

UNIVERSIDAD NACIONAL DE CHIMBORAZO FACULTAD DE CIENCIAS DE LA SALUD CARRERA DE FISIOTERAPIA

Intervención fisioterapéutica en neuropatía femoral post-histerectomía

Trabajo de Titulación para optar al título de Licenciada en Fisioterapia

Autor:

Del Pozo Gavilánez María Fernanda

Tutor:

Mgs. Silvia del Pilar Vallejo Chinche

Riobamba, Ecuador. 2024

UNACH-RGF-01-04-08.05 VERSIÓN 01: 06-09-2021

DECLARATORIA DE AUTORÍA

Yo, María Fernanda Del Pozo Gavilánez, con cédula de ciudadanía 0250338647, autora del trabajo de investigación titulado: Intervención fisioterapéutica en neuropatía femoral post-histerectomía, certifico que la producción, ideas, opiniones, criterios, contenidos y conclusiones expuestas son de mí exclusiva responsabilidad.

Asimismo, cedo a la Universidad Nacional de Chimborazo, en forma no exclusiva, los derechos para su uso, comunicación pública, distribución, divulgación y/o reproducción total o parcial, por medio físico o digital; en esta cesión se entiende que el cesionario no podrá obtener beneficios económicos. La posible reclamación de terceros respecto de los derechos de autor (a) de la obra referida, será de mi entera responsabilidad; librando a la Universidad Nacional de Chimborazo de posibles obligaciones.

En Riobamba, 18 de Julio de 2024.

María Fernanda Del Pozo Gavilánez

C.I: 0250338647

UNIVERSIDAD NACIONAL DE CHIMBORAZO FACULTAD DE CIENCIAS DE LA SALUD CARRERA DE FISIOTERAPIA

CERTIFICADO DEL TUTOR

Yo, Msc. Silvia Del Pilar Vallejo Chinche docente de la carrera de Fisioterapia de la Universidad Nacional de Chimborazo, en mi calidad de tutora del proyecto de investigación denominado "Intervención fisioterapéutica en neuropatía femoral posthisterectomía", elaborado por la señorita María Fernanda Del Pozo Gavilánez, certifico que, una vez realizadas la totalidad de las correcciones el documento se encuentra apto para su presentación y sustentación.

Es todo cuanto puedo certificar en honor a la verdad facultando a las interesadas hacer uso del presente para los trámites correspondientes.

Riobamba, 23 de julio de 2024.

Atentamente,

Msc. Silvia Del Pilar Vallejo Chinche

DOCENTE TUTOR

UNIVERSIDAD NACIONAL DE CHIMBORAZO FACULTAD DE CIENCIAS DE LA SALUD CARRERA DE FISIOTERAPIA

CERTIFICADO DE LOS MIEMBROS DE TRIBUNAL

Quienes suscribimos, catedráticos designados Miembros del Tribunal de Grado para la evaluación del trabajo de investigación "Intervención fisioterapéutica en neuropatía femoral post-histerectomía", presentado por María Fernanda Del Pozo Gavilánez, con cédula de identidad número 0250338647 y dirigido por la Msc. Silvia Del Pilar Vallejo Chinche, en calidad de tutora, certificamos que recomendamos la APROBACIÓN de este con fines de titulación. Previamente se ha evaluado el trabajo de investigación y escuchada la sustentación por parte de su autor; no teniendo más nada que observar.

De conformidad a la normativa aplicable firmamos, en Riobamba 23 de julio de 2024.

Msc. Gabriela Romero Rodríguez

PRESIDENTE DEL TRIBUNAL DE GRADO

Mgs. Belén Pérez García
MIEMBRO DEL TRIBUNAL DE GRADO

Mgs. Fernanda López Merino
MIEMBRO DEL TRIBUNAL DE GRADO

CERTIFICACIÓN

Que, MARÍA FERNANDA DEL POZO GAVILÁNEZ con CC: 0250338647 estudiante de la Carrera FISIOTERAPIA, Facultad de CIENCIAS DE LA SALUD; ha trabajado bajo mi tutoría el trabajo de investigación titulado" INTERVENCIÓN FISIOTERAPÉUTICA EN NEUROPATÍA FEMORAL POST-HISTERECTOMÍA", cumple con el 5 %, de acuerdo al reporte del sistema Anti plagio TURNITIN, porcentaje aceptado de acuerdo a la reglamentación institucional, por consiguiente, autorizo continuar con el proceso.

Riobamba, 22 de julio de 2024

Msc. Silvia Del Pilar Vallejo Chinche

TUTOR(A)

DEDICATORIA

Este proyecto de investigación se lo dedico a mis padres Sr. William Efraín Del Pozo Valverde y Sra. Martha Cecilia Gavilánez, que gracias a su fortaleza, confianza y sabiduría nunca dejaron de creer en mí y decidieron acompañarme incondicionalmente durante este proceso de ser una mejor persona y una excelente profesional.

A mis hermanos quienes se convirtieron en mi apoyo emocional y me alentaron a continuar enfrentando cada reto en mi vida.

María Fernanda Del Pozo Gavilánez

AGRADECIMIENTO

Agradezco en primer lugar a Dios por ser mi protector y fuente de inspiración durante esos largos años de educación.

A mis padres, quienes a pesar de la distancia jamás me dejaron sola y siempre me brindaron su apoyo en los momentos buenos y malos. A mi madre por ser mi mejor amiga y apoyo emocional; a mi padre por ser fuente de mi valentía y mi ejemplo a seguir.

A la Universidad Nacional de Chimborazo quien me ha brindado la oportunidad de obtener las herramientas necesarias para lograr convertirme en una excelente profesional.

De igual manera, agradezco a mi tutora de tesis Msc. Silvia del Pilar Vallejo Chinche, quien me ha guiado durante el proceso de investigación brindándome su tiempo, paciencia y conocimientos, lo cual fue parte fundamental para lograr culminar este proyecto.

Finalmente agradezco a todas las personas que siempre estuvieron a mi lado brindándome un consejo o un abrazo.

María Fernanda Del Pozo Gavilánez

ÍNDICE GENERAL

DECLARATORIA DE AUTORÍA
CERTIFICADO DEL PROFESOR TUTOR
CERTIFICADO DE LOS MIEMBROS DE TRIBUNAL
CERTIFICADO DE ANTIPLAGIO
DEDICATORIA
AGRADECIMIENTO
ÍNDICE GENERAL
ÍNDICE DE TABLAS
ÍNDICE DE ILUSTRACIONES
RESUMEN
ABSTRACT

CAPIT	TULO I. INTRODUCCION	14
CAPÍT	CULO II. MARCO TEÓRICO	16
2.1.	Definición	16
2.1	.1. HISTERECTOMÍA	16
2.2.	Anatomía	16
2.3.	FISIOPATOLOGÍA	18
2.4.	FACTORES DE RIESGO	19
2.5.	MANIFESTACIONES CLÍNICAS	19
2.6.	DIAGNÓSTICO	20
2.7.	TRATAMIENTO PARA LA NEUROPATÍA FEMORAL POST-HISTERECTOMÍA	21
2.7	7.1. NEURODINÁMIA	22
2.7	7.2. EJERCICIOS DE FORTALECIMIENTO PARA MIEMBRO INFERIOR	23
2.7	7.3. ELECTROESTIMULACIÓN	24
CAPÍT	TULO III. METODOLOGÍA	26
3.1	TIPO DE INVESTIGACIÓN	26
3.2	DISEÑO DE INVESTIGACIÓN	26
3.3	Enfoque de investigación	27
3.4	RELACIÓN AL TIEMPO DE INVESTIGACIÓN	27
3.5	CRITERIOS DE INCLUSIÓN:	27
3.6	CRITERIOS DE EXCLUSIÓN:	27
3.7	ESTRATEGIA DE BÚSQUEDA	27
CAPÍT	TULO IV. RESULTADOS Y DISCUSIÓN	38
4.1	Análisis de Resultados	38

4.2	DISCUSIÓN	58
CAPÍT	TULO V. CONCLUSIONES	61
5.1	CONCLUSIONES	61
CAPÍT	TULO VI. PROPUESTA	62
BIBLI	IOGRAFÍA	65
ANEX	XOS	71

ÍNDICE DE TABLAS

Tabla 1. Músculos implicados en Neuropatía Femoral	17
Tabla 2. Ramos de inervación y Distribución del Nervio Femoral	18
Tabla 3. Fortalecimiento de Miembros Inferiores	23
Tabla 4. Análisis de Artículos científicos según la escala de PEDro	29
Tabla 5. Análisis de Resultados	38
Tabla 6. Temas de difusión	62

ÍNDICE DE ILUSTRACIONES

Ilustración 1. Diagrama de flujo para recolección de fuentes bibliográficas	28
Ilustración 2. Valoración en Escala PEDro	37
Ilustración 3. Base de Datos Científicas.	37
Ilustración 4 Análisis de Resultados	57
Ilustración 5. Ejemplo de Infografía	64
Ilustración 6. Escala Pedro	71

RESUMEN

La neuropatía femoral (NF) post-histerectomía es una afección que puede ocurrir después de

un procedimiento ginecológico que resulta en el efecto secundario de compresión del nervio

debido a la colocación inadecuada de retractores fijos o autorretentivos y una litotomía

prolongada, lo que provoca debilidad en los movimientos de flexión de cadera y extensión de

rodilla. Para el diagnóstico se utilizan estudios de conducción nerviosa como un

electromiograma o una ecografía (Romo Rodríguez et al., 2014).

La presente investigación es una revisión bibliográfica de tipo documental cuyo objetivo es

analizar los efectos de la intervención fisioterapéutica en pacientes con neuropatía femoral

asociada a una histerectomía, mediante la recopilación y análisis bibliográfico de artículos

científicos para evidenciar cual es el medio de abordaje terapéutico postquirúrgico más

efectivo.

Se realizó una recopilación de artículos científicos y revisiones bibliográficas en bases de datos

como: Pubmed, PEDro, SCOPUS, ResearchGate, Springer, Cochrane Library. Inicialmente se

recopilaron 136 artículos de los cuáles se utilizaron 35 posterior a la valoración mediante la

escala de PEDro con una puntuación mayor o igual a 6. Para verificar el impacto de los artículos

recopilados se aplicó la escala SJR (SCImago Journal Rank).

Mediante la revisión sistemática se ha evidenciado mejoras en las pacientes, posterior a la

aplicación del tratamiento fisioterapéutico, acompañado de gimnasia y farmacología que

permite reducir la sintomatología de los pacientes y controlar su retorno a las actividades de la

vida diaria. Luego del análisis de artículos, se logró evidenciar cambios favorables en cuanto a

la debilidad muscular y la incapacidad de completar movimientos biomecánicos estandarizados

de cadera y rodilla, además de recuperar la sensibilidad de la pierna.

Palabras claves: Neuropatía Femoral, Histerectomía, Fisioterapia, Nervio Femoral

ABSTRACT

Post-hysterectomy femoral neuropathy (FN) is a condition that can occur after a

gynecologic procedure resulting in the side effect of nerve compression due to inadequate

placement of fixed or self-retaining retractors and prolonged lithotomy, which causes

weakness in hip flexion and knee extension movements. Nerve conduction studies such

as an electromyogram or ultrasound are used for diagnosis (Romo Rodriguez et al., 2014).

The present research is a literature review of documentary type with the aim of analyzing

the effects of physiotherapeutic intervention in patients with femoral neuropathy

associated with hysterectomy, through the collection and bibliographic analysis of

scientific articles to demonstrate which is the most effective post-surgical therapeutic

approach.

A compilation of scientific articles and bibliographic reviews was carried out in databases

such as: Pubmed, PEDro, SCOPUS, ResearchGate, Springer, Cochrane Library. Initially,

136 articles were collected, of which 35 were used after evaluation using the PEDro scale

with a score greater than or equal to 6. To verify the impact of the articles collected, the

SJR (SCImago Journal Rank) scale was applied.

By means of the systematic review, improvements in the patients have been evidenced,

after the application of physiotherapeutic treatment, accompanied by gymnastics and

pharmacology, which allows reducing the patients' symptomatology and controlling their

return to daily life activities. After the analysis of articles, favorable changes were

evidenced in terms of muscle weakness and the inability to complete standardized

biomechanical movements of the hip and knee, in addition to recovering the sensitivity

of the leg.

Keywords: Femoral Neuropathy, Hysterectomy, Physiotherapy, Femoral Nerve.

Figuredo electrônicamente por EDISON HERNAN SALAZAR CALDERON

Reviewed by:

Mgs. Edison Salazar Calderón

ENGLISH PROFESSOR

I.D. 0603184698

CAPÍTULO I. INTRODUCCIÓN

La neuropatía femoral (NF) se trata de una condición que se manifiesta por la compresión del nervio femoral tras un evento traumático por accidentes o una intervención quirúrgica, ocasionando debilidad en movimientos de la cadera y la rodilla, con pérdida sensitiva, que involucra al muslo anterior, medial y la parte inferior de la pierna. Se caracteriza por una parálisis en los músculos cuádriceps, pectíneo, iliaco y sartorio que se mantiene en los días posteriores a la intervención (Teijelo et al., 2023)

La histerectomía es un procedimiento quirúrgico frecuente en las mujeres a nivel mundial considerando el aumento de casos ginecológicos como los fibromas de gran tamaño, la endometriosis y displasia uterina, por lo que una extirpación quirúrgica del útero o cérvix se convierte en la opción principal que permite cesar con la sintomatología de dichas enfermedades. Sin embargo, una histerectomía puede desencadenar efectos secundarios asociados a una neuropatía femoral, posterior a la colocación inadecuada de los retractores o la posición prolongada de litotomía (Raysy & Ponce, 2015); (Teijelo et al., 2023).

Según la OMS (Organización Mundial de la Salud) el cáncer de cuello uterino es el cuarto cáncer más común en mujeres en todo el mundo, con una incidencia de 604.000 nuevos casos en 2020. Aproximadamente el 90% de las 342.000 muertes por cáncer de cuello uterino ocurrieron en países de ingresos bajos y mediano, generando un aumento en la tasa de histerectomía, lo que conlleva a la aparición de efectos secundarios posteriores a la intervención relacionados con la neuropatía femoral (Organización Mundial de la Salud, 2023)

En Estados Unidos aproximadamente 500,000 mujeres se someten a esta cirugía al año ya que se trata de una intervención quirúrgica no relacionada con el embarazo más frecuente en las mujeres. Existen tres opciones de intervención: Por vía abdominal (56%), vaginal (19%) o laparoscópica (20%) (Sousa Pedrosa et al., 2021);(Gueli Alletti et al., 2020).

En un estudio realizado en el Hospital San Francisco de Quito-Ecuador, Lopez.P (2018) menciona que el 85% de mujeres que fueron candidatas para esta intervención fueron menores de 50 años, con una duración en el quirófano de 104 minutos y un tiempo de hospitalización de 2.7 días. Aproximadamente el 80% de las cirugías fueron a nivel abdominal, lo que implica el uso prolongado de instrumentos quirúrgicos que generan la compresión del nervio femoral.

Las complicaciones representaron el 3.38% a nivel total, de las cuales, varios usuarios mencionaron efectos a nivel de miembro inferior (López Cabezas et al., 2018).

La NF genera imposibilidad de flexionar el muslo sobre la pelvis y de extender la pierna sobre el muslo generando dificultad al momento de realizar la marcha, generalmente al subir escaleras. El grado de afectación varía de una paciente a otra, aunque usualmente se presenta una disminución del reflejo rotuliano o incluso su abolición (Teijelo et al., 2023).

Dentro de las opciones de tratamiento se puede incluir el tratamiento no quirúrgico como fisioterapia, utilizando técnicas de neurodinámia y la movilización del nervio femoral, con la finalidad de reducir la presión, además de inducir hipoalgesia mediante la modulación de los mecanismos inhibitorios descendentes del dolor. La fisioterapia aplicada a esta patología permite mejorar la conducción nerviosa, acompañado de un circuito de ejercicios que ayude a fortalecer la musculatura de la pierna; fármacos analgésicos orales, tópicos e inyecciones perineurales (Teijelo et al., 2023); (Hanney et al., 2016).

