociales involucrados y los posibles ajustes en las estrategias propuestas para maximizar la participación colectiva y el impacto positivo.

Para el cumplimiento de este objetivo, fue indispensable la elaboración de una propuesta de estrategias de protección y conservación de las vertientes, se analizó los resultados obtenidos de las zonas de recarga hídrica y se priorizó aquellas según el uso.

Se consideró a todos los individuos y organizaciones competentes dentro del manejo de los recursos naturales de la provincia, posteriormente se planteó acciones encaminadas a la prevención de problemas futuros que garanticen la protección y conservación de los acuíferos.

Capítulo 4

Análisis y Discusión de los Resultados

4.1 Análisis descriptivo de los resultados

4.1.1 Delimitación de unidades hidrográficas prioritarias

La priorización de las unidades hidrográficas delimitadas mediante la metodología Pfafstetter permitió identificar aquellas subcuencas de mayor relevancia hídrica dentro del Área de Conservación y Uso Sustentable (ACUS) en la provincia de Bolívar.

El proceso de delimitación automática identificó las unidades hidrográficas de nivel 5, obteniendo una representación clara y detallada de la estructura del drenaje, lo que permitió reconocer patrones de convergencia y divergencia de flujos hídricos en la región. Se identificó 3 subcuencas prioritarias, M.R.P (figura 8), M.R.S (figura 9) M.R.C (figura 10).

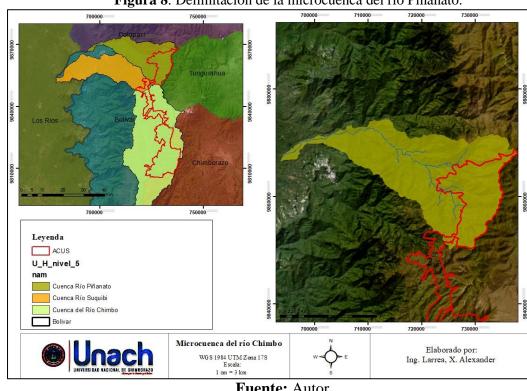


Figura 8: Delimitación de la microcuenca del río Piñanato.

Fuente: Autor

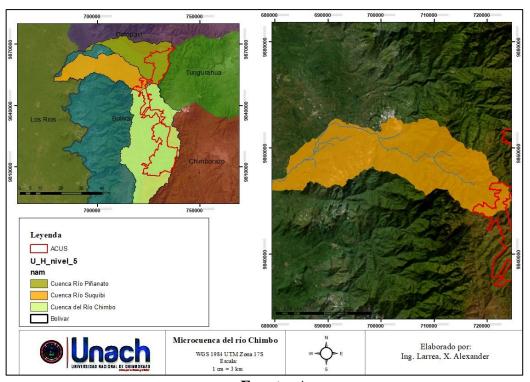
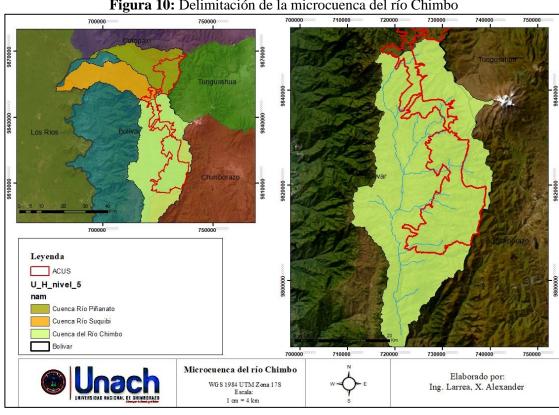



Figura 9: Delimitación de la microcuenca del río Suguibi

Fuente: Autor

Figura 10: Delimitación de la microcuenca del río Chimbo

Fuente: Autor

Caracterización de la microcuenca del río Piñanato 4.1.2

El análisis morfométrico de la unidad hidrográfica Piñanato (figura 11) permite comprender la influencia de su forma, relieve y red de drenajes con las variaciones climáticas, precipitación, flora, fauna etc.

La microcuenca posee un área de 440.04 km2, un perímetro de 129.24 km y una longitud del cauce principal de 48.35 km, es decir, es una microcuenca con un tamaño intermedio grande, su indice de compacidad es de 1.73 y la relación de circularidad 0.33; indican que se trata de una microcuenca con forma alargada, influyendo en la distribución y el tiempo de escurrimiento del agua. El factor de forma es de 0,18 por lo cual es una cuenca que tiene una buena respuesta en eventos de fuertes precipitaciones

La pendiente media de la cuenca es del 29%, demostrando un territorio con inclinaciones moderadas a altas. Además, la relación hipsométrica es del 1,54 %, lo que sugiere que la mayor parte del área se encuentra en una etapa de madurez geomorfológica (figura 12).

Respecto al cauce principal, muestra una pendiente media del 62,07 %, con una altitud máxima de 3241 msnm y mínima de 242 msnm, lo que genera un gradiente importante para la dinámica hídrica.

En cuanto a la red hidrográfica, el orden de la red es 3, con una densidad de drenaje de 0,19 km/km² y un total de 10 canales identificados. La sumatoria de las longitudes de la red hídrica alcanza los 82,19 km, destacando una red bien estructurada. Los tiempos de concentración (46,91 minutos) y retardo (28,15 minutos) sugieren que la respuesta hidrológica de la cuenca es relativamente rápida, en línea con sus características geomorfológicas.

Tabla 2: Parámetros morfométricos de la Unidad Hidrográfica Piñanato (U.H.P)

Nombre	Sigla	Unidad	Valores
Área	A	km^2	440,04
Perímetro	P	km	129,24
Índice de compacidad	Ic	adimensional	1,73
Ancho medio	В	adimensional	9,10
Longitud media	Lc	km	48,35
Factor de forma	Ff	adimensional	0,18
Relación de elongación	Re	adimensional	0,48
Relación de circularidad	Rci	adimensional	0,33
Área sobre la curva	AS	km^2	2189605
Área bajo curva	Ab	km^2	1426094
Pendiente media de la cuenca	Pmc	%	29
Orden de la red hídrica	Or	adimensional	3
Sumatoria de las longitudes de la red hídrica	Lt	km	82,19
Densidad de drenaje	Dt	km-1	0,19
Numero de canales	Nt	adimensional	17
Altura Máxima rio	Hmax	msnm	3241
Altura mínima del rio	Hmin	msnm	242
Pendiente media del cauce principal	Sm	adimensional	62,027
Tiempo de concentración	Tc	min	46,91
Tiempo de retardp	Tr	min	28,15
Relación hipsométrica	Rh	%	1,54

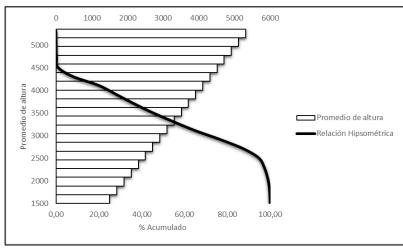


Figura 11: Curva hipsométrica de la U.H.P

4.1.3 Caracterización de la microcuenca del río Suquibi

La microcuenca abarca un área total de 428,49 km², con un perímetro de 128,00 km y una longitud media del cauce principal de 45,74 km (tabla 3). El índice de compacidad calculado es de 1,65, y la relación de circularidad es de 0,33, lo que indica una forma alargada, típica de cuencas con menor eficiencia en la concentración del flujo hídrico.

El cauce principal presenta una pendiente media de 61,33 %, con una altitud máxima de 2859 msnm y mínima de 550 msnm, reflejando un importante gradiente topográfico. La relación hipsométrica es de 3,88 % (figura 12); lo que sugiere que la cuenca se encuentra en una etapa intermedia de madurez geomorfológica. En cuanto a la respuesta hidrológica, el tiempo de concentración de la microcuenca es de 45,14 minutos y el tiempo de retardo es de 28,30 minutos, lo que refleja una respuesta relativamente rápida.

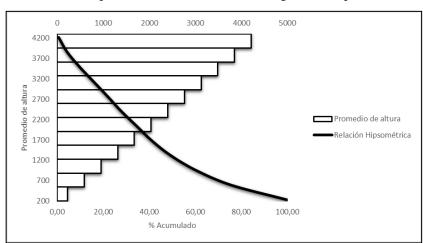


Figura 12: Curva hipsométrica de la Unidad Hidrográfica Suquibi (U.H.S)

Tabla 3: Parámetros morfométricos de la U.H.S

Nombre	Sigla	Unidad	Valores
Área	A	km^2	428,49
Perímetro	P	km	128,00
Índice de compacidad	Ic	adimensional	1,74
Ancho medio	В	adimensional	9,37
Longitud media	Lc	km	45,75
Factor de forma	Ff	adimensional	0,20
Relación de elongación	Re	adimensional	0,51
Relación de circularidad	Rci	adimensional	0,33
Área sobre la curva	AS	km^2	3010717,81
Área bajo curva	Ab	km^2	775982,19
Pendiente media de la cuenca	Pmc	%	43,00
Orden de la red hídrica	Or	adimensional	2,00
Sumatoria de las longitudes de la red hídrica	Lt	km	87,04
Densidad de drenaje	Dt	km-1	0,04
Numero de canales	Nt	adimensional	15,00
Altura Máxima rio	Hmax	msnm	2859,00
Altura mínima del rio	Hmin	msnm	53,00
Pendiente media del cauce principal	Sm	adimensional	61,33
Tiempo de concentración	Tc	min	45,14
Tiempo de retardp	Tr	min	27,08
Relación hipsométrica	Rh	%	3,88

4.1.4 Caracterización de la microcuenca del río Chimbo

La microcuenca del río Chimbo es significativamente más grande, a cubrir un área de 1130,10 km², con un perímetro de 191 km y una longitud media del cauce principal de 74,67 km (tabla 4). El ancho medio de la cuenca es de 15,13 km, la pendiente media de la cuenca se calculó en 25 % y la curva hipsométrica demuestra que se trata de una microcuenca en una etapa avanzada de madurez (figura 13). Los tiempos de concentración (76,94 minutos) y retardo (49,06 minutos) son mayores, lo que indica una respuesta más lenta a los eventos de precipitación debido a la mayor extensión de la cuenca y a su topografía más suave.

Tabla 4: Parámetros morfométricos de la Unidad Hidrográfica Chimbo (U.H.C)

Nombre	Sigla	Unidad	Valores
Área	A	km^2	1130,096813
Perímetro	P	km	191
Índice de compacidad	Ic	adimensional	1,602229
Ancho medio	В	adimensional	15,13455

Lc	km	74,67
Ff	adimensional	0,202686
Re	adimensional	0,508013
Rci	adimensional	0,389278
AS	km^2	2081090,79
Ab	km^2	1408259,21
Pmc	%	40,88
Or	adimensional	3,00
Lt	km	202,10
Dt	km-1	0,04
Nt	adimensional	45,00
Hmax	msnm	4192,00
Hmin	msnm	1757,00
Sm	adimensional	32,61
Tc	min	76,94
Tr	min	46,16
Rh	%	1,48
	Ff Re Rci AS Ab Pmc Or Lt Dt Nt Hmax Hmin Sm Tc Tr	Ff adimensional Re adimensional Rci adimensional AS km^2 Ab km^2 Pmc % Or adimensional Lt km Dt km-1 Nt adimensional Hmax msnm Hmin msnm Sm adimensional Tc min Tr min

1000 2000 3000 4000 6000 5000 4500 Promedio de altura 4000 3500 ■ Promedio de altura Relación Hipsométrica 3000 2000 1500 20.00 100,00 0,00 40.00 60.00 80.00 % Acumulado

Figura 13: Curva Hipsométrica de la U.H.C

Fuente: Autor

4.1.5 Puntos de muestreo

La delimitación de las zonas de monitoreo abordó el cruce de insumos cartográficos y geoespaciales, en primer lugar se determinó el tipo de cobertura vegetal y la taxonomía predominante en la zona (tabla 5), se estableció 43 puntos de muestreo en total, tomando en cuenta las rutas y accesibilidad a las comunidades priorizadas en el Área de Conservación y Uso Sustentable (ACUS) de la provincia de Bolívar (figura 14), a través, de herramientas como: Google Maps y Google Earnth se estableció la ruta más adecuada, avanzando de norte a sur, así también, se utilizó imágenes satelitales descargadas del software SAS. Planet. Nightly, para una ubicación más precisa, en consecuencia, se realizaron las pruebas de

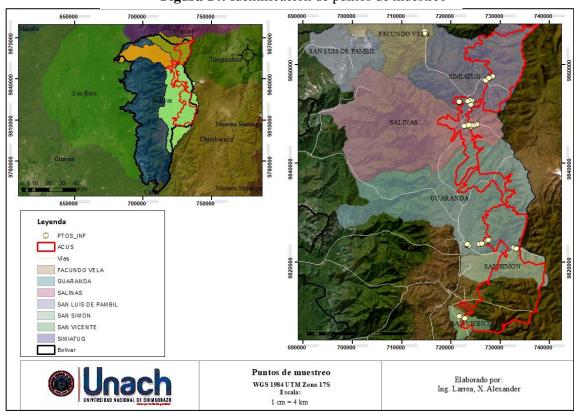

infiltración in situ con el acompañamiento de los actores involucrados, específicamente, la prefectura de la provincia de Bolívar, presidentes o encargados de las juntas parroquiales e instituciones educativas como la Universidad Estatal de Bolívar (UEB), Escuela Superior Politécnica de Chimborazo (ESPOCH) y Universidad Nacional de Chimborazo (UNACH).

Tabla 5: Intersección de la cobertura y la taxonomía de las Unidades Hidrográficas Prioritarias de nivel 5.

COBERTURA	TAXONOMÍA
BOSQUE NATIVO	Andisol
CULTIVO	Andisol
ERIAL	Andisol
PÁRAMO	Andisol
PARAMO	Molisol
PASTIZAL	Andisol
FASTIZAL	Molisol
PLANTACIONES FORESTALES	Molisol
VEGETACIÓN ARBUSTIVA	Andisol
VEGETACION ARBUSTIVA	Molisol

Fuente: Autor

Figura 14: Identificación de puntos de muestreo

4.1.6 Análisis de la capacidad de infiltración

4.1.6.1 Unidad Hidrográfica Piñanato (UHP)

Las pruebas de infiltración se realizaron en base a la intersección de la cobertura vegetal y la taxonomía del suelo predominantes en cada una de las unidades hidrográficas. En la microcuenca del río Piñanato se identificó que la máxima capacidad de infiltración es de 98 mm/h en la clase, cultivo andisol, 95 mm/h en pastizal andisol, 93mm/h en pastizal molisol, en contraste con el páramo andisol y la vegetación herbácea andisol con 50 y 37mm/h respectivamente (figura 15).

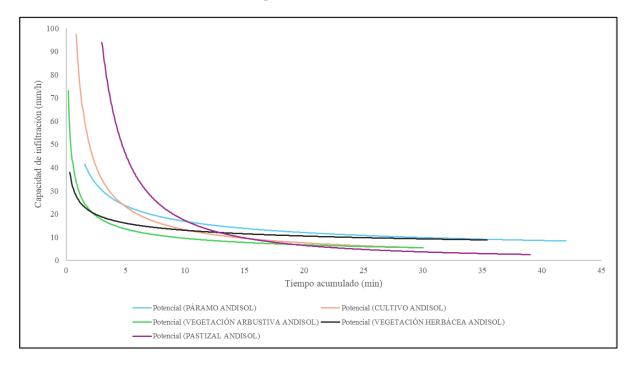


Figura 15: Capacidad de infiltración en la UHP

Fuente: Autor

4.1.6.1 Unidad Hidrográfica Suquibi (UHS)

El análisis de infiltración en la microcuenca del río Suquibi demostró dos clases predominantes: bosque nativo con una capacidad de percolación de 61mm/h y la clase de vegetación arbustiva con 46 mm/h (figura 16). El análisis parte de la línea de tendencia potencial de la infiltración instantánea y el tiempo acumulado del monitoreo.

Figura 16: Capacidad de infiltración en la UHS.

4.1.6.2 Unidad Hidrográfica Chimbo (UHC)

La capacidad de infiltración en la Unidad Hidrográfica Chimbo (UHC) presentó variaciones significativas dependiendo del tipo de uso del suelo y la cobertura vegetal. Tales como cultivos (Andisol), páramos (Andisol y Molisol), pastizales (Andisol y Molisol), plantaciones forestales (Molisol), vegetación arbustiva (Molisol y Andisol), y vegetación herbácea (Andisol). Los resultados muestran que los cultivos en Andisoles presentan la mayor capacidad de infiltración inicial (alrededor de 140 mm/h), disminuyendo rápidamente en los primeros minutos. Por otro lado, los pastizales y vegetación arbustiva en suelos molisoles alcanzaron valores iniciales moderados (aproximadamente entre 80-100 mm/h), con una reducción progresiva más lenta. Las plantaciones forestales en molisoles evidenciaron una capacidad de infiltración intermedia, estabilizándose cerca de los 20 mm/h después de 80 minutos (figura 17).

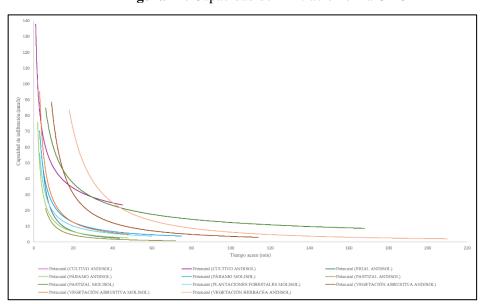


Figura 17: Capacidad de infiltración en la UHC

4.1.7 Modelamiento hidrológico

4.1.7.1 Cálculo del número de curva (UHP)

El número de curva promedio obtenido para la Unidad Hidrográfica Piñanato (UHP) fue de 79, reflejando una capacidad de infiltración moderada en los suelos predominantes, principalmente andisoles e inceptisoles con texturas franco-arenosas y arcillosas. El uso del suelo más representativo fue la vegetación herbácea (Andisol, Franco Arenoso), ocupando el mayor porcentaje del área total (287,79 km2), con un CN de 75. Las coberturas con mayor valor de CN fueron los pastizales en Inceptisoles Arcillosos (CN=86) y la vegetación arbustiva en Inceptisoles Arcillosos (CN=91), indicando una baja capacidad de infiltración en estas áreas específicas (tabla 6). La capacidad de campo promedio fue de 67,18 mm, reflejando condiciones aceptables para la retención de agua en la unidad.

Tabla 6: Asignación de CN para la UHP

Cobertura	Taxonomía	Textura	CN
Erial	Andisol	Franco Arenoso	70
Bosque nativo	Andisol	Franco Arenoso	73
Páramo	Andisol	Franco Arenoso	74
Cultivo	Andisol	Franco Arenoso	75
Vegetación Herbácea	Andisol	Franco Arenoso	77
Pastizal	Andisol	Franco Arenoso	78
Plantación forestal	Andisol	Franco Arenoso	79
Vegetación Arbustiva	Andisol	Franco Arenoso	81
Pastizal	Molisol	Franco	82
Cultivo	Inceptisol	Arcilloso	83
Pastizal	Inceptisol	Arcilloso	86
Vegetación Arbustiva	Inceptisol	Arcilloso	91
		CN	79
		Capacidad de campo	67,18

Fuente: Autor

4.1.7.1 Cálculo del número de curva (UHS)

En la Unidad Hidrográfica Suquibi (UHS), el número de curva promedio fue de 77, también indicando condiciones moderadas de infiltración. La cobertura predominante fue el cultivo en Andisoles con textura franco-arenosa, cubriendo un área de 220,71 km2 y un CN de 75. Las coberturas con valores más altos de CN fueron los pastizales en Inceptisoles Arcillosos

(CN=83) y los cultivos en Inceptisoles Arcillosos (CN=83), que evidencian una mayor propensión al escurrimiento (tabla 7).

