

UNIVERSIDAD NACIONAL DE CHIMBORAZO FACULTAD DE CIENCIAS DE LA SALUD CARRERA DE TERAPIA FÍSICA Y DEPORTIVA

Ondas de choque en el tratamiento de lesiones tendinosas

Trabajo de Titulación para optar al título de Licenciada en Ciencias de la Salud en Terapia Física y Deportiva

> Autora: Rodríguez Chapalbay, Lesley Johanna

Tutora: MgS. María Belén Pérez García.

Riobamba, Ecuador. 2023

DERECHOS DE AUTORÍA

Yo, Lesley Johanna Rodríguez Chapalbay, con cédula de ciudadanía 0604595181, autora del trabajo de investigación titulado: Ondas de choque en el tratamiento de lesiones tendinosas, certifico que la producción, ideas, opiniones, criterios, contenidos y conclusiones expuestas son de mí exclusiva responsabilidad.

Asimismo, cedo a la Universidad Nacional de Chimborazo, en forma no exclusiva, los derechos para su uso, comunicación pública, distribución, divulgación y/o reproducción total o parcial, por medio físico o digital; en esta cesión se entiende que el cesionario no podrá obtener beneficios económicos. La posible reclamación de terceros respecto de los derechos de autor (a) de la obra referida, será de mi entera responsabilidad; librando a la Universidad Nacional de Chimborazo de posibles obligaciones.

En Riobamba, noviembre del 2023.

Lesley Johanna Rodríguez Chapalbay

C.I: 0604595181

DICTAMEN FAVORABLE DEL TUTOR Y MIEMBROS DE TRIBUNAL

Quienes suscribimos, catedráticos designados Miembros del Tribunal de Grado del trabajo de investigación Ondas de choque en el tratamiento de lesiones tendinosas, por Lesley Johanna Rodríguez Chapalbay, con cédula de identidad número 0604595181, emitimos el DICTAMEN FAVORABLE, conducente a la APROBACIÓN de la titulación. Certificamos haber revisado y evaluado el trabajo de investigación y cumplida la sustentación por parte de su autor; no teniendo más nada que observar.

De conformidad a la normativa aplicable firmamos, en Riobamba agosto, 2023.

Mgs. Sonia Álvarez Carrión

MIEMBRO DEL TRIBUNAL DE GRADO

Msc. David Guevara Hernández

MIEMBRO DEL TRIBUNAL DE GRADO

MgS. María Belén Pérez García

TUTOR

UNIVERSIDAD NACIONAL DE CHIMBORAZO FACULTAD DE CIENCIAS DE LA SALUD CARRERA DE TERAPIA FÍSICA Y DEPORTIVA

CERTIFICADO DEL TRIBUNAL

Los miembros del tribunal de revisión del proyecto de investigación denominado: ONDAS DE CHOQUE EN EL TRATAMIENTO DE LESIONES TENDINOSAS; presentado por LESLEY JOHANNA RODRÍGUEZ CHAPALBAY y dirigido por el MgS. MARÍA BELÉN PÉREZ GARCÍA en calidad de tutor; una vez revisado el informe escrito del proyecto de investigación con fines de graduación en el cual se ha constatado el cumplimiento de las observaciones realizadas, se procede a la calificación del documento.

Por la constancia de lo expuesto firman:	111
Mgs. María Belén Pérez García	Jufferfort)
TUTOR	,
Mgs. Sonia Álvarez Carrión	Domio Swarz
Miembro de Tribunal	
Msc. David Guevara Hernández	Joseph Land

Miembro de Tribunal

Riobamba, octubre, 2023

UNIVERSIDAD NACIONAL DE CHIMBORAZO

FACULTAD DE CIENCIAS DE LA SALUD

COMISIÓN DE INVESTIGACIÓN Y DESARROLLO CID

Riobamba 23 de octubre del 2023 Oficio Nº 115-2023-2S-URKUND-CID-2023

Dr. Marcos Vinicio Caiza Ruíz DIRECTOR CARRERA DE FISIOTERAPIA FACULTAD DE CIENCIAS DE LA SALUD UNACH Presente.-

Estimado Profesor:

Luego de expresarle un cordial saludo, en atención al pedido realizado por la MgS. María Belén Pérez García, docente tutor de la carrera que dignamente usted dirige, para que en correspondencia con lo indicado por el señor Decano mediante Oficio Nº 0637-D-FCS-ACADÉMICO-UNACH-2023, realice validación del porcentaje de similitud de coincidencias presentes en el trabajo de investigación con fines de titulación que se detalla a continuación; tengo a bien remitir el resultado obtenido a través del empleo del programa URKUND, lo cual comunico para la continuidad al trámite correspondiente.

No	Documento	Título del trabajo Nombres y apellidos		% URKUND	Validación	
140	número	Titulo del trabajo	del estudiante	verificado	Si	No
1	0637-D-FCS-12- 07-2023	Ondas de choque en el tratamiento de lesiones tendinosas	Rodríguez Chapalbay Lesley Johanna	8 -	x	

Atentamente,

PhD. Francisco Javier Ustáriz Fajardo Delegado Programa URKUND FCS / UNACH C/c Dr. Vinicio Moreno – Decano FCS

DEDICATORIA

Quiero dedicar este proyecto a Dios ya que, gracias a sus bendiciones, él me ha permitido culminar mi carrera siendo mi guía y fortaleza siempre.