Por lo tanto, el objetivo principal de esta investigación fue identificar el tipo de intervención fisioterapéutica más asertiva para una neuropatía femoral en pacientes que se han sometido a una histerectomía y posteriormente presentaron síntomas asociadas a esta enfermedad.

CAPÍTULO II. MARCO TEÓRICO

2.1. Definición

La neuropatía femoral se trata de una afección que se presenta por la compresión del nervio femoral o crural que provoca debilidad en la flexión de la cadera y la extensión de la rodilla, acompañada de pérdida sensorial en la parte anterior, medial del muslo y la parte medial de la pierna (Bowley & Doughty, 2019).

2.1.1. HISTERECTOMÍA

La primera histerectomía radical con linfadenectomía laparoscópica pélvica y paraaórtica fue realizada en 1989 por Nezhat y este procedimiento se publicó en 1992, aunque sus primeros comienzos se remontan al año 120 a. C. con Sorano de Efeso, quien amputó un útero prolapsado gangrenoso (Solà et al., 2006); (Talaván-Serna et al., 2018).

La Histerectomía abdominal permite una mejor visualización gracias a la magnificación de la anatomía mejorando el acceso al fondo del saco de Douglas y las fosas ováricas, aunque existe mayor dificultad para identificar al nervio femoral lo cual puede ocasionar su lesión (Palacios-Ceña et al., 2018); (Gueli Alletti et al., 2020).

Existes 2 clasificaciones de Histerectomía, una propuesta por H. Reich, y la otra por Clermont Ferrand. La primera incluye la hemostasia y sección de los pedículos anexiales y de los ligamentos redondos, liberando la cúspide del ligamento ancho y facilitando el resto de las maniobras por vía vaginal; y la segunda que asocia el desprendimiento útero-vesical y la hemostasia de los pedículos uterinos (Gueli Alletti et al., 2020).

2.2. Anatomía

El nervio femoral anatómicamente se encuentra ubicado dentro del músculo psoas y se origina a partir de las raíces nerviosas L2, L3 y L4 siguiendo un curso inferior entre los músculos psoas e iliaco, por debajo de la fascia iliaca en el espacio retroperitoneal. Su recorrido atraviesa el abdomen y pasa por ligamento inguinal la división anterior proporciona inervación motora a los músculos sartorio y pectíneo, y la lateral a los músculos cuádriceps continuando con una trayectoria descendente a través de la pelvis y posteriormente salir hacia el ligamento inguinal. Por las características anatómicas de este nervio, puede ser lesionado de diferentes maneras

durante procedimientos invasivos quirúrgicos (Gueli Alletti et al., 2020); (Talaván-Serna et al., 2018); (Bowley & Doughty, 2019).

Tabla 1. Músculos implicados en Neuropatía Femoral

Músculos					
Nom	bre	Origen	Inserción	Función	Inervación
Nom Cuádriceps Femoral	Recto femoral Vasto medial	Espina ilíaca anterior inferior, surco supracetabular Línea intertrocantérica, línea pectínea del fémur, línea	Tuberosidad tibial (a través tendón del cuádriceps) Tuberosidad tibial (a través tendón del cuádriceps) Tuberosidad tibial (a través tendón del cuádriceps) Tuberosidad tibial (a	Articulación de la cadera (coxofemoral) flexión de muslo (solamente el músculo recto	Nervio
	Vasto lateral Vasto intermedio	línea áspera del fémur Cara anterior del cuerpo del fémur	del cuádriceps) Tuberosidad tibial (a través tendón	Articulación de la rodilla: extensión de la pierna	(L2-L4)
Sart	orio	Espina ilíaca anterior superior (EIAS)	debajo del cóndilo	coxofemoral: flexión, abducción y rotación	Nervio femoral (L2-L3)
Pectíneo			•	Articulación coxofemoral: flexión, aducción, rotación externa, rotación interna del muslo y	Nervio femoral (L2, L3) Nervio

Fuente: Adaptado de "Anatomía del miembro inferior" de (Dufour, 2012)

Tabla 2. Ramos de inervación y Distribución del Nervio Femoral

Ramos de inervación y Distribución del Nervio Femoral				
Nombre	Ramo Sensitivo	Ramo motor		
Nervio cutáneo antero				
interno	Nervio Safeno accesorio	Inerva músculo pectíneo		
Nervio Cutáneo Antero				
Externo	No Aplica	Inerva al músculo sartorio		
	Inerva la cara anterior de la			
Nervio Safeno Interno	pierna	No Aplica		
Nervio del Cuádriceps	No Aplica	 Recto anterior o recto femoral Vasto Lateral Vasto Medial Vasto Intermedio 		

Fuente: Adaptado de "Anatomía del miembro inferior" de (Dufour, 2012)

2.3. Fisiopatología

Existe la posibilidad que una lesión del nervio femoral aparezca en el espacio retroperitoneal o cerca del ligamento inguinal. Muchas intervenciones abdomino-pélvicas pueden generar lesiones intraoperatorias. La causa más frecuente se debe a la lesión por compresión directa de instrumentos quirúrgicos, sobre todo en las intervenciones en las que se realiza una incisión transversal u horizontal. Este nervio es difícilmente visible en el campo quirúrgico por lo cual aumenta la dificultad de localizarlo al momento de realizar la cirugía aumentando las probabilidades de generar una compresión (Gueli Alletti et al., 2020); (Bowley & Doughty, 2019).

En un estudio realizado por Gueli Alletti et al., 2020, mencionaron que tras una histerectomía, el tiempo que se requiere para terminar la cirugía oscila entre 135 y 148 minutos, a diferencia del abordaje laparotómico que requirió 120-168 minutos, lo cual nos lleva a considerar el tiempo prolongado al que se expone la paciente en posición de litotomía durante los procedimientos urológicos o ginecológicos lo que provoca un estiramiento o compresión excesivos del nervio femoral a través del ligamento inguinal (Gueli Alletti et al., 2020).

Resulta importante considerar que si el tiempo quirúrgico supera las 2 horas, la compresión prolongada del nervio femoral en esta posición puede ser peligrosa para las fibras nerviosas, dando lugar a varios factores que predisponen a las lesiones neurológicas tales como la

colocación incorrecta de los retractores fijos o autorretentivos los cuales son instrumentos que pueden causar paresia del nervio femoral tras una operación ginecológica abdominal, ya que son utilizados para separar los bordes de una incisión o para retener los órganos y tejidos subyacentes durante la intervención(Gueli Alletti et al., 2020); (Bowley & Doughty, 2019).

2.4. Factores de riesgo

Según (Fernández Gómez et al., 2018) los factores modificables y no modificables son los siguientes:

Modificables

- Peso
- Posición de litotomía prolongada
- Hábitos alimenticios
- Hábitos Tóxicos (Ingesta de alcohol, cigarrillo, drogas)

• No Modificables

- Sexo
- Edad
- Uso de instrumentos autorretentivos durante la cirugía ginecológica
- Enfermedad preexistente (Cáncer de cérvix, miomas, etc)

2.5. Manifestaciones clínicas

Los síntomas de la neuropatía femoral incluyen dolor en el área de la ingle que mejora parcialmente con la flexión y rotación externa de la cadera, y disestesias en la parte anterior del muslo y la región anteromedial de la pierna. Los pacientes informan dificultad para caminar o bloqueo subjetivo de la rodilla según la gravedad de la lesión. Además, puede presentarse hipoestesia en la zona del muslo y dolor en la cara anterior de la rodilla ya que se encuentra inervada por el nervio safeno (Romo Rodríguez et al., 2014).

Los pacientes pueden presentar debilidad en la extensión de la rodilla y la flexión de la cadera, alteración del reflejo del cuádriceps y déficits sensoriales en la parte anteromedial del muslo. En caso de que la compresión suceda a nivel inguinal, no se espera la sintomatología de debilidad en la flexión de la cadera. La pérdida sensitiva puede ocurrir en el aspecto medial de la pierna por debajo de la rodilla (Romo Rodríguez et al., 2014).

2.6. Diagnóstico

El diagnóstico de una NF (Neuropatía Femoral) se basa principalmente en el examen clínico que permite identificar déficits sensitivos y motores asociados a este nervio. La debilidad en movimientos de la cadera es un hallazgo importante para la localización de la lesión, ya que permite identificar las afecciones por encima del ligamento inguinal en el espacio retroperitoneal que determina la flexión de la cadera, mientras que las que se encuentran por debajo del ligamento inguinal no presentan la misma sintomatología (Bowley & Doughty, 2019).

Los estudios de conducción nerviosa pueden ayudar al pronóstico tras una lesión femoral unilateral. Las estadísticas determinan la existencia de mujeres que presentan una reducción superior al 50% de la amplitud de movimiento en el lado afectado en comparación a la extremidad contralateral. Mediante una ecografía el examinador puede visualizar desde 10 cm por encima hasta 5 cm por debajo del ligamento inguinal y, por lo tanto, puede reconocer el nervio a través de un sitio de atrapamiento conocido. Las modalidades de imagen adicionales, como la TC o la RM, son esenciales cuando existe la sospecha de hematoma causante de la compresión del nervio femoral(Bowley & Doughty, 2019).

La exploración minuciosa suele ser suficiente para establecer el diagnóstico, aunque es fundamental apoyarse de estudios electrofisiológicos e imagen, ya que pueden ofrecer valiosa información adicional. Gueli Alletti et al., 2020, menciona que la formación de hematomas y el atrapamiento del nervio crural son factores causales primarios de las lesiones nerviosas postoperatorias(Bowley & Doughty, 2019); (Gueli Alletti et al., 2020).

Algunos de los síntomas que mencionan los pacientes ayudan a identificar una Neuropatía Femoral (NF), como la referencia de perdida de fuerza en MMII que impide la deambulación; con la finalidad de descartar una afección raquídea, para lo cual es necesario evaluar con la escala Medical Research Council cuando la sintomatología se mantiene en la cara anterior del muslo, acompañada de paresia cuadricipital y abolición del reflejo rotuliano, con dificultad de flexión de cadera (Talaván-Serna et al., 2018), (Raysy & Ponce, 2015).

Talaván-Serna et al., 2018 afirman que, para un diagnóstico diferencial, es fundamental evaluar la musculatura aductora inervada por el nervio obturador, ya que, en caso de existir una

afección en ambos nervios, o que esta fuera bilateral no se puede descartar la lesión del plexo lumbar (Talaván-Serna et al., 2018).

Los estudios neurofisiológicos, como el electromiograma, deben realizarse precozmente o 3 semanas más tarde ya que permiten confirmar el diagnóstico y localizar la lesión. Sin embargo, para establecer un pronóstico fiable se requiere la realización de estas pruebas a partir de las 3 semanas. Con una intervención fisioterapéutica adecuada, los pacientes pueden obtener una evolución satisfactoria al recuperar la fuerza y la sensibilidad gradualmente en las siguientes semanas y meses luego de la operación, lo cual está acorde con el patrón lesivo de neuroapraxia y axonotmesis que pueden presentar (Talaván-Serna et al., 2018), (Sousa Pedrosa et al., 2021).

2.7. Tratamiento para la neuropatía femoral post-histerectomía

Aunque es necesario incidir en la prevención de esta neuropatía evitando la exposición prolongada en posición de litotomía, limitar los movimientos de la cadera y disminuir el uso de los separadores pélvicos para evitar la presión en exceso, una vez presente los síntomas de una Neuropatía Femoral (NF) es importante manejarla de manera individualizada con la finalidad de cubrir las necesidades del paciente, una vez que las complicaciones se encuentren presentes y desencadenen la sintomatología (Talaván-Serna et al., 2018).

Dentro de las tipos de intervención se puede incluir el tratamiento no quirúrgico como fisioterapia utilizando técnicas de neurodinamia acompañado de un circuito de ejercicios que permita fortalecer la musculatura de la pierna y evitar complicaciones tromboembólicas secundarias a la inmovilización; fármacos analgésicos orales, tópicos e inyecciones perineurales y el tratamiento quirúrgico que incluye descompresión del nervio implicado (Teijelo et al., 2023).

Inicialmente se utiliza tratamiento farmacológico con vitaminas del complejo B (B1: 100 mg, B6: 100 mg y B12: 1 miligramo) /24 h durante 7 días vía oral acompañado de tratamiento rehabilitador con ejercicios que incentivaran la recuperación motriz. Para el manejo del dolor administrarán AINEs, asociados o no a antiepilépticos o antidepresivos como la amitriptilina para control del dolor neuropático. Durante el periodo de rehabilitación se debe realizar exploraciones neurológicas de forma paulatina para evidenciar si la debilidad muscular cuadricipital disminuye (Talaván-Serna et al., 2018).

La rehabilitación fisioterapéutica se basa en la neurodinámia que se trata de una técnica que permite evaluar y tratar la sintomatología de trastornos asociados al sistema nervioso periférico, mediante la movilización de los nervios a lo largo de su trayecto. A su vez, se trata de un procedimiento enfocado en restaurar la homeostasis alterada en el sistema neuromuscular mediante la movilización del sistema nervioso y otras estructuras que lo rodean (Ferreira et al., 2016).

2.7.1. NEURODINÁMIA

Es un concepto clínico que utiliza el movimiento para evaluar el aumento de la mecanosensibilidad del sistema nervioso; y para mejorar la calidad de vida restaurando la homeostasis alterada dentro y alrededor del sistema nervioso. Los estudios anatómicos y biomecánicos apoyan la plausibilidad biológica de las pruebas neurodinámicas para el miembro inferior, como la prueba de elevación de la pierna recta y la de desplome (Sierra-Silvestre et al., 2018).

Los efectos del tratamiento neurodinámico han permitido mejorar el flujo axoplásmico y, a través de este mecanismo, mejorar la conducción nerviosa. Además, la aplicación de movilización de un nervio puede dispersar el edema y reducir la presión, con la consiguiente mejora de la microcirculación, lo que podría facilitar la curación de un nervio lesionado (Hanney et al., 2016).

Las técnicas neurodinámicas se utilizan desde la década de 1980 como complemento de los tratamientos tradicionales para los problemas del sistema musculoesquelético. Estudios anteriores han informado que tienen efectos fisiológicos, neurales y mecánicos. Debido a la estructura viscoelástica, los nervios periféricos tienen las características de movimiento y flexibilidad que presentan los músculos ya que al estar expuestos a diferentes eventos mecánicos pueden ser capaces de adaptarse. Estas características se utilizan con fines terapéuticos para la protección y mejora de las funciones neurales (Aksoy et al., 2020).

Los autores Sierra-Silvestre et al., 2018 sugieren que la prueba de "flexión de rodilla en decúbito prono" y la prueba de "flexión de rodilla en decúbito lateral" (o FEMORAL en

decúbito lateral) son las adecuadas para evaluar el aumento de la mecanosensibilidad del nervio femoral. La primera prueba consiste en la rodilla del paciente en posición de flexión en decúbito prono. Se suele sugerir añadir la extensión de la cadera para alargar aún más la tensión del nervio femoral (Sierra-Silvestre et al., 2018).

2.7.2. EJERCICIOS DE FORTALECIMIENTO PARA MIEMBRO INFERIOR

El fortalecimiento muscular puede mejorar tu calidad de vida y mejorar tu capacidad de hacer las actividades cotidianas.