Tabla 7: Asignación de CN para la UHS

Cobertura	Taxonomía	Textura	CN
Bosque nativo	Andisol	Franco arenoso	78
Cultivo	Andisol	Franco arenoso	70
Cultivo	Molisol	Franco	79
Paramo	Andisol	Franco arenoso	74
Pastizal	Andisol	Franco arenoso	75
Pastizal	Molisol	Franco	81
Pastizal	Inceptisol	Arcilloso	83
Vegetación arbustiva	Andisol	Franco arenoso	77
		Cn	77
		Capacidad de campo	63,67

Fuente: Autor

4.1.7.2 Cálculo del número de curva (UHC)

La Unidad Hidrográfica Chimbo (UHC) presentó un número de curva promedio de 78, el cual refleja condiciones de infiltración ligeramente inferiores.

Entre las coberturas evaluadas, los cultivos en andisoles con textura franco arenosos mostraron un CN de 73 y una extensión de 23,98 km2, mientras que las plantaciones forestales en molisoles con textura franco arcillosos y los pastizales en taxonomía molisoles y textura franco arcillosos presentaron valores de CN de 81, evidenciando una menor capacidad de infiltración en estas áreas.

La capacidad de campo promedio en la UHC fue de 60,10 mm, lo cual implica una mayor vulnerabilidad al escurrimiento superficial en la zona (tabla 8).

Tabla 8: Asignación de CN para la UHC

Cobertura	Taxonomía	Textura	CN
Cultivo	Andisoles	Franco arenoso	73
Cultivo	Molisoles	Franco arcilloso	80
Erial	Andisoles	Franco arenoso	66
Paramo	Andisoles	Franco arenoso	79
Paramo	Molisoles	Franco arcilloso	83

Pastizal	Andisoles	Franco arenoso	74
Pastizal	Molisoles	Franco arcilloso	81
Pastizal	Inceptisoles	Arcilloso	88
Plantación forestal	Andisoles	Franco arenoso	70
Plantación forestal	Molisoles	Franco arcilloso	82
Vegetación arbustiva	Andisoles	Franco arenoso	77
Vegetación arbustiva	Molisoles	Franco arcilloso	86
Vegetación herbácea	Andisoles	Franco arenoso	75
		CN	78
		Capacidad de campo	60,10

4.1.7.3 Modelación de la relación de precipitación - escorrentía

La modelación hidrológica realizada mediante el software HEC-HMS permitió obtener los valores medios mensuales de precipitación para las cuencas Piñanato, Suquibi y Chimbo. A continuación, se presentan los resultados principales:

4.1.7.4 Curvas IDF y periodos de retorno

Los periodos de retorno considerados (2, 25, 100 y 500 años) reflejan los escenarios de diseño hidrológico con mayor y menor probabilidad de ocurrencia:

En la microcuenca Piñanato, las intensidades máximas alcanzaron valores de hasta 4,65 mm/h para eventos de 500 años de retorno y duraciones cortas (figura 18). Para la microcuenca Suquibi, las intensidades máximas fueron menores, con valores hasta 3,25 mm/h, lo que indica menor capacidad de precipitación concentrada (figura 19).

En la unidad hidrográfica Chimbo, las intensidades fueron intermedias, alcanzando hasta 3,95 mm/h en el mismo periodo de retorno (figura 20).

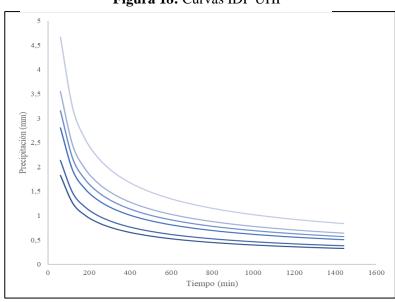


Figura 18: Curvas IDF UHP

Figura 19: Curvas IDF UHS

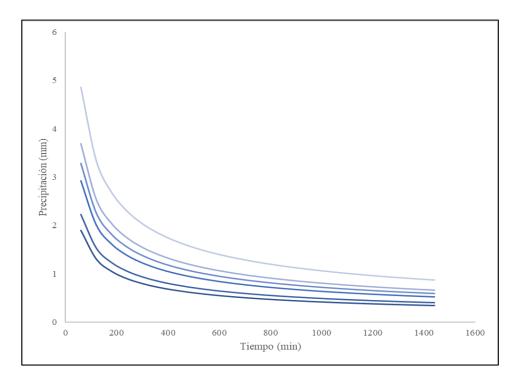
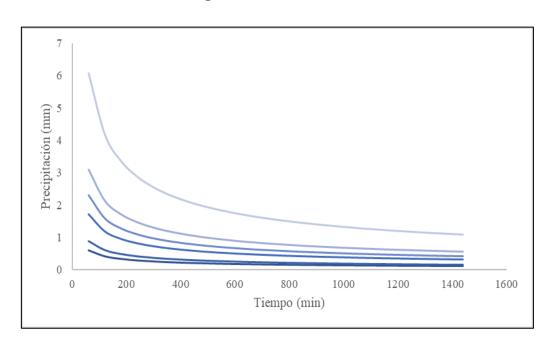



Figura 20: Curvas IDF UHC

4.1.7.5 Calibración del modelo

El modelo HEC-HMS permitió determinar el caudal máximo de escorrentía para eventos de precipitación extremos. Se utilizó el modelo "SCS Número de Curva" para evaluar la transformación de la precipitación en escorrentía utilizando datos de precipitación y temperatura diarios desde el 1 de enero de 1981 hasta el 31 de diciembre de 2022, así también, considerando los parámetros morfométricos de las microcuencas.

A posterior, se calcularon valores promedio mensuales de evapotranspiración, que se integraron en el modelo como una clave variable para el equilibrio hídrico.

Por último, Se emplearon datos de escorrentía (m³/s) para calibrar y validar los modelos, ajustando parámetros de pérdida, transformación y flujo base.

En Piñanato, la escorrentía media mensual osciló entre 7,09 m³/s (enero) y 26,49 m³/s (mayo), con un promedio anual general de 17,10 m³/s (figura 21). Durante la época lluviosa (mayo-julio), se observaron picos de escorrentía asociados a mayores precipitaciones, mientras que en septiembre se registraron los valores más bajos. También, se observó una evaluación directa entre los picos de precipitación y los flujos máximos de escorrentía.

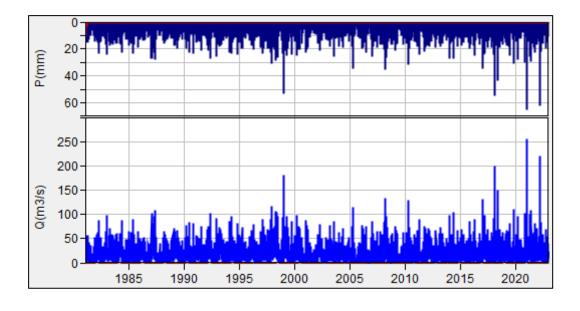


Figura 21: Relación de Precipitación a Escorrentía de la UHP

Fuente: Autor

La evapotranspiración media mensual estimada osciló entre 7.77 mm/mes (agosto) y 24.69 mm/mes (marzo), mostrando un patrón consistente con la estacionalidad climática.

En Suquibi, Los valores varían entre 10,31 m³/s (enero) y 35,56 m³/s (abril), con un promedio anual general de 19,52 m³/s, Las lluvias intensas en febrero y marzo contribuyeron a mayores valores de escorrentía durante estos meses. Sin embargo, el modelo mostró estabilidad hidrológica en los meses secos (julio-septiembre) (figura 22).

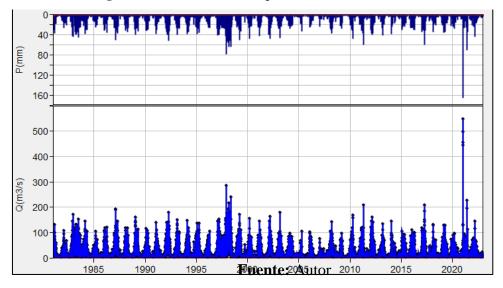


Figura 22: Relación de Precipitación a Escorrentía de la UHS

En Chimbo, se alcanzó un caudal máximo de 25.1 m³/s, evidenciando una mayor concentración de escorrentía debido a las características de la cuenca, con un pico observado en aproximadamente 1.5 horas (figura 23).

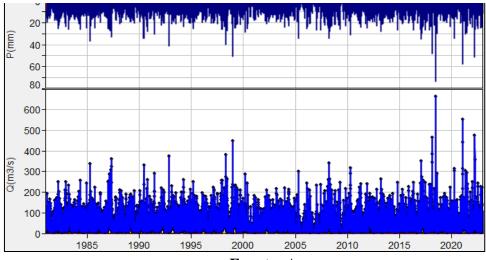


Figura 23: Relación de Precipitación a Escorrentía de la UHC

4.1.8 Delimitación de áreas de protección hídrica

4.1.8.1 Identificación de las fuentes de agua prioritarias en el Área de Conservación y Uso Sustentable (ACUS) de la provincia de Bolívar.

En el marco del análisis realizado para identificar las fuentes de agua prioritarias dentro del Área de Conservación y Uso Sustentable (ACUS) de la provincia de Bolívar, se desarrolló una metodología basada en la integración y cruce de información clave.

Este enfoque permitió determinar un total de 9 concesiones hídricas prioritarias que cumplen con criterios estratégicos para la conservación y el uso sostenible del recurso hídrico (figura 24). Las concesiones hídricas fueron analizadas en función de su localización dentro del ACUS, se priorizaron las fuentes cuyo principal uso está destinado al consumo humano y el análisis incluyó la consideración de los caudales máximos registrados, por último, se llevó a cabo un cruce geoespacial entre las fuentes de agua y las parroquias aledañas, con el objetivo de determinar las áreas de influencia directa de cada concesión.

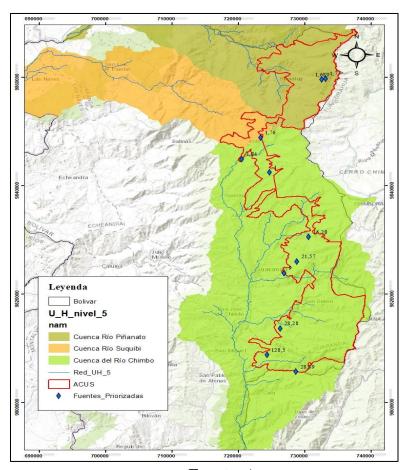


Figura 24: Fuentes de agua priorizadas

4.1.8.2 Establecimiento de las zonas de protección hídrica

De acuerdo con la metodología de la Guía Técnica para la Delimitación de Áreas de Protección Hídrica de SENAGUA, (2019) se obtuvo 8 zonas de interés hídrico, que sirven de almacenamiento y retención de agua dulce, las cuales se deben proteger y conservar para un beneficio mutuo en el mejoramiento de la seguridad del servicio ecosistémico para salvaguardad el acceso sostenible al agua en cantidad y calidad.

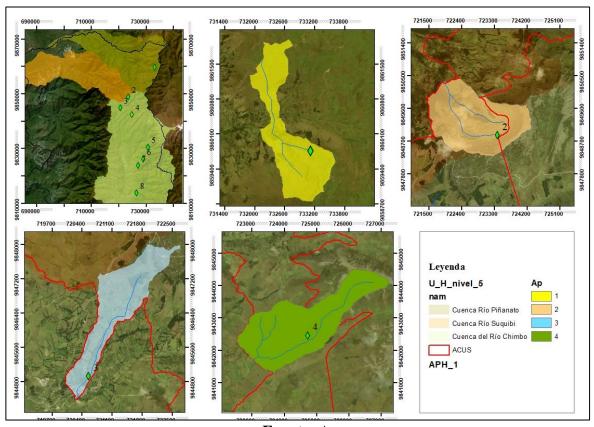


Figura 25: Zonas de interés hídrico

Fuente: Autor

La delimitación de las zonas de interés hídrico (ZIH) se basó en las fuentes de agua priorizadas para consumo humano, así también, la intersección con el Área de Conservación y Uso Sustentable ACUS y el caudal registrado en las concesiones hídricas. A posterior, se obtuvo la red de drenaje con la dirección de flujo y dirección de acumulación para su correcta demarcación. La (figura 25) demuestra 4 zonas bien definidas, la primer ZIH se encuentra ubicada en la Unidad Hidrográfica de nivel 5 denominada "Piñanato", la segunda, está entre la UHS y UHC, puesto que, la demarcación del ACUS intercepta por estas dos Unidades, las siguientes ZIH se encuentran netamente en la Unidad Hidrográfica Chimbo, pues la extensión de esta es superior y abarca más zonas de estudio.

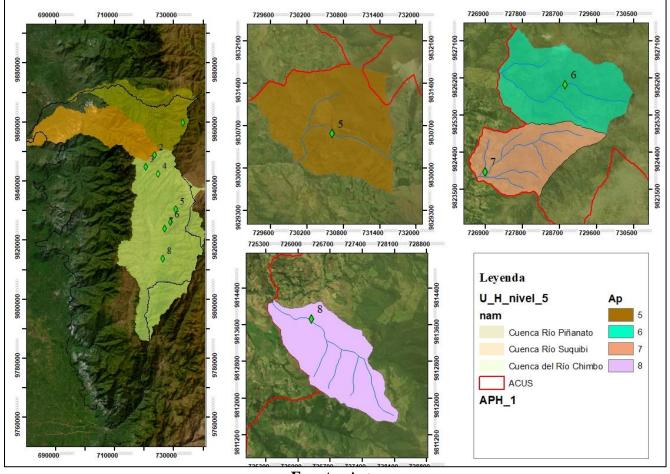


Figura 26: Zonas de Interés Hídrico parte 2

Por último, las Zonas de Interés Hídrico 5, 6, 7 se encuentran en Guaranda, y la octava, en San Lorenzo, en definitiva, la zonificación de las áreas de protección hídrica resalta la importancia de la planificación territorial para garantizar la conservación de los recursos hídricos y prevenir la degradación de los ecosistemas. Las cuencas delimitadas dentro del ACUS son críticas para la recarga de acuíferos, el control de inundaciones y el suministro sostenible de agua a las comunidades de Guaranda y San Lorenzo.

4.1.8.3 Propuesta de conservación para las áreas de interés hídrico.

En el marco del análisis de las áreas de interés hídrico previamente delimitadas, se diseñó una propuesta de conservación que involucra a varios actores (tabla 9), encargados de la preservación de la cantidad y calidad del recurso hídrico.

Tabla 9: Actores involucrados

Actores Internos	Actores Externos
Prefectura de Bolívar	Ministerio del Ambiente, Agua y Transición Ecológica (MAATE)
Presidente de la comunidad de Simiátug	Consorcio para el Desarrollo Sostenible de la Ecorregión Andina - Ciencia, Práctica y Política para el Desarrollo Sostenible en los Andes (CONDESAN)
Presidente de la comunidad de Verdepamba	Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO)
Presidente de la comunidad Pachancho	Promoción Humana
Presidente de la comunidad Urak Uksha	Universidad Nacional de Chimborazo (UNACH)

4.1.8.3.1 Tema: Fortalecimiento de la Conservación Hídrica en el ACUS Bolívar

mediante Restauración Ecológica y Gestión Participativa

La ausencia de información hidrogeológica afecta la manera en la que los ciudadanos y los actores de las Unidades Hidrográficas conocen sobre el agua subterránea, lo cual limita la percepción de su importancia y en varios casos genera conflictos socioambientales.

Por lo cual es preciso que los esfuerzos educativos, de comunicación y de toma de decisiones por parte de las comunidades se realicen para una mejor sensibilización del tema en la gestión del recurso hídrico, así, se debe fortalecer la gestión de las fuentes hídricas que abastecen de agua a las comunidades rurales de la provincia de Bolívar.

Se propone implementar que, en el área de gestión de recursos hídricos de la prefectura, se establezca la creación y aplicación de políticas públicas con una visión ecosistémica de prácticas sustentables que integren el desarrollo y la protección de los ecosistemas aledaños a las concesiones de agua. Según Mendoza (2022) se ha mejorado la base científica y tecnológica para la gestión de las aguas subterráneas, lo que ha conducido a avances en la comprensión general de los acuíferos y facilitando la identificación de estos. Así también, la restauración ecosistemas degradados, el manejo sostenible de suelos y la educación ambiental son factores clave que inciden en un buen manejo de los servicios ecosistémicos, asegurando la calidad del recurso y el buen vivir de los habitantes.

Tabla 10: Programa de Fortalecimiento de la Conservación Hídrica en el ACUS de Bolívar

Actividad	Responsables	Actividad	Responsables
Diagnóstico inicial y planificación de áreas prioritarias para restauración	UNACH, ESPOCH, CONDESAN	Cálculo de índices hídricos	UNACH, ESPOCH, CONDESAN
Reforestación con especies nativas en 100 hectáreas	Juntas Parroquiales, Cabildos, Prefectura	Organización de 10 talleres participativos sobre conservación hídrica	Prefectura de Bolívar, Cabildos Comunitarios, UNACH
Establecimiento de franjas de amortiguamiento en fuentes de agua	Prefectura de Bolívar, Comunidades	Diseño y distribución de materiales educativos para comunidades y escuelas	UNACH, ESPOCH, UEB
Implementación de prácticas agroforestales sostenibles en 50 hectáreas	CONDESAN, Cabildos Comunitarios, Prefectura	Implementación de campañas escolares en 15 instituciones educativas	Instituciones Educativas (UNACH, ESPOCH, UEB)
Instalación de 5 estaciones de monitoreo comunitario	CONDESAN, Prefectura de Bolívar	Monitoreo y evaluación del impacto de las actividades implementadas	Proyecto NDT, Prefectura de Bolívar, UNACH
Capacitación de 50 líderes comunitarios en monitoreo de recursos hídricos	UNACH, ESPOCH, CONDESAN	Socialización de resultados finales y recomendaciones	Proyecto NDT, Prefectura de Bolívar, Cabildos

4.2 Discusión de los Resultados

La identificación de zonas prioritarias dentro del Área de Conservación y Uso Sustentable (ACUS) de la provincia de Bolívar permitió comprender la dinámica hídrica y sus interacciones con las comunidades y los ecosistemas. Los resultados obtenidos reflejan la complejidad y relevancia de conservar áreas críticas para garantizar el recurso hídrico a largo plazo.

La priorización de las unidades hidrográficas mediante la metodología Pfafstetter automatizada ofreció un enfoque robusto para delimitar áreas críticas, evidenciando que las microcuencas de Piñanato, Suquibi y Chimbo presentan características relevantes para la recarga hídrica y el abastecimiento de las comunidades. La combinación de parámetros geomorfológicos y de red hidrográfica permitió una priorización objetiva basada en factores como red de drenaje, pendiente y longitud del cauce principal, lo que garantiza que las decisiones de conservación se fundamenten en criterios técnicos.

El análisis de la capacidad de infiltración destacó las variaciones hídricas significativas en función de las características edáficas y de cobertura vegetal de cada unidad. La microcuenca Chimbo, con mayores tasas de infiltración, mostró un potencial elevado para la recarga hídrica, mientras que las microcuencas Piñanato y Suquibi presentan desafíos relacionados con la compactación del suelo y la escasa cobertura vegetal en áreas críticas, lo que afecta negativamente en la recarga hídrica. Estos hallazgos subrayan la necesidad de priorizar actividades de restauración ecológica en zonas específicas.

El modelamiento hidrológico, basado en el número de curva y el método de precipitación a escorrentía, permitió estimar el caudal de diseño con un alto grado de precisión. Las simulaciones realizadas en el software HEC-HMS reflejaron la influencia de factores como el uso del suelo y las prácticas agrícolas en la generación de escorrentía. Los resultados muestran que las áreas con mayor cobertura forestal y manejo adecuado presentan menor escorrentía superficial, mientras que zonas con prácticas no sostenibles incrementan significativamente los volúmenes de escorrentía, afectando la disponibilidad de agua para consumo humano y otros usos.