A mi familia, especialmente a mis padres Mery y Ricardo, por haberme ayudado día tras día en este camino; que, aunque no ha sido fácil, siempre estuvieron presente, además también por brindarme su amor, su apoyo incondicional e inculcarme los principios y valores que me han convertido en la persona que soy hoy en día, incluso por impulsarme a tener muchos sueños, que gracias a ellos he podido cumplirlos.

A mi esposo, Estiven, quien siempre ha estado presente apoyándome con sus consejos, palabras de cariño y amor para culminar con mis estudios.

Lesley Johanna Rodríguez Chapalbay

AGRADECIMIENTO

Agradezco a Dios por bendecirme, por acompañarme a lo largo de mi carrera, por ser mi guía, mi camino y fortaleza para alcanzar mis metas.

A mi familia, a mis padres especialmente quienes, con su amor, dedicación, trabajo me educaron y apoyaron en toda mi formación profesional. Gracias por siempre ser mi mayor motivación para salir adelante y cumplir con todos mis objetivos de vida. A mi esposo por todo su cariño, amor, por estar presente siempre y acompañarme en este camino.

Gracias a la Universidad Nacional de Chimborazo a la Facultad de Ciencias de la Salud y a la carrera de Terapia Física y Deportiva, con todos y cada uno de los docentes por compartir y transmitir sus conocimientos de la mejor manera. Agradezco a mi tutora MgS. María Belén Pérez García, por su orientación quien siempre se ha encontrado dispuesto a guiarme en el proceso de elaboración de este trabajo de investigación con apoyo de sus conocimientos, gracias por su tiempo y compresión.

Lesley Johanna Rodríguez Chapalbay

ÍNDICE GENERAL

ERECHOS DE AUTORÍA
ICTAMEN FAVORABLE DEL TUTOR Y MIEMBROS DEL TRIBUNAL
ERTIFICADO DE LOS MIEMBROS DEL TRIBUNAL
ERTIFICADO ANTIPLAGIO
EDICATORIA
GRADECIMIENTO
NDICE GENERAL
ESUMEN

ABSTRACT

CAPITULO I. INTRODUCCION	13
CAPÍTULO II. MARCO TEÓRICO	16
2.1 El tendón	16
2.2 Lesiones tendinosas	17
2.2.1 Clasificación de las lesiones tendinosas	17
2.2.2 Diagnóstico de las lesiones tendinosas	18
2.2.3 Tratamiento rehabilitador:	19
2.3 Ondas de choque	19
2.3.1 Tratamiento mediante ondas de choque ante las lesiones tendinosas	21
CAPÍTULO III. METODOLOGÍA	21
3.1 Tipo de investigación	21
3.2 Nivel de Investigación	22
3.3 Diseño de Investigación	22

3.4 N	Método de investigación
3.5 E	Enfoque de la investigación
3.6 F	Relación con el tiempo
3.7 Т	Técnicas de recolección de datos
3.7.1	Observación indirecta
3.7.2	2 Estrategia de Búsqueda
3.8	Criterios de Inclusión y exclusión
3.9 P	Población de estudio
3.10	Método de Análisis y procesamiento de datos
CAPÍTULO	IV. RESULTADOS Y DISCUSIÓN
4.1 F	Resultados
4.2 I	Discusión45
CAPÍTULO	V. CONCLUSIONES Y PROPUESTA
5.1	Conclusiones
5.2 P	Propuesta49
BIBLIOGRA	AFÍA50
ANEXOS	53

ÍNDICE DE TABLAS.

Tabla 1: Bases de datos consultadas	23
Tabla 2: Artículos recopilados y calificados con la Escala de PEDro 2	25
Tabla 3: Intervención y Resultados de la aplicación de Ondas de Choque en Miembro	os
Inferiores	31
Tabla 4: Intervención y Resultados de la aplicación de Ondas de Choque en Miembro	os
Superiores	37
Tabla 5: Efectos biológicos de las ondas de choque 5	53
Tabla 6: Dosificación de la terapia de choque. 5	53
Tabla 7: Escala Manual de PEDro	53
ÍNDICE DE FIGURAS.	
Figura 1: Ondas de Choque2	20
Figura 2: Diagrama de Flujo	24

RESUMEN

La investigación realizada mediante revisión bibliográfica, se basó en analizar los efectos de

la terapia con ondas de choque ante las lesiones tendinosas, demostrando cual es la importancia

del uso de este tratamiento para el bienestar de la población que se ve limitada por sus causas.

Las lesiones tendinosas son desencadenadas o son el producto de una sobrecarga o

microtraumatismos por repetición de pequeñas fibras tendinosas; cuando una zona

musculoesquelética se muestra afectada sufre de efectos clínicos como inflamación, dolor, y

perdida de la función que ejecuta el miembro; la fisioterapia es un tratamiento que promete la

recuperación del afectado en un tiempo corto, gracias a los avances médicos se ha logrado

introducir técnicas no invasivas como la terapia con ondas de choque que ayuda con la

regeneración del tejido dañado generando a los efectos biológicos que produce su uso en el

cuerpo humano.