Tabla 3. Fortalecimiento de Miembros Inferiores

	Fortalecimiento de Miembros Inferiores			
Ejercicios	Descripción	Gráfico		
	Posición de inicio: De pie frente a una silla y sosteniéndose del espaldar. Ejecución: Pararse en la pierna derecha y llevar la pierna			
Ejercicio de fortalecimiento 1	izquierda hacia atrás con la rodilla extendida. Al realizar el ejercicio procurar contraer suavemente el abdomen llevando el ombligo hacia atrás.			
	Repeticiones: Realizar entre 10 a 15 repeticiones para cada pierna.			
	Número de series: Realizar 2 series para cada pierna Tiempo de descanso: Descansar de 10 a 20 segundos entre series.			
	Posición de inicio: De pie, sostenerse de una silla con la mano derecha inicialmente.			
Ejercicio de	Ejecución: Pararse en el miembro inferior derecho y realizar una abducción de cadera con la rodilla extendida. Regresar a la posición de inicio.	* * *		
fortalecimiento 2	Repeticiones: Repetir de 10 a 15 veces el ejercicio para cada pierna en una serie.	1 -		
	Número de series: Realizar 2 series. Tiempo de descanso: De 10 a 20 segundos entre series.			
Ejercicio de fortalecimiento 3	Posición de inicio: De pie, las piernas ligeramente separadas sosteniendo una varilla con ambas manos. Ejecución: Inhalar naturalmente, al exhalar llevar el abdomen ligeramente hacia atrás, mantener la tensión en el abdomen, descender el cuerpo doblando las rodillas a la vez que lleva los brazos hacia delante del cuerpo extendiendo los codos. Cuidado: Descender manteniendo erguida la espalda. No doblar en exceso las rodillas, para ello tome como referencia sus pies, el nivel de sus rodillas no debe sobrepasar a sus pies. Regresar a la posición de inicio. Repeticiones: De 8 a 10 repeticiones. Número de series: 2 series. Tiempo de descanso: De 10 a 30 segundos entre series.			

Ejercicio de fortalecimiento 4	Posición de inicio: De pie sosteniéndose de una silla. Procurar mantener los pies ligeramente separados. Ejecución: Colocarse en puntas de pie, conserve la posición por 5 a 10 segundos y luego volver a la posición de inicio. Repeticiones: Repetir el movimiento de 10 a 15 veces. Número de series: Realizar 2 series. Tiempo de descanso: De 10 a 20 segundos.	
Ejercicio de fortalecimiento 5	Posición de inicio: Sentado manteniendo el dorso erguido. Colocar una pequeña almohada delgada o un rodillo hecho con una toalla debajo del muslo. Ejecución: Lentamente extender la rodilla derecha, mantenerla elevada por 5 a 8 segundos y luego volver a la posición de inicio. Repeticiones: Repetir de 10 a 12 repeticiones el ejercicio. Número de series: Realizar 2 series del ejercicio. Tiempo de descanso: De 10 a 20 segundos.	
Ejercicio de fortalecimiento 6	Posición de inicio: De pie, erguido sosteniendo mancuernas de ½ o 1 kilo o un objeto del mismo peso (puede intentar con una botella llena de arena) Ejecución: Llevar la pierna derecha delante de la pierna izquierda, descienda el cuerpo, ambas rodillas se flexionan para acompañar el movimiento, regresar a la posición inicial y ejecutar el ejercicio con la otra pierna, regresar a la posición inicial. Esta es la secuencia de un ejercicio completo. Cuidado: Mantener la espalda erguida. Repeticiones: De 10 a 12 repeticiones del ejercicio. Número de series: 2 series. Tiempo de descanso: De 10 a 20 segundos.	

Fuente: Adaptado de "Manual para ejercicios en casa" de (Cruzado, 2023) de chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.ucss.edu.pe/images/fondo-editorial/publicaciones-descargables/manual-ejercicio-casa-melina-cruzado.pdf

2.7.3. ELECTROESTIMULACIÓN

La estimulación eléctrica neuromuscular es utilizada para mejorar el rendimiento muscular al permitir aumentar la fuerza de los músculos debilitados y, en algunos casos, puede ser más eficaz para el fortalecimiento que el ejercicio como único tratamiento. (Scott et al., 2014) (Thomé et al., 2021).

Se utiliza a menudo como modalidad de fortalecimiento para entrenar a pacientes sin suficiente fuerza muscular mediante la activación de mecanismos neurofisiológicos que se cree que

facilitan las ganancias de fuerza y proporcionan tensión física general al sistema neuromuscular. La estimulación eléctrica neuromuscular puede afectar a los déficits de activación central, permitiendo así el restablecimiento de la función muscular normal de forma más eficaz que el ejercicio voluntario (tekDos Demircioglu et al., 2015).

El mecanismo que permite mejorar la actividad en músculos es la intensidad de la contracción muscular con la estimulación eléctrica y la alteración del reclutamiento motor. Las contracciones musculares provocadas eléctricamente permiten la activación de una mayor proporción de fibras musculares de tipo 2 que el ejercicio voluntario de intensidad comparable (tekDos Demircioglu et al., 2015).

La estimulación eléctrica neuromuscular es el uso terapéutico de corrientes eléctricas para generar contracciones musculares, a menudo con fines de fortalecimiento muscular. La administración clínica produce mayores mejoras en la fuerza extensora de cadera y rodilla (Adams et al., 2018).

- Corriente alterna modulada por ráfaga: Es una forma de onda de estimulación eléctrica muy utilizada para fortalecer los músculos la cual se denomina comúnmente corriente "rusa". Este tipo de estimulación eléctrica se popularizó cuando el Dr. Yakov Kots la introdujo en los Juegos Olímpicos de Montreal en la década de 1970, afirmando que producía aumentos de fuerza de hasta el 40% en los atletas olímpicos rusos (Scott et al., 2015).
- Corriente pulsada bifásica de onda cuadrada modulada por ráfaga: es una forma de onda suministrada en un patrón de ráfaga con mayor margen para la personalización de la frecuencia, la duración del pulso y el ciclo de trabajo que las corrientes alternas, debido a los pequeños intervalos sin flujo de corriente durante los intervalos entre fases y entre pulsos (Adams et al., 2018).
- Corriente pulsada monofásica: Consistente en una onda cuadrada con una duración de pulso relativamente larga (Scott et al., 2015).

CAPÍTULO III. METODOLOGÍA

3.1 Tipo de investigación

• **Documental bibliográfico.** Se realizó una investigación de tipo documental bibliográfica, donde se recopiló información de acervos bibliográficos científicamente validados, lo que determinó la efectividad de la intervención fisioterapéutica en neuropatía femoral asociada a histerectomía; por lo cual es necesario mencionar que, la información recopilada de diversas fuentes y documentos válidos, corresponde al tipo de investigación seleccionada, lo que permitió profundizar y ampliar el conocimiento, logrando los resultados esperados.

3.1. Nivel de investigación

• **Descriptivo.** En razón que se tomó en cuenta las características, signos y síntomas la paciente con neuropatía femoral con una histerectomía previa a la aparición de la sintomatología, considerando como prioritario el uso de diferentes métodos para la obtención de un diagnóstico verídico, que permita la aplicación efectiva del tratamiento fisioterapéutico para esta patología, una rehabilitación oportuna y el incremento del nivel de salud de aquellas pacientes que han perdido la capacidad de desarrollar sus actividades de la vida diaria.

3.2 Diseño de investigación

• **Descriptivo.** Se describió la sintomatología y las diferentes técnicas de diagnóstico para neuropatía femoral y el tratamiento adecuado que cubra las necesidades individuales de los pacientes, variables que se trataron en el desarrollo de esta investigación y el comportamiento de cada una.

3.2. Método de investigación

• **Inductivo.** Se hizo uso de este método de investigación, ya que el punto de partida fue el conocimiento y los datos proporcionados por autores, mismos que sirvieron para determinar la efectividad de la intervención fisioterapéutica en neuropatía femoral post-histerectomía.

3.3 Enfoque de investigación

• Cualitativo. Se hizo uso de la información, criterios y particularidades establecidas en estudios previos de autores mencionados en apartados anteriores, y que ayudaron a determinar la conclusión de esta investigación.

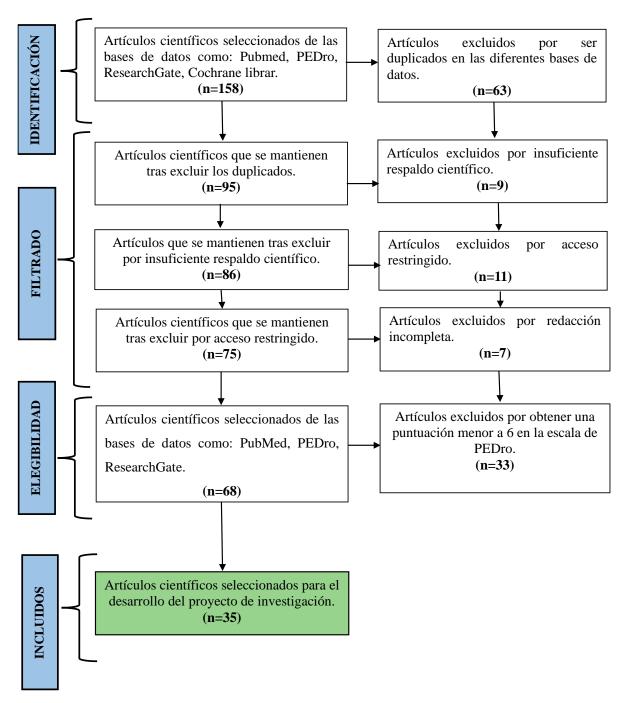
3.4 Relación al tiempo de investigación

• Estudio retrospectivo. Se aplicó el estudio retrospectivo, considerando el hecho de que se obtuvo información de diferentes resultados de estudios previos desarrollados por autores antes mencionados, considerando que la información presentada fue verídica y confiable.

3.5 Criterios de inclusión:

- Artículos con validez científica.
- Documentos con acceso libre ubicados en las bases de datos de mayor prestigio como Scopus, Scielo, etc,
- Artículos con información verificada sobre las dos variables de estudio.
- Información Publicada en los últimos diez años.

3.6 Criterios de exclusión:


- Artículos con información incompleta.
- Documentos con acceso restringido en las bases de datos.
- Artículos que tengan un costo adicional.
- Artículos duplicados.
- Información que no cumplan con la población requerida para el análisis bibliográfico.

3.7 Estrategia de búsqueda

Se definió características de búsqueda por autor, título y resumen. Se eligieron los descriptores (términos MeSH) en búsqueda avanzada y seleccionamos MeSH Terms. Es importante utilizar operadores boleanos MeSH "AND", "OR" "NOT" que nos permiten acotar los resultados de búsqueda: (("Phisiotherapy" (MeSH) Terms) AND "Femoral

Neuropathy" (MeSH Terms). Finalmente se filtra la información a los 10 últimos años de publicación, textos con acceso libre, revisiones sistemáticas, Ensayos Clínicos aleatorizados, Revisiones, etc.

Ilustración 1. Diagrama de flujo para recolección de fuentes bibliográficas

Fuente: Flujograma adaptado según Methodology in conducting a systematic review of biomedical research, (Ramírez Vélez et al., 2013)

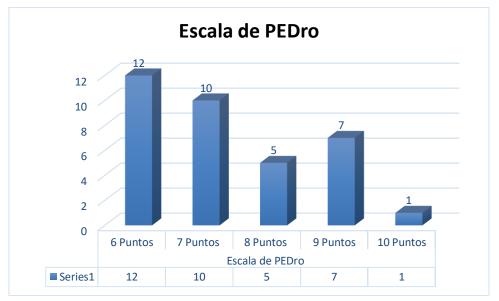
Tabla 4. Análisis de Artículos científicos según la escala de PEDro

N°	Autor y	Título Original	Título Traducido	Base de	Escala
	año			Datos	PEdro
1	(Jamil,	Effects of Neural Mobilization of Lateral Femoral	Efectos de la movilización neural del nervio	Research	7/10
	2023)	Cutaneous Nerve on Neuropathic Pain and Quality	cutáneo femoral lateral sobre el dolor	Gate	
		of Life in Pregnant Women with Meralgia	neuropático y la calidad de vida en mujeres		
		Paresthetica	embarazadas con meralgia parestésica		
2	(Peskar et	Stroop in motion: Neurodynamic modulation	Stroop en movimiento: Modulación	PubMed	6/10
	al., 2023)	underlying interference control while sitting,	neurodinámica subyacente al control de		
		standing, and walking	interferencias mientras se está sentado, de pie y		
			caminando.		
3	(Cancela et	Acute effects of a single neurodynamic	Efectos agudos de una única sesión de	PubMed	9/10
	al., 2023)	mobilization session on range of motion and H-	movilización neurodinámica sobre la amplitud		
		reflex in asymptomatic young subjects: A	de movimiento y el reflejo H en sujetos jóvenes		
		controlled study	asintomáticos: Un estudio controlado		
4	(Cabrera-	Effects of an active intervention based on	Efectos de una intervención activa basada en la	PubMed	10/10
	Martos et	myofascial release and neurodynamics in patients	liberación miofascial y la neurodinámica en		
	al., 2022)	with chronic neck pain: a randomized controlled	pacientes con dolor cervical crónico: un ensayo		
		trial	controlado aleatorizado		

5	(Thomé et	Effects of neuromuscular electrical stimulation on	Efectos de la estimulación eléctrica	Research	9/10
	al., 2021)	torque and performance in recreational distance	neuromuscular en la torsión y el rendimiento en	Gate	
		runners: A randomized controlled trial	corredores de fondo aficionados: A randomized		
			aleatorizado y controlado		
6	(Plaza-	Effects of Adding a Neurodynamic Mobilization	Efectos de la adición de una movilización	PubMed	8/10
	Manzano	to Motor Control Training in Patients with Lumbar	neurodinámica al entrenamiento de control		
	et al.,	Radiculopathy Due to Disc Herniation: A	motor en pacientes con radiculopatía lumbar		
	2020)	Randomized Clinical Trial	debida a hernia discal: Un ensayo clínico		
			aleatorizado		
7	(Aksoy et	The immediate effect of neurodynamic techniques	El efecto inmediato de las técnicas	PubMed	7/10
	al., 2020)	on jumping performance: A randomised double-	neurodinámicas sobre el rendimiento en salto:		
		blind study	Un estudio doble ciego aleatorizado		
8	(Gomes da	Eccentric training combined to neuromuscular	El entrenamiento excéntrico combinado con la	Research	9/10
	Silva et al.,	electrical stimulation is not superior to eccentric	eléctrica neuromuscular no es superior al	Gate	
	2018)	training alone for quadriceps strengthening in	entrenamiento excéntrico para el		
		healthy subjects: a randomized controlled trial	fortalecimiento del cuádriceps en sujetos sanos:		
			ensayo controlado aleatorizado		
9	(Xie et al.,	Quadriceps combined with hip abductor	Cuádriceps combinado con abductor de cadera	PubMed	9/10
	2018)	strengthening versus quadriceps strengthening in	fortalecimiento versus cuádriceps cuádriceps en		

		treating knee osteoarthritis: A study protocol for a	el tratamiento de la osteoartritis de rodilla:		
		randomized controlled trial	protocolo de un ensayo controlado aleatorizado		
10	(Adams et	Electrically Elicited quadriceps muscle torque:	Torsión muscular del cuádriceps provocada	PubMed	6/10
	al., 2018)	Comparison of three waveforms 1 2	eléctricamente: Comparación de tres formas de		
			onda 1 2		
11	(Saad et	Is hip strengthening the best treatment option for	¿Es el fortalecimiento de la cadera la mejor	PubMed	6/10
	al., 2018)	females with patellofemoral pain? A randomized	opción de tratamiento para las mujeres con		
		controlled trial of three different types of exercises	dolor patelofemoral? Un ensayo controlado		
			aleatorizado de tres tipos diferentes de		
			ejercicios		
12	(Wolny et	Efficacy of Manual Therapy Including	Eficacia de la terapia manual con técnicas	PubMed	9/10
	al., 2017)	Neurodynamic Techniques for the Treatment of	neurodinámicas para el tratamiento del		
		Carpal Tunnel Syndrome: A Randomized	síndrome del túnel carpiano: Un ensayo		
		Controlled Trial	controlado aleatorizado		
13	(Giles et	Quadriceps strengthening with and without blood	Fortalecimiento del cuádriceps con y sin	PubMed	9/10
	al., 2017)	flow restriction in the treatment of patellofemoral	restricción del flujo sanguíneo en el tratamiento		
		pain: a double-blind randomised trial	del dolor femororrotuliano: un ensayo		
			aleatorizado doble ciego		