En cuanto a la identificación de concesiones hídricas prioritarias, el cruce de información evidenció la existencia de 8 fuentes relevantes para consumo humano dentro del ACUS. La ubicación estratégica de estas fuentes resalta su importancia para las comunidades locales y refuerza la necesidad de implementar medidas de conservación y monitoreo, especialmente en zonas donde la actividad antrópica podría comprometer su calidad y disponibilidad.

Finalmente, la propuesta de conservación elaborada integra estrategias concretas y factibles para la restauración ecológica y el manejo participativo de las áreas priorizadas. Las acciones propuestas, como la reforestación con especies nativas, el establecimiento de franjas de amortiguamiento y la implementación de sistemas de monitoreo comunitario, representan una respuesta integral a los desafíos identificados. La colaboración entre instituciones académicas (UNACH, ESPOCH y UEB), el Proyecto NDT, CONDESAN, la Prefectura de Bolívar y las comunidades locales es esencial para garantizar el éxito y sostenibilidad de estas medidas.

En síntesis, la investigación proporciona una base científica sólida para la gestión hídrica en el ACUS de Bolívar. Este enfoque permitirá no solo conservar el recurso hídrico, sino también fortalecer la resiliencia de los ecosistemas y las comunidades ante el cambio climático y la presión antrópica.

Capítulo 5

Conclusiones

La investigación realizada en el Área de Conservación y Uso Sustentable (ACUS) de la provincia de Bolívar permitió priorizar y caracterizar unidades hidrográficas estratégicas para la gestión de los recursos hídricos, en consecuencia, se identificaron 3 microcuencas, Piñanato, Suquibi y Chimbo como áreas críticas para la recarga hídrica y el suministro de agua para consumo humano. Los análisis geomorfológicos, de red hidrográfica y propiedades hídricas evidenciaron la relevancia de la cobertura vegetal y las características edáficas en la capacidad de infiltración y recarga de los acuíferos.

El modelamiento hidrológico resaltó la influencia del uso del suelo y las actividades antrópicas, subrayando la importancia de prácticas sostenibles para optimizar la oferta hídrica. Asimismo, la identificación de 8 concesiones hídricas prioritarias destacó el rol clave de estas fuentes en el abastecimiento humano con caudales de 128.5 l/s en San Vicente, 28 l/s en San Lorenzo, 21.57 l/s en Guaranda, 15.28 l/s en Guaranda, 9 l/s en Guaranda, 1.84 l/s en Salinas, 1.76 l/s en Salinas y 1,7 l/s en Simiátug, reforzando la necesidad de implementar medidas de conservación que consideren su sostenibilidad y calidad a largo plazo.

Se delimitaron 8 zonas de importancia hídrica: unidad 754 (7.15 km2), unidad 549 (5.24 km2), unidad 254 (3.94 km2), unidad 1119 (3.67 km2), unidad 564 (3.60 km2), unidad 498 (3.38 km2), unidad 307 (2.58 km2) y la unidad 122 (2.10 km2). Las acciones desarrolladas y propuestas de conservación fortalecerán la resiliencia de las microcuencas y promueven un modelo de gestión integral del agua que puede ser replicable en otras regiones con características similares.

Recomendaciones

Se recomienda implementar un plan de manejo integral para las microcuencas priorizadas, que incluya acciones específicas de restauración ecológica, reforestación con especies nativas y la reducción de actividades que degraden el suelo y el agua.

Es esencial involucrar a las comunidades locales, cabildos y juntas parroquiales en todas las etapas de la gestión hídrica. Esto incluye la capacitación en monitoreo de recursos, sensibilización sobre prácticas sostenibles y su inclusión en la toma de decisiones.

Se sugiere establecer estaciones de monitoreo de calidad y cantidad de agua en las fuentes priorizadas. Esto permitirá evaluar el impacto de las estrategias implementadas y adaptar las acciones según los resultados obtenidos.

Por último, se recomienda que las autoridades locales y provinciales desarrollen normativas específicas que protejan las áreas hídricas priorizadas, fomentando incentivos para las comunidades que adopten prácticas sostenibles y sancionando actividades que degraden los ecosistemas.

Referencias Bibliográficas

- Acosta, G. (2021). ZONAS Y ÁREAS PARA LA GESTIÓN AMBIENTAL E.
- Arellado, M., Vásconez, M., Mancheno, A., Álvarez, C., Prehn, C., Cevallos, C., & Ortiz, L. (2019). *Cuencas Hidrográficas*. https://dspace.ups.edu.ec/bitstream/123456789/19038/1/Cuencas hidrográficas.pdf
- Barragán, D. (2022). UNIVERSIDAD ESTATAL DE BOLÍVAR FACULTAD DE CIENCIAS ADMINISTRATIVAS, GESTIÓN EMPRESARIAL E INFORMÁTICA CARRERA DE COMUNICACIÓN PROYECTO DE INVESTIGACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE LICENCIADAS EN COMUNICACIÓN.
- Chicaiza, A. (2024). Escuela politécnica nacional.
- Cobeña-Navarrete, H., Solórzano-Solórzano, C. F., Velásquez-Intriago, F. J., & Villafuerte-Vélez, C. A.-. (2023). Pasivos ambientales, un análisis de importancia. Caso comunidad San Miguel de Sarampión, Bolívar Ecuador. *Investigación Valdizana*, 17(2), 61–67. https://doi.org/10.33554/riv.17.2.1705
- Del Pilar, M. (2020). reconocimiento de la naturaleza y de sus componentes como sujetos de derechos.
- Herrera, B. (2022). *EL CONSTITUCIONALISMO AMBIENTAL APLICADO AL CÓDIGO ORGÁNICO AMBIENTAL: UN ANÁLISIS EN ECUADOR*. *8.5.2017*, 2003–2005. https://dataindonesia.id/sektor-riil/detail/angka-konsumsi-ikan-ri-naik-jadi-5648-kgkapita-pada-2022
- Hervas, E., & Tiviano, I. (2021). Geología aplicada para la gestión del agua en la comunidad de El Arenal. *Espol. Fict*, 109. http://www.dspace.espol.edu.ec/handle/123456789/52336
- Jaya, V., & Rodriguez, E. (2023). Determinación de la oferta hídrica en las microcuencas de los ríos Ishpi, Daldal, Uldán y quebrada Cachipata, en la Provincia de Chimborazo. http://dspace.unach.edu.ec/handle/51000/10872
- Larrea, A., & Maldonado, C. (2022). Determinación de la oferta hídrica de la microcuenta Guamote. 1–76.

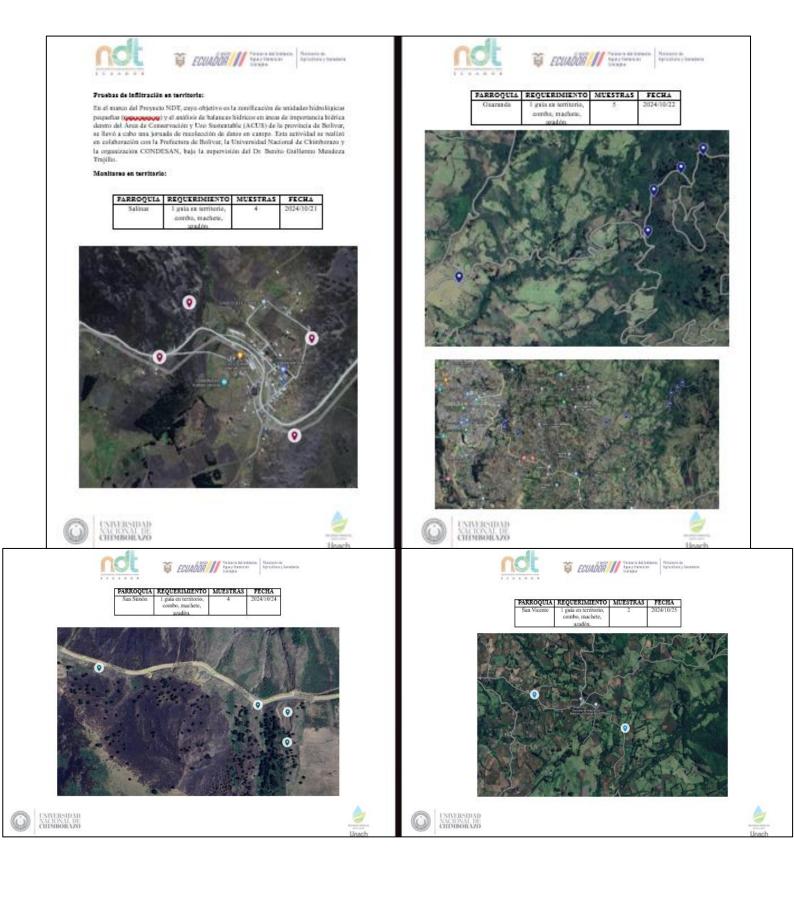
- http://dspace.unach.edu.ec/bitstream/51000/10251/1/Larrea_Maldonado_2022_Deter minación de la oferta hídrica de la microcuenca Guamote y quebrada Compuene Gorge%2C en la provincia de Chimborazo %281%29.pdf
- Maldonado, C. (2024). ESTUDIO HIDROLÓGICO DE CUENCAS PAREADAS MEDIANTE MÉTODOS DE TELEDETECCIÓN Y MODELACIÓN MATEMÁTICA.
- Margarita, C. (2019). DINÁMICAS DE USO DE LA TIERRA Y FRAGMENTACIÓN ECOSISTÉMICA EN LA CORDILLERA ORIENTAL DE LA PROVINCIA DEL CARCHI. 7, 1–25.
- Mendoza, B. (2023). UNIVERSIDAD NACIONAL DE CHIMBORAZO CARRERA
 INGENIERÍA AMBIENTAL Estudio Hidrogeológico del sector Langos mediante
 tomografías eléctricas Trabajo de Titulación para optar al título de Ingeniero
 Ambiental Autor: Guasti Ashca, Luis Nelson Tutor:
- Mendoza, B., Fiallos, M., Iturralde, S., Santillán, P., Guananga, N., Bejar, J., Lowy, D. A., Vágó, I., & Sándor, Z. (2021). Determination of field capacity in the Chibunga and Guano rivers micro-basins. *F1000Research*, *10*(April), 1–13. https://doi.org/10.12688/F1000RESEARCH.28143.1
- Mendoza, I. (2022). Políticas públicas ambientales y desarrollo turístico sostenible en las áreas protegidas de Ecuador Environmental. *Revista de Estudios Andaluces*, 43, 0–1. https://doi.org/10.12795/rea.2022.i43
- Mier, J. (2022). EVALUACIÓN DE LAS ZONAS DE RECARGA Y DESCARGA
 HÍDRICA EN LA MICROCUENCA DEL RÍO CHINAMBÍ, PROVINCIA DEL
 CARCHI. Journal of Economic Perspectives, 2(1), 1–4.
 http://www.ifpri.org/themes/gssp/gssp.htm%0Ahttp://files/171/Cardon 2008 Coaching d'équipe.pdf%0Ahttp://journal.umsurabaya.ac.id/index.php/JKM/article/view/2203%0Ahttp://mpoc.org.my/malaysianpalm-oil-industry/%0Ahttps://doi.org/10.1080/23322039.2017
- Palacios, S. (2019). Facultad De Ingeniería Civil Carrera De Ingeniería Civil Machala 2019. 1–170. http://repositorio.utmachala.edu.ec/handle/48000/15069
- Salazar, K. (2024). "Gobernanza y calidad de los servicios ecosistémicos: caso cuenca

- hidrográfica Rio Carchi 2012-2020."
- Sanabria Yépez, C. V., Nieto Cañarte, C. A., Burgos Carpio, B. A., & Loaiza Espinoza, M. E. (2022). Descripción hidrogeomorfológica de la Cuenca Alta del río Sibimbe (Bolívar, Ecuador) con fines de riego. *LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades*, 3(2), 1141–1149. https://doi.org/10.56712/latam.v3i2.173
- Santillán, P. (2022). Universidad Nacional De Chimborazo Vicerrectorado De Posgrado E Investigación. 03, 2011–2013.
- SENAGUA. (2019). Guía Técnica para la delimitación de Áreas de Protección Hídrica.
- Tello, G., & Sánchez, A. (2019). Necesidad de su reversión desde las políticas públicas con enfoque bioético e environmental contamination in the water-bearing to Ecuador.

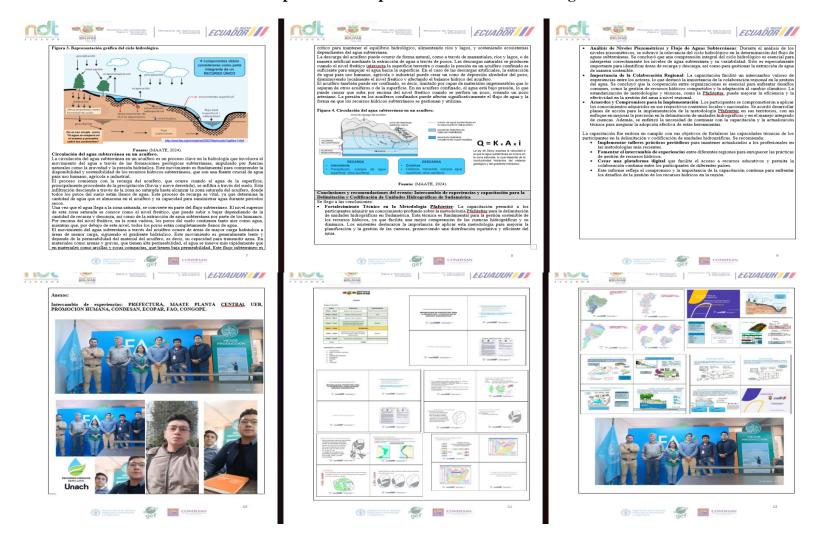
 Need of his reversion from the public policies with focus bioético. 1053–1079.