Se hizo uso de diferentes bases de datos dentro de las cuales mencionamos: PubMed, SAGE

journals y Springe; de donde se recopilaron 100 artículos de los cuales 30 artículos fueron

seleccionados y evaluados mediante la escala Physiotherapy Evidence Database (PEDro) con

el objetivo de conocer la calidad de metodológica de cada uno de los artículos utilizados para

esta investigación.

La investigación pone en evidencia que la intervención de la fisioterapia con técnicas no

invasivas como la terapia con ondas de choque es efectiva para la regeneración y recuperación

de los tejidos musculoesqueléticos que se ven dañados por los microtraumatismos ocasionado

por movimientos repetitivos o cargas excesivas a las se exponen nuestros miembros todos los

días.

Palabras claves: Ondas de choque, lesiones tendinosas, tendinopatías, terapia.

ABSTRACT

The research carried out by means of a bibliographic review aims to analyze the effects of

shock wave therapy on tendon injuries, demonstrating the importance of the use of this

treatment for the wellbeing of the population that is limited by its causes.

The tendon injuries are triggered or are the product of an overload or microtraumatisms by

repetition of small tendon fibers; when a musculoskeletal area is affected it suffers from

clinical effects such as inflammation, pain, and loss of the function that executes the limb;

Physiotherapy is a treatment that promises the recovery of the affected person in a short time,

thanks to medical advances it has been possible to introduce non-invasive techniques such

as shock wave therapy that helps with the regeneration of damaged tissue generating

biological effects that produces its use in the human body.

Different databases were used, among which we mention: PubMed, SAGE journals and

Springe; from which 100 articles were collected of which 30 articles were selected and

evaluated using the Physiotherapy Evidence Database (PEDro) scale with the objective of

knowing the methodological quality of each of the articles used for this research.

The research shows that physiotherapy intervention with non-invasive techniques such as

shock wave therapy is effective for the regeneration and recovery of musculoskeletaltissues

that are damaged by microtrauma caused by repetitive movements or excessive loads to

which our limbs are exposed every day.

Key words: Shock waves, tendon injuries, tendinopaties, therapy.

Reviewed by:

Lic. Andrea Rivera

ENGLISH PROFESSOR

C.C 0604464008

CAPÍTULO I. INTRODUCCIÓN

La (Organización Mundial de la Salud [OMS], 2021) menciona que los trastornos musculoesqueléticos están compuestos por más de 150 trastornos que alteran el sistema locomotor; estos suelen provocar dolor, limitación de la movilidad y en general alteración de la funcionalidad. Aproximadamente 1710 millones de personas a nivel mundial sufren de un trastorno musculoesquelético afectando a cualquier edad. Países con ingresos altos son los más afectados en cuanto al número con 441 millones, seguidos de la Región del Pacífico Occidental con 427 millones, y la Región de Asia Sudoriental con 369 millones de afectados (OMS, 2021).

Según la (Agencia Europea para la Seguridad social y la Salud en el Trabajo[EU-OSHA], 2020) los trastornos musculoesqueléticos son considerados de origen biomecánico, por lo que en esta instancia se plantean 4 teorías: interacción multifactorial, fatiga, carga inadecuada y excesivo esfuerzo, con las cuales se busca explicar el origen de las lesiones en primera instancia. Aquí son considerados un problema de salud que se relaciona directamente con la sobrecarga de trabajo, el 22 % de la población afectada manifiesta que ha sufrido algún tipo de dolor tendinoso, que ocasiona sufrimiento personal y pérdida de ingresos (Factsheet, 2020).

Rodarte y Araujo (2016) señalan que estadísticas del Instituto Mexicano del Seguro Social determinaron que las enfermedades según la naturaleza de la lesión se presentan como: sinovitis, tenosinovitis y bursitis, ocupando el tercer lugar de padecimientos y faltas a las instalaciones donde laboran los afectados, constituyendo el 1,1 % del total de casos calificados como enfermedades del trabajo en el 2011. Estas lesiones también se presentan en el mundo del deporte, albergando procesos inflamatorios agudos o crónicos, ruptura parcial o total, elongación o distención ligamentosa (Rodarte & Araujo, 2016).

Estos trastornos se manifiestan en estructuras como: los músculos, articulaciones, tendones, ligamentos, nervios, huesos y el sistema circulatorio; principalmente se muestran afectadas las zonas de la espalda, cuello, hombros y extremidades tanto inferiores como superiores. En América Latina, en un estudio realizado en Colombia en 1998, se pudo encontrar que en empresas donde laboran más de 60 personas, el 29 % se ve afectado por el sobreesfuerzo que realizan y el 51 % por posturas inadecuadas (Rodarte & Araujo, 2016).

El (Ministerio de Salud Pública [MSP], 2015) indica que, en el Ecuador, los trastornos musculoesqueléticos, son la principal causa de ausentismo laboral, y estudios mínimos deducen

que estas lesiones afectan en mayor porcentaje al sexo femenino en un 87 %. En la Zona 3 de Salud, según datos ofrecidos por el departamento de estadística de la Coordinación Zonal, las lesiones osteomusculares representan alrededor del 30 % de la morbilidad atendida en el primer nivel de atención de salud.