14	(Ferreira et	Neurodynamic treatment for patients with nerve-	Tratamiento neurodinámico para pacientes con	Research	7/10
	al., 2016)	related leg pain: Protocol for a randomized	dolor de piernas relacionado con los nervios:	Gate	
		controlled trial	Protocolo para un ensayo controlado		
			aleatorizado		
15	(Hanney et	The effects of neurodynamic straight leg raise	Efectos de la duración del tratamiento	Cochrane	
	al., 2016)	treatment duration on range of hip flexion and	neurodinámico de elevación de la pierna recta		
		protective muscle activity at P1	sobre la amplitud de la flexión de la cadera y la		
			actividad muscular protectora en P1		
16	(Sharma et	Short term effectiveness of neural sliders and neural	Eficacia a corto plazo de los deslizadores y los	PubMed	7/10
	al., 2016)	tensioners as an adjunct to static stretching of	tensores neurales como complemento del		
		hamstrings on knee extension angle in healthy	estiramiento estático de los isquiotibiales sobre		
		individuals: A randomized controlled trial	el ángulo de extensión de la rodilla en		
			individuos sanos: Un ensayo controlado		
			aleatorizado		
17	(Areeudom	A randomised, placebo-controlled trial of	Ensayo aleatorizado controlado con placebo de	PubMed	6/10
	wong et	neurodynamic sliders on hamstring responses in	deslizadores neurodinámicos sobre las		
	al., 2016)	footballers with hamstring tightness	respuestas de los isquiotibiales en futbolistas		
			con tirantez de isquiotibiales.		
18	(Kim et al.,	The initial effects of an upper extremity neural	Los efectos iniciales de una técnica de	PubMed	8/10
	2016)	mobilization technique on muscle fatigue and	movilización neural de las extremidades		


		pressure pain threshold of healthy adults: a	superiores sobre la fatiga muscular y el umbral		
		randomized control trial	de dolor por presión de adultos sanos: un ensayo		
			de control aleatorizado.		
19	(Lin et al.,	Lower-Limb Muscle-Activation Patterns During	Patrones de activación muscular de los	PubMed	7/10
	2016)	Off-Axis Elliptical Compared With Conventional	miembros inferiores durante ejercicios elípticos		
		Gluteal-Muscle-Strengthening Exercises	fuera del eje en comparación con ejercicios		
			convencionales de fortalecimiento muscular de		
			los glúteos		
20	(Thorborg	Large strengthening effect of a hip-flexor training	Gran efecto fortalecedor de un programa de	PubMed	9/10
	et al.,	programme: a randomized controlled trial	entrenamiento de los flexores de la cadera: un		
	2016)		ensayo controlado aleatorizado		
21	(Wolny et	Effect of manual therapy and neurodynamic	Efecto de la terapia manual y las técnicas	Research	8/10
	al., 2016)	techniques vs ultrasound and laser on 2PD in	neurodinámicas frente a ultrasonido y láser en	Gate	
		patients with CTS: A randomized controlled trial	2PD en pacientes con CTS: Un ensayo		
			controlado aleatorizado		
22	(Beltran-	Comparison of Hypoalgesic Effects of Neural	Comparación de los efectos hipoalgésicos del	PubMed	6/10
	Alacreu et	Stretching vs Neural Gliding: A Randomized	estiramiento neural frente al deslizamiento		
	al., 2015)	Controlled Trial	neural: Un ensayo controlado aleatorizado		

23	(Paquette	Lower limb joint angular position and muscle	Posición angular de la articulación del miembro	Research	6/10
	et al.,	activity during elliptical exercise in healthy young	inferior y actividad muscular durante el	Gate	
	2015)	men	ejercicio elíptico en hombres jóvenes sanos.		
24	(Gilbert et	Effects of simulated neural mobilization on fluid	Efectos de la movilización neural simulada	Research	7/10
	al., 2015)	movement in cadaveric peripheral nerve sections:	sobre el movimiento de fluidos en secciones de	Gate	
		Implications for the treatment of neuropathic pain	nervios periféricos cadavéricos: Implicaciones		
		and dysfunction	para el tratamiento del dolor y la disfunción		
			neuropáticos		
25	(tekDos	The effect of neuromuscular electrical stimulation	El efecto de la estimulación eléctrica	PubMed	8/10
	Demirciogl	on functional status and quality of life after knee	neuromuscular sobre el estado funcional y la		
	u et al.,	arthroplasty: a randomized controlled study	calidad de vida después de la artroplastia de		
	2015)		rodilla: un estudio controlado aleatorizado		
26	(Dantas et	Comparison between the effects of 4 different	Comparación entre los efectos de 4 formas de	PubMed	6/10
	al., 2015)	electrical stimulation current waveforms on	onda de corriente de estimulación eléctrica		
		isometric knee extension torque and perceived	diferentes sobre el par de extensión isométrica		
		discomfort in healthy women	de la rodilla y la incomodidad percibida en		
			mujeres sanas.		
27	(Scott et	Electrically elicited muscle torque: Comparison	Torsión muscular inducida eléctricamente:	PubMed	6/10
	al., 2015)	between 2500-Hz burst-modulated alternating	Comparación entre la corriente alterna		
		current and monophasic pulsed current			
		turione und monophusic puiscu current			

			modulada en ráfagas de 2500 Hz y la corriente		
			pulsada monofásica		
28	(Scott et	Neuromuscular electrical stimulation pulse	Duración del pulso de estimulación eléctrica	PubMed	7/10
	al., 2014)	duration and maximum tolerated muscle torque	neuromuscular y máxima torsión muscular		
			tolerada		
29	(Szecsi &	Comparison of torque and discomfort produced by	Comparación del par y la incomodidad	PubMed	7/10
	Fornusek,	sinusoidal and rectangular alternating current	producidos por la estimulación eléctrica de		
	2014)	electrical stimulation in the quadriceps muscle at	corriente alterna sinusoidal y rectangular en el		
		variable burst duty cycles	músculo cuádriceps a ciclos de trabajo de ráfaga		
			variable		
30	(Pagare et	Effect of neurodynamic sliding technique versus	Efecto de la técnica de deslizamiento	PubMed	8/10
	al., 2014)	static stretching on hamstring flexibility in football	neurodinámico versus estiramiento estático		
		players with short hamstring syndrome	sobre la flexibilidad de los isquiotibiales en		
			jugadores de fútbol con síndrome de		
			isquiotibiales cortos		
31	(Jakobsen	Muscle activity during leg strengthening exercise	Actividad muscular durante ejercicios de	PubMed	6/10
	et al.,	using free weights and elastic resistance: Effects of	fortalecimiento de piernas con pesas libres y		
	2013)	ballistic vs controlled contractions	resistencia elástica: Efectos de las contracciones		
			balísticas frente a las controladas		

32	(Alderman	Cognitive function during low-intensity walking:	Función cognitiva durante la marcha de baja	Research	7/10
	et al.,	A test of the treadmill workstation	intensidad: Una prueba de la estación de trabajo	Gate	
	2014)		en cinta de correr		
33	(Baroni et	Time course of neuromuscular adaptations to knee	Evolución temporal de las adaptaciones	PubMed	6/10
	al., 2013)	extensor eccentric training	neuromusculares al entrenamiento excéntrico		
			de los extensores de la rodilla		
34	(Mchugh	The role of neural tension in stretch-induced	El papel de la tensión neural en la pérdida de	PubMed	6/10
	et al.,	strength loss	fuerza inducida por el estiramiento		
	2013)				
35	(Fukuda et	Comparison of peak torque, intensity and	Comparación del torque máximo, la intensidad	PubMed	6/10
	al., 2013)	discomfort generated by neuromuscular electrical	y el malestar generado por la estimulación		
		stimulation of low and medium frequency	eléctrica neuromuscular de baja y media		
			frecuencia.		

Ilustración 2. Valoración en Escala PEDro

Interpretación: Los artículos fueron valorados mediante de la escala PEDro y evidenciaron los siguientes resultados: 12 artículos con 6 puntos, 10 artículos con 7 puntos, 5 artículos con 8 puntos, 7 artículo con 9 puntos y un artículo con 10 puntos.

Ilustración 3. Base de Datos Científicas.

Interpretación: Los 35 artículos de carácter científico seleccionados corresponden a Estudios Controlados Aleatorizados, de los cuales se obtuvieron 26 artículos de PubMed, 8 de ResearchGate, y 1 de Cochrane Library.

CAPÍTULO IV. RESULTADOS Y DISCUSIÓN

4.1 Análisis de Resultados

Tabla 5. Análisis de Resultados

Nº	Autor y Año	Título Original	Tipo de estudio	Población	Intervención	Resultados
1	(Jamil, 2023)	Effects of Neural Mobilization of Lateral Femoral Cutaneous Nerve on Neuropathic Pain and Quality of Life in Pregnant Women with Meralgia Paresthetica	Ensayo aleatorizado controlado.	30 mujeres embarazadas diagnosticadas de meralgia parestésica y una prueba neurodinámica y de compresión pélvica positiva.	Los participantes recibieron fisioterapia convencional, incluida la liberación de tejidos blandos, estiramiento del psoas mayor y ejercicios de fortalecimiento, es decir, estabilización pélvica y ejercicios abdominales básicos. La movilización neural se realizó con el paciente tumbado de lado, con el lado afectado hacia arriba y la rodilla doblada en un ángulo de 90 grados.	Los resultados mostraron que la movilización nerviosa del nervio cutáneo femoral lateral ha demostrado influencia significativa en el alivio del dolor, la mejora de la salud física y emocional, y la reducción de los causados por las dificultades de la neuropatía del cuerpo.
2	(Peskar et al.,	Stroop in	Ensayo	Muestra de 16	Aplicación de tres tareas Stroop	Los resultados conductuales en
	2023)	motion: Neurodynamic	aleatorizado controlado.	participantes (9 mujeres) de	utilizando variantes con niveles de interferencia crecientes:	términos de tiempo de respuesta y precisión mostraron que en todas las

		modulation		34,5 (± 8,63)	- Lectura de palabras	dificultades de la tarea Stroop, los
		underlying		años.	- Nombrar con tinta	ensayos incongruentes tardaron más
		interference			La conmutación de las dos tareas,	en responder y fueron más propensos
		control while			combinadas de forma sistemática con	a errores que los ensayos
		sitting,			tres condiciones motoras: sentado, de	congruentes. La tendencia no
		standing, and			pie y caminando en cinta rodante.	significativa de la interacción motor
		walking				Stroop apunta a la necesidad de
						realizar más estudios sobre el control
						de interferencias modulado por la
						marcha.
3	(Cancela et al.,	Acute effects of	Ensayo	Sesenta sujetos	Todos los sujetos se sentaron en una	Se ha defendido que las técnicas
	2023)	a single	aleatorizado	(27 mujeres)	camilla como se ha descrito	neurodinámicas inducen cambios en
		neurodynamic	controlado.	cumplían los	anteriormente. Desde esta posición se	la amplitud de movimiento y la
		mobilization		criterios y se	aplicaron seis protocolos diferentes	excitabilidad espinal. Se demostró
		session on		inscribieron	(todos ellos de 7 min de duración).	que ninguna de las técnicas
		range of motion		(edad media,	Movilización neural	evaluadas presenta ningún efecto
		and H-reflex in		23,8 años, DE	Sin movilización neural	significativo sobre la amplitud del
		asymptomatic		±2,7; peso, 68,0		ROM tras una única sesión. Ninguno
		young subjects:		kg, DE ±10,7;		de los protocolos probados produjo
		A controlled		altura, 1,7 m,		cambios en la excitabilidad espinal
		study		DE $\pm 0,1$).		distintos de los pequeños.
4	(Cabrera-	Effects of an	Ensayo	40 pacientes	Los pacientes asignados al grupo	Una intervención activa de 4
	Martos et al.,	active	Controlad	asignados	experimental se sometieron a una	semanas para pacientes con dolor de
	2022)	intervention	Aleatorizado	aleatoriamente	intervención activa que combinaba la	cuello crónico fue eficaz para reducir
		based on		a un grupo	autoliberación miofascial mediante	la presencia de TrPs activos, la
		myofascial		experimental o	rodillos de espuma y pelotas de	gravedad del dolor y el dolor medio.
		release and		de control	rodillo con ejercicios neurodinámicos	Algunos aspectos de la

		neurodynamics in patients with chronic neck pain: a randomized			activos de las extremidades superiores. Consistió en tres sesiones semanales de 50 a 60 minutos durante cuatro semanas consecutivas.	funcionalidad también mejoraron significativamente tras el programa.
5	(Thomé et al., 2021)	Effects of neuromuscular electrical stimulation on torque and performance in recreational distance runners: A randomized controlled trial	Ensayo Controlado Aleatorizado	30 participantes	Los participantes corrieron un total de15-40 Km por semana en dos o tres sesiones de entrenamiento. - Entrenamiento de carrera: Se cubrió una distancia de 5 kme15 km en cada sesión, y se indicó a los participantes que mantuvieran su frecuencia cardiaca dentro del 70% de su capacidad máxima. - Estimulación eléctrica neuromuscular: el protocolo de fortalecimiento mediante EENM fue desarrollado por los fisioterapeutas	La estimulación eléctrica neuromuscular aumentó el par isométrico, concéntrico y excéntrico en corredores de distancia. Además, se observaron mejoras en su rendimiento deportivo en los resultados secundarios relacionados con coste de transporte de oxígeno.
6	(Plaza- Manzano et al., 2020)	Effects of Adding a Neurodynamic Mobilization to Motor Control	Ensayo Controlado Aleatorizado.	16 participantes	que realizaron este estudio. Ambos grupos recibieron 8 sesiones de un programa de ejercicios de control motor de 30 minutos de duración durante 4 semanas, dos veces a la semana. Se pidió a los participantes que	Aunque los pacientes que recibieron movilizaciones neurales experimentaron mayores cambios en la mecanosensibilidad neural medida por el S-LANNS y la elevación de la
		Training in Patients with			realizaran los ejercicios en casa una vez	pierna recta; estas diferencias fueron pequeñas y probablemente no