Apéndice
Apéndice A. Puntos de monitoreo

CULTIVO ANDISOL P.C.A02 FACUNDO_VELA -1,20322531 -79,06944858	ID	COBERTURA	TAXONOMIA	CODIGO	PARROQUIAS	LATITUD	LONGITUD
2 CULTIVO ANDISOL P_C_A01 FACUNDO_VELA -1,20491568 -79,06694919 3 VEGETACION ARBUSTIVA ANDISOL P_VA_A01 FACUNDO_VELA -1,20790591 -79,06830837 4 ARBUSTIVA ANDISOL P_VA_A02 FACUNDO_VELA -1,20843796 -79,06843884 5 PARAMO ANDISOL P_PA02 SIMIÁTUG -1,28664768 -78,94634730 6 PARAMO ANDISOL P_PHA01 SIMIÁTUG -1,28845816 -78,94634730 7 VEGETACION ANDISOL P_VH_A02 SIMIÁTUG -1,28866815 -78,95232317 8 VEGETACION ANDISOL P_VH_A01 SIMIÁTUG -1,28966835 -78,95307560 9 PASTIZAL ANDISOL P_PZA_A02 SIMIÁTUG -1,29171183 -78,95495849 11 PASTIZAL MOLISOL P_PZA_M02 SIMIÁTUG -1,2929861 -78,95968549 12 PASTIZAL MOLISOL P_PZA_M01 SIMIÁTUG -1,2929861 -78,95968549 <td< td=""><td></td><td>CULTIVO</td><td>ANDISOL</td><td>P_C_A02</td><td>•</td><td>-1,20322531</td><td>-79,06944858</td></td<>		CULTIVO	ANDISOL	P_C_A02	•	-1,20322531	-79,06944858
ARBUSTIVA ANDISOL P_VA_A01 FACUNDO_VELA -1,2079091 -79,0683083/	2	CULTIVO	ANDISOL		_	·	-79,06694919
4 ARBUSTIVA ANDISOL P-VA_A02 FACUNDO_VELA -1,20843/96 -79,06843884 5 PARAMO ANDISOL P_P_A02 SIMIÁTUG -1,286646768 -78,94634730 6 PARAMO ANDISOL P_PA01 SIMIÁTUG -1,28864015 -78,94739516 7 HERBACEA ANDISOL P_VH_A01 SIMIÁTUG -1,28866835 -78,95307560 9 PASTIZAL ANDISOL P_VH_A01 SIMIÁTUG -1,29171183 -78,95496897 10 PASTIZAL ANDISOL P_PZA_A02 SIMIÁTUG -1,29457184 -78,95496897 11 PASTIZAL MOLISOL P_PZA_M02 SIMIÁTUG -1,29457184 -78,95496870 12 PASTIZAL MOLISOL P_PZA_M02 SIMIÁTUG -1,29457184 -78,95496849 13 VEGETACION ANDISOL S_VA_A02 SIMIÁTUG -1,333282634 -79,00687413 14 BOSQUE NATIVO ANDISOL S_BN_A02 SIMIÁTUG -1,333432383 -79,00675883 15	3		ANDISOL	P_VA_A01	FACUNDO_VELA	-1,20790591	-79,06830837
6 PARAMO VEGETACION HERBACEA ANDISOL ANDISOL P_F_A01 SIMIÁTUG -1,28674015 -78,94739516 7 HERBACEA HERBACEA ANDISOL ANDISOL P_VH_A02 SIMIÁTUG -1,28845816 -78,95232317 8 VEGETACION HERBACEA ANDISOL ANDISOL P_VH_A01 SIMIÁTUG -1,29966835 -78,95307560 9 PASTIZAL ANDISOL P_PZA_A02 SIMIÁTUG -1,29171183 -78,95496970 10 PASTIZAL ANDISOL P_PZA_A02 SIMIÁTUG -1,29235055 -78,95495849 11 PASTIZAL MOLISOL P_PZA_M01 SIMIÁTUG -1,29299861 -78,95496849 12 PASTIZAL MOLISOL P_PZA_M02 SIMIÁTUG -1,29457184 -78,95495849 13 VEGETACION ARBUSTIVA ANDISOL S_VA_A02 SIMIÁTUG -1,33282634 -79,00669374 15 VEGETACION ARBUSTIVA ANDISOL S_BN_A01 SIMIÁTUG -1,33452643 -79,00669374 16 BOSQUE NATIVO ANDISOL S_BN_A01 SIMIÁTUG -	4		ANDISOL	P_VA_A02	_	•	-79,06843884
7 VEGETACION HERBACEA VEGETACION HERBACEA ANDISOL ANDISOL P_VH_A01 SIMIÁTUG -1,28845816 -78,95232317 8 VEGETACION HERBACEA ANDISOL P_VH_A01 SIMIÁTUG -1,28966835 -78,95307560 9 PASTIZAL ANDISOL P_PZA_A01 SIMIÁTUG -1,29171183 -78,95496970 10 PASTIZAL ANDISOL P_PZA_A02 SIMIÁTUG -1,29235055 -78,95496849 11 PASTIZAL MOLISOL P_PZA_M02 SIMIÁTUG -1,29257184 -78,95804184 12 PASTIZAL MOLISOL P_PZA_M01 SIMIÁTUG -1,29259861 -78,95968549 VEGETACION ANDISOL S_VA_A02 SIMIÁTUG -1,33322634 -79,00669374 15 VEGETACION ANDISOL S_BN_A02 SIMIÁTUG -1,333422383 -79,00669374 16 BOSQUE NATIVO ANDISOL S_BN_A01 SIMIÁTUG -1,33422643 -79,00626944 17 PASTIZAL ANDISOL S_PZA_A01 SIMIÁTUG -1,33422643 -79,00626944	5	PARAMO	ANDISOL	P_P_A02		-1,28664768	-78,94634730
HERBACEA	6	PARAMO	ANDISOL	P_P_A01	SIMIÁTUG	-1,28674015	-78,94739516
HERBACEA	7	HERBACEA	ANDISOL	P_VH_A02	SIMIÁTUG	-1,28845816	-78,95232317
10		HERBACEA				•	•
PASTIZAL MOLISOL P_PZA_M02 SIMIÁTUG -1,29457184 -78,95804184 PASTIZAL MOLISOL P_PZA_M01 SIMIÁTUG -1,29299861 -78,95968549 PETA_MO1 SIMIÁTUG -1,29299861 -78,95968549 PETA_MO1 SIMIÁTUG -1,33282634 -79,00687413 PASTIZAL ANDISOL S_VA_A02 SIMIÁTUG -1,33302920 -79,00669374 PASTIZAL ANDISOL S_BN_A02 SIMIÁTUG -1,33302920 -79,00669374 PASTIZAL ANDISOL S_VA_A01 SIMIÁTUG -1,33432383 -79,00675883 PASTIZAL ANDISOL S_PZA_A01 SIMIÁTUG -1,33452643 -79,00626944 PASTIZAL ANDISOL S_PZA_A02 SIMIÁTUG -1,33452643 -79,00626944 PASTIZAL ANDISOL S_PZA_A02 SIMIÁTUG -1,3306597 -78,99107874 PASTIZAL ANDISOL S_PZA_A01 SIMIÁTUG -1,33047502 -78,98806135 PARAMO ANDISOL S_PZA_A01 SIMIÁTUG -1,33047502 -78,98806135 PARAMO ANDISOL S_PZA_A01 SIMIÁTUG -1,33047502 -78,98806135 PARAMO ANDISOL S_PZA_A01 SIMIÁTUG -1,33341273 -78,98616033 PARAMO ANDISOL S_PZA_BO1 SALINAS -1,37528344 -78,97435311 PARAMO ANDISOL S_PA02 SALINAS -1,37528344 -78,97435311 PARAMO ANDISOL S_PA02 SALINAS -1,37672184 -78,9875665 PARAMO ANDISOL S_PA02 SALINAS -1,37672144 -78,98514407 -78,98575665 PARAMO ANDISOL S_PA03 SALINAS -1,37550655 -78,9847504 PARAMO ANDISOL S_PA03 SALINAS -1,37735271 -78,99052533 PARAMO ANDISOL S_PA03 SALINAS -1,37735271 -78,99052533 PARAMO ANDISOL S_PA03 SALINAS -1,37743777 -78,99745703 PARAMO ANDISOL S_PA03 SALINAS -1,37743777 -78,9954504 PARAMO ANDISOL S_PA03 SALINAS -1,37743777 -78,9954504 PARAMO ANDISOL S_PA03 SALINAS -1,37743777 -78,9954504 PARAMO ANDISOL S_PA03 SALINAS -1,37743777 -78,9954506 PARAMO ANDISOL S_PA03 SALINAS -1,37743777 -78,9954506 PARAMO ANDISOL S_PA04 SIMIÁTUG -1,3334223 PASTIZAL ANDISOL S_PA04 SIMIÁTUG -1,33452644 -79,9052533 -78,95565659 PARAMO SALINAS -1,58917741 -78,95565659 PARAMO S						·	· · · · · · · · · · · · · · · · · · ·
12 PASTIZAL VEGETACION ANDISOL VEGETACION ARBUSTIVA MOLISOL S_VA_A02 SIMIÁTUG SIMIÁTUG -1,29299861 -78,95968549 13 VEGETACION ARBUSTIVA ANDISOL S_VA_A02 SIMIÁTUG -1,33282634 -79,00687413 14 BOSQUE NATIVO ANDISOL S_BN_A02 SIMIÁTUG -1,33302920 -79,00669374 15 VEGETACION ARBUSTIVA ANDISOL S_VA_A01 SIMIÁTUG -1,33432383 -79,00675883 16 BOSQUE NATIVO ANDISOL S_PZA_A02 SIMIÁTUG -1,33452643 -79,00626944 17 PASTIZAL ANDISOL S_PZA_A02 SIMIÁTUG -1,33452643 -79,00626944 18 PASTIZAL ANDISOL S_PZA_A02 SIMIÁTUG -1,33452643 -79,00626944 18 PASTIZAL ANDISOL S_PZA_A01 SIMIÁTUG -1,33452643 -79,00626944 19 PARAMO ANDISOL S_PZA_A01 SIMIÁTUG -1,33452643 -79,00626944 19 PARAMO ANDISOL S_PZA_A01 SIMIÁTUG -1,33452643 -79,00626944 19 PARAMO ANDISOL S_PZA_A02 SIMIÁTUG -1,33407502 -78,98806135 20 PARAMO ANDISOL C_PA03 SALINAS </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>· · · · · · · · · · · · · · · · · · ·</td>						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
13 VEGETACION ARBUSTIVA ANDISOL S_VA_A02 SIMIÁTUG -1,33282634 -79,00687413 14 BOSQUE NATIVO ANDISOL S_BN_A02 SIMIÁTUG -1,33302920 -79,00669374 15 ARBUSTIVA ANDISOL S_VA_A01 SIMIÁTUG -1,33432383 -79,00675883 16 BOSQUE NATIVO ANDISOL S_BN_A01 SIMIÁTUG -1,33452643 -79,00626944 17 PASTIZAL ANDISOL S_PZA_A02 SIMIÁTUG -1,33452643 -79,00626944 18 PASTIZAL ANDISOL S_PZA_A02 SIMIÁTUG -1,33452643 -79,00626944 18 PASTIZAL ANDISOL S_PZA_A01 SIMIÁTUG -1,33452643 -79,00626944 18 PASTIZAL ANDISOL S_PZA_A01 SIMIÁTUG -1,33452643 -79,00626944 19 PARAMO ANDISOL S_PZA_A01 SIMIÁTUG -1,33098939 -78,9861035 20 PARAMO ANDISOL C_PA03 SIMIÁTUG -1,3309839 -78,98616033						· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
ARBUSTIVA	12		MOLISOL	P_PZA_M01	SIMIÁTUG	-1,29299861	-78,95968549
15 VEĞETACION ARBUSTIVA ANDISOL S_VA_A01 SIMIÁTUG -1,33432383 -79,00675883 16 BOSQUE NATIVO ANDISOL S_BN_A01 SIMIÁTUG -1,33452643 -79,00626944 17 PASTIZAL ANDISOL S_PZA_A02 SIMIÁTUG -1,33206597 -78,99107874 18 PASTIZAL ANDISOL S_PZA_A01 SIMIÁTUG -1,33047502 -78,98806135 19 PARAMO ANDISOL P_P_A04 SIMIÁTUG -1,33047502 -78,98806135 20 PARAMO ANDISOL P_P_A03 SIMIÁTUG -1,33047502 -78,98806135 21 PARAMO ANDISOL C_P_A02 SALINAS -1,37528344 -78,98616033 21 PARAMO ANDISOL C_P_A02 SALINAS -1,37671893 -78,97986757 23 ERIAL ANDISOL C_EA02 SALINAS -1,37671893 -78,978675665 24 ERIAL ANDISOL C_EA04 SALINAS -1,37671893 -78,98575665 25 <td< td=""><td>13</td><td></td><td>ANDISOL</td><td>S_VA_A02</td><td></td><td>-1,33282634</td><td>-79,00687413</td></td<>	13		ANDISOL	S_VA_A02		-1,33282634	-79,00687413
ARBUSTIVA	14	BOSQUE NATIVO	ANDISOL	S_BN_A02	SIMIÁTUG	-1,33302920	-79,00669374
17 PASTIZAL ANDISOL S_PZA_A02 SIMIÁTUG -1,33206597 -78,99107874 18 PASTIZAL ANDISOL S_PZA_A01 SIMIÁTUG -1,33047502 -78,98806135 19 PARAMO ANDISOL P_PA04 SIMIÁTUG -1,33098939 -78,98430986 20 PARAMO ANDISOL P_PA03 SIMIÁTUG -1,33098939 -78,98430986 20 PARAMO ANDISOL C_PA02 SALINAS -1,37528344 -78,97435311 21 PARAMO ANDISOL C_PA01 SALINAS -1,37671893 -78,97986757 23 ERIAL ANDISOL C_EA02 SALINAS -1,37672144 -78,98575665 24 ERIAL ANDISOL C_EA04 SALINAS -1,37672144 -78,98514407 25 ERIAL ANDISOL C_EA03 SALINAS -1,37550655 -78,98947504 26 ERIAL ANDISOL C_PA03 SALINAS -1,3774377 -78,99745703 28 VEGETACION ANDISO	15		ANDISOL	S_VA_A01	SIMIÁTUG	-1,33432383	-79,00675883
18 PASTIZAL ANDISOL S_PZA_A01 SIMIÁTUG -1,33047502 -78,98806135 19 PARAMO ANDISOL P_P_A04 SIMIÁTUG -1,33098939 -78,98430986 20 PARAMO ANDISOL P_P_A03 SIMIÁTUG -1,33041273 -78,98616033 21 PARAMO ANDISOL C_P_A02 SALINAS -1,37528344 -78,97435311 22 PARAMO ANDISOL C_P_A01 SALINAS -1,37671893 -78,9796757 23 ERIAL ANDISOL C_E_A02 SALINAS -1,37671893 -78,979875665 24 ERIAL ANDISOL C_E_A02 SALINAS -1,37672144 -78,98575665 24 ERIAL ANDISOL C_E_A04 SALINAS -1,37550655 -78,98574604 25 ERIAL ANDISOL C_E_A03 SALINAS -1,37735271 -78,99945704 26 ERIAL ANDISOL C_PA03 SALINAS -1,58695522 -78,95312671 29 VEGETACION ANDI	16	BOSQUE NATIVO	ANDISOL	S_BN_A01	SIMIÁTUG	-1,33452643	-79,00626944
19 PARAMO ANDISOL P_P_A04 SIMIÁTUG -1,33098939 -78,98430986 20 PARAMO ANDISOL P_P_A03 SIMIÁTUG -1,33841273 -78,98616033 21 PARAMO ANDISOL C_P_A02 SALINAS -1,37528344 -78,97435311 22 PARAMO ANDISOL C_P_A01 SALINAS -1,37671893 -78,97986757 23 ERIAL ANDISOL C_E_A02 SALINAS -1,37671893 -78,97986757 24 ERIAL ANDISOL C_E_A02 SALINAS -1,37672144 -78,98575665 24 ERIAL ANDISOL C_E_A03 SALINAS -1,37550655 -78,98514407 25 ERIAL ANDISOL C_EA01 SALINAS -1,37550655 -78,98947504 26 ERIAL ANDISOL C_PA03 SALINAS -1,37747377 -78,99052533 27 PARAMO ANDISOL C_VH_A02 GUARANDA -1,58695522 -78,95312671 29 VEGETACION HERBACEA	17	PASTIZAL	ANDISOL	S_PZA_A02	SIMIÁTUG	-1,33206597	-78,99107874
20 PARAMO ANDISOL P_P_A03 SIMIÁTUG -1,33841273 -78,98616033 21 PARAMO ANDISOL C_P_A02 SALINAS -1,37528344 -78,97435311 22 PARAMO ANDISOL C_P_A01 SALINAS -1,37671893 -78,97986757 23 ERIAL ANDISOL C_E_A02 SALINAS -1,37999921 -78,98575665 24 ERIAL ANDISOL C_E_A04 SALINAS -1,37672144 -78,98574665 24 ERIAL ANDISOL C_E_A03 SALINAS -1,37672144 -78,98514407 25 ERIAL ANDISOL C_E_A03 SALINAS -1,377550655 -78,98847504 26 ERIAL ANDISOL C_EA01 SALINAS -1,37747377 -78,99052533 27 PARAMO ANDISOL C_VH_A02 GUARANDA -1,58695522 -78,95312671 29 VEGETACION HERBACEA ANDISOL C_VH_A01 GUARANDA -1,58917741 -78,95565659 31 VEGETACION A	18	PASTIZAL	ANDISOL	S_PZA_A01	SIMIÁTUG	-1,33047502	-78,98806135
20 PARAMO ANDISOL P_P_A03 SIMIÁTUG -1,33841273 -78,98616033 21 PARAMO ANDISOL C_P_A02 SALINAS -1,37528344 -78,97435311 22 PARAMO ANDISOL C_P_A01 SALINAS -1,37671893 -78,97986757 23 ERIAL ANDISOL C_E_A02 SALINAS -1,37999921 -78,98575665 24 ERIAL ANDISOL C_E_A04 SALINAS -1,37672144 -78,98574665 24 ERIAL ANDISOL C_E_A03 SALINAS -1,37550655 -78,98814407 25 ERIAL ANDISOL C_E_A01 SALINAS -1,377550655 -78,98947504 26 ERIAL ANDISOL C_PA03 SALINAS -1,37747377 -78,99052533 27 PARAMO ANDISOL C_VH_A02 GUARANDA -1,58695522 -78,95312671 29 VEGETACION HERBACEA ANDISOL C_VH_A01 GUARANDA -1,58917741 -78,95565659 31 VEGETACION A	19	PARAMO	ANDISOL		SIMIÁTUG	-1,33098939	-78,98430986
21 PARAMO ANDISOL C_P_A02 SALINAS -1,37528344 -78,97435311 22 PARAMO ANDISOL C_P_A01 SALINAS -1,37671893 -78,97986757 23 ERIAL ANDISOL C_E_A02 SALINAS -1,37999921 -78,98575665 24 ERIAL ANDISOL C_E_A04 SALINAS -1,37672144 -78,98514407 25 ERIAL ANDISOL C_E_A03 SALINAS -1,37550655 -78,98947504 26 ERIAL ANDISOL C_E_A01 SALINAS -1,37735271 -78,99052533 27 PARAMO ANDISOL C_P_A03 SALINAS -1,37747377 -78,99745703 28 VEGETACION HERBACEA ANDISOL C_VH_A02 GUARANDA -1,58695522 -78,95312671 29 VEGETACION HERBACEA ANDISOL C_VH_A01 GUARANDA -1,58917741 -78,95565659 31 VEGETACION ARBUSTIVA ANDISOL C_VA_A01 GUARANDA -1,59140246 -78,95594441 <td< td=""><td>20</td><td>PARAMO</td><td>ANDISOL</td><td>P P A03</td><td>SIMIÁTUG</td><td>-1,33841273</td><td>-78,98616033</td></td<>	20	PARAMO	ANDISOL	P P A03	SIMIÁTUG	-1,33841273	-78,98616033
22 PARAMO ANDISOL C_P_A01 SALINAS -1,37671893 -78,97986757 23 ERIAL ANDISOL C_E_A02 SALINAS -1,37999921 -78,98575665 24 ERIAL ANDISOL C_E_A04 SALINAS -1,37672144 -78,98514407 25 ERIAL ANDISOL C_E_A03 SALINAS -1,37550655 -78,98947504 26 ERIAL ANDISOL C_E_A01 SALINAS -1,37735271 -78,99052533 27 PARAMO ANDISOL C_P_A03 SALINAS -1,37747377 -78,99052533 28 VEGETACION HERBACEA ANDISOL C_VH_A02 GUARANDA -1,58695522 -78,95312671 29 VEGETACION HERBACEA ANDISOL C_VH_A01 GUARANDA -1,58796395 -78,95426199 30 VEGETACION ARBUSTIVA ANDISOL C_VA_A02 GUARANDA -1,58917741 -78,95565659 31 VEGETACION ARBUSTIVA ANDISOL C_VA_A01 GUARANDA -1,59140246 -78,95594441	21	PARAMO	ANDISOL	C P A02	SALINAS	-1,37528344	•
23 ERIAL ANDISOL C_E_A02 SALINAS -1,37999921 -78,98575665 24 ERIAL ANDISOL C_E_A04 SALINAS -1,37672144 -78,98514407 25 ERIAL ANDISOL C_E_A03 SALINAS -1,37550655 -78,98947504 26 ERIAL ANDISOL C_EA01 SALINAS -1,37735271 -78,99052533 27 PARAMO ANDISOL C_P_A03 SALINAS -1,37747377 -78,99052533 28 VEGETACION HERBACEA ANDISOL C_VH_A02 GUARANDA -1,58695522 -78,95312671 29 VEGETACION HERBACEA ANDISOL C_VH_A01 GUARANDA -1,58796395 -78,95426199 30 VEGETACION ARBUSTIVA ANDISOL C_VA_A02 GUARANDA -1,58917741 -78,95565659 31 VEGETACION ARBUSTIVA ANDISOL C_VA_A01 GUARANDA -1,59140246 -78,95594441 32 PASTIZAL ANDISOL C_PZA_A02 GUARANDA -1,59385773 -78,96562178 </td <td></td> <td>PARAMO</td> <td>ANDISOL</td> <td></td> <td>SALINAS</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>· · · · · · · · · · · · · · · · · · ·</td>		PARAMO	ANDISOL		SALINAS	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
24 ERIAL ANDISOL C_E_A04 SALINAS -1,37672144 -78,98514407 25 ERIAL ANDISOL C_E_A03 SALINAS -1,37550655 -78,98947504 26 ERIAL ANDISOL C_E_A01 SALINAS -1,37735271 -78,99052533 27 PARAMO ANDISOL C_P_A03 SALINAS -1,37747377 -78,99745703 28 VEGETACION HERBACEA ANDISOL C_VH_A02 GUARANDA -1,58695522 -78,95312671 29 VEGETACION HERBACEA ANDISOL C_VH_A01 GUARANDA -1,58796395 -78,95426199 30 VEGETACION ARBUSTIVA ANDISOL C_VA_A02 GUARANDA -1,58917741 -78,95565659 31 VEGETACION ARBUSTIVA ANDISOL C_VA_A01 GUARANDA -1,59140246 -78,95594441 32 PASTIZAL ANDISOL C_PZA_A02 GUARANDA -1,59385773 -78,96562178 33 PASTIZAL ANDISOL C_PZA_A01 GUARANDA -1,59501554 -78,97001186						·	•
25 ERIAL ANDISOL C_E_A03 SALINAS -1,37550655 -78,98947504 26 ERIAL ANDISOL C_E_A01 SALINAS -1,37735271 -78,99052533 27 PARAMO ANDISOL C_P_A03 SALINAS -1,37747377 -78,99745703 28 VEGETACION HERBACEA ANDISOL C_VH_A02 GUARANDA -1,58695522 -78,95312671 29 VEGETACION HERBACEA ANDISOL C_VH_A01 GUARANDA -1,58796395 -78,95426199 30 ARBUSTIVA ANDISOL C_VA_A02 GUARANDA -1,58917741 -78,95565659 31 VEGETACION ARBUSTIVA ANDISOL C_VA_A01 GUARANDA -1,59140246 -78,95594441 32 PASTIZAL ANDISOL C_PZA_A02 GUARANDA -1,59385773 -78,96562178 33 PASTIZAL ANDISOL C_PZA_A01 GUARANDA -1,59501554 -78,97001186						· · · · · · · · · · · · · · · · · · ·	•
26 ERIAL ANDISOL C_E_A01 SALINAS -1,37735271 -78,99052533 27 PARAMO ANDISOL C_P_A03 SALINAS -1,37747377 -78,99745703 28 VEGETACION HERBACEA ANDISOL C_VH_A02 GUARANDA -1,58695522 -78,95312671 29 VEGETACION HERBACEA ANDISOL C_VH_A01 GUARANDA -1,58796395 -78,95426199 30 VEGETACION ARBUSTIVA ANDISOL C_VA_A02 GUARANDA -1,58917741 -78,95565659 31 VEGETACION ARBUSTIVA ANDISOL C_VA_A01 GUARANDA -1,59140246 -78,95594441 32 PASTIZAL ANDISOL C_PZA_A02 GUARANDA -1,59385773 -78,96562178 33 PASTIZAL ANDISOL C_PZA_A01 GUARANDA -1,59501554 -78,97001186						·	•
27 PARAMO ANDISOL C_P_A03 SALINAS -1,37747377 -78,99745703 28 VEGETACION HERBACEA ANDISOL C_VH_A02 GUARANDA -1,58695522 -78,95312671 29 VEGETACION HERBACEA ANDISOL C_VH_A01 GUARANDA -1,58796395 -78,95426199 30 VEGETACION ARBUSTIVA ANDISOL C_VA_A02 GUARANDA -1,58917741 -78,95565659 31 VEGETACION ARBUSTIVA ANDISOL C_VA_A01 GUARANDA -1,59140246 -78,95594441 32 PASTIZAL ANDISOL C_PZA_A02 GUARANDA -1,59385773 -78,96562178 33 PASTIZAL ANDISOL C_PZA_A01 GUARANDA -1,59501554 -78,97001186						*	*
28 VEGETACION HERBACEA ANDISOL C_VH_A02 GUARANDA -1,58695522 -78,95312671 29 VEGETACION HERBACEA ANDISOL C_VH_A01 GUARANDA -1,58796395 -78,95426199 30 VEGETACION ARBUSTIVA ANDISOL C_VA_A02 GUARANDA -1,58917741 -78,95565659 31 VEGETACION ARBUSTIVA ANDISOL C_VA_A01 GUARANDA -1,59140246 -78,95594441 32 PASTIZAL ANDISOL C_PZA_A02 GUARANDA -1,59385773 -78,96562178 33 PASTIZAL ANDISOL C_PZA_A01 GUARANDA -1,59501554 -78,97001186						·	
29 VEGETACION HERBACEA HERBACEA ANDISOL C_VH_A01 GUARANDA -1,58796395 -78,95426199 30 VEGETACION ARBUSTIVA ANDISOL C_VA_A02 GUARANDA -1,58917741 -78,95565659 31 VEGETACION ARBUSTIVA ANDISOL C_VA_A01 GUARANDA -1,59140246 -78,95594441 32 PASTIZAL ANDISOL C_PZA_A02 GUARANDA -1,59385773 -78,96562178 33 PASTIZAL ANDISOL C_PZA_A01 GUARANDA -1,59501554 -78,97001186	28	VEGETACION	ANDISOL			•	ŕ
30 VEGETACION ARBUSTIVA ANDISOL C_VA_A02 GUARANDA -1,58917741 -78,95565659 31 VEGETACION ARBUSTIVA ANDISOL C_VA_A01 GUARANDA -1,59140246 -78,95594441 32 PASTIZAL ANDISOL C_PZA_A02 GUARANDA -1,59385773 -78,96562178 33 PASTIZAL ANDISOL C_PZA_A01 GUARANDA -1,59501554 -78,97001186	29	VEGETACION	ANDISOL	C_VH_A01	GUARANDA	-1,58796395	-78,95426199
ARBUSTIVA ANDISOL C_VA_A01 GUARANDA -1,59140246 -78,95594441 32 PASTIZAL ANDISOL C_PZA_A02 GUARANDA -1,59385773 -78,96562178 33 PASTIZAL ANDISOL C_PZA_A01 GUARANDA -1,59501554 -78,97001186	30	VEGETACION	ANDISOL	C_VA_A02	GUARANDA	-1,58917741	-78,95565659
32 PASTIZAL ANDISOL C_PZA_A02 GUARANDA -1,59385773 -78,96562178 33 PASTIZAL ANDISOL C_PZA_A01 GUARANDA -1,59501554 -78,97001186	31	VEGETACION	ANDISOL	C_VA_A01	GUARANDA	-1,59140246	-78,95594441
33 PASTIZAL ANDISOL C_PZA_A01 GUARANDA -1,59501554 -78,97001186	32		ANDISOL	C_PZA_A02	GUARANDA	-1,59385773	-78,96562178
						·	•
	34	PASTIZAL	MOLISOL	C_PZA_M02	GUARANDA	-1,59745541	-78,98963600
35 PASTIZAL MOLISOL C_PZA_M01 GUARANDA -1,59641462 -78,99264012						· · · · · · · · · · · · · · · · · · ·	