Las lesiones tendinosas se presentan usualmente en personas introducidas en la práctica deportiva de alto rendimiento y recreacionales; el 60 % de las lesiones deportivas son ocasionadas frecuentemente por una sobrecarga cíclica repetida. Las estructuras tendinosas más afectadas en el cuerpo humano son: el tendón rotuliano, aquiliano y manguito rotador, dentro de las cuales la condición incrementa significativamente su incidencia con algunos factores como la edad, sexo masculino y la obesidad.

La problemática principal es que las lesiones tendinosas son afecciones que provocan un alto déficit en el desempeño de las actividades diarias como laborales o deportivas; se considera que estas son una de las causas más frecuentes de ausentismo laboral y abandono de la practica en el mundo deportivo; por causas de malestar general y perdida de la habilidad de ejecutar actividades, se puede determinar que estas lesiones causan un gran impacto a nivel de la salud.

La asistencia a centros sanitarios refleja que hay un incremento del gasto de recursos económicos de estos sistemas; el desconocimiento sobre patrones de cuidado muscular y ergonomía, ha sido causante de malestar social, ya que debido a que estos ocasionan diversas lesiones en el cuerpo humano; la necesidad de acudir a un centro médico en busca de algún tipo de tratamiento que ayude con el alivio del dolor implica un gasto extra en la población.

De la población que resulta damnificada, solo un 7 % son referidos a un tratamiento rehabilitador, mientras que el porcentaje sobrante calma sus malestares con la ingesta de fármacos que a la larga se convierte en un problema de automedicación que con el transcurso del tiempo ocasiona daños a nivel de órganos internos.

Actualmente, existen terapias que brindan al paciente una recuperación más rápida y por ende alivio del dolor al instante de aplicación, una de ellas es conocida como terapia con ondas de choque que actúa directamente sobre la lesión y gracias al proceso que cumple durante la aplicación ayuda a la regeneración adecuada de las fibras tendinosas que se muestran afectadas, generando así bienestar y ayudando a que el paciente pueda ejecutar sus actividades cotidianas.

En los últimos años ha ido creciendo paulatinamente la aplicación de ondas de choque enfocadas a la solución de lesiones tendinosas, basado en los beneficios que reporta en cuestión de analgesia, control del proceso inflamatorio y eliminación de calcificaciones; es considerado un tratamiento de rápido alivio; sin embargo, aún no existen protocolos ni guías sobre cómo proceder ante las lesiones tendinosas independientemente del tiempo de evolución.

La importancia de esta investigación está justificada ya que las lesiones tendinosas involucran una pérdida gradual de la capacidad de respuesta del tendón para una apropiada regeneración o cicatrización cuando es sometido a una carga cíclica de gran volumen en forma reiterada; es por esto que cualquier persona que se encuentre en constantes labores que impliquen sobreesfuerzo, como actividades laborales, deportivas o recreacionales, esta predispuesta a padecerlas; estas conllevan compleciones que a menudo se convierten en parte de la vida diaria de los afectados, manifestando así malestar al momento de ejecutar cualquier tarea e impidiendo el rendimiento favorable en ellas.

Es así como gracias a esta investigación se pudieron conocer los beneficios de las terapias con ondas de choque ante las lesiones tendinosas; se obtuvo información reciente relacionada con los mecanismos por los cuales se produce la lesión tendinosa, los mecanismos de reparación tisular que son estimulados por la aplicación de ondas de choque y las ventajas que ofrecen estas en el tratamiento de las lesiones tendinosas agudas y crónicas.

El objetivo de la investigación fue analizar los efectos de la aplicación de ondas de choque, como plan de tratamiento fisioterapéutico, en base a la recopilación de material bibliográfico de rigor académico de bases científicas aprobadas, para beneficio de los pacientes con lesiones tendinosas.

CAPÍTULO II. MARCO TEÓRICO

3.1 El tendón

Es un componente esencial de la unidad musculotendinosa, este actúa como un intermediario entre las fibras musculares y la superficie ósea (la entesis es la región en donde el tendón se inserta al hueso, considerada una zona de altas cargas tensiles para el movimiento). La vascularización en los tendones es escasa, y su irrigación va desde el perimisio y en la parte baja por el periostio, es decir el tendón tiene una irrigación desde el músculo y el hueso; la inervación es sensitiva y cumple con la función indispensable en la regulación de la contracción muscular. Los tendones son derivados del tejido mesenquimatoso, formados por haces de colágeno del tipo I y elastina, entre los que se disponen los tenocitos (células conjuntivas especializadas) rodeados por el paratendon. (Wavreille & Fontaine, 2014).

Colágeno tipo 1

Este es muy abundante en las estructuras tendinosas y es la principal responsable de su resistencia y durabilidad. Las fibras de colágeno discurren paralelamente al eje longitudinal del tendón. Se encuentran firmemente empaquetadas y dispuesta en un patrón ondulado, que originan una estructura fuerte de alta resistencia a la tracción. Junto a estas fibras se encuentran células especializadas del tendón: los tenoblastos y los tenocitos que componen el 5 % y que son muy importantes para mantener sana esta estructura (Torres, 2023).