		Lumbar			al día durante 20 minutos a lo largo del	relevantes desde el punto de vista
		Radiculopathy			periodo de intervención de 8 semanas.	clínico. Se necesitan futuros ensayos
		Due to Disc				clínicos para confirmar estos
		Herniation: A				resultados.
		Randomized				
		Clinical Trial				
7	(Aksoy et al.,	The immediate	Estudio doble	68 participantes	Las técnicas de Movilización del	Se observó un gran efecto de las
	2020)	effect of	ciego	con una edad	Nervio Femoral y Movilización del	técnicas Movilización del Nervio
		neurodynamic	aleatorizado.	media de 21,31	Nervio Ciático se aplicaron en forma de	Femoral sobre el parámetro Salto
		techniques on		\pm 1,21 años.	2 segundos de estiramiento y 2	Vertical lo cual indica que pueden
		jumping			segundos de reposo durante 10	utilizarse con seguridad cuando se
		performance: A			repeticiones. Se evaluó el rendimiento	desea un aumento inmediato del
		randomised			Salto Vertical y Salto Horizontal de los	rendimiento muscular. Se cree que
		double-blind			participantes antes y después de las	las técnicas de tensión pueden ser
		study			intervenciones.	más estimulantes para el sistema
						nervioso de los individuos sanos que
						las técnicas de deslizamiento.
8	(Gomes da	Eccentric	Ensayo	Cuarenta y	Se utilizó el mismo programa de	Un programa de entrenamiento
	Silva et al.,	training	Controlado	cinco	entrenamiento excéntrico para los	excéntrico de 6 semanas con una silla
	2018)	combined to	Aleatorizado	voluntarios	grupos ECC y ECC + NMES. La	extensora produjo un fortalecimiento
		neuromuscular			diferencia entre los grupos fue la	de los extensores de la rodilla, una
		electrical			estimulación eléctrica aplicada en el	respuesta hipertrófica muscular y un
		stimulation is			músculo cuádriceps de los del grupo	aumento de la longitud de los
		not superior to			ECC + NMES concomitantemente a la	fascículos; pero no tuvo ningún
		eccentric			ejecución del ejercicio excéntrico. Los	efecto sobre el rendimiento de salto
		training alone			participantes asistieron al programa de	de los sujetos.
		for quadriceps			entrenamiento excéntrico dos veces por	

		strengthening			semana (con un intervalo mínimo de 72	
		in healthy			horas) durante 6 semanas.	
		subjects: a				
		randomized				
		controlled trial				
9	(Xie et al.,	Quadriceps	Ensayo	80 sujetos con	Se dividieron aleatoriamente en el	Los resultados de este estudio
	2018)	combined with	Controlado	KOA	grupo de fortalecimiento de cuádriceps	muestran que el fortalecimiento del
		hip abductor	Aleatorizado.	sintomática de	más abductores de cadera. El	cuádriceps combinado con el
		strengthening		las	entrenamiento estuvo compuesto por 2	fortalecimiento del abductor de la
		versus		comunidades y	ejercicios. El 1er es la elevación de la	cadera puede ser superior al
		quadriceps		pacientes	pierna recta, el 2do es el ejercicio	fortalecimiento del cuádriceps solo
		strengthening		ambulatorios	estático multiángulo. El grupo	para los pacientes con artrosis de
		in treating knee		del hospital	experimental recibirá un entrenamiento	cadera. los efectos del
		osteoarthritis:			de fortalecimiento de cuádriceps más	fortalecimiento de los abductores de
		A study			abductor de cadera. Los pacientes	cadera en la mejora de los síntomas
		protocol for a			realizaron cada ejercicio durante 10	y la calidad de vida de los pacientes
		randomized			repeticiones, durante 3 series y dos	
		controlled trial			veces al día durante 6 semanas en total.	
10	(Adams et al.,	Electrically	Estudio de	Treinta y seis	Los participantes completaron 3	Los hallazgos del presente estudio
	2018)	Elicited	laboratorio	adultos (18	ensayos de estimulación eléctrica	sugieren que la Estimulación
		quadriceps	controlado;	mujeres, 18	neuromuscular con 3 formas de onda en	eléctrica neuromuscular utilizando
		muscle torque:	diseño	hombres, rango	la pierna derecha durante una única	una duración de fase relativamente
		Comparison of	cruzado	= 18 a 48 años)	sesión de pruebas de aproximadamente	larga, independientemente del tipo
		three	simple ciego,	sin	45 minutos de duración. Cada forma de	de forma de onda, puede desempeñar
		waveforms 1 2	aleatorización	antecedentes de	onda se administró en trenes de	un papel importante en la
			por bloques	enfermedad	estimulación de 6 segundos con un	maximización del par muscular
				cardiovascular,	tiempo de rampa ascendente y	provocado eléctricamente en el nivel

				enfermedad	descendente de 1 segundo (rampa	máximo de tolerancia de los
				neurológica o	ascendente de 1 segundo, estimulación	participantes.
				disfunción	máxima de 4 segundos, rampa	
				musculoesquelé	descendente de 1 segundo).	
				tica del muslo o	_	
				la rodilla.		
11	(Saad et al.,	Is hip	Ensayo	Cuarenta	Fueron distribuidas aleatoriamente en	Los resultados mostraron que las tres
	2018)	strengthening	Aleatorizado,	mujeres.	cuatro grupos:	formas más comunes de tratamiento
		the best	Controlado y		- Ejercicios de cadera (HE)	de los pacientes con dolor
		treatment	a Simple		- Ejercicios de cuádriceps (QE)	patelofemoral, centradas en el
		option for	Ciego.		- Ejercicios de estiramiento (SE)	fortalecimiento del cuádriceps y la
		females with			- Un grupo de control (GC) (sin	estabilización de la cadera y los
		patellofemoral			intervención).	estiramientos, fueron igualmente
		pain? A			Los pacientes incluidos en los grupos	eficaces y no se observaron
		randomized			de tratamiento participaron en dos	diferencias entre ellas. Los
		controlled trial			sesiones semanales durante ocho	resultados confirmaron que la
		of three			semanas con un descanso mínimo de 24	prescripción de ejercicios de
		different types			h entre sesiones. Cada sesión de	estiramiento aliviaba el dolor y
		of exercises			tratamiento tenía una duración	aumentaba la función de forma
					aproximada de 50 minutos, y todas las	similar a los efectos de los programas
					sesiones se realizaban individualmente.	de fortalecimiento y estabilización
						de caderas y rodillas.
12	(Wolny et al.,	Efficacy of	Ensayo	140 pacientes	Los participantes fueron asignados	Ambas terapias tuvieron un efecto
	2017)	Manual	Controlado		aleatoriamente al grupo de terapia	positivo sobre la conducción
		Therapy	Aleatorizado		manual con técnicas neurodinámicas o	nerviosa. Después de la terapia, las
		Including			al grupo de modalidades electrofísicas.	latencias motoras distales se
		Neurodynamic			Los pacientes de ambos grupos se	redujeron en ambos grupos. El grupo

		Techniques for the Treatment of Carpal Tunnel Syndrome: A Randomized Controlled			sometieron a un ciclo de 10 semanas de fisioterapia. No se utilizó ninguna otra forma de tratamiento durante este periodo. Se utilizaron tres series de 10 movilizaciones de muñeca para ambas técnicas. Una sola movilización duró 15 segundos y fue seguida de un	terapia manual también logró un aumento significativo de la velocidad de conducción sensitiva y motora. El dolor se redujo significativamente en ambos grupos tras terapia, pero el efecto pareció ser mayor en el grupo terapia manual.
13	(Giles et al., 2017)	Trial Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double- blind randomised	Ensayo Aleatorio doble ciego.	79 participantes asignados aleatoriamente a un fortalecimiento (estándar) o BFR de baja carga.	período de descanso de 10 segundos. Se asignó aleatoriamente a 79 participantes asignados aleatoriamente a un fortalecimiento (estándar) o restricción de flujo sanguíneo de baja carga. Ambos grupos realizaron 8 semanas de prensa de piernas y extensión de piernas, el grupo estándar al 70% de 1 repetición máxima (1RM) y el grupo BFR al 30% de 1RM.	El fortalecimiento del cuádriceps a baja carga con restricción de flujo sanguíneo fue más eficaz para reducir el dolor con la actividad diaria que los ejercicios estandarizados de fortalecimiento del cuádriceps en personas con PFP. Produjo una mejora similar en el peor dolor y en el dolor relacionado con la función.
14	(Ferreira et al., 2016)	Neurodynamic treatment for patients with nerve-related leg pain: Protocol for a	Ensayo controlado aleatorizado.	Sesenta participantes reclutados en la comunidad y consultas privadas.	Tratamiento neurodinámico durante dos semanas dos sesiones en pacientes con dolor de piernas relacionado con los nervios. Aplicación de técnicas de apertura del agujero lumbar y controles deslizantes neurodinámicos en dos posiciones diferentes.	Pacientes con signos de dolor neuropático mostraron alivio en el dolor de miembros inferiores considerando la evidencia de mecanosensibilidad nerviosa y los posibles factores de pronóstico.

	randomized controlled trial				
15 (Hanney et al., 2016)	The effects of neurodynamic straight leg raise treatment duration on range of hip flexion and protective muscle activity at P1	Ensayo aleatorizado, simple ciego, cruzado con el mismo sujeto.	26 participantes sanos entre los 20 y los 24 años sin lumbalgia ni dolor de piernas.	Aplicación de la técnica de "Elevación de la pierna recta" pasiva, la cadera se osciló utilizando una pequeña amplitud al final del rango y se utilizó utilizando un metrónomo y cada serie separada por intervalos de descanso de 1 minuto.	Los resultados de este estudio sugieren que no hay ningún beneficio adicional de aumentar la duración de un tratamiento neurodinámico pasivo de Elevación Recta de la pierna en las medidas de ROM HF o la magnitud electromiográfica del músculo.
16 (Sharma et al., 2016)	Short term effectiveness of neural sliders and neural tensioners as an adjunct to static stretching of hamstrings on knee extension angle in healthy individuals: A randomized controlled trial	Ensayo controlado aleatorio ciego0	Sesenta individuos sanos (edad media ½ 22 ± 2,4 años).	Tres grupos que recibieron estiramiento estático y deslizadores neurodinámicos (NS-SS); estiramiento estático con tensor neurodinámico (NT-SS) y estiramiento estático (SS). Para todos los grupos, el fisioterapeuta realizó un único estiramiento estático de la musculatura isquiotibial durante 30 segundos con los participantes en decúbito supino, con la cadera y la rodilla en 90 grados de flexión y el pie en flexión plantar como posición inicial	En la medición posterior a la intervención, se observó una diferencia significativa entre los grupos estiramiento estático y deslizadores neurodinámicos; y estiramiento estático con tensor neurodinámico NT-SS y SS. Este estudio demostró que ambas intervenciones con sesgo neural son eficaces como complemento de los estiramientos estáticos para mejorar la flexibilidad, además de un aumento de la tolerancia al estiramiento.

17	(Areeudomwo	A randomised,	Ensayo	Cuarenta	Aplicación de técnica de deslizamiento	Este estudio demostró que una
	ng et al., 2016)	placebo-	aleatorizado	futbolistas	neurodinámico de 4 semanas o a un	técnica de deslizamiento
		controlled trial	controlado.	varones sanos.	grupo control que recibió una	neurodinámico de 4 semanas
		of			intervención placebo de onda corta en	mejoraba el ángulo de extensión de
		neurodynamic			isquiotibiales.	la rodilla, que reflejaba la
		sliders on				extensibilidad aparente de los
		hamstring				isquiotibiales sin provocar cambios
		responses in				significativos en la actividad de los
		footballers with				isquiotibiales en futbolistas con
		hamstring				rigidez isquiotibial.
		tightness				
18	,	The initial	Ensayo de	Cuarenta y	Los sujetos sanos fueron asignados	Los resultados muestran la eficacia
	2016)	effects of an	control	cinco sujetos	aleatoriamente a dos grupos: un grupo	del tratamiento para reducir la
		upper	aleatorizado.	sanos fueron	de movilización nerviosa	concentración de ácido láctico y el
		extremity		asignados	(experimental) y un grupo de control	umbral de dolor a la presión. Las
		neural		aleatoriamente	combinado con intervención de	técnica de movilización neural
		mobilization		a dos grupos.	ultrasonido.	reducía los problemas de conducción
		technique on				nerviosa causados por daños en el
		muscle fatigue				sistema nervioso y mejoraba la
		and pressure				flexibilidad de la estructura del
		pain threshold				sistema nervioso y los músculos,
		of healthy				ayudando así a aliviar los trastornos
		adults: a				sensoriales o motores.
		randomized				
		control trial				

19	(Lin et al.,	Lower-Limb	Estudio	Doce	Cada voluntario realizó 3 ejercicios	Los ejercicios elípticos fuera del eje
	2016)	Muscle-	Controlado	voluntarios	convencionales de fortalecimiento	con resistencia a la aducción y
	·	Activation	Aleatorizado	sanos (26,1 ±	muscular de los glúteos y 3 ejercicios	resistencia a la rotación interna
		Patterns During		4,7 años)	elípticos con y sin perturbaciones fuera	fueron eficaces para activar los
		Off-Axis			del eje.	músculos GMed y GMax. Estos
		Elliptical				ejercicio puede constituir una
		Compared				alternativa de ejercicios terapéuticos
		With				convencionales. Se midieron las
		Conventional				activaciones musculares de la
		Gluteal-				extremidad dominante durante cada
		Muscle-				tarea de ejercicio del vasto lateral,
		Strengthening				medial, semitendinoso, cabeza larga
		Exercises				del bíceps femoral, gastrocnemio
						medial y lateral, GMed y GMax
						utilizando electrodos bipolares de
						superficie (sistema Bagnoli EMG,
						Delsys, Boston, MA).
20	(Thorborg et	Large	Ensayo	Treinta y tres	Los participantes fueron estratificados	Un simple entrenamiento de fuerza
	al., 2016)	strengthening	Controlado	sujetos sanos	por sexo, y luego asignados	de los flexores de la cadera
		effect of a hip-	Aleatorizado	(45% mujeres),	aleatoriamente a dos grupos paralelos:	utilizando bandas elásticas como
		flexor training		de 24(5) años	entrenamiento de flexores de cadera o	carga externa, durante sólo 6
		programme: a			control. Todas las sesiones de	semanas, mejora la fuerza de los
		randomized			entrenamiento fueron supervisadas por	músculos flexores de la cadera en
		controlled trial			un fisioterapeuta y el programa de	una media del 17 %. Este aumento
					ejercicios consistía en un único	sustancial de la fuerza es comparable
					ejercicio para los flexores de la cadera	a lo que se consigue habitualmente
					realizado en posición de pie con una	

					banda elástica atada por encima de la	utilizando máquinas de
					rodilla, 5 cm proximal a la rótula de la	entrenamiento de fuerza.
					pierna de entrenamiento.	
21	(Wolny et al.,	Effect of	Ensayo	140 pacientes	En el grupo NM, la terapia se basó en	Los resultados del tratamiento en
	2016)	manual therapy	Controlado		la terapia manual, incluidas las técnicas	2PD demostraron que ambos
		and	Aleatorizado		neurodinámicas. Este régimen de	métodos tenían un efecto
		neurodynamic			tratamiento consistió en:	terapéutico. En las formas leves y
		techniques vs			- (1) masaje funcional de la parte	moderadas de STC unilateral, la
		ultrasound and			descendente del trapecio	sensación 2PD está más afectada en
		laser on 2PD in			- (2) técnicas de apertura y cierre de	la extremidad sintomática que en la
		patients with			la muñeca.	asintomática. Aunque ambos
		CTS: A			- (3) Movilización por deslizamiento	regímenes mejoraron la 2PD en
		randomized			y tensión del nervio mediano	pacientes con STC, la terapia manual
		controlled trial			La duración de los intervalos	con técnicas neurodinámicas
					interseriados fue de 15 segundos. La	neurodinámica fue superior al
					sesión en este grupo duró unos 30	ultrasonido combinado con láser
					minutos.	infrarrojo.
22	(Beltran-	Comparison of	Ensayo	Cuarenta y	Los 3 grupos fueron deslizamiento	No se observaron diferencias
	Alacreu et al.,	Hypoalgesic	Controlado	cinco sujetos	neurodinámico (NG) estiramiento	significativas en cuanto a sexo, edad,
	2015)	Effects of	Aleatorizado.	asintomáticos	neurodinámico (NS) y placebo (PB).	peso y estatura entre los grupos de
		Neural		(20 hombres y	Cada grupo recibió 7 minutos de	estudio. Este estudio mostró los
		Stretching vs		25 mujeres;	tratamiento y sólo una de las técnicas.	efectos inmediatos de la técnica
		Neural Gliding:		edad media ±		Movilización Neural. Estos
		A Randomized		DE, 20.8 ± 2.83		resultados muestran que
		Controlled		años).		deslizamiento neurodinámico y
		Trial				estiramiento neurodinámico