36	VEGETACION ARBUSTIVA	MOLISOL	C_VA_M01	GUARANDA	-1,59536202	-78,99275085
37	VEGETACION ARBUSTIVA	MOLISOL	C_VA_M02	GUARANDA	-1,59510279	-78,99236939
38	PLANTACIONES FORESTALES	MOLISOL	C_PF_M02	GUARANDA	-1,60319823	-78,90232467
39	PLANTACIONES FORESTALES	MOLISOL	C_PF_M01	SAN_SIMÓN	-1,60246462	-78,90231115
40	PARAMO	MOLISOL	C_P_M02	SAN_SIMÓN	-1,60229405	-78,90303491
41	PARAMO	MOLISOL	C_P_M01	SAN_SIMÓN	-1,60139379	-78,90689381
42	CULTIVO	ANDISOL	C_C_A01	SAN_VICENTE	-1,72746950	-79,00632713
43	CULTIVO	ANDISOL	C_C_A02	SAN_VICENTE	-1,73080866	-78,99684387

Apéndice B. Hoja de ruta


ID	CÓDIGO	LATITUD	LONGITUD	CANTÓN/PARROQUIA	DÍAS		OCT	
<u> </u>	CODIGO	LATITUD	LONGITUD	CANTON/FARROQUIA	DIAS	14	21	28
1	P_C_A02	-1,2032253139	-79,0694485837	FACUNDO_VELA				
2	P_C_A01	-1,2049156817	-79,0669491898	FACUNDO_VELA				
3	P_VA_A01	-1,2079059128	-79,0683083672	FACUNDO_VELA	DÍA 1			
4	P_VA_A02	-1,2084379551	-79,0684388404	FACUNDO_VELA				
5	P_P_A02	-1,2866476767	-78,9463473000	SIMIÁTUG				
6	P_P_A01	-1,2867401475	-78,9473951609	SIMIÁTUG	DÍA 2			
7	P_VH_A02	-1,2884581586	-78,9523231693	SIMIÁTUG	DIA 2			
8	P_VH_A01	-1,2896683478	-78,9530756025	SIMIÁTUG				
9	P_PZA_A01	-1,2917118349	-78,9549696986	SIMIÁTUG				
10	P_PZA_A02	-1,2923505506	-78,9549584920	SIMIÁTUG	DÍA 3	14_18		
11	P_PZA_M02	-1,2945718434	-78,9580418386	SIMIÁTUG	DIA 3			
12	P_PZA_M01	-1,2929986066	-78,9596854881	SIMIÁTUG				
13	S_VA_A02	-1,3328263406	-79,0068741266	SIMIÁTUG				
14	S_BN_A02	-1,3330291968	-79,0066937362	SIMIÁTUG	DÍA 4			
15	S_VA_A01	-1,3343238293	-79,0067588275	SIMIÁTUG	DIA 4			
16	S_BN_A01	-1,3345264327	-79,0062694355	SIMIÁTUG				
17	S_PZA_A02	-1,3320659692	-78,9910787426	SIMIÁTUG				
18	S_PZA_A01	-1,3304750196	-78,9880613513	SIMIÁTUG	DÍA 5			
19	P_P_A04	-1,3309893919	-78,9843098580	SIMIÁTUG	DIA 3			
20	P_P_A03	-1,3384127297	-78,9861603258	SIMIÁTUG				

21	C_P_A02	-1,3752834378	-78,9743531058	SALINAS			
22	C_P_A01	-1,3767189322	-78,9798675730	SALINAS	DÍA 6		
23	C_E_A02	-1,3799992095	-78,9857566480	SALINAS	DIA 0		
24	C_E_A04	-1,3767214424	-78,9851440718	SALINAS			
25	C_E_A03	-1,3755065463	-78,9894750384	SALINAS			
26	C_E_A01	-1,3773527089	-78,9905253277	SALINAS	DÍA 7		
27	C_P_A03	-1,3774737682	-78,9974570285	SALINAS			
28	C_VH_A02	-1,5869552159	-78,9531267146	GUARANDA		21_25	
29	C_VH_A01	-1,5879639500	-78,9542619907	GUARANDA	DÍA 8		
30	C_VA_A02	-1,5891774097	-78,9556565927	GUARANDA	DIA 8		
31	C_VA_A01	-1,5914024644	-78,9559444132	GUARANDA			
32	C_PZA_A02	-1,5938577309	-78,9656217850	GUARANDA			
33	C_PZA_A01	-1,5950155358	-78,9700118568	GUARANDA	DÍA 9		
34	C_PZA_M02	-1,5974554108	-78,9896359992	GUARANDA	DIA 9		
35	C_PZA_M01	-1,5964146160	-78,9926401226	GUARANDA			
36	C_VA_M01	-1,5953620200	-78,9927508530	GUARANDA	DÍA		
37	C_VA_M02	-1,5951027904	-78,9923693863	GUARANDA	10		
38	C_PF_M02	-1,6031982269	-78,9023246698	SAN_SIMÓN			
39	C_PF_M01	-1,6024646228	-78,9023111542	SAN_SIMÓN	DÍA		
40	C_P_M02	-1,6022940491	-78,9030349056	SAN_SIMÓN	11		28-30
41	C_P_M01	-1,6013937890	-78,9068938107	SAN_SIMÓN			26-30
42	C_C_A01	-1,7274695008	-79,0063271318	SAN_VICENTE	DÍA		
43	C_C_A02	-1,7308086568	-78,9968438734	SAN_VICENTE	12		

Apéndice C. Identificación satelital

Apéndice D. Capacitación técnica metodológica

Apéndice E. Ficha de Infiltración

ID	CÓDIGO					
		T parcial a(m)	0	1	5	5
		Lámina parcial(mm)	0	0,5	2,2	2
		Lámina acum(mm)	1	0,5	2,7	4.7
1	P_C_A02	T acum A(min)		1	6	11
•		Infiltración Instantánea (mm/h)		30	26,4	24
		Relleno B (cm)	50		20,4	
		Achique C (cm)	-	49,5	47,3	45,3
		T parcial a(m)	0	1	5	5
				0,5	1,9	
		Lámina parcial(mm)				1
		Lámina acum(mm)		0,5	2,4	3,4
2	P_C_A01	T acum A(min)		1	6	11
		Infiltración Instantánea (mm/h)		30	22,8	12
		Relleno B (cm)	50			
		Achique C (cm)		49,5	47,6	46,6
		T parcial a(m)	0	1	5	5
		Lámina parcial(mm)	0	0,5	2,05	1,5
		Lámina acum(mm)		0,5	2,55	4,05
	TO CULTIVO	T acem A(min)		1	6	11
AN	IDISOL	Infiltración Instantánea (mm/h)		30	24.6	18
		Relleno B (cm)	50			
		Achique C (cm)		49,5	47,45	46
		T parcial a(m)		1	5	5
		Lámina parcial(mm)		0,5	2,15	1,5
5.45		Lámina acum(mm)		0,5	2,65	4,15
	ANATO ETACIÓN			1		
	ETACION IVA ANDISOL	T acum A(min)		30	6	11
100311	TAN MINDISOL	Infiltración Instantánea (mm/h)		30	25,8	18
		Relleno B (cm)	50			
		Achique C (cm)		49,5	47,350	###
3	P_VA_A01	T parcial a(m)		1	5	5
•	r_vr_nor	Lámina parcial(mm)	0	0,3	1,5	0,9
4	D VA 400	T parcial a(m)	0	1	5	5
4	P_VA_A02	Lámina parcial(mm)	0	0,7	2,8	2,1
		T parcial a(m)		5	5	5
		Lámina parcial(mm)		2,10	1,33	1,25
		Lámina acum(mm)		2,10	3,43	4,68
PÁRAN	MO ANDISOL	T acem A(min)		5	10	15
		Infiltración Instantánea (mm/h)		25,2	15,9	15
		Relleno B (cm)	50	25,2	15,0	
		Achique C (cm)	,,,	####	46,575	###
			0	5	40,515	5
5	P_P_A02	T parcial a(m)				
		Lámina parcial(mm)	0	2,1	1,9	1,5
6	P_P_A01	T parcial a(m)	0	5	5	5
-		Lámina parcial(mm)	0	2,9	1,1	1,5
		T parcial a(m)		5	5	5
		Lámina parcial(mm)		2,95	2,35	1,4
		Lámina acum(mm)		2,95	5,3	6,7
	ETACIÓN	T acem A(min)		5	10	15
HERRAC'	FA ANDISOL		_			