Rodeando las fibras de colágeno y formando la cubierta externa primaria del tendón encontramos una fina vaina de tejido conectivo denominado epitendón; esta estructura es una envoltura que facilita los movimientos de deslizamiento entre los haces de colágeno y está rodeada por nervios y vasos encargados del suministro sanguíneo e inervación del tendón. El epitendón al extenderse forma el endotendón que es en una fina lamina de tejido conectivo que se encarga de envolver los paquetes individuales de las fibras colágenas (Torres, 2023).

Biomecánica

Los tendones son estructuras más resistentes que los músculos y se someten a fuerzas de tensión y compresión que soportan hasta 17 veces el propio peso, como por ejemplo el tendón calcáneo que soporta una fuerza de 9 kilonewtons (kN) es decir 12,5 veces el peso medio de una persona. Cada tendón trabaja de forma específica, esto depende de la región anatómica y su adaptación a las demandas biomecánicas de cada estructura. Biomecánicamente el tendón

depende de su área transversal, es decir que, en cuanto mayor sea la sección, mayor será su capacidad de soporte de cargas antes del fallo o ruptura; en tendones con fibras más largas, la rigidez de es mantenida, pero es más fácil que sufra de una ruptura al ser elongado (Ruiz, 2022).

3.2 Lesiones tendinosas

Las lesiones tendinosas son afecciones que se muestran en uno o varios tendones, donde hay presencia de dolor o malestar que se manifiesta con el movimiento. Los síntomas varían en dependencia de la gravedad de la lesión, estos se desarrollan gradualmente o después de una actividad intensa a la que el afectado no está acostumbrado. En la actualidad esta lesión esta relacionado con un problema de microcirculación en el tendón, con intervención nerviosa que afecta la sensibilidad y desencadena dolor en la estructura (Volger, 2020).

El incremento de la vascularidad y terminaciones nerviosas puede explicar la presencia de un dolor crónico en la región afectada; la aparición de tenocitos muestra una reacción inmune a receptores adrenérgicos y catecolaminicos, lo que determina que haya una inhibición de la proliferación celular induciendo apoptosis, es decir, muerte celular (Volger, 2020).

3.2.1 Clasificación de las lesiones tendinosas

Lesiones por traumatismo directo o indirecto: las lesiones del tendón están divididas en agudas (roturas, laceraciones, contusiones) y crónicas (por sobrecarga). En estas un agente externo es causante de un daño directo hacia el tendón, ocasionando su rotura o laceración, y por traumatismo indirecto, donde los microtraumatismos de repetición provocan una lesión (Abellán, 2016).

Tendinopatía: aquí se encuentran las lesiones por sobrecarga del tendón y las estructuras que lo rodean (paratendon y entesis). Señala que es un síndrome clínico donde hay presencia de dolor, inflamación (difusa o localizada) e impotencia funcional. Dentro de estas encontramos a la tendinosis, tendinitis, paratendinitis y entesopatías (Abellán, 2016).

Tendinopatía reactiva: estas ocurren cuando hay una sobrecarga de fuerza tensional o de compresión; son el resultado del incremento de actividades físicas a las que el tendón esta poco acostumbrado o por una contusión resiente. No se observa cambios en la matriz celular en esta fase (Cook & Rio, 2017).

Tendón desestructurado: se puede decir que en esta fase hay una recuperación fallida, desestructuración fibrilar y también se produce un incremento celular y la producción de

colágeno y proteoglicanos crece, produciendo el inicio de la separación del colágeno y la desorganización de la matriz celular. Se observa mediante la ecografía que hay cambios en la matriz, discontinuidad de los fascículos de colágeno y pequeñas áreas hipoecoicas (zonas oscuras del tejido circundante por una baja intensidad del brillo); además, se puede ver un incremento en el engrosamiento del tendón; no hay presencia de dolor (Cook & Rio, 2017).

Tendinopatía degenerativa: es característico el incremento de la vascularización, aparecen áreas de muerte celular por apoptosis, trauma o fallo de los tenocitos. El paciente con un tendón degenerado no presenta clínica hasta que es sometido a una sobrecarga que desencadene la sintomatología (Cook & Rio, 2017).

Clasificación de las lesiones según el tiempo

Lesiones agudas: cuando la duración de la lesión es inferior a 2 semanas, hay presencia de dolor e inflamación de alta intensidad

Lesiones subagudas: la duración ha permanecido entre 2 a 6 semanas.

Lesiones crónicas: cuando la sintomatología disminuye en intensidad, pero la duración supera las 6 semanas.

3.2.2 Diagnóstico de las lesiones tendinosas

Un diagnóstico preciso y precoz es importante en el proceso de recuperación de una lesión en el tendón, y para este se determinan los siguientes recursos:

Anamnesis y exploración física: se realiza un interrogatorio al afectado donde se determina: la antigüedad de la lesión y mecanismo de producción, ubicación del dolor y en qué momento empeora, si se ha realizado tratamientos anteriores, edad del paciente, profesión ya que es uno de los principales mecanismos de lesión y si se realiza alguna práctica deportiva. La exploración física se realiza mediante la palpación, ayuda a discriminar si hay dolor, aumento de tono o tumefacción (Castillo, 2019).