23	(Paquette et al., 2015)	Lower limb joint angular position and muscle activity during elliptical exercise in healthy young men	Ensayo controlado aleatorio.	Dieciséis hombres jóvenes, sanos y recreativamente activos (23,2 ± 1,9 y; 81,5 ± 9,2 kg; 1,8 ± 0,1 m; 25,7 ± 2,8 kg/m2).	Las condiciones elípticas se aleatorizaron para evitar un efecto de orden y todas las pruebas se realizaron el mismo día. Los participantes realizaron series de ejercicios de cinco minutos en cada una de las cuatro condiciones de aparatos elípticos: - (1) en una bicicleta elíptica lateral (Crossover, Technogym, EE.UU.) - (2) en una bicicleta elíptica estándar (EX-5, Matrix Fitness, EE.UU.) con el pie recto (pie recto) - (3) en una bicicleta elíptica estándar con el ángulo de la punta hacia fuera (punta hacia fuera) - (4) en una bicicleta elíptica estándar con un escalón ancho.	provocaron un aumento inmediato de la Umbral de Dolor por Presión. Los resultados indicaron un menor pico de aducción de rodilla posición angular durante el ejercicio elíptico estándar con un paso ancho pero una mayor posición de aducción máxima con una posición de pie con la punta hacia fuera. Es importante realizar futuras investigaciones sobre programas como intervenciones para mejorar la calidad de vida y reducir el dolor.
24	(Gilbert et al., 2015)	Effects of simulated neural mobilization on fluid movement in cadaveric	Ensayo aleatorizado controlado.	Secciones de nervios ciáticos bilaterales de seis cadáveres.	Se utilizó un diseño de grupo de control preprueba-postprueba utilizando un modelo de tejido cadavérico in vitro para examinar el comportamiento del movimiento (propagación o dispersión longitudinal) del líquido inyectado en secciones de nervio ciático extirpado.	La movilización neural es un tratamiento eficaz para el atrapamiento de nervios periféricos. Este estudio examinó y describió los efectos de la movilización neural sobre la dinámica del tejido nervioso periférico in vitro. los beneficios

		peripheral nerve sections: Implications for the treatment of neuropathic pain and dysfunction			Una vez estabilizada la difusión inicial del colorante, las secciones nerviosas experimentales se sometieron a 25 ciclos de estiramiento/relajación.	fisiológicos de la movilización neural pueden estar relacionados con el movimiento repetitivo del tejido nervioso en lugar de con la abolición mecánica de las adherencias del tejido.
25	(tekDos Demircioglu et al., 2015)	The effect of neuromuscular electrical stimulation on functional status and quality of life after knee arthroplasty: a randomized controlled study	Estudio controlado aleatorizado.	60 pacientes con artrosis de rodilla.	Los pacientes fueron distribuidos aleatoriamente en dos grupos. - El grupo de control - El grupo NMES. Se enseñó a los pacientes a realizar ejercicios isométricos de cuádriceps y a levantar la pierna estirada, ponerse de pie con un andador y extender completamente las rodillas, y los ejercicios de ROM activo y asistido se iniciaron el primer día postoperatorio. Los ejercicios activos de ROM e isométricos del cuádriceps continuaron entre los días postoperatorio entre los días 2 y 10.	Los resultados muestran que se produjeron mejoras estadísticamente significativas en el dolor, la rigidez y las funciones relacionadas con la rodilla en ambos grupos. La suplementación del programa de ejercicio tras la cirugía de ATR resultó ser más eficaz para la mejora rápida de las funciones de la rodilla y la calidad de vida.
26	(Dantas et al., 2015)	Comparison between the effects of 4 different	Estudio controlado aleatorizado	21 mujeres (edad: 21,6 ± 2,5 años)	Los sujetos realizaron 3 visitas al laboratorio isocinético, con un intervalo de 5 días entre visitas.	Este estudio llegó a la conclusión de que la corriente rusa provocaba un par medio más bajo de los extensores de la muñeca que los provocados por

		1 4 1			1 F '1' ' 1 ' '	1 ' 1 NT ' 1
		electrical			- 1ra: Familiarizar a los sujetos con	la corriente australiana. No existe
		stimulation			las 4 formas de Estimulación	ninguna ventaja en la combinación
		current			Eléctrica Neuromuscular, equipo y	de EENM con MVC en comparación
		waveforms on			procedimientos.	con la EENM aislada. Los resultados
		isometric knee			- 2da: Calentamiento en un	sugieren que Aussie y Corriente
		extension			cicloergómetro (60 rpm a 25 vatios),	Pulsada son ventajosas en
		torque and			evaluación del par MVC y	comparación con la corriente rusa
		perceived			evaluación del par NMES.	para inducir la isométrica de la
		discomfort in			- 3ra: igual que la 2da, pero con	rodilla.
		healthy women			NMES en combinación con MVC	
					(NMES+).	
					Se utilizó un estimulador eléctrico	
					neuromuscular (V2.0 Neurodyn,	
					Ibramed, Amparo, SP, Brasil) para	
					generar las 4 formas de corriente: 2	
					KACs (corrientes rusa y australiana) y	
					2 PCs de baja frecuencia.	
27	(Scott et al.,	Electrically	Estudio	Doce mujeres y	Cada participante realizó una única	Los resultados del presente estudio
	2015)	elicited muscle	cruzado de	8 hombres	sesión de pruebas que duró	sugieren que la corriente pulsada
		torque:	aleatorización	(edad media,	aproximadamente 45 minutos, durante	monofásica (MPC) con una duración
		Comparison	por bloques.	22,6 años; masa	la cual se probó una forma de onda en	de pulso relativamente larga de 500
		between 2500-		corporal, 77,6	una extremidad inferior y la segunda	microsegundos puede ser más eficaz
		Hz burst-		kg; altura,	forma de onda en el lado opuesto. Tras	que la corriente pulsada monofásica
		modulated			sujetarse en la máquina Biodex, los	(MPC) de 2500 Hz para lograr una
		alternating			participantes realizaron un mínimo de 3	mayor salida de par en pacientes con
		current and			contracciones isométricas volitivas	debilidad de cuádriceps, lo que
					máximas las cuales se completaron	_

		monophasic			hasta que la salida de fuerza disminuyó	puede conducir a ganancias de fuerza	
		pulsed current			o el aumento fue inferior al 5% de la	más rápidas o mayores.	
					medición máxima anterior.		
28	(Scott et al.,	Neuromuscular	Estudio	Dieciséis	El orden de las pruebas fue aleatorio en	Los resultados de este estudio	
	2014)	electrical	controlado	adultos (7	cuanto a la extremidad inferior y la	sugieren que cuando se utilizan	
		stimulation	Aleatorizado.	mujeres, 9	condición de duración del pulso.	pulsos monofásicos de onda	
		pulse duration		hombres; edad	Comenzaron con un calentamiento de 5	cuadrada, las duraciones de 500 ms	
		and maximum		media en	min en un ergómetro de extremidades	optimizan la influencia del	
		tolerated		años¹⁄425,4 DE	inferiores. La estimulación eléctrica en	parámetro de duración del pulso en	
		muscle torque		5,9)	forma de impulsos monofásicos de	la respuesta máxima tolerada del par	
					onda cuadrada se administró en 2	muscular en comparación con	
					condiciones con estimulador de	duraciones más cortas. No está claro	
					impulsos cuadrados S48 de Grass	si las duraciones de pulso más largas	
					Technologies con una unidad de	(4500-ms) resultarían en pares	
					aislamiento de estimulación SIU8T:	musculares máximos tolerados	
					- (1) NMES con pulsos de 200 ms de	similares, mayores o incluso	
					duración	menores. No se puede identificar el	
					- (2) pulsos de 500 ms de duración.	umbral de duración del pulso entre	
					Las MVIC se realizaron para	200 y 500 ms en el que la duración	
					determinar la capacidad máxima de	del pulso se acorta lo suficiente como	
					torsión voluntaria de los extensores de	para que el par muscular máximo	
					la rodilla de los participantes.	tolerado en los resultados de fuerza	
						en poblaciones de pacientes.	
29	(Szecsi &	Comparison of	Ensayo	22 sujetos	La sesión consistió en mediciones	Este estudio confirmó que la	
	Fornusek,	torque and	Controlado	sanos (edad	torsión isométrica inducida	estimulación ráfagas de corriente	
	2014)	discomfort	Aleatorizado	media TSD, 33	eléctricamente, y los participantes	sAC convencional (50% de efecto de	
		produced by		T 8 años).	calificaron la cantidad de incomodidad	la estimulación eléctrica	

		sinusoidal and			que experimentaron durante las	neuromuscular [la estimulación de
		rectangular			condiciones de estimulación. Todas las	tipo ruso clínicamente común]) es
		alternating			sesiones se completaron durante un	equivalente a la estimulación
		current			periodo de 2 meses. Los grupos	corriente pulsada en términos de
		electrical			musculares del cuádriceps izquierdo se	torsión isométrica inducida
		stimulation in				eléctricamente.
					1	electricamente.
		the quadriceps			producir contracciones isométricas. Se	
		muscle at			utilizaron pares de electrodos de gel	
		variable burst			autoadhesivos	
		duty cycles				
30	(Pagare et al.,	Effect of	Ensayo	30 futbolistas	Se asignó aleatoriamente a los sujetos a	Los resultados de este estudio
	2014)	neurodynamic	Controlado	varones del	la técnica de estiramiento estático o a la	mostraron una mejora estadística y
		sliding	Aleatorizado.	grupo de edad	técnica de deslizamiento	clínicamente significativa dentro de
		technique		18-25 años con	neurodinámico. Para la técnica de	ambos grupos, pero no se observaron
		versus static		síndrome de	estiramiento estático, se utilizó la	diferencias entre los dos grupos con
		stretching on		isquiotibiales	posición del vallista modificada. Las	respecto al aumento de la
		hamstring		cortos	técnicas neurodinámicas de	flexibilidad de los isquiotibiales
		flexibility in			deslizamiento utilizadas en el estudio	post-intervención. Tanto el
		football players			consistieron en «deslizadores de pierna	estiramiento estático como la técnica
		with short			recta sentados» Elevación pasiva de la	de deslizamiento neurodinámico
		hamstring			pierna recta se midió antes de la	pueden aumentar la extensibilidad de
		syndrome			intervención, inmediatamente después	los músculos.
		Ĵ			de la primera sesión y después de tres	
					sesiones.	
31	(Jakobsen et	Muscle activity	Ensayo	42 adultos no	Se registró la actividad	Los principales hallazgos de este
	al., 2013)	during leg	controlado	entrenados (24	electromiográfica en nueve músculos	estudio fueron que las estocadas
		strengthening	aleatorizado.	,	durante un movimiento estandarizado	realizadas de forma balística con una

					I	
		exercise using		mujeres y 18	de estocada hacia delante realizado con	carga media inducen una actividad
		free weights		hombres)	mancuernas y bandas elásticas durante	muscular de las piernas similar o
		and elastic			(1) esfuerzo balístico frente a esfuerzo	incluso superior a la de las estocadas
		resistance:			controlado, y (2) con cargas bajas,	realizadas con una carga elevada a
		Effects of			medias y altas (33%, 66% y 100% de	una velocidad lenta y controlada, y
		ballistic vs			10 RM, respectivamente).	las estocadas con resistencia elástica
		controlled			- Estocada con resistencia elástica	parecen ser igual de eficaces para
		contractions			- Estocada con mancuernas	inducir una actividad muscular
					Carga percibida Inmediatamente	elevada que las estocadas
					después de cada serie de ejercicios se	tradicionales con resistencia
					utilizó la escala CR10 de Borg para	isoinercial.
					valorar la carga percibida durante el	
					ejercicio de resistencia.	
32	(Alderman et	Cognitive	Estudio	Sesenta y seis	Los participantes acudieron al	No se observó efectos adversos para
	al., 2014)	function during	controlado	participantes (n	laboratorio para realizar 2 sesiones	ninguna de las pruebas cognitivas.
	, ,	low-intensity	aleatorizado.	= 27 varones,	separadas con 48 horas de diferencia a	Estos resultados indicaron que
		walking: A test		39 mujeres;	la misma hora del día. Las 2 sesiones	caminar a una intensidad
		of the treadmill		edad media =	(control sentado, caminata en cinta	seleccionada por uno mismo no
		workstation		$21,06 \pm 1,6$	rodante de intensidad	disminuye la eficiencia del sistema
				años)	autoseleccionada) se	de procesamiento de la información
					contrabalancearon para minimizar	y no perjudica el rendimiento de la
					cualquier efecto potencial de la	tarea. Los resultados de este estudio
					práctica. Los participantes recibieron	apoyan la hipótesis de que los paseos
					instrucciones escritas y verbales sobre	de baja intensidad no perjudican las
					cómo completar tareas cognitivas y	tareas de rendimiento cognitivo.
					realizaron varias pruebas de práctica	tareas de rendimiento cognitivo.
			l		realization varias pruebas de praetica	1

					para aclimatarse al protocolo de pruebas.	
33	(Baroni et al., 2013)	Time course of neuromuscular adaptations to knee extensor eccentric training	Ensayo Controlado Aleatorizado	J	Realizaron un programa de entrenamiento excéntrico de 12 semanas en un dinamómetro isocinético, y se realizaron evaluaciones neuromusculares de los extensores de la rodilla cada 4 semanas.	Los resultados sugieren que el entrenamiento excéntrico tiene una alta especificidad en las ganancias de fuerza a favor de las contracciones excéntricas e isométricas. Los incrementos de fuerza excéntrica e isométrica a las 4 y 8 semanas de entrenamiento pueden explicarse por la suma de adaptaciones neurales y morfológicas.
34	(Mchugh et al., 2013)	The role of neural tension in stretch-induced strength loss	Ensayo aleatorizado controlado.	Once sujetos sanos (10 hombres, 1 mujer; edad 34 6 12 años).	Se utilizó un diseño de medidas repetidas para evaluar el efecto de la tensión neural durante los estiramientos pasivos de los isquiotibiales sobre la pérdida de fuerza inducida por el estiramiento. La fuerza isométrica de flexión de rodilla antes y después de una serie de estiramientos estáticos pasivos estáticos pasivos en la posición de prueba de desplome (tensión neural) o en posición de columna neutra (estiramiento neutro). El orden de las pruebas se alternó entre los sujetos.	El efecto fue evidente tanto en las extremidades estiradas como en las no estiradas. El estiramiento de los isquiotibiales con la columna posición neutra no provocó una pérdida significativa de fuerza, pero sí un cambio en la relación longitudtensión, de modo que la que la fuerza disminuyó en las longitudes musculares cortas y longitudes musculares largas.

35	(Fukuda et al.,	Comparison of	Estudio	Treinta	Cada sujeto se sometió a pruebas	Se llegó a la conclusión de que no
	2013)	peak torque,	controlado	hombres sanos	secuenciales utilizando tres tipos de	hay diferencia en el par máximo
		intensity and	Aleatorizado	(edad promedio	estimulación, todas realizadas en una	inducido eléctricamente cuando se
		discomfort		\pm DE, 25,0 \pm 3,0	sola sesión. La aleatorización se realizó	aplica Russian Current, FES y VMS.
		generated by		años; altura,	mediante sobres opacos que contenían	Sin embargo, existe una mayor
		neuromuscular		$175 \pm 6 \text{ cm};$	el tipo de estimulación. Los sobres	tolerancia del sujeto a intensidades
		electrical		índice de masa	fueron seleccionados al azar por una	más altas de la corriente rusa, así
		stimulation of		corporal, 24,2 ±	persona que no participó en el estudio.	como menos molestias en
		low and		1,7)	Los sujetos recibieron una estimulación	comparación con las corrientes de
		medium			aleatoria de contracción muscular	baja frecuencia.
		frequency			eléctrica para familiarizarse con el	
					dispositivo, 10 minutos antes de la	
					recopilación de datos.	

Ilustración 4 Análisis de Resultados

Interpretación: De los 35 artículos utilizados para esta investigación, 15 artículos científicos mencionan el uso de las técnicas neurodinámicas; 8 hablan sobre electromiografía y 7 sobre la intervención con ejercicio terapéutico.