HEHEROERRHEIDOE	afiltración lartenténse (mm/h)	35,4	28,2 16,		6,9	1,68	0,3	0																		$\overline{}$	$\overline{}$		$\overline{}$			
	Relleau B (cm) 4 Achieve C (cm)	47.05	44.7 43.		42,725	42,585	42.56	42.56																								
7 P_VH_A02	T parcial a(m)	5	5 5		5	5	5	5																								
	Y i-t -(-)	3,4	2,5 1,		0,45	0,08	0	0														_										
8 P_VH_A01	Lámina parcial(mm)	2,5	2,2 1,7		0,7	0,2	0,05	0																								
	T perciel e(m)	1	1 1		1	1	1	1	1	- 1	1	- 1	- 1	1	1 1	- 1	1 '	1 1	1 1	1 1	1	1	1	1	1 1							
	Lémine perciel(mm) Lémine econ(mm)	0,65	0,55 0,1 1,2 1,3		0,45 2,15	0,35 2,5	0,3 2,8	0,25 3,05	0,25 3,3	0,25 3,55	0,25 3,8	0,2 4,0	5 0,25 5 4,3	0,2 4,5	0,2 0, 4,7 4,	9 5,1	0,2 0, 5,3 5,	2 0,2 5 5,7	0,2 0, 5,9 6,	2 0,2	0,2 6,5	0,2 6,7	6.85	6,95 7	0,1 0,05							
PASTIZAL ANDISOL	T ecum A(min)	1	2 3		4	5	6	7		9	10	11	12	13	14 15	16	17 1	8 19	20 2	1 22	23	24	25	26	27 28							
	nfiltración Instantónea (mm/h) Rellens B (cm) 4	39	33 36		27	21	18	15	15	15	15	15	15	12	12 12	12	12 1	2 12	12 1	2 12	12	12	9	6	6 3							
	Achique C (cm)	49,35	48,8 48,		47,85	47,5	47,2	46,95	46,7	46,45	46,2	45,		45,5	45,3 45		44,7 44		44,1 43		43,5	43,3	43,2	43,1	43 42,	,						
9 P_PZA_A01	T parcial a(m)	1	2 3		4	5	6	7 0.3	0,3	9	10	11		13	14 19 0.2 0.		17 1		20 2		23	24	25	26	27 28							
	Lémine perciel(mm) (T perciel e(m)	0,8	0,7 0,1 2 3		0,5 4	0,5	0,4	0,3	0,3	0,3	0,3 10	0,3	0,3	0,2 13	0,2 0,		0,2 0, 17 1	2 0,2	0,2 0, 20 2	2 0,2	0,2 23	0,2 24	0,1 25	0,1 26	0,1 0,1 27 28	+						
10 P_PZA_A02	Lámina parcial(mm)	0,5	0,4 0,		0,4	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,2	0,2	0,2 0,	2 0,2	0,2 0,	2 0,2	0,2 0,	2 0,2	0,2	0,2	0,2	0,1	0,1 0							
	T parcial a(m) Lámina parcial(mm)	0,5	0,5 0,4		0,45	0,35	0,3	0.3	0,3	0,3	0.3	0,3	0,3	0,3	0,3 0,2	5 0,25	0,25 0,3	1 1	0,2 0,	2 0,2	0,2	0,2	0,2	0,15	1 1	5 0,15	0,15		1 1		1 1	1 0.03
	Limina acum(mm)	0,5	1 1,4		1,9	2,25	2,55	2,85	3,15	3,45	3,75	4,0	5 4,35	4,65	4,95 5,	2 5,45	5,7 5,	95 6,15	6,35 6,5	6,75	6,95	7,15	7,35	7,5 7	,65 7,8	7,95	8,1	8,2 8	3 8,4	8,45 8 34 3	,5 8,53	8,55
PASTIZAL MOLISOL	T ecum A(min) nfiltración Instantónea (mm/h)	30	2 3		4 27	5 21	- 6	7 18	10	9	10	11		13	14 19		17 1		20 2		12	24	25	26	27 28	29	30	31 3	32 33 6 6	34 3	3 1,5	37 1,5
	Rellean B (cm) 4		30 2		- 21	- 21	18	18	10	18	10	16	10	10	16 12	19	15 1	9 14	12 1	2 12	12	12	12	,	, ,	7	7		, ,		3 1,5	1,5
	Achique C (cm)	49,5	49 48,		48,1	47,75	47,45	47,15	46,85	46,55	46,25	45,			45,05 44		44,3 44		43,7 43		43,1	42,9		42,5							1,5 41,5	
11 P_PZA_M02	T perciel e(m) (0,5	0,5 0,		0,4	0,4	0.3	0.3	0.3	9,3	10 0.3	0.3		0.3	14 15 0,3 0,		0,3 0,		0.2 0.		0,2	24 0.2	0.2		27 28		9.1	31 3	0 0		0 0	37
12 P_PZA_M01	T parcial a(m)	1	2 3		4	5	6	7		9	10	- 11	12	13	14 19	16	17 1	8 19	20 2		23	24	25	26	27 28						35 36	37
	Lémine perciel(mm) (T perciel e(m)	0,5	0,5 0,1	- 1	0,5	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3 0,	2 0,2	0,2 0,	2 0,2	0,2 0,	2 0,2	0,2	0,2	0,2		0,2 0,2		0,2 0	0,2 0	2,0 2,0	0,1 0	0,1 0,05	0,05
	Lémine perciel(mm)	0,5	0,45 0,		0,4	0,35	0,35	0,3	0,3	0,3	0,25	0,2			0,25 0,2	5 0,25	0,15 0,	15 0,15	0,15 0,	13 0,13	0,13	0,11	0,11	0,06 0	,06 0,00	6 0,05		0				
VEGETACIÓN	Lémine ecum(mm) T ecum A(min)	0,5	0,95 1,3 2 3		1,75	2,1	2,45	2,75	3,05	3,35	3,6	3,8		4,35 13	4,6 4,8 14 19	5 5,1 16	5,25 5, 17 1	4 5,55 8 19	5,7 5,1 20 2	3 5,95 1 22	6,08	6,19 24	6,3 25	6,36 6 26	,42 6,4: 27 28	8 6,53	6,58 6, 30	,575 31				
ARBUSTIVA	sfiltreciás Instantánea (mm/h)	30	27 24		24	21	21	18	18	18	10	15		15	15 15	15	9 9	9	9 8	* **	*	7	7	4	4 4	3	3	0				
	Rellens B (cm) 4	:																														
	Achique C (cm) T parcial a(m)	49,5	49,05 48,0	•	48,25	47,9 5	47,55 6	47,25 7	46,95	46,65	46,4 10	46,1	15 45,9 12	45,65 13	45,4 45, 14 15	15 44,9	44,8 44 17 1		44,3 44 20 2		43,9 23	43,8 24	43,7 25	43,6 4 26	13,6 43,5 27 28	5 43,5 29	30	31 3	32 33	34 3	35 36	37
13 S_VA_A02	Limina parcial(mm)	0.5	0,4 0,		0.4	0,3	0,3	0.3	0,3	0,3	0,2	0,3	0,2	0,2	0,2 0,	2 0,2	0,1 0	.1 0,1	0,1 0,0	0,05	0,05	0,02	0,02	0,02 0	,02 0,02	2 0	0	0 (0 0	0 1	0 0	0
14 S_BN_A02	T perciel e(m) (Lémine perciel(mm)	0,6	0.6 0.0		0,5	0,3	6.0	7 0,3	0,3	9,15	10 0,15	9,1		13 0.15	14 19	1 16	17 1 0,1 0	8 19 ,1 0,1	20 2 0,1 0,		0.05	24	0.05		27 28		30	31 3	32 33	34 3 0,1	36	37
15 S_VA_A01	T percial a(m)	1	2 3		4	5	6	7	- 8	9	10	11	12	13	14 19	16	17 1	8 19	20 2	1 22	23	24	25	26	27 28	29		31 3	32 33	34 3	36	37
.5 S_VH_AU1	Lémine perciel(mm) (T perciel e(m)	0,5	0,5 0,	- 1	0,4	0,4	0,4	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3 0,	3 0,3	0,2 0,	2 0,2	0,2 0,	2 0,2	0,2	0,2	0,2	0,1	0,1 0,1	0,1	0,1	0 1	0 0	0 1	0 0	0
	Lámina parcial(mm)	0,55	0,55 0,		0,4	0,3	0,3	0,225	0,225	0,15	0,15	0,12			0,1 0,		0,1 0	1 0,08	0,08 0,0	0,05	0,05	0,05			,05 0,05		0		0 0	0,1	0	
	Limine ecum(mm)	0,55	1,1 1,5		1,9	2,2	2,5	2,725	2,95	3,1	3,25	3,31	75 3,5	3,625	3,725 3,8	25 3,925	4,03 4,	13 4,2	4,28 4,3	5 4,4	4,45	4,5	4,55	4,6 4	1,65 4,7	4,78	4,78 4	,775 4,	,78 4,78		,88	
BOSQUENATIVO	T ecum A(min) afiltreción lartenténes (mm/h)	33	33 24		4 24	18	18	7	14	9	10	11		13	14 15 6 6	16	17 1 6 6	8 19	20 2	1 22	3	24	25	26	27 28	29						
	Rellens B (cm) 4																						Ė									
	Achique C (cm) T parcial a(m)	49,45	48,9 48,		48,1	47,8	47,5	47,275	47,05	46,9	46,75	46,1		46,38	46,28 46, 14 1		46 45	i,9 45,8 8 19	45,7 45 20 2	,7 45,6 1 22	45,6 23	45,5 24	45,5 25	45,4 26	45,4 45, 27 28	3 45,2	45,2 49 30	15,225 4 31 :	45,2 45,2 32 33	45,1 4 34	45,1 35 36	37
16 S_BN_A01	Lámina parcial(mm) 0	0,5	0,5 0,3		0,3	0,3	0,3	0,15	0,15	0,15	0,15	0,1		0,1	0,1 0,	1 0,1	0,1 0			05 0,05	0,05	0,05		20	21 23	0,1	24	21 .	2 33	0,1	0 0	0
	T percial e(m)	1	1 1		1	1	1	1	1	1	1	1	1	1	1 1	1	1	1 1	1	1 1	1	1	1	1	1 1	1	1	1				
	Lémine perciel(mm) Lémine ecem(mm)	0,6	0,6 0,5 1,2 1,7		0,5 2,25	0,45 2,7	0,45 3,15	0,4 3,55	0,4 3,95	0,4 4,35	0,35 4,7	0,3 5,0	5 0,35 5 5,4	0,3 5,7	0,3 0, 6 6,	3 0,3 3 6,6	0,3 0 6,9 7	,3 0,25 ,2 7,45	0,25 0, 7,7 7,	25 0,2 95 8,15	0,15 8,3	0,15 8,45		0,1 8,7	0,05 0,0 8,75 8,4	5 0,05 8 8,85	0,05 8,9	8,9				
PASTIZAL ANDISOL	T ecum A(min)	1	2 3		4	5	6	7		9	10	11	12	13	14 19	16	17 1	8 19	20 2	1 22	23	24	25	26	27 28	29	30	31				
	nfiltreción Instenténce (mm/h) Rollons B (cm) #	36	36 33	- ■	30	27	27	24	24	24	21	21	21	18	18 1:	18	18 1	® 15	15 1	5 12	9	9	9	6	3 3	3	3	0				
	Achique C (cm)	49,4	48,9 48,		48,3	48	47,7	47,55	47,4	47,25	47,1	47			46,7 46	,6 46,5	46,4 46			,2 46,1	46,1	46			46 46			45,9				
17 S_PZA_A02	T percial a(m) 0	1 1	2 3		4	5	6	7		9	10	11	12	13	14 19	5 16	17 1	8 19	20 2	1 22	23	24	25	26	27 28	29	30	31 3	32 33	34	35 36	37
	Lémine perciel(mm) 0	0,5	0,5 0,5	- 1	0,5	0,4	0,4	0,3	0,3	0,3	0,3 10	0,:	9,3	0,3	0,3 0, 14 19	3 0,3	0,3 0 17 1	3 0,2	0,2 0 20 2	2 0,2	0,1 23	0,1 24	0,1 25		0 0				0 0	0 34	0 0 35 36	37
18 S_PZA_A01	Lámina parcial(mm) 0		0,7 0,6		0,5	0,5	0,5	0,5	0,5	0,5	0,4	0,-			0,3 0,		0,3 0		0,3 0			0,2			0,1 0,			0	0 0	0	0 0	0
19 P_P_A04	T perciel e(m) 6 Lémine perciel(mm) 6	1,5	5 5 1,3 1	- ■	0,9	5 0,5	5																									
20 007:	T percial e(m) 0	5	5 5		9,9	9,5	5	5																								
20 P_P_A03	Lámina parcial(mm) •	1,9	1 1		1	1	0,5	0,2																								
	T perciel e(m) Lémine perciel(mm)	0,8	1 1	- 1	0.2333333	0.4	0.2333333	0.266667	0.2333333	0.2666667	0.2666667	0.2	1 0.2	0.233	0.233 0.2	33 0.167	0,2 0,	1 1	0.17 0	1 1	0,17	0.43	0.13	0,13	1 1	1 0.13	0.07	0,1 0	1 1	0.03	1 0	
CHIMBO PÁRAMO	Limina acum(mm)	0,8	1,6 2		2,2333333	2,6333333	2,8666667	3,1333333	3,3666667	3,6333333	3,9	4,12	3 4,333	4,567	4,8 5,0	33 5,2	5,4 5,	57 5,73	5,9 6,	03 6,17	6,33	6,47	6,6	6,73	6,8 6,9	9 7,03		7,2 7	7,23 7,3	7,33 7		
ANISOL	T acum A(min) nfiltración Instantánea (mm/h)	48	2 3	- ■	4	5 24	6 1d	7	8	9	10	11		13	14 19	16	17 1	8 19	20 2	1 22	23	24		26	27 26	29	30	31 3	32 33	34	35	
	Rellens B (cm) #							10	.,	10			_																	-		
	Achique C (cm)	49,2	48,4 48		47,766667	47,366667	47,133333	46,866667	46,633333	46,366667	46,1	45,			45,2 44,			1,4 44,3	44,1 4		43,7		43,4		43,2 43					42,7 4		
21 C_P_A02	T perciel e(m) 0 Lámine perciel(mm) 0	1	2 3	- 1	4	0,5		9,1		0,2	0.2	9,1		13 0.1	14 19 0,1 0,		0.2 0		0,1 0	.1 22	0,1	24		0.1	27 26		30		32 33 0 0,1	34	35 36	37
22 C_P_A01	T percial a(m) •	1	2 3		4	5	- 6	7		9	10	- 11	12	13	14 19	16	17 1	8 19	20 2	1 22	23	24	25	26	27 28	29	30	31 3	32 33	34	35 36	37
	Lámina parcial(mm) 0 T parcial a(m)	0,4	0,4 0,4		0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	4 0,4	0,4	0,4 0,	4 0,3	0,3 0	3 0,3	0,3 0	3 0,3	0,3	0,3	0,3	0,2	0,2 0,3	2 0,2		0,2	0 0	0	0 0	0
	Limine perciel(mm)		0,65 0,37		0,425	0,25	0,3	0,35	0,2375	0,3125	0,1625	0,10			0,2 0,1		0,25 0		0,24 0	2 0,16	0,2	0,16	0,23	0,13	0,13 0,1	7 0,13	0,13 0	0,075 0	0,08 0,07		0,1 0	
ERIAL ANDISOL	Lémine ecum(mm) T ecum A(min)	0,725	1,375 1,75		2,175	2,425	2,725	3,075	3,3125	3,625	3,7875	3,9		4,4	4,6 4,7 14 19		5,28 5,			14 6,3	6,5 23	6,66		7,03	7,16 7,3 27 28	3 7,46	7,59 7, 30	31 3	7,74 7,81 32 33	7,89 7 34	7,99 7,99 35 36	
	T ecum A(min) nfiltreción Instantánea (mm/h)	43,5	39 22,		25.5	15	18	21	14,25	18,75	9,75	11,2		13	14 19			8 19 2 13.5	20 2		12	9,75			8 10	29			32 33 4,5 4,5		6 0	
	Rellens B (cm) #																															
	Achique C (cm) T parcial a(m)	49,28	48,63 48,2		47,825	47,575	47,275	46,925	46,6875	46,375	46,2125	46,4		45,6	45,4 45, 14 19		44,7 44	1,5 44,3 8 19	44,1 43 20 2	1 22	43,5 23	43,3 24		43 26	42,8 42, 27 28	7 42,5		31	42,3 42,2 32 33	42,1 34	42 42 35 36	37
	Lámina parcial(mm) 🔸	0,3	0,2 0,1		0,1	0,1	0,1	0,1	0,05	0,05	0,05	0,0	5 0,1	0,1	0,1 0,	1 0,1	0,1 0	,1 0,1	0,05	0.05		0,05	,				0,1	0	0 0	0	0 0	0
23 C_E_A02	T perciel e(m)	1 1	2 3		4	5	6	7		9	10	11	12	13	14 1		17 1	8 19	20 2		23	24	25		27 28		30	31 :	32 33		35 36	37
	Lámina parcial(mm) 0	1,1	0,9 0,4	- 1	0,6	0,2	0,4	0,4	0,2	0,3	0,1 10	0,1	1 0,1	0,3	0,2 0, 14 1		0,3 0 17 1	,2 0,2 8 19	0,3 0 20 2	2 0,2	0,2 23	0,2 24	0,3 25	26	0 0, 27 28		0,1 30	31 :	0 0	34	0,1 0 35 36	37
24 C_E_A04	Tearcial a(m)		1 0,5		0,5	0,2	0,3	0,5	0,3	0,5	0,2	0,3	9,2	0,3	0,2 0	0,5	0,3 0	2 0,3	0,3 0	2,0,2	0,2	0,2	0,2	0,2	0,2 0,3	2 0,1	0,1	0,1	0,1 0,1	0,1	0,1 0	0
	T perciel e(m) • Lémine perciel(mm) •	1	1 9,0									11	12	13	14 1	44	17 1	8 19	20 2	1 22		24									35 36	37
24 C_E_A04	T percial a(m) 0 Lámina percial (mm) 0 T percial a(m) 0	1 1	2 3		4	5	6	7	*	7	10								20 2	2 02	23				27 28	29			32 33	34	00 0	
24 C_E_A04 25 C_E_A03 26 C_E_A01	T percial a(m) 0 Lámina percial(mm) 0 T percial a(m) 0 Lámina percial(mm) 0	1 1 0,5	2 3 0,5 0,5 2 3		4 0,5 4	5 0,5 5	0,4	7 0,4 7	0,4	0,4	0,3	0,3	0,3 12	0,3	0,3 0,	3 0,3	0,3 0 17 1	3 0,3	0,3 0 20 2	2,0,2	0,2 23	0,2 24	0,2	0,2	27 28 0,2 0,3 27 28	2 0,2	0,2	0,2 (32 33 0,2 0,2 32 33	0,2	0,2 0	37
24 C_E_A04 25 C_E_A03	T parcial a(m) 0 Lámina parcial (mm) 0 T parcial a(m) 0 Lámina parcial (mm) 0 Lámina parcial (mm) 0	1 1 0,5 1	0,5 0,5		4	5 0,5 5 0,3	6 0,4 6 0,3	7 0,4 7 0,3	0,4	0,4 9 0,2	0,3 10 0,2		0,3 12	0,3	0,3 0,	3 0,3	0,3 0 17 1	3 0,3	0,3 0	2,0,2	0,2	0,2	0,2 25 0	0,2 26	0,2 0,3	2 0,2	0,2 30	0,2 0 31 :	0,2 0,2	0,2 0 34	0,2 0	0 37 0
24	T percial a(m) Lámina percial (mm) T percial a(mm) Lámina percial (mm) T percial a(m)	1 1 0,5 1 1 1 1 1 1 3,5	2 3 0,5 0,5 2 3 1 0,3 1 1		4 0,5 4	5	6	7		9	10	11	0,3 12 2 0,1 1	0,3 13 0,2 1	0,3 0, 14 19	3 0,3 5 16 2 0,1	0,3 0 17 1 0,1 0	,3 0,3 8 19 ,1 0,1 1 1	0,3 0 20 2	2 0,2 1 22 0 0,1 1 1	0,2 23 0,1 1	0,2 24 0	0,2 25 0	0,2 26 0,1	0,2 0,3 27 26 0 0, 1 1	2 0,2 3 29 1 0,1 1	0,2 30 0	0,2 0 31 : 0,1 1	0,2 0,2 32 33	0,2 34 0,1	0,2 0 35 36 0 0 1 1	0 37 0 1

Apéndice F. Parámetros morfométricos

Item	Min	Max	Promedio (1)	Número de ocurrencias (2)-(count)	(1)*(2)																i
1	0,000	44,3168	22,158	1455243	32245831										1						i
2	44,415	8,8634	26,638975	1225242	32639191			i							Ì						-
3	88,695	132,9829	110,838829	124293	13776491																
4	133,081	177,2977	155,1892395	8759	1359302,5			- i							i						
5	177,389	221,6426	199,5160065	1718	342768,5																
6	221,745	265,7863	243,7658385	659	160641,69																-
•	266,052	309,0258	287,538681	265	76197,75																
- !																					
8	310,343	3,5302	156,9367105	80	12554,937			i													
9	354,712	396,7588	375,7351835	24	9017,6444																
10	405,156	443,3194	424,2377775	6	2545,4267																
				2816289	80624541																
				i																	
					28,63	Escarpado															
				i																	i
Curva								İ							!						1
Hipsométric			Daniel de de chesse	f	A sum of all fa		No. A. accompany to all a								1						
Item	Min	Max	Promedio de altura		Acumulación	%Área	%Acumulado	i													
1	1405	1.605	1505	1638432	1,042E+09	0,16	100,00	1							1						
2	1.606	1.805	1705,5	3746160	1,04E+09	0,36	99,84	0	1000 24	000 3000	4000 5000	6000									
3	1.806	2.005	1905,5	8908992	1,036E+09	0,86	39,48		±000 20	200 Juni	1000 3000	6000									-
4	2.006	2.206	2106	14793840	1,027E+09	1,42	98,63	5000													!
5	2.207	2.406	2306,5	25845984	1,012E+03	2,48	97,21				-										
6	2.407	2.606	2506,5	72834624	986569776	6,99	94,73	4500													i
7	2.607	2.807	2707	110169792	913735152	10,58	87,73	z			_										
8	2.808	3.007	2907,5	123549120	803565360	11,86	77,15	ji 4000													i
9	3.008	3.207	3107,5	108093600	680016240	10,38	65,29	-8 3500													
10	3.208	3.408	3308	102285792	571922640	9,82	54,91	g =		$\overline{}$			Promedio d								
11	3409	3608	3508,5	90904752	469636848	8,73	45,03	£ 3000					Relación Hi	psométrica							1
12	3609	3808	3708,5	84433968	378732096	8,11	36,36	2500		_											
13	3809	4008	3908,5	85822416	294298128	8,24	28,26	2500				1									i
14	4009	4209	4109	127370304	208475712	12,23	20,02	2000		_		١									-
15	4210	4409	4309,5	71236368	81105408	6,84	7,79		$\overline{}$			- 1									i
16	4410	4609	4509,5	6782976	9869040	0,65	0,95	1500	20.00	40,00 60,0	00.08 00	100.00									-
17	4610	4810	4710	1710144	3086064	0,16	0,30	0,00	24,00	% Acumulado		100,00									1
18	4811	5010	4910,5	774144	1375920	0,07	0,13			A PAGITICINA											
19	5011	5210	5110,5	484272	601776	0,05	0,06														
20	5211	5411	5311	117504	117504	0,01	0,01	-							1						
20	2211	2411	3511	1041503184	111304	100,00	0,01	- !													
				1041505104		100,00									1						
															-						
Base	Altura	Altura real	B*AR	!	Base	Altura 2	B*A2	Rowid	VALUE	COUNT	AREA	MIN	MAX	RANGE	MEAN	STD	SUM	VARIETY	MAJORITY	MINORITY	MEDIAN
5	4691,98	3186,98	15934,89		5	619,02	3095,1072	1	1	11378	1638432	1405	1.605	200	1.543.518.545	45.325.235	17.562.154	201	1581	1447	1554
10	4551,43	3046,49	30464,93		10	759,51	7595,0695	2	2	26015	3746160	1.606	1.805	199	1.719.789.314	59.508.161	44.740.319	200	1800	1666	1726
15	4411,01	2906,01	43590,11		15	899,99	13499,887	3	3	61868	8908992	1.806	2.005	199	1.909.095.558	58.538.602	118.111.924	200	1831	1884	1912
20	4270,52	2765,52	55310,44		20	1040,48	20809,559	4	4	102735	14793840	2.006	2.206	200	2.112.961.999	57.358.785	217.075.151	201	2027	2007	2116
25 30	4130,04 3989,55	2625,04 2484,55	65625,91 74536,53		25 30	1180,96 1321,45	29524,087 39643,47	5	5	179486 505796	25845984 72834624	2.207 2.407	2.406 2.606	199	2.319.094.966 2.519.825.756	57.081.194 55.475.449	416.245.079 1.274.517.788	200 200	2265 2578	2211 2408	2324
35	3849,07	2344,07	82042,29	1	35	1461,93	51167,707	7	7	765068	1,1E+08	2.607	2.807	200	271.168.862	57.653.828	2.074.626.189	200	2774	2618	2714
40	3708,58	2203,58	88143,20		40	1602,42	64036,8	8	8	857980	1,24E+08	2.808	3.007	199	2.907.086.708	57.544.463	2.494.222.254	200	2824	2990	2907
45	3568,09	2063,09	92839,25		45	1742,91	78430,748	. 9	9	750650	1,08E+08	3.008	3.207	199	3.105.774.297	58.264.635	2.331.349.476	200	3044	3125	3105
50	3427,61	1922,61	96130,45		50	1883,39	94169,551	10	10	710318	1,02E+08	3.208	3.408	200	3.307.955.771	58.867.228	2.349,700,527	201	3391	3354	3308
55	3287,12	1782,12	98016,79		55	2023,88	111313,21	11	11	631283	90904752	3409	3608	199	3.503.179.262	58.123.704	2211497514	200	3420	3544	3500
60	3146,64	1641,64	38438,28		60	2164,36	129861,72	12	12	586347	84433968	3609	3808	199	3.707.202.517	5.722.444	2173707074	200	3686	3802	3706
65 70	3006,15 2865,67	1501,15	97574,91		65 70	2304,85 2445,33	149815,09	13	13	595989 884516	85822416	3809 4009	4008	199	3.913.399.643 4.113.485.141	58.016.545 57.268.172	2332343140 3638443423	200	4001 4156	3819 4009	3916
70 75	2725,18	1360,67 1220,18	95246,69 91513,61		75	2445,33 2585,82	171173,31 193936,39	1 14	14	494697	1,27E+08 71236368	4210	4209 4409	199	4.113.485.141	49,576,839	2116794758	201 200	4156 4210	4404	4116
80	2584.70	1079.70	86375.67	!	80	2726.30	218104.33	16	16	47104	6782976	4410	4603	199	4.482.806.959	56,240,006	211158139	200	4410	4605	4469
85	2444,21	939,21	79832,88		85	2866,79	243677,12	17	17	11876	1710144	4610	4810	200	4.684.826.541	54.529.369	55637000	201	4617	4797	4674
90	2303,72	798,72	71885,24	ì	90	3007,28	270654,76	18	18	5376	774144	4811	5010	199	4.902.260.603	56.926.697	26354553	200	4864	4919	4891
	2163,24	658,24	62532,74		95	3147,76	299037,26	19	19	3363	484272	5011	5210	199	5.084.265.834	49.513.417	17098386	200 191	5091	5191 5300	5076 5284
95		Area bajo la curva	1426094,82			Area sobre la curva		20	20	816	117504	5211	5411		529,233,701	53.687.987	4318547		5218		