Intervención farmacológica para las lesiones tendinosas

Antiinflamatorios no esteroides: estos inhiben la actividad de la ciclooxigenasa, provocando una reducción de la síntesis de prostaglandinas proinflamatorias. En tendinopatías, agudas y crónicas, el efecto analgésico enmascara el dolor, permitiendo a los pacientes obviar los síntomas iniciales dificultando la recuperación (Castillo, 2019).

Corticoides: datos indican que provocan alteraciones tisulares a nivel celular y en la matriz extracelular que no son beneficiosos. Como efecto, las infiltraciones en tendones, fascias y ligamentos aumentan la fragilidad y aumentan el riesgo de rotura (Castillo, 2019).

Proloterapia: consiste en la infiltración de sustancias que estimulan la regeneración y reparación de los tejidos; los irritantes (fenol, guayacol y ácido tánico) producen un daño celular directo, los quimiotácticos (morruato de sodio) generan una respuesta inflamatoria, liberando citoquinas y factores de crecimiento que incitan a la curación, mejorando la función articular y la recuperación de los tejidos (Castillo, 2019).

3.2.3 Tratamiento rehabilitador:

Crioterapia: gracias a sus efectos: vasomotor, metabólico, antinflamatorio, analgésico, y neuromotor; ayuda a la recuperación de numerosas lesiones dolorosas. Dentro de las modalidades o formas de aplicación se puede realizar con hielo, criogel, manguitos de agua congelada e inmersión en agua helada.

Termoterapia: El calor produce una vasodilatación y con eso permite una llegada de sangre a la zona afectada que va a traer consigo el oxígeno y los nutrientes necesarios para que ese tejido pueda ser reparado. Y se puede aplicar con hotpacks, infrarrojos, parafina y ultrasonido.

Diatermia: La diatermia es la producción de calor en los tejidos por medio de radiación. La onda larga está en desuso por riesgo de quemaduras y, en cuanto a la onda corta y la microonda, no existe en la actualidad ningún trabajo que describa un impacto reparador sobre el tendón (Castillo, 2019).

3.3 Ondas de choque

Historia

Durante la segunda guerra mundial se observó como el tejido pulmonar de náufragos se lesionaba por la explosión de cargas de profundidad, y no había signos externos de lesión y a finales de los 50 se describieron las características físicas de las ondas de choque (ODC) generadas electromagnéticamente. En 1968 en Alemania, inicio la investigación de la aplicación de ODC en tejido biológico en animales, determinando que se puede eliminar litiasis de un riñón o uréter y en los ochenta se trató al primer paciente con una litiasis de riñón. En los noventa se publicaron los primeros informes sobre ODC en tendinitis calcificante de hombro abriéndose así un campo de aplicación de estas en patología musculoesquelética (Garcia, 2017).

Concepto

Las ondas de choque son ondas acústicas de alta energía que cuando se encuentran en el tejido pueden disiparse o reflejarse, estas tienen la capacidad de viajar grandes distancias siempre que la impedancia acústica se mantenga, pero cuando esta se altera, se libera energía cinética que se absorbe en dependencia de las características del tejido en el que se apliquen, esta es mayor en una interfaz de tejido blando que en hueso y también mayor en músculo que en fascia (Garcia, 2017).

Tipos

Ondas de choque focales: su foco de acción es totalmente terapéutico y puede alcanzar profundidades de hasta 15cm, se dividen en electrohidráulicas, electromagnéticas o piezoeléctricas, de alta, media y baja energía y se miden en Mini Joules (Tutté, 2016).

Ondas de choque radiales: estas consiguen un efecto más superficial, es decir alcanzan niveles de entre 3 a 3,5cm de profundidad. Se propagan divergentemente y pierden energía durante la profundidad. Se conoce que son más efectivas en patologías superficiales, y cubren superficies que han sido afectadas más ampliamente, se miden en Bares. Dentro del tejido se conoce que producen efectos físicos, químicos, biológicos y celulares (Tutté, 2016).

Ondas Focales
Máxima Energia en la Profundidad

Máxima Energia en la Superficie

Zona Blanco

Figura 1: Ondas de Choque

Fuente: (Tutté, 2016).

Efectos

Las ondas de choque permiten que haya un estímulo del proceso de recuperación en tendones y tejidos dañados, incrementan la vascularidad y el reclutamiento de células madre apropiadas al área, generando un largo periodo de alivio del dolor. A continuación, se muestran los efectos biológicos de las ondas de choque (Tabla 5 – Anexo 1) (Martínez, 2016).

3.3.1 Tratamiento mediante ondas de choque ante las lesiones tendinosas

Las ondas de choque viajan a través del tejido por medio de un aplicador, con la ayuda de un medio de acoplamiento como el gel para ultrasonido se dirige hacia un punto focalizado en el tejido, y en su paso se va expandiendo hasta abarcar una zona más amplia. Su absorción depende de las estructuras que se encuentran durante su recorrido mientras que la onda se propaga. Cada aplicación usa una dosis de acuerdo a diversos criterios como el grado de lesión, el tiempo de evolución, parámetros del equipo, periodicidad del tratamiento, características físicas del paciente en general, en la (Tabla 6 – Anexo 2) se muestra la patología, intensidad y frecuencia de aplicación (Martínez, 2016).