4.2 Discusión

La neuropatía femoral post-histerectomía es una condición que se presenta por la compresión del nervio femoral durante una intervención ginecológica en la que se utilizan instrumentos quirúrgicos que pueden comprimir al nervio; o la posición de litotomía por tiempos prolongados, por lo que una intervención fisioterapéutica en este tipo de pacientes busca cubrir las necesidades individuales con la finalidad de garantizar un grado de independencia, seguridad y bienestar, mejorando la calidad de vida en el desarrollo de las actividades personales y sociales.

Autores como (Ferreira et al., 2016), (Hanney et al., 2016) mencionan que las técnicas neurodinámicas se utilizan como un complemento de los tratamientos tradicionales en patologías musculoesqueléticas y nerviosas ya que presenta beneficios significativos. Gracias a las propiedades de flexibilidad que presentan los músculos y los nervios resulta factible aplicar este tipo de técnicas en base a la gran capacidad de adaptación.

Los autores (Wolny et al., 2017), (Cabrera-Martos et al., 2022) comparan el tratamiento de terapia manual combinado con técnicas neurodinámicas y un tipo de intervención que combina terapia con láser y ultrasonido, llegando a la conclusión que las dos intervenciones tuvieron un efecto positivo sobre la conducción nerviosa al reducir las latencias motoras distales, aunque existió mejores resultados con terapia manual asegurando que son eficaces para reducir la presencia del dolor.

De igual manera, autores como (Cancela et al., 2023), (Kim et al., 2016) defienden la idea de que las técnicas neurodinámicas inducen cambios en la amplitud de movimiento, la excitabilidad nerviosa, y resultan eficaces en el tratamiento para reducir la concentración de ácido láctico, permitiendo disminuir los problemas de conducción nerviosa causados por daños; y así mejorar la flexibilidad de la estructura del sistema nervioso y los músculos, sin embargo, manifiestan que no son útiles en una única sesión.

De acuerdo con las investigaciones realizadas por (Sharma et al., 2016); (Mchugh et al., 2013) y (Areeudomwong et al., 2016), los deslizadores neurales y los tensores son eficaces porque

permiten el restablecimiento del movimiento natural de las estructuras musculoesqueléticas ayudando a reducir la rigidez muscular; y cualquiera de las dos intervenciones se pueden combinar con estiramientos estáticos que se realizan en reposo respetando el límite de lo confortable, permitiendo una mejor respuesta sobre la pérdida de fuerza muscular. Estas técnicas pueden combinarse para obtener mejores resultados al momento de generar una liberación del nervio.

Investigaciones previas recomiendan la movilización nerviosa como una alternativa de tratamiento para las neuropatías con la finalidad de obtener resultados a largo plazo con respecto al fortalecimiento muscular, siendo considerada por autores como (Jamil, 2023) y (Beltran-Alacreu et al., 2015) quienes mencionan que este tipo de tratamientos han demostrado influencia significativa en el alivio del dolor, la mejora de la salud física y emocional, y la reducción de los síntomas como hipoestesia en la zona del muslo y debilidad muscular, causados por la neuropatía femoral.

Por otro lado, autores como (Gilbert et al., 2015),(Aksoy et al., 2020) aseguran que las técnicas de movilización del nervio femoral pueden utilizarse de manera segura y eficaz para el tratamiento de neuropatías compresivas de nervios periféricos, permitiendo un aumento inmediato del rendimiento muscular gracias a efectos fisiológicos evidentes relacionados con el movimiento repetitivo del tejido nervioso.

La estimulación eléctrica es una modalidad de tratamiento que estimula las fibras aferentes generando una reducción en la transmisión de la señal nociceptiva permitiendo disminuir el dolor mediante la dosificación de corriente alterna modulada por ráfaga, corriente pulsada bifásica de onda cuadrada modulada por ráfaga, y corriente pulsada monofásica para lograr fortalecer la musculatura. Combinar la electroestimulación con un programa de ejercicios aumenta el efecto de entrenamiento, antiinflamatorio o rehabilitador sobre los músculos estimulados.

Autores como (Szecsi & Fornusek, 2014), (tekDos Demircioglu et al., 2015), confirman con su estudio que la estimulación de corriente alterna sinusoidal convencional es equivalente a la estimulación corriente pulsada en términos de la torsión isométrica inducida eléctricamente que resulta más eficiente para lograr la hipertrofia muscular con fines deportivos o la

rehabilitación de individuos con sensibilidad preservada mediante la planificación de un tratamiento con una estimulación eléctrica más eficiente que muestran buenos resultados ante el dolor.

(Thomé et al., 2021) y (Dantas et al., 2015) mencionan que la estimulación eléctrica neuromuscular aumenta la fuerza máxima isométrica, concéntrico y excéntrico en los participantes. Mientras que (Fukuda et al., 2013) y (Scott et al., 2014) aseguran que existe una mayor tolerancia del sujeto a intensidades más altas de la corriente rusa, así como menos molestias en comparación con las corrientes de baja frecuencia lo que resulta apto para un tratamiento de fortalecimiento muscular. Que logra mejorar la debilidad de cuádriceps, lo que puede conducir a ganancias de fuerza más rápidas o mayores.

El autor (Gomes da Silva et al., 2018) menciona que el programa de entrenamiento excéntrico permitió el fortalecimiento del cuádriceps, una respuesta hipertrófica muscular y un aumento de la longitud de los fascículos. Mientras que los autores (Saad et al., 2018) y (Thorborg et al., 2016) sugieren que la prescripción de ejercicios combinados con bandas elásticas de estiramiento aliviaba el dolor y aumentaba la función de forma similar a los efectos de los programas de fortalecimiento y estabilización de caderas, generando un aumento sustancial de la fuerza es comparable a lo que se consigue habitualmente utilizando máquinas de entrenamiento de fuerza.

CAPÍTULO V. CONCLUSIONES

5.1 CONCLUSIONES

- La aplicación de tratamientos basados en neurodinámia ayudan a erradicar la comprensión y permiten mejorar el manejo de las disfunciones neurológicas periféricas. La interacción compleja entre los tejidos nerviosos y sus entornos circundantes implica procesos dinámicos que afectan la movilidad, la función y la salud de los nervios. Los principios de la neurodinamía son esenciales para la creación de estrategias terapéuticas efectivas y para el diagnóstico preciso de trastornos nerviosos. La neuropatía femoral post-histerecotomía se puede tratar con ejercicios de fortalecimiento y estimulación eléctrica. La recuperación funcional y la calidad de vida de los pacientes pueden mejorar significativamente mediante una evaluación cuidadosa de la movilidad neural e intervenciones terapéuticas adecuadas.
- La neuropatía femoral es una condición médica complicada que tiene un impacto en la función del nervio femoral y puede generar cambios significativos en la calidad de vida de las personas. Para maximizar los resultados, se requiere un diagnóstico temprano, una investigación de la causa subyacente y una estrategia de tratamiento integral. El tratamiento del dolor causado por una neuropatía femoral con frecuencia implica el uso de analgésicos, antiinflamatorios, fisioterapia y, en algunos casos, procedimientos quirúrgicos para disminuir la compresión del nervio. El manejo de esta patología requiere fisioterapia para mejorar la fuerza muscular, la movilidad y la discapacidad funcional.
- La estimulación eléctrica neuromuscular resulta adecuada como tratamiento para la neuropatía femoral, sin embargo, varios estudios han demostrado que las técnicas de neurodinámia que mejora la conducción nerviosa y juntamente con los ejercicios de fortalecimiento tienen mejores resultados a largo plazo ya que permiten manejar el dolor causado por la patología y permite el fortalecimiento de la musculatura implicada.

CAPÍTULO VI. PROPUESTA

En base a los resultados obtenidos en la investigación, se propone realizar una difusión en redes sociales dirigida a los estudiantes de la carrera de Fisioterapia de la Universidad Nacional de Chimborazo que abarque temas como la sintomatología, conceptos y diagnóstico con el objetivo de capacitar acerca del medio de tratamiento más efectivo para una Neuropatía Femoral Post-Histerectomía.

Facultad: Ciencias de la Salud

Carrera: Fisioterapia (V)

Línea de investigación: Salud

Dominio: Salud como producto final orientado al buen vivir.

Área de conocimiento: Salud y bienestar.

Modalidad: Difusión en Redes Sociales

Ubicación: Universidad Nacional de Chimborazo (Campus Edison Riera – vía guano).

Tema: Difusión en redes sociales acerca del medio de tratamiento más efectivo para una Neuropatía Femoral Post-Histerectomía.

Objetivo: Desarrollar diferentes tipos de materiales informativos como videos, infografías y consejos que se puedan publicar en los diferentes tipos de redes sociales como Facebook, Instagram y WhatsApp, sobre la intervención fisioterapéutica para una Neuropatía Femoral Post-Histerectomía dirigido a los estudiantes de la carrera de Fisioterapia.

Tabla 6. Temas de difusión

			Red	
Tema	Objetivo	Recursos	Social	Meta
	Definir los conceptos de	Video		
Relación entre la	histerectomía y su impacto	Infografía	Instagram	
histerectomía y la	en la aparición de una	Imágenes	Facebook	
neuropatía femoral	neuropatía femoral	Educativas	WhatsApp	10%
	Establecer cuáles son los			
	medios de diagnóstico más	Video		
	efectivos para una	Infografía	Instagram	
Medios de diagnóstico para	neuropatía femoral post-	Imágenes	Facebook	
una Neuropatía Femoral	histerectomía	Educativas	WhatsApp	10%

	Identificar los signos y	Video		
	síntomas más frecuentes en	Infografía	Instagram	
Signos y síntomas de una	este tipo de patologías para	Imágenes	Facebook	
Neuropatía Femoral	un correcto diagnóstico	Educativas	WhatsApp	10%
	Buscar las opciones			
Estrategias para prevenir	adecuadas que permitan	Video		
una neuropatía femoral	evitar la aparición de una	Infografía	Instagram	
antes de una cirugía	neuropatía femoral pre-	Imágenes	Facebook	
ginecológica.	histerectomía	Educativas	WhatsApp	10%
	Definir el tipo de	Video		
Manejo de los síntomas en	intervención fisioterapéutica	Infografía	Instagram	
la neuropatía femoral post-	una vez que los síntomas	Imágenes	Facebook	
histerectomía	aparecen.	Educativas	WhatsApp	15%
El papel de la fisioterapia	Determinar la importancia	Video		
en el manejo de la	de un plan de tratamiento	Infografía	Instagram	
neuropatía femoral post-	fisioterapéutico en	Imágenes	Facebook	
histerectomía.	neuropatía femoral.	Educativas	WhatsApp	15%
Tratamiento		Video		
fisioterapéutico en la	Identificar e tratamiento	Infografía	Instagram	
neuropatía femoral post-	más efectivo para una	Imágenes	Facebook	
histerectomía	neuropatía femoral.	Educativas	WhatsApp	15%
Importancia del	Identificar la importancia de	Video		
tratamiento oportuno en la	una intervención temprana	Infografía	Instagram	
neuropatía femoral post-	en una neuropatía femoral	Imágenes	Facebook	
histerectomía	post-histerectomía.	Educativas	WhatsApp	15%
Total	1	00%		

Población beneficiaria directa: estudiantes de la carrera de Fisioterapia de la Universidad Nacional de Chimborazo.

Población beneficiaria indirecta: Mujeres que se han sometido a una cirugía ginecológica.

Ilustración 5. Ejemplo de Infografía

BIBLIOGRAFÍA

- Adams, C., Scott, W., Basile, J., Hughes, L., Leigh, J., Schiller, A., & Walton, J. (2018).
 Electrically-Elicited quadriceps muscle torque: Comparison of three waveforms 1 2.
 In Journal of Orthopaedic & Sports Physical Therapy® Downloaded from www.jospt.org at. www.jospt.org
- Aksoy, C. C., Kurt, V., Okur, I., Tasplnar, F., & Taspinar, B. (2020). The immediate effect of neurodynamic techniques on jumping performance: A randomised double-blind study. *Journal of Back and Musculoskeletal Rehabilitation*, *33*(1), 15–20. https://doi.org/10.3233/BMR-170878
- Alderman, B. L., Olson, R. L., & Mattina, D. M. (2014). Cognitive function during low-intensity walking: A test of the treadmill workstation. *Journal of Physical Activity and Health*, *11*(4), 752–758. https://doi.org/10.1123/jpah.2012-0097
- Areeudomwong, P., Oatyimprai, K., & Pathumb, S. (2016). A randomised, placebo-controlled trial of neurodynamic sliders on hamstring responses in footballers with hamstring tightness. *Malaysian Journal of Medical Sciences*, 23(6), 60–69. https://doi.org/10.21315/mjms2016.23.6.7
- Baroni, B. M., Rodrigues, R., Franke, R. A., Geremia, J. M., Rassier, D. E., & Vaz, M. A. (2013). Time course of neuromuscular adaptations to knee extensor eccentric training. *International Journal of Sports Medicine*, *34*(10), 904–911. https://doi.org/10.1055/s-0032-1333263
- Beltran-Alacreu, H., Jiménez-Sanz, L., Fernández Carnero, J., & La Touche, R. (2015). Comparison of Hypoalgesic Effects of Neural Stretching vs Neural Gliding: A Randomized Controlled Trial. *Journal of Manipulative and Physiological Therapeutics*, 38(9), 644–652. https://doi.org/10.1016/j.jmpt.2015.09.002
- Bowley, M. P., & Doughty, C. T. (2019). Entrapment Neuropathies of the Lower Extremity. In *Medical Clinics of North America* (Vol. 103, Issue 2, pp. 371–382). W.B. Saunders. https://doi.org/10.1016/j.mcna.2018.10.013
- Cabrera-Martos, I., Rodríguez-Torres, J., López-López, L., Prados-Román, E., Granados-Santiago, M., & Valenza, M. C. (2022). Effects of an active intervention based on myofascial release and neurodynamics in patients with chronic neck pain: a randomized controlled trial. *Physiotherapy Theory and Practice*, *38*(9), 1145–1152. https://doi.org/10.1080/09593985.2020.1821418

- Cancela, Á., Arias, P., Rodríguez-Romero, B., Chouza-Insua, M., & Cudeiro, J. (2023). Acute effects of a single neurodynamic mobilization session on range of motion and H-reflex in asymptomatic young subjects: A controlled study. *Physiological Reports*, 11(12). https://doi.org/10.14814/phy2.15748
- Cruzado, M. (2023). MANUAL PARA EJERCICIOS EN CASA.
- Dantas, L. O., Vieira, A., Junior, A. L. S., Salvini, T. F., & Durigan, J. L. Q. (2015). Comparison between the effects of 4 different electrical stimulation current waveforms on isometric knee extension torque and perceived discomfort in healthy women. *Muscle and Nerve*, 51(1), 76–82. https://doi.org/10.1002/mus.24280
- Dufour, M. (2012). Anatomía del miembro inferior. *EMC Podología*, *14*(4), 1–12. https://doi.org/10.1016/s1762-827x(12)61929-4
- Fernández Gómez, A., Ramos Pérez, A., Rosales Aguilar, Y., Abreu, Y. L., & Legrá, P.
 P. (2018). Risk Factors under Lengthened Surgical Time in Laparoscopic Hysterectomy. In *Revista Cubana de Cirugía* (Vol. 57, Issue 1). http://scielo.sld.cu
- Ferreira, G. E., Stieven, F. F., Araújo, F. X., Wiebusch, M., Rosa, C. G., Plentz, R. D. M., & Silva, M. F. (2016). Neurodynamic treatment for patients with nerve-related leg pain: Protocol for a randomized controlled trial. *Journal of Bodywork and Movement Therapies*, 20(4), 870–878. https://doi.org/10.1016/j.jbmt.2016.02.012
- Fukuda, T. Y., Marcondes, F. B., Dos Anjos Rabelo, N., De Vasconcelos, R. A., & Junior, C. C. (2013). Comparison of peak torque, intensity and discomfort generated by neuromuscular electrical stimulation of low and medium frequency. *Isokinetics and Exercise Science*, 21(2), 167–173. https://doi.org/10.3233/IES-130495
- Gilbert, K. K., Roger James, C., Apte, G., Brown, C., Sizer, P. S., Brismeé, J. M., & Smith, M. P. (2015). Effects of simulated neural mobilization on fluid movement in cadaveric peripheral nerve sections: Implications for the treatment of neuropathic pain and dysfunction. *Journal of Manual and Manipulative Therapy*, 23(4), 219–225. https://doi.org/10.1179/2042618614Y.0000000094
- Giles, L., Webster, K. E., Mcclelland, J., & Cook, J. L. (2017). Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: A double-blind randomised trial. *British Journal of Sports Medicine*, *51*(23), 1688–1694. https://doi.org/10.1136/bjsports-2016-096329
- Gomes da Silva, C. F., Lima e Silva, F. X. de, Vianna, K. B., Oliveira, G. dos S., Vaz, M. A., & Baroni, B. M. (2018). Eccentric training combined to neuromuscular electrical