ltem	Min	Max	Promedio (1)	Número de ocurrencias (2)-(count)	(1)*(2)						
1	0	50,732483	25,366	5133885	130227366,7						
2	50,796604	101,475655	76,1361295	1995527	151931702,1						
3	101,561165	152,2117	126,8864325	96475	12241368,58						
4	152,254471	202,978043	177,616257	5661	1005485,631						
5	202,99942	253,675247	228,3373335	899	205275,2628						
6	253,983032	303,573914	278,778473	165	45998,44805						
7	304,49826	350,919556	327,708908	25	8192,7227						
8	357,781799	401,151215	379,466507	15	5691,997605						
9	420,915833	451,792816	436,3543245	3	1309,062974						
10	468,65741	507,453125	488,0552675	6	2928,331605						
				7232661	295675318,9						
					40,88	Pmc					
Curva Hipsométrica	1							D	2000	4000 6000	
ltem	Min	Max	Promedio de altura	Área	Acumulación	%Área	%Acumulado				
1	1405	1738	1571,5	3775968	1041503184	0,36	100,00	5000		_	
2	1739	2072	1905,5	14842800	1037727216	1,43	99,64	4500		_	
3	2073	2406	2239,5	36314640	1022884416	3,49	98,21	4300	_	_	
4	2407	2740	2573,5	142974720	986569776	13,73	94,73	E 4000	-	-	
5	2741	3074	2907,5	201413088	843595056	19,34	81,00	4000		•	
6	3075	3408	3241,5	172545120	642181968	16,57	61,66	g 3500			Pro me dio de altura
7	3409	3741	3575	148006800	469636848	14,21	45,09	- TO 000			Relación Hipsométri
8	3742	4075	3908,5	151685280	321630048	14,56	30,88	Ē 3000			- Relación Hipschneth
9	4076	4409	4242,5	160075728	169944768	15,37	16,32	2500		1	
10	4410	4743	4576,5	8182800	9869040	0,79	0,95			١.	
11	4744	5077	4910,5	1331712	1686240	0,13	0,16	2000		- 1	
12	5078	5411	5244,5	354528	354528	0,03	0,03				
ı.	00.0	0111	0211,0	1041503184	001020	100,00	0,00	1500	20.00 40.00 60	,00 80,00 100,00	
				101100101		100,00		0,00	% Acumula		
Base	Altura	Altura real	B*AR		Base	Altura 2	B*A2				
5	4738,89	3167,39	15836,93		5	505,61	2528,074741				
10	4598,47	3026,97	30269,68		10	646,03	6460,321931				
15	4458,05	2886,55	43298,26		15	786,45	11796,74157				
20	4317,63	2746,13	54922,67		20	926,87	18537,33366				
25	4177,22	2605,72	65142,90		25	1067,28	26682,0982				
30	4036,80	2465,30	73958,96		30	1207,70	36231,03519				
35	3896,38	2324,88	81370,86		35	1348,12	47184,14463				
40	3755,96	2184,46	87378,57		40	1488,54	59541,42652				
45	3615,55	2044,05	91982,12		45	1628,95	73302,88086				
50	3475,13	1903,63	95181,49		50	1769,37	88468,50765				
55	3334,71	1763,21	96976,69		55	1909,79	105038,3069				
60	3194,30	1622,80	97367,72		60	2050,20	123012,2786				
65	3053,88	1482,38	96354,58		65	2190,62	142390,4227				
70	2913,46	1341,96	93937,26		70	2331,04	163172,7393				
75	2773,04	1201,54	90115,77		75	2471,46	185359,2283				
80	2632,63	1061,13	84890,11		80	2611,87	208949,8898				
85	2492,21	920,71	78260,28		85	2752,29	233944,7238				
90	2351,79	780,29	70226,27		90	2892,71	260343,7302				
95	2351,75	639,87	60788,09		95	3033,13	288146,909				
30	2211,31				30						
		Area bajo la curva	1408259,21			Area sobre la curva	2081090,794				

ltem	Min	Max	Promedio (1)	Número de ocurrencias (2)-(count)	(1)*(2)									
1	0	61,555363	30,778	2232747	68718776,04									
2	61,678631	123,22525	92,4519405	482972	44651698,61									
3	123,260468	184,777695	154,0190815	22536	3470974,021									
4	184,854019	246,437286	215,6456525	2788	601220,0792									
5	246,454895	308,023499	277,239197	754	209038,3545									
6	308,280548	369,291046	338,785797	354	119930,1721									
7	369,828339	430,302917	400,065628	119	47607,80973									
8	432,340607	490,225647	461,283127	63	29060,837									
9			_	38										
10	493,026459	551,009155	522,017807	38 14	19836,67667									
10	555,373474	616,131531	585,7525025		8200,535035									
				2742385	117876343,1									
					42,98									
					12,00									
Curva Hipsométrica														
ltem	Min	Max	Promedio de altura	Área	Acumulación	%Årea	%Acumulado		00 2000	3000	40 00	5000		
1	48	410	229	96030000	394903440	24,32	100,00	4200						
2	411	772	591,5	60405840	298873440	15,30	75,68	3700						
3	773	1135	954	43286112	238467600	10,96	60,39							
4	1136	1497	1316,5	32345856	195181488	8,19	49,43	3200						
5	1498	1859	1678,5	26271936	162835632	6,65	41,23	₽ 2700						
6	1860	2222	2041	26359200	136563696	6,67	34,58	ė d	1					
7	2223	2584	2403,5	23289120	110204496	5,90	27,91	을 2200		_			Promedio de altu	1
8	2585	2946	2765,5	24064848	86915376	6,09	22,01	E 1700				_	Relación Hipsomé	rica
9	2947	3309	3128	24025968	62850528	6,08	15,92	Ē.	_ \					
10	3310	3671	3490,5	21252096	38824560	5,38	9,83	1200	_					
11	3672	4033	3852,5	14645520	17572464	3,71	4,45	700						
12	4034	4396	4215	2926944	2926944	0,74	0,74							
				394903440		100,00	·	0,00 20	.00 40.00	60,00	80,00	100,00		
								0,00		:umulado				
Base	Altura	Altura real	B*AR		Base	Altura 2	B*A2							_
5	3552,77	3323,77	16618,84		5	662,23	3311,155845							
10	3343,86	3114,86	31148,57		10	871,14	8711,432916							
15	3134,94	2905,94	43589,17		15	1080,06	16200,83121							
20	2926,03	2697,03	53940,65		20	1288,97	25779,35073							
25	2717,12	2488,12	62203,01		25	1497,88	37446,99148							
30	2508,21	2279,21	68376,25		30	1706,79	51203,75346							
35	2299,30	2070,30	72460,36		35	1915,70	67049,63666							
40	2090,38	1861,38	74455,36		40	2124,62	84984,64108							
	1881,47	1652,47	74361,23		45	2333,53	105008,7667							
45			70477.00		50	2542,44	127122,0136							
45 50	1672,56	1443,56	72177,99											
		1443,56 1234,65	67905,62		55	2751,35	151324,3817							
50	1672,56					2751,35 2960,26	151324,3817 177615,871							
50 55	1672,56 1463,65	1234,65	67905,62		55									
50 55 60	1672,56 1463,65 1254,74	1234,65 1025,74	67905,62 61544,13		55 60	2960,26	177615,871							
50 55 60 65	1672,56 1463,65 1254,74 1045,82	1234,65 1025,74 816,82	67905,62 61544,13 53093,52		55 60 65	2960,26 3169,18	177615,871 205996,4816							
50 55 60 65 70	1672,56 1463,65 1254,74 1045,82 836,91	1234,65 1025,74 816,82 607,91	67905,62 61544,13 53093,52 42553,79		55 60 65 70	2960,26 3169,18 3378,09	177615,871 205996,4816 236466,2134							
50 55 60 65 70 75	1672,56 1463,65 1254,74 1045,82 836,91 628,00	1234,65 1025,74 816,82 607,91 399,00	67905,62 61544,13 53093,52 42553,79 29924,93		55 60 65 70 75	2960,26 3169,18 3378,09 3587,00	177615,871 205996,4816 236466,2134 269025,0664							
50 55 60 65 70 75	1672,56 1463,65 1254,74 1045,82 836,91 628,00 419,09 210,17	1234,65 1025,74 816,82 607,91 399,00 190,09 -18,83	67905,62 61544,13 53093,52 4253,79 29924,93 15206,96 -1600,14		55 60 65 70 75	2960,26 3169,18 3378,09 3587,00 3795,91 4004,83	177615,871 205996,4816 236466,2134 269025,0664 303673,0406 340410,1361							
50 55 60 65 70 75 80	1672,56 1463,65 1254,74 1045,82 836,91 628,00 419,09	1234,65 1025,74 816,82 607,91 399,00 190,09	67905,62 61544,13 53093,52 42553,79 29924,93 15206,96		55 60 65 70 75 80 85	2960,26 3169,18 3378,09 3587,00 3795,91	177615,871 205996,4816 236466,2134 269025,0664 303673,0406							

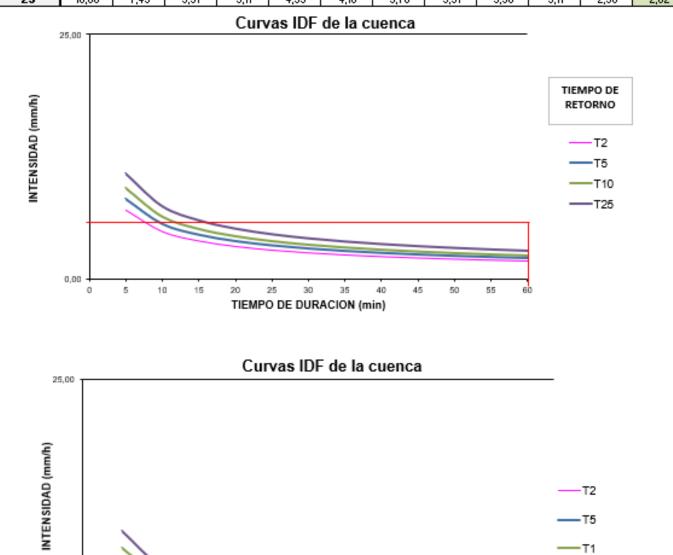
Apéndice G. Modelo hidrológico

AÑO				P	RECIPIT	ACIÓN N	AXIMA	MENSUA	\L				MÁXIMA
ANU	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DIC	WIAATIWA
1985	5,27	0	5,27	5,27	5,27	5,27	0	0	5,27	0	5,27	5,27	5,27
1986	5,27	5,27	5,27	5,27	5,27	0	0	0	0	5,27	0	5,27	5,27
1987	5,27	5,27	5,27	5,27	5,27	0	0	0	0	5,27	0	0	5,27
1988	5,27	5,27	0	5,27	5,27	5,27	0	0	0	5,27	5,27	5,27	5,27
1989	5,27	5,27	5,27	5,27	5,27	5,27	0	0	0	0	0	0	5,27
1990	5,27	5,27	5,27	5,27	0	0	0	0	0	5,27	0	0	5,27
1991	5,27	5,27	5,27	5,27	5,27	5,27	0	0	0	0	5,27	5,27	5,27
1992	5,27	5,27	5,27	10,55	5,27	0	0	0	0	0	0	0	10,55
1993	5,27	5,27	5,27	5,27	5,27	0	5,27	0	0	0	5,27	5,27	5,27
1994	5,27	5,27	5,27	5,27	5,27	0	0	0	0	5,27	5,27	5,27	5,27
1995	5,27	5,27	5,27	5,27	5,27	0	5,27	0	0	0	5,27	5,27	5,27
1996	5,27	5,27	5,27	5,27	5,27	0	0	0	0	5,27	0	0	5,27
1997	5,27	5,27	5,27	5,27	5,27	5,27	5,27	5,27	5,27	5,27	10,55	5,27	10,55
1998	5,27	5,27	10,55	10,55	10,55	5,27	0	0	0	5,27	0	5,27	10,55
1999	5,27	5,27	10,55	5,27	5,27	5,27	0	0	5,27	0	5,27	5,27	10,55
2000	5,27	5,27	5,27	5,27	5,27	0	0	0	0	0	0	0	5,27
2001	5,27	0	5,27	5,27	5,27	0	0	0	0	0	0	5,27	5,27
2002	5,27	5,27	5,27	5,27	5,27	0	0	0	0	5,27	5,27	5,27	5,27
2003	5,27	5,27	5,27	5,27	5,27	5,27	0	0	0	5,27	5,27	5,27	5,27
2004	0	5,27	5,27	5,27	5,27	0	0	0	0	0	5,27	5,27	5,27
2005	0	0	5,27	5,27	0	0	0	0	0	0	0	0	5,27
2006	5,27	5,27	5,27	5,27	0	5,27	0	0	0	0	0	0	5,27
2007	0	0	0	0	0	0	0	0	0	5,27	5,27	5,27	5,27
2008	5,27	5,27	5,27	10,55	5,27	5,27	0	5,27	0	5,27	0	0	10,55
2009	5,27	5,27	5,27	5,27	0	0	0	0	0	5,27	0	5,27	5,27
2010	0	5,27	5,27	5,27	5,27	0	0	0	0	0	5,27	5,27	5,27
2011	5,27	5,27	5,27	10,55	0	0	5,27	0	0	0	5,27	5,27	10,55
2012	5,27	5,27	5,27	5,27	5,27	0	0	0	0	5,27	5,27	0	5,27
2013	5,27	5,27	5,27	5,27	5,27	0	0	0	0	5,27	0	0	5,27
2014	5,27	5,27	5,27	0	5,27	0	0	0	0	5,27	5,27	0	5,27
2015	5,27	5,27	5,27	5,27	5,27	5,27	0	0	0	5,27	5,27	5,27	5,27
2016	5,27	5,27	5,27	5,27	5,27	5,27	0	0	0	0	0	5,27	5,27
2017	5,27	5,27	10,55	5,27	5,27	5,27	0	0	0	0	5,27	5,27	10,55
2018	5,27	10,55	5,27	5,27	5,27	5,27	0	0	0	5,27	5,27	5,27	10,55
2019	5,27	5,27	5,27	5,27	5,27	5,27	0	0	0	5,27	5,27	5,27	5,27
2020	5,27	5,27	5,27	5,27	5,27	5,27	0	0	0	0	0	5,27	5,27
2021	10,89	5,48	6,46	6,07	4,49	6,67	1,03	0,97	1,69	5,48	3,82	4,85	10,89
2022	3,45	4,89	8,72	5,7	3,61	4,35	3,84	1,75	2,17	3,91	3,06	2,56	8,72
MAX	10,89	10,55	10,55	10,55	10,55	6,67	5,27	5,27	5,27	5,48	10,55	5,27	10,89

N-	Año	Mes	Precipit	ación (mm)	Cálculo	variables pro	babilí:	sticas	Cálculo de l		aciones Di stintas fre		as Probable
N-	Ano	Max. Precin	zi.	(zi - z)*2	Media	ν.							
		Precin		1		$\overline{x} = \frac{\sum x_i}{x_i} =$	6,50	mm	Periodo	<i>Yariable</i>	Precip.	Prob. de	Corrección
						"			Retorno	Reducida	(mm)	ocurrencia	stervalo fij
1	1985	5,27	5,27	1,525	Desviaci	ón estandar			Años	77	XT (mm)	F(x7)	XT (mm)
2	1986	5,27	5,27	1,525	1	n /			2	0,3665	6,1391	0,5000	6,9371
3	1987	5,27	5,27	1,525		$\sum (x_i - \overline{x})^2$			5	1,4999	8,1069	0,8000	9,1608
4	1988	5,27	5,27	1,525	S = 7	- 1	2,23	mm	10	2,2504	9,4098	0,9000	10,6331
5	1989	5,27	5,27	1,525	'	n-1			25	3,1985	11,0561	0,9600	12,4934
6	1990	5,27	5,27	1,525	alla	IE.			50	3,9019	12,2773	0,9800	13,8734
7	1991	5,27	5,27	1,525		$\alpha = \frac{\sqrt{6}}{2} * s =$	1,74	mm	100	4,6001	13,4896	0,9900	15,2432
8	1992	10,55	10,55	16,363		ж			500	6,2136	16,2909	0,9980	18,4087
9	1993	5,27	5,27	1,525	4								$-\left(\frac{x-u}{\alpha}\right)$
10	1994	5,27	5,27	1,525		$-0.5772*\alpha =$	5,50	mm				$F_{(x)} = e^{-\epsilon}$	(α)
11	1995	5,27	5,27	1,525							-	$c_{(x)} = e$	
12	1996	5,27	5,27	1,525									
13	1997	10,55	10,55	16,363									
14	1998	10,55	10,55	16,363									
15	1999	10,55	10,55	16,363									
16	2000	5,27	5,27	1,525									
17	2001	5,27	5,27	1,525									
18	2002	5,27	5,27	1,525									
19	2003	5,27	5,27	1,525									
20	2004	5,27	5,27	1,525									
21	2005	5,27	5,27	1,525									
22	2006	5,27	5,27	1,525									
23	2007	5,27	5,27	1,525									
24	2008	10,55	10,55	16,363									
25	2009	5,27	5,27	1,525									
26	2010	5,27	5,27	1,525									
27	2011	10,55	10,55	16,363									
28	2012	5,27	5,27	1,525									
29	2013	5,27	5,27	1,525									
30	2014	5,27	5,27	1,525									
31	2015	5,27	5,27	1,525									
32	2016	5,27	5,27	1,525									
33	2017	10,55	10,55	16,363									
34	2018	10,55	10,55	16,363									
35	2019	5,27	5,27	1,525									
36	2020	5,27	5,27	1,525									
37	2022	8,72	8,72	4,907									
37		Suma	240,68	178,51									

La ecuación de intensidad válida para la cuenca resulta:

$$I = \frac{K T^m}{t^n}$$


Donde:

l = intensidad de precipitación (mm/hr)

T = Periodo de Retorno (años)

t = Tiempo de duración de precipitación (min)

			Ta	bla de ir	ntensida	des - Tie	mpo de d	luración								
Frecuencia					Du	ıración (en minut	os								
años	5															
2	7,00															
5	8,19	5,63	4,52	3,87	3,43	3,11	2,86	2,66	2,50	2,36	2,24	2,14				
10	9,23	6,35	5,10	4,36	3,87	3,51	3,23	3,00	2,82	2,66	2,53	2,41				
25	10,80	7,43	5,97	5,11	4,53	4,10	3,78	3,51	3,30	3,11	2,96	2,82				

20 25 30 35 4 TIEMPO DE DURACION (min)