Su aplicación se divide en 4 fases: Fase física: se producen cavilaciones extracelulares, ionización molecular y un incremento de la permeabilidad de las membranas celulares. Fase fisicoquímica: se produce la difusión de radicales libres y la interacción con biomoléculas. Fase química: se generan reacciones intracelulares y cambios moleculares. Fase biológica: son la consecuencia de los fenómenos previos (Martínez, 2016).

Indicaciones:

Las ondas de choque viajan a través de los tejidos y se indica que se puede aplicar en patologías como la tendinitis, epicondilitis, osteonecrosis, fracturas, fascitis plantar, estas lesiones están clasificadas dentro del sistema musculoesquelético y su aplicación se basa en criterios como el grado de lesión el tiempo y la evolución. (Martínez, 2016).

Contraindicaciones:

Las ondas de choque no deben ser aplicadas sobre áreas donde se sospeche o haya presencia tumoral, sobre los pulmones, personas con marcapaso cardiaco, en cartílago de crecimiento epifisiario, coagulopatías severas, embarazo, infección de partes blandas. (Tutté, 2016)

CAPÍTULO III. METODOLOGÍA

4.1 Tipo de investigación

Documental, se hizo uso de bases de datos verídicas, que permitieron relacionar criterios y analizar los efectos de las ondas de choque en lesiones tendinosas; gracias a la escala manual de PEDro se pudo evaluar la calidad metodológica de los artículos seleccionados para la investigación.

4.2 Nivel de Investigación

Descriptivo-explicativo, con el uso de la bibliografía recopilada se describieron los diferentes efectos físicos y fisiológicos, después del tratamiento mediante ondas de choque, en el tejido tendinoso lesionado.

4.3 Diseño de Investigación

Documental-no experimental, se hizo uso de bases de datos como: PubMed, SAGE journals y Springer, obteniendo información relevante que permitió desarrollar conceptos sobre la investigación.

4.4 Método de investigación

Inductivo, se analizó mediante ensayos clínicos las particularidades de la aplicación de ondas de choque en pacientes que padecían lesiones tendinosas, considerando conceptos, criterios y conclusiones de diferentes autores, para determinar una conclusión general.

4.5 Enfoque de la investigación

Cualitativo, permitió abordar criterios y analizar las características mediante la recolección de resultados, test y conclusiones de artículos donde hacían uso de ondas de choque para tratar lesiones tendinosas.

4.6 Relación con el tiempo

Retrospectivo, se basó en el análisis de hechos ya ocurridos a través de evidencia científica, artículos científicos y ensayos clínicos, ejecutados y comprobados por diferentes autores que aplicaron la técnica, tomando en cuenta la aparición, causas y síntomas de la patología.

4.7 Técnicas de recolección de datos

4.7.1 Observación indirecta

Mediante observación indirecta se seleccionó artículos científicos para el análisis de información de diferentes investigaciones, sin intervenir directamente en el tratamiento del paciente.

4.7.2 Estrategia de Búsqueda

La recolección de información se hizo de distintas fuentes consideradas verídicas, de bases de datos como: PubMed, SAGE journals y Springer. De un total de 100 artículos, 30 fueron

incluidos en la investigación. Para la búsqueda se utilizaron las palabras claves como: "Ondas de choque", "Lesiones tendinosas", "Tendinopatías", "Shock Waves" y "Tendinopathies".

Tabla 1: Bases de datos consultadas

Bases de Datos	Número de artículos	Porcentajes
PubMed	26	87%
SAGE journals	3	10%
Springer	1	3%
TOTAL	30	100%

Nota: Datos porcentuales de bases de datos

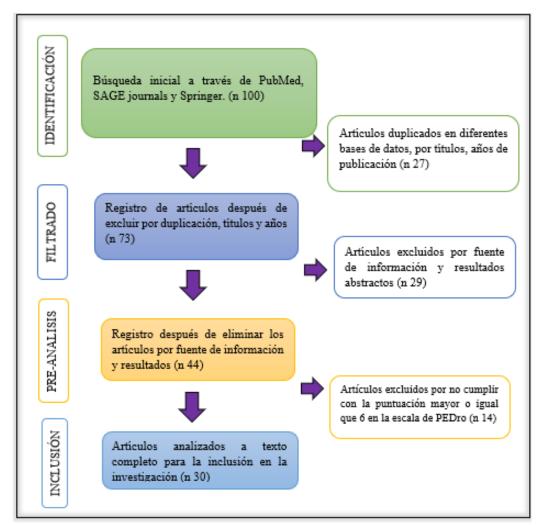
4.8 Criterios de Inclusión y exclusión

Criterios de inclusión:

- Artículos científicos que contengan las dos variables de estudio.
- Artículos que se encuentren publicados entre el año 2013 y 2023
- Artículos científicos publicados español e inglés.
- Artículo que cumplan claramente con los criterios según la escala de PEDro.

Criterios de Exclusión:

- Artículos incompletos.
- Artículos duplicados en las bases de datos.
- Artículos que no aporten al objetivo de la investigación.