- stimulation is not superior to eccentric training alone for quadriceps strengthening in healthy subjects: a randomized controlled trial. *Brazilian Journal of Physical Therapy*, 22(6), 502–511. https://doi.org/10.1016/j.bjpt.2018.03.006
- Gueli Alletti, S., Restaino, S., Finelli, A., Ronsini, C., Lucidi, A., Scambia, G., & Fanfani, F. (2020). Step by Step Total Laparoscopic Hysterectomy with Uterine Arteries Ligation at the Origin. *Journal of Minimally Invasive Gynecology*, 27(1), 22–23. https://doi.org/10.1016/j.jmig.2019.06.001
- Hanney, R. N., Ridehalgh, C., Dawson, A., Lewis, D., & Kenny, D. (2016). The effects of neurodynamic straight leg raise treatment duration on range of hip flexion and protective muscle activity at P1. *Journal of Manual and Manipulative Therapy*, 24(1), 14–20. https://doi.org/10.1179/2042618613Y.00000000049
- Jakobsen, M. D., Sundstrup, E., Andersen, C. H., Aagaard, P., & Andersen, L. L. (2013).
 Muscle activity during leg strengthening exercise using free weights and elastic resistance: Effects of ballistic vs controlled contractions. *Human Movement Science*, 32(1), 65–78. https://doi.org/10.1016/j.humov.2012.07.002
- Jamil, A. (2023). Effects of Neural Mobilization of Lateral Femoral Cutaneous Nerve on Neuropathic Pain and Quality of Life in Pregnant Women with Meralgia Paresthetica. https://doi.org/10.55735/hjprs.v3i6.155
- Kim, M.-K., Cha, H.-G., & Gu Ji, S. (2016). The initial effects of an upper extremity neural mobilization technique on muscle fatigue and pressure pain threshold of healthy adults: a randomized control trial.
- Lin, C. Y., Tsai, L. C., Press, J., Ren, Y., Chung, S. G., & Zhang, L. Q. (2016). Lower-limb muscle-activation patterns during off-axis elliptical compared with conventional gluteal-muscle-strengthening exercises. *Journal of Sport Rehabilitation*, 25(2), 164–172. https://doi.org/10.1123/jsr.2014-0307
- López Cabezas, P. F., Guerrero Espín, J. A., & Quizhpe Ordóñez, E. R. (2018). Estudio Retrospectivo: Histerectomía Abdominal vs Histerectomía Vaginal, Análisis de Complicaciones Hospitalarias. Hospital San Francisco de Quito. Quito Ecuador, 2014 2015. Revista Médica Del Hospital José Carrasco Arteaga, 10(2), 121–125. https://doi.org/10.14410/2018.ao.19
- Mchugh, M. P., Tallent, J., & Johnson, C. D. (2013). THE ROLE OF NEURAL TENSION IN STRETCH-INDUCED STRENGTH LOSS. www.nsca.com

- Pagare, V. K., Ganacharya, P. M., Sareen, A., & Palekar, T. J. (2014). Effect of neurodynamic sliding technique versus static stretching on hamstring flexibility in football players with short hamstring syndrome. *Journal of Musculoskeletal Research*, 17(2). https://doi.org/10.1142/S0218957714500092
- Palacios-Ceña, M., Wang, K., Castaldo, M., Guillem-Mesado, A., Ordás-Bandera, C., Arendt-Nielsen, L., & Fernández-de-las-Peñas, C. (2018). Trigger points are associated with widespread pressure pain sensitivity in people with tension-type headache. *Cephalalgia*, 38(2), 237–245. https://doi.org/10.1177/0333102416679965
- Paquette, M. R., Zucker-Levin, A., DeVita, P., Hoekstra, J., & Pearsall, D. (2015). Lower limb joint angular position and muscle activity during elliptical exercise in healthy young men. *Journal of Applied Biomechanics*, *31*(1), 19–27. https://doi.org/10.1123/JAB.2014-0105
- Peskar, M., Omejc, N., Šömen, M. M., Miladinović, A., Gramann, K., & Marusic, U. (2023). Stroop in motion: Neurodynamic modulation underlying interference control while sitting, standing, and walking. *Biological Psychology*, 178. https://doi.org/10.1016/j.biopsycho.2023.108543
- Plaza-Manzano, G., Cancela-Cilleruelo, I., Fernández-De-Las-Penãs, C., Cleland, J. A., Arias-Buriá, J. L., Thoomes-De-Graaf, M., & Ortega-Santiago, R. (2020). Effects of Adding a Neurodynamic Mobilization to Motor Control Training in Patients with Lumbar Radiculopathy Due to Disc Herniation: A Randomized Clinical Trial. *American Journal of Physical Medicine and Rehabilitation*, 99(2), 124–132. https://doi.org/10.1097/PHM.0000000000001295
- Raysy, D., & Ponce, S. (2015). La histerectomía laparoscópica y sus aspectos fundamentales Laparoscopic hysterectomy and its fundamental aspects. In *Revista Cubana de Cirugía* (Vol. 54, Issue 1). http://scielo.sld.cu
- Romo Rodríguez, R., Clifton Correa, J. F., López Almejo, L., Navarro Becerra, E., Ángel Villarruel Sahagún, J., Jaime Zermeño Rivera, J., Gutiérrez Mendoza, I., Fernanda Espinosa de los Monteros Kelley, A., & Miguel Hidalgo, D. (2014a). *Neuropatía compresiva de nervio femoral* (Vol. 10). www.medigraphic.org.mx
- Romo Rodríguez, R., Clifton Correa, J. F., López Almejo, L., Navarro Becerra, E., Ángel Villarruel Sahagún, J., Jaime Zermeño Rivera, J., Gutiérrez Mendoza, I., Fernanda Espinosa de los Monteros Kelley, A., & Miguel Hidalgo, D. (2014b). *Neuropatía compresiva de nervio femoral* (Vol. 10). www.medigraphic.org.mx

- Saad, M. C., Vasconcelos, R. A. de, Mancinelli, L. V. de O., Munno, M. S. de B., Liporaci, R. F., & Grossi, D. B. (2018). Is hip strengthening the best treatment option for females with patellofemoral pain? A randomized controlled trial of three different types of exercises. *Brazilian Journal of Physical Therapy*, 22(5), 408–416. https://doi.org/10.1016/j.bjpt.2018.03.009
- Scott, W., Adams, C., Cyr, S., Hanscom, B., Hill, K., Lawson, J., & Ziegenbein, C. (2015). Electrically elicited muscle torque: Comparison between 2500-Hz burst-modulated alternating current and monophasic pulsed current. *Journal of Orthopaedic and Sports Physical Therapy*, 45(12), 1035–1041. https://doi.org/10.2519/jospt.2015.5861
- Scott, W., Flora, K., Kitchin, B. J., Sitarski, A. M., & Vance, J. B. (2014). Neuromuscular electrical stimulation pulse duration and maximum tolerated muscle torque. *Physiotherapy Theory and Practice*, *30*(4), 276–281. https://doi.org/10.3109/09593985.2013.868563
- Sharma, S., Balthillaya, G., Rao, R., & Mani, R. (2016). Short term effectiveness of neural sliders and neural tensioners as an adjunct to static stretching of hamstrings on knee extension angle in healthy individuals: A randomized controlled trial. *Physical Therapy in Sport*, 17, 30–37. https://doi.org/10.1016/j.ptsp.2015.03.003
- Sierra-Silvestre, E., Bosello, F., Fernández-Carnero, J., Hoozemans, M. J. M., & Coppieters, M. W. (2018). Femoral nerve excursion with knee and neck movements in supine, sitting and side-lying slump: An in vivo study using ultrasound imaging.

 Musculoskeletal Science and Practice, 37, 58–63.

 https://doi.org/10.1016/j.msksp.2018.06.007
- Solà, V., Ricci, P., Pardo, J., & Guiloff, E. (2006). HISTERECTOMÍA: UNA MIRADA DESDE EL SUELO PÉLVICO. In *REV CHIL OBSTET GINECOL* (Vol. 71, Issue 5).
- Sousa Pedrosa, S., Gilabert Aguilar, J., & Gilabert Estellés, J. (2021). Difficulties on laparoscopic hysterectomy-revision of surgical strategies Dificuldades na histerectomia laparoscópica-revisão de estratégias cirúrgicas.

- Talaván-Serna, J., García-Enguídanos, M., Roig-Casabán, V., & Rodríguez-Martínez, S. (2018). Crural neuropathy after abdominal hysterectomy: A case report. *Clinica e Investigacion En Ginecologia y Obstetricia*, 45(4), 184–186. https://doi.org/10.1016/j.gine.2017.03.002
- Teijelo, A., Rábago, F., J. Corrales, MM. Sánchez, Robles, RM. G., Castro, B., Tejerizo-García, & Moro, J. (2023). Neuropatía femoral (femoroneuropatía) bilateral después de intervención cesárea _ Clínica e Investigación en Ginecología y Obstetricia.
- tekDos Demircioglu, D., Paker, N., erbil, elif, bugDayci, D., & yuNus emre, tuluhaN. (2015). The effect of neuromuscular electrical stimulation on functional status and quality of life after knee arthroplasty: a randomized controlled study.
- Thomé, G. R., Costa, R. A., Marquezi, M. L., Aparecido, J. M. L., Durigan, J. L. Q., Amorim, C. F., & Liebano, R. E. (2021). Effects of neuromuscular electrical stimulation on torque and performance in recreational distance runners: A randomized controlled trial. *Journal of Bodywork and Movement Therapies*, 28, 369–375. https://doi.org/10.1016/j.jbmt.2021.07.035
- Thorborg, K., Bandholm, T., Zebis, M., Andersen, L. L., Jensen, J., & Hölmich, P. (2016). Large strengthening effect of a hip-flexor training programme: a randomized controlled trial. *Knee Surgery, Sports Traumatology, Arthroscopy*, 24(7), 2346–2352. https://doi.org/10.1007/s00167-015-3583-y
- Wolny, T., Saulicz, E., Linek, P., Myśliwiec, A., & Saulicz, M. (2016). Effect of manual therapy and neurodynamic techniques vs ultrasound and laser on 2PD in patients with CTS: A randomized controlled trial. *Journal of Hand Therapy*, 29(3), 235–245. https://doi.org/10.1016/j.jht.2016.03.006
- Wolny, T., Saulicz, E., Linek, P., Shacklock, M., & Myśliwiec, A. (2017). Efficacy of Manual Therapy Including Neurodynamic Techniques for the Treatment of Carpal Tunnel Syndrome: A Randomized Controlled Trial. *Journal of Manipulative and Physiological Therapeutics*, 40(4), 263–272. https://doi.org/10.1016/j.jmpt.2017.02.004
- Xie, Y., Zhang, C., Jiang, W., Huang, J., Xu, L., Pang, G., Tang, H., Chen, R., Yu, J., Guo, S., Xu, F., & Wang, J. (2018). Quadriceps combined with hip abductor strengthening versus quadriceps strengthening in treating knee osteoarthritis: A study protocol for a randomized controlled trial. *BMC Musculoskeletal Disorders*, 19(1). https://doi.org/10.1186/s12891-018-2041-7

ANEXOS

Ilustración 6. Escala Pedro

Escala PEDro-Español

1.	Los criterios de elección fueron especificados	no 🗆 si 🗀	donde:
2.	Los sujetos fueron asignados al azar a los grupos (en un estudio cruzado, los sujetos fueron distribuidos aleatoriamente a medida que recibían los		
	tratamientos)	no 🗖 si 🗖	donde:
3.	La asignación fue oculta	no 🗆 si 🗖	donde:
4.	Los grupos fueron similares al inicio en relación a los indicadores de pronostico más importantes	no □ si □	donde:
5 .	Todos los sujetos fueron cegados	no 🗆 si 🗅	donde:
6.	Todos los terapeutas que administraron la terapia fueron cegados	no 🗖 si 🗖	donde:
7.	Todos los evaluadores que midieron al menos un resultado clave fueron cegados	no 🗆 si 🗖	donde:
8.	Las medidas de al menos uno de los resultados clave fueron obtenidas de más del 85% de los sujetos inicialmente asignados a los grupos	no 🗆 si 🗖	donde:
9.	Se presentaron resultados de todos los sujetos que recibieron tratamiento o fueron asignados al grupo control, o cuando esto no pudo ser, los datos para al menos un resultado clave fueron analizados por "intención de tratar"	no 🗆 si 🖵	donde:
10.	Los resultados de comparaciones estadísticas entre grupos fueron informados para al menos un resultado clave	no 🗆 si 🗖	donde:
11.	El estudio proporciona medidas puntuales y de variabilidad para al menos un resultado clave	no 🗆 si 🗀	donde:

La escala PEDro está basada en la lista Delphi desarrollada por Verhagen y colaboradores en el Departamento de Epidemiología, Universidad de Maastricht (Verhagen AP et al (1998). The Delphi list: a criteria list for quality assessment of randomised clinical trials for conducting systematic reviews developed by Delphi consensus. Journal of Clinical Epidemiology, 51(12):1235-41). En su mayor parte, la lista está basada en el consenso de expertos y no en datos empíricos. Dos ítems que no formaban parte de la lista Delphi han sido incluidos en la escala PEDro (ítems 8 y 10). Conforme se obtengan más datos empíricos, será posible "ponderar" los ítems de la escala, de modo que la puntuación en la escala PEDro refleje la importancia de cada ítem individual en la escala.

El propósito de la escala PEDro es ayudar a los usuarios de la bases de datos PEDro a identificar con rapidez cuales de los ensayos clínicos aleatorios (ej. RCTs o CCTs) pueden tener suficiente validez interna (criterios 2-9) y suficiente información estadística para hacer que sus resultados sean interpretables (criterios 10-11). Un criterio adicional (criterio 1) que se relaciona con la validez externa ("generalizabilidad" o "aplicabilidad" del ensayo) ha sido retenido de forma que la lista Delphi esté completa, pero este criterio no se utilizará para el cálculo de la puntuación de la escala PEDro reportada en el sitio web de PEDro.

La escala PEDro no debería utilizarse como una medida de la "validez" de las conclusiones de un estudio. En especial, avisamos a los usuarios de la escala PEDro que los estudios que muestran efectos de tratamiento significativos y que puntúen alto en la escala PEDro, no necesariamente proporcionan evidencia de que el tratamiento es clínicamente útil. Otras consideraciones adicionales deben hacerse para decidir si el efecto del tratamiento fue lo suficientemente elevado como para ser considerado clínicamente relevante, si sus efectos positivos superan a los negativos y si el tratamiento es costo-efectivo. La escala no debería utilizarse para comparar la "calidad" de ensayos realizados en las diferentes áreas de la terapia, básicamente porque no es posible cumplir con todos los ítems de la escala en algunas áreas de la práctica de la fisioterapia.

Última modificación el 21 de junio de 1999. Traducción al español el 30 de diciembre de 2012