40

45

60

55

10

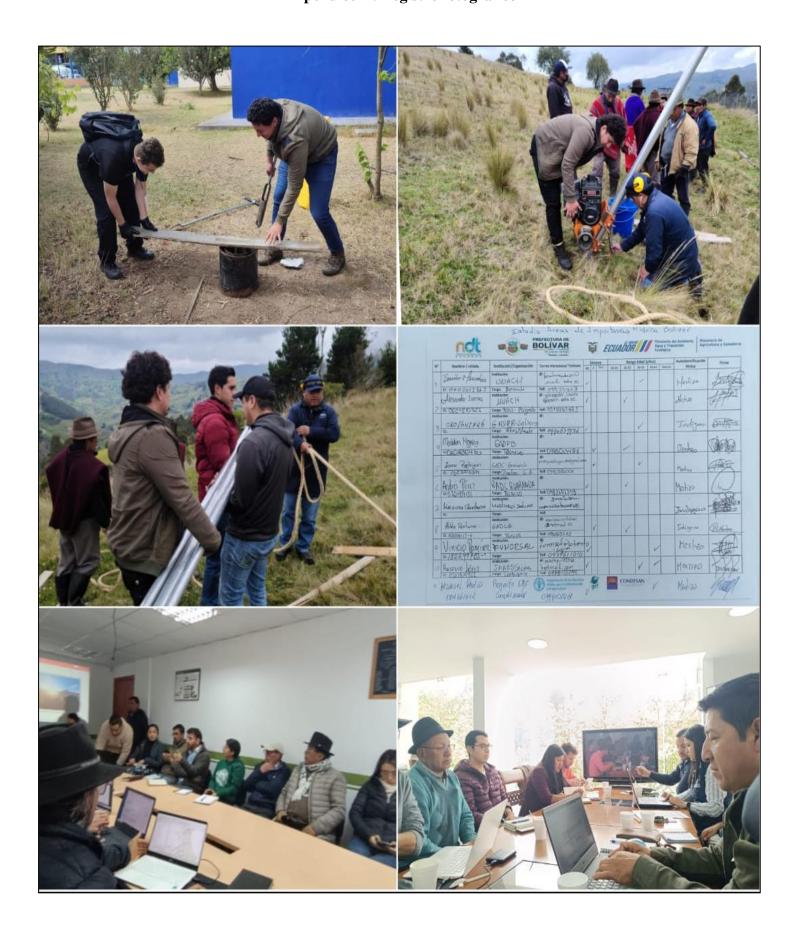
Apéndice H. Resultados del modelamiento UHP

Promedio de Q	Meses												
Años	ene	feb	mar	abr	may	jun	jul	ago	sep	oct	nov	dic	Total, general
1981	7,10	22,12	26,82	22,61	12,99	8,65	8,84	4,80	6,85	10,49	18,11	16,97	13,79
1982	26,90	26,25	22,11	30,49	20,59	9,25	8,60	8,70	8,99	20,11	31,88	49,45	21,93
1983	12,16	15,79	34,80	33,25	30,22	21,01	19,83	7,03	14,32	16,85	14,99	18,96	19,96
1984	16,86	31,66	28,19	26,99	13,55	12,40	6,91	6,44	15,60	15,77	13,89	16,21	16,96
1985	21,71	12,51	21,16	24,05	22,87	15,88	8,72	12,82	16,27	10,88	13,06	16,83	16,42
1986	22,66	20,87	21,60	25,26	14,35	8,06	6,57	7,51	11,85	16,71	13,90	13,83	15,22
1987	25,85	36,89	28,07	33,66	24,23	9,08	7,16	6,10	10,25	18,52	7,63	7,70	17,80
1988	21,42	27,73	9,32	29,48	19,77	14,09	9,35	7,36	12,28	18,43	20,21	15,35	16,99
1989	27,69	26,71	31,00	23,93	16,77	22,12	8,85	4,45	8,93	14,71	8,90	8,21	16,78
1990	14,29	30,98	16,17	24,32	12,15	14,10	10,15	6,35	9,49	20,85	9,92	13,06	15,03
1991	17,44	29,26	24,83	21,78	16,41	18,62	8,63	5,26	11,21	9,52	17,47	15,60	16,22
1992	21,55	24,80	28,28	38,93	24,10	12,29	8,78	8,89	13,36	10,14	13,15	13,06	18,06
1993	26,54	34,29	34,01	34,13	20,63	11,04	15,32	10,55	11,86	12,21	15,97	19,20	20,39
1994	26,61	26,98	31,45	27,48	18,21	12,26	11,34	10,07	11,90	15,61	18,22	18,07	18,97
1995	17,58	17,57	19,53	27,20	16,08	13,19	15,12	8,51	7,37	10,46	20,15	15,11	15,63
1996	22,94	29,42	25,02	22,71	17,98	13,82	8,96	7,40	11,61	16,16	12,07	12,35	16,65
1997	22,44	26,00	29,83	24,32	23,73	21,53	14,41	12,08	25,49	17,77	52,45	29,53	24,89
1998	30,80	32,80	38,69	43,60	41,87	21,03	12,81	8,50	5,90	19,92	13,97	32,54	25,18
1999	21,69	31,29	36,90	30,69	23,05	18,79	6,60	9,98	19,65	10,47	14,15	24,95	20,60
2000	18,21	23,77	21,52	19,57	27,79	11,34	3,93	3,64	10,25	4,25	3,00	9,20	13,00

Total, general	20,43	24,69	25,49	26,50	19,29	14,32	9,96	7,78	10,00	14,46	16,09	16,90	17,10
2022	15,83	22,42	40,48	26,30	16,92	20,06	17,80	8,08	10,11	17,98	14,29	11,33	18,46
2021	50,38	24,45	29,50	27,59	21,09	30,30	5,31	4,45	7,81	25,45	17,39	22,64	22,19
2020	18,51	17,83	14,87	23,87	20,67	17,45	11,75	5,47	5,71	9,22	9,99	20,46	14,64
2019	18,98	27,95	26,14	30,00	23,19	17,60	10,62	7,13	5,43	15,09	20,15	16,83	18,18
2018	19,89	37,47	20,63	24,18	22,71	17,82	10,62	11,40	5,98	14,55	23,66	16,63	18,65
2017	31,81	28,47	40,54	27,44	27,64	19,79	9,62	11,25	9,92	12,98	17,22	20,11	21,37
2016	17,83	17,58	31,94	34,12	19,40	18,56	9,19	6,48	14,36	13,52	13,00	14,31	17,50
2015	20,88	22,16	27,73	29,52	21,00	16,05	12,78	7,24	5,56	15,13	20,91	15,66	17,85
2014	24,91	18,13	13,44	4,61	22,68	12,20	8,45	9,26	9,96	16,17	16,18	12,79	14,07
2013	17,67	29,83	28,21	24,35	21,72	11,80	12,76	10,98	8,93	17,21	12,44	13,41	17,37
2012	32,88	34,25	33,07	30,95	18,69	12,90	10,08	7,83	7,69	16,32	17,66	10,60	19,35
2011	19,02	31,14	17,22	41,32	12,67	10,00	13,61	8,89	8,99	13,62	18,69	16,02	17,46
2010	9,12	24,71	22,40	32,73	12,39	8,24	7,44	2,91	9,28	10,94	22,16	23,21	15,36
2009	16,56	31,19	26,72	13,12	2,84	2,54	5,90	9,82	6,36	15,18	9,57	18,24	13,08
2008	26,90	31,43	33,59	37,61	27,21	17,27	12,75	13,75	14,26	16,44	5,70	5,64	20,17
2007	8,68	1,93	9,71	7,09	7,70	10,02	3,64	11,13	8,38	19,78	24,89	17,18	10,90
2006	12,08	30,18	22,65	19,16	11,55	15,96	7,62	8,55	1,98	3,34	2,49	11,31	12,12
2005	4,02	4,52	16,50	14,35	8,27	4,99	1,75	1,77	3,80	9,54	12,98	11,97	7,89
2004	10,81	16,50	18,77	25,55	26,87	10,27	11,39	7,64	11,42	13,53	18,51	14,18	15,44
2003	17,90	22,25	21,67	25,64	17,06	17,33	13,14	5,22	9,77	16,02	17,37	17,07	16,65
2002	13,90	21,02	28,71	33,35	16,17	11,87	12,21	6,52	6,01	19,23	16,99	18,23	16,99
2001	26,96	13,59	16,67	15,52	14,31	9,70	9,02	4,35	4,66	6,23	10,52	15,45	12,26

Apéndice I. Resultados del modelamiento UHS

Promedio de Q	Meses												
Años	ene	feb	mar	abr	may	jun	jul	ago	sep	oct	nov	dic	Total, general
1981	10,31	42,74	32,75	19,47	3,48	2,18	3,26	1,66	1,87	3,47	5,97	9,40	11,17
1982	30,67	26,58	14,50	19,69	8,09	3,14	2,70	2,89	3,12	12,69	36,09	66,29	18,84
1983	8,77	43,57	60,46	51,07	57,04	45,31	44,83	5,87	14,75	6,94	9,80	14,50	30,13
1984	9,02	52,88	38,48	32,21	5,61	7,75	2,72	1,77	5,12	4,08	4,86	14,83	14,76
1985	19,54	18,03	25,05	15,33	10,33	5,54	3,05	4,34	5,66	3,15	4,35	14,26	10,69
1986	54,35	25,23	23,21	29,12	5,02	3,07	2,67	2,41	3,69	6,00	3,81	12,96	14,25
1987	46,53	78,97	51,21	46,74	18,36	3,10	2,90	3,39	3,45	5,40	2,95	6,81	22,11
1988	37,70	34,73	6,60	35,46	15,14	4,98	3,57	2,42	3,73	5,54	5,05	9,63	13,61
1989	48,50	53,49	47,14	31,68	9,22	8,31	3,48	1,15	2,45	5,10	3,12	5,67	18,06
1990	16,24	39,80	22,42	23,35	6,68	5,52	3,17	2,09	3,08	6,35	3,07	11,74	11,76
1991	19,62	56,40	27,22	15,97	7,48	5,34	2,95	1,51	2,73	2,71	5,66	14,31	13,21
1992	34,62	49,01	62,57	64,88	41,23	9,87	3,69	1,99	3,57	2,76	4,13	6,93	23,67
1993	30,40	66,48	43,29	41,18	11,61	4,37	4,15	2,62	2,77	3,92	3,72	15,72	18,86
1994	34,31	41,12	37,44	29,71	9,68	4,20	3,68	3,25	2,62	5,96	5,52	21,08	16,41
1995	35,03	31,97	18,64	33,86	7,93	3,75	5,65	2,53	1,75	2,56	6,05	6,71	12,90
1996	21,50	41,76	32,73	15,91	5,45	3,83	3,09	2,16	2,92	4,30	3,76	5,74	11,82
1997	22,94	46,49	55,82	36,85	21,71	26,13	20,90	9,74	29,34	14,95	82,18	67,26	36,03
1998	75,17	75,83	87,04	86,67	64,50	14,12	8,20	2,59	1,48	5,24	6,96	18,80	37,01
1999	16,57	48,48	67,55	34,00	19,45	5,94	2,40	3,03	8,78	3,10	4,08	13,79	18,75
2000	17,59	30,96	41,26	23,40	20,47	5,34	1,24	1,79	4,02	1,29	1,09	6,72	12,88
2001	26,06	29,33	39,42	25,86	10,34	3,84	3,05	1,50	1,42	2,17	3,34	7,76	12,75
2002	13,41	49,29	55,34	47,73	12,38	5,02	4,22	1,81	1,85	5,94	6,80	13,46	17,88


2003	24,58	42,18	24,67	23,53	11,53	5,40	3,05	1,66	2,72	6,02	6,64	10,29	13,33
2004	13,43	32,32	30,16	24,95	16,62	3,54	3,43	2,15	3,70	3,86	5,19	4,53	11,91
2005	1,41	2,66	13,77	8,71	2,76	1,65	0,55	0,54	1,04	2,55	3,80	4,14	3,64
2006	12,81	46,72	23,43	10,40	3,96	4,78	1,54	2,08	0,72	1,02	0,84	3,75	9,09
2007	9,14	0,82	7,84	2,24	2,30	4,68	1,39	4,23	2,60	6,27	8,91	6,76	4,80
2008	32,96	39,58	50,23	33,19	13,71	5,27	3,28	5,59	3,94	4,88	2,25	2,01	16,34
2009	15,87	34,75	28,56	3,24	1,07	0,99	1,49	2,24	1,24	4,06	2,14	6,84	8,40
2010	14,81	39,89	30,99	36,06	4,30	4,57	2,60	0,95	3,04	2,93	7,29	20,57	13,80
2011	14,18	37,71	11,20	50,24	3,71	4,95	5,66	3,41	2,78	2,87	6,24	5,58	12,13
2012	44,15	64,30	50,02	30,54	22,29	5,07	2,51	2,21	2,11	4,76	4,76	4,11	19,59
2013	27,69	34,94	43,52	24,48	8,02	3,27	3,31	2,81	2,15	4,60	3,34	5,28	13,50
2014	29,90	27,61	7,99	2,25	14,68	5,96	2,12	2,51	2,82	6,15	4,51	4,08	9,12
2015	23,04	29,95	28,77	27,13	26,76	14,98	4,80	1,47	1,35	7,24	11,53	11,60	15,62
2016	29,54	27,12	40,46	33,15	8,91	5,51	1,98	1,53	4,49	3,34	3,50	4,39	13,61
2017	32,54	45,01	60,96	50,60	26,95	7,35	2,78	2,99	2,51	6,27	4,26	9,89	20,86
2018	12,60	47,81	21,93	17,58	12,44	3,66	3,02	3,54	1,71	3,53	6,38	17,87	12,44
2019	24,13	40,38	34,55	32,41	18,05	10,54	3,88	2,43	1,21	4,53	11,24	10,80	16,01
2020	19,03	26,10	24,63	17,47	7,82	7,57	5,14	2,18	1,81	2,92	3,91	14,79	11,07
2021	96,44	23,36	30,26	15,82	12,99	28,88	2,10	1,39	4,02	9,42	6,20	13,40	20,40
2022	23,47	23,99	39,85	23,85	8,77	7,32	6,32	2,45	2,63	4,22	4,40	3,77	12,55
Total, general	26,92	39,30	35,57	29,24	14,26	7,54	4,68	2,64	3,78	4,88	7,61	12,60	15,61

Apéndice J. Resultados del modelamiento UHC

$\mathbf{Q}\mathbf{M}$	Meses												
Años	ene	feb	mar	abr	may	jun	jul	ago	sep	oct	nov	dic	Total, general
1981	23,00	58,39	66,89	60,43	43,48	37,47	35,57	10,20	25,62	34,19	50,28	54,39	41,50
1982	67,29	68,77	64,36	85,52	52,43	39,86	29,89	34,47	31,50	49,38	76,97	116,75	59,71
1983	32,14	45,54	84,89	94,64	81,04	60,51	56,97	20,06	45,53	57,82	45,87	51,81	56,43
1984	50,94	80,16	77,18	72,06	39,65	45,14	31,24	28,43	51,13	48,45	40,49	47,67	50,87
1985	53,36	31,00	66,44	75,30	74,73	58,31	35,01	51,00	53,27	44,05	45,33	44,67	52,83
1986	56,85	57,54	49,70	76,15	40,79	33,44	29,73	32,49	45,50	43,75	42,56	51,77	46,57
1987	74,20	126,25	80,97	106,54	65,23	44,41	27,45	19,67	31,57	66,99	27,76	25,66	57,56
1988	58,17	90,85	35,80	80,33	67,88	49,86	34,92	23,96	38,43	62,69	52,88	41,02	52,83
1989	73,32	87,75	96,96	59,04	51,08	83,28	37,94	18,48	25,61	44,87	36,26	21,29	52,73
1990	40,95	83,28	52,16	73,99	38,74	59,84	41,34	27,22	40,25	60,55	35,23	42,02	49,33
1991	45,96	80,86	61,06	59,14	51,75	74,80	32,68	16,67	38,07	33,77	46,74	39,39	48,07
1992	55,37	75,14	78,64	99,98	75,81	43,58	31,77	31,70	40,94	33,52	46,95	36,91	54,04
1993	68,43	97,84	100,25	85,58	66,00	40,73	59,09	41,05	36,96	35,89	42,98	52,98	60,44
1994	67,35	69,10	85,01	77,23	58,58	46,41	36,72	38,31	40,88	52,72	51,02	55,58	56,50
1995	48,46	45,65	57,56	61,07	54,26	43,58	58,13	25,85	28,64	25,61	51,56	44,03	45,36
1996	61,29	77,38	62,57	60,93	49,84	47,83	33,98	24,03	41,42	52,99	40,67	36,14	48,95
1997	52,18	85,89	86,49	66,48	67,76	56,41	36,19	34,23	63,31	38,59	120,80	85,61	65,88
1998	75,94	92,73	99,30	133,81	110,23	70,45	37,06	27,56	16,26	56,95	39,19	77,41	69,60
1999	65,02	79,20	107,44	79,61	61,36	59,42	22,68	36,06	56,47	33,89	39,92	70,74	59,16
2000	49,51	57,17	56,76	42,38	66,50	28,64	9,37	11,92	24,34	8,31	6,11	19,09	31,60

2001	58,59	33,72	42,89	28,40	43,49	48,71	33,75	20,94	18,65	30,98	32,18	50,08	36,94
2002	38,57	60,77	81,64	87,73	50,35	37,66	60,86	30,03	21,29	56,56	54,67	48,15	52,31
2003	47,13	61,71	66,04	68,39	59,33	56,31	38,58	21,58	34,97	50,95	47,36	59,38	50,88
2004	31,63	51,46	66,23	74,50	84,37	47,49	43,95	34,41	37,25	46,81	63,51	44,77	52,16
2005	6,89	9,47	40,43	30,49	14,14	8,31	2,93	2,93	5,36	30,99	41,89	21,12	17,94
2006	29,40	77,64	46,88	42,09	34,70	41,60	25,86	26,00	3,42	5,92	4,06	19,42	29,43
2007	22,99	4,00	23,33	12,31	16,14	32,04	6,82	40,35	30,97	61,81	68,60	47,27	30,71
2008	67,08	80,49	84,71	101,67	78,03	57,65	45,38	42,28	44,92	44,31	15,03	10,32	55,87
2009	39,87	84,91	65,82	36,20	5,23	4,72	20,51	40,60	24,09	53,28	27,15	50,35	37,50
2010	24,68	66,05	62,36	83,25	22,17	17,33	13,24	6,89	24,75	37,63	53,15	57,18	38,77
2011	52,54	82,29	46,33	99,68	41,56	31,61	44,22	26,56	27,90	42,14	61,36	40,52	49,40
2012	87,77	93,10	92,06	73,42	54,55	47,64	39,54	31,67	29,09	49,46	50,89	32,38	56,67
2013	51,17	73,46	85,55	71,50	57,51	46,85	52,51	44,55	35,73	52,17	45,99	43,66	54,96
2014	66,79	51,36	29,02	9,28	49,08	40,04	34,53	34,33	31,64	47,45	39,27	42,54	39,62
2015	54,54	58,93	80,52	85,75	62,83	55,57	44,13	29,01	23,56	45,72	56,96	47,51	53,69
2016	36,16	53,94	88,05	89,35	54,93	66,26	31,10	27,37	47,52	40,96	41,61	37,47	51,10
2017	83,30	71,55	94,16	81,81	74,61	61,00	37,87	38,07	36,45	35,63	58,68	62,22	61,22
2018	57,10	103,25	53,20	68,94	66,39	73,06	40,66	39,40	18,90	49,28	65,03	48,91	56,64
2019	54,92	74,93	62,48	75,82	65,54	58,66	33,85	32,22	14,59	43,19	48,76	53,00	51,33
2020	45,33	44,72	31,17	74,52	65,75	57,51	35,00	12,83	17,61	18,80	21,99	51,80	39,69
2021	122,90	66,13	70,35	73,59	61,67	88,61	17,55	11,97	17,56	56,87	48,08	67,92	58,56
2022	40,66	53,51	97,35	66,02	54,25	63,62	59,95	28,13	34,19	57,02	46,64	35,51	53,12
Total general	53,33	67,83	68,59	71,07	55,57	49,20	35,25	27,99	32,29	43,88	46,01	47,31	49,73

Apéndice K. Registro fotográfico