4.9 Población de estudio

La población incluyó a 30 artículos con el tema ondas de choque en lesiones tendinosas.

4.10 Método de Análisis y procesamiento de datos

Después de seleccionar los artículos científicos con la temática de la investigación: "Ondas de choque en lesiones tendinosas" se procedió a evaluar su calidad metodológica utilizando la escala manual de PEDro (Tabla 7 – Anexo 3), la cual tiene el objetivo identificar la validez metodológica mediante 11 criterios donde se otorga un punto por cada criterio cumplido, tomando en cuenta que el primer punto no cuenta, se otorga a los artículos que obtengan entre 9-10 puntos de una calidad metodológica alta, si la puntuación varía entre 6-8 es considerada regular y si el puntaje es menor a 6 no aporta para la investigación y se considera de baja calidad metodológica.

Figura 2: Diagrama de Flujo

Fuente: Adaptado de Methodology in conducting a systematic review of biomedical research, (Ramirez, Meneses, & Floréz, 2013).

Tabla 2: Artículos recopilados y calificados con la Escala de PEDro

N°	Año	Bases de	Autores	Título en inglés	Título en español	Escala de
		datos				PEDro
1	2022	PubMed	(Stania, 2022)	Analysis of pain intensity and postural	Análisis de la intensidad del dolor y el	9/10
				control for assessing the efficacy of shock	control postural para evaluar la eficacia de	
				wave therapy and sonotherapy in Achilles	la terapia con ondas de choque y la	
				tendinopathy - A randomized controlled	sonoterapia en la tendinopatía de Aquiles	
				trial	- Un ensayo controlado aleatorio	
2	2021	PubMed	(Gatz et al.,	Line- and Point-Focused Extracorporeal	Tratamiento con ondas de choque	8/10
			2021)	Shock Wave Therapy for Achilles	extracorpóreas centradas en líneas y	
				Tendinopathy: A Placebo-Controlled	puntos para la tendinopatía de Aquiles: un	
				RCT Study	estudio de ECA controlado con placebo	
3	2021	PubMed	(Barbachan et	Shockwave Therapy Plus Eccentric	Terapia de ondas de choque más ejercicios	8/10
			al., 2021)	Exercises Versus Isolated Eccentric	excéntricos versus ejercicios excéntricos	
				Exercises for Achilles Insertional	aislados para la tendinopatía de inserción	
				Tendinopathy: A Double-Blinded	de Aquiles: un ensayo clínico aleatorizado	
				Randomized Clinical Trial	doble ciego	
4	2018	PubMed	(Dedes, 2018)	Effectiveness and Safety of Shockwave	Efectividad y seguridad de la terapia de	7/10
				Therapy in Tendinopathies	ondas de choque en tendinopatías	
5	2018	PubMed	(Vahdatpour &	Effectiveness of extracorporeal	Efectividad de la terapia extracorpórea	7/10
			Forouzan, 2018)	shockwave therapy for chronic Achilles	con ondas de choque para la tendinopatía	
				tendinopathy: A randomized clinical trial	crónica de Aquiles: un ensayo clínico	
					aleatorizado	
6	2017	PubMed	(Erroi & Sigona,	Conservative treatment for Insertional	Tratamiento conservador para la	7/10
			2017)	Achilles Tendinopathy: platelet-rich	tendinopatía de Aquiles de inserción:	
					plasma rico en plaquetas y ondas de	

				plasma and focused shock waves. A	choque focalizadas. Un studio	
				retrospective study	retrospective	
7	2017	PubMed	(Lynen, 2017)	Comparison of Peritendinous Hyaluronan	Comparación de las inyecciones de	9/10
				Injections Versus Extracorporeal Shock	hialuronano peritendinoso versus la	
				Wave Therapy in the Treatment of Painful	terapia extracorpórea con ondas de choque	
				Achilles' Tendinopathy: A Randomized	en el tratamiento de la tendinopatía	
				Clinical Efficacy and Safety Study	dolorosa de Aquiles: un estudio	
					aleatorizado de eficacia y seguridad	
					clínica	
8	2017	PubMed	(Thijs, 2017)	Effectiveness of Shockwave Treatment	Efectividad del tratamiento con ondas de	8/10
				Combined With Eccentric Training for	choque combinado con entrenamiento	
				Patellar Tendinopathy: A Double-Blinded	excéntrico para la tendinopatía rotuliana:	
				Randomized Study	un estudio aleatorizado doble ciego	
9	2016	PubMed	(Ziying et al.,	Outcome of Extracorporeal Shock Wave	Resultado de la terapia extracorpórea con	9/10
			2016)	Therapy for Insertional Achilles	ondas de choque para la tendinopatía de	
				Tendinopathy with and without Haglund's	Aquiles de inserción con y sin deformidad	
				Deformity	de Haglund	
10	2016	Springer	(Notarnicola &	Prognostic factors of extracorporeal shock	Factores pronósticos del tratamiento	6/10
			Maccagnano,	wave therapy for tendinopathies	extracorpóreo con ondas de choque para	
			2016)		las tendinopatías	
11	2013	SAGE	(Vetrano, 2013)	Platelet-rich plasma versus focused shock	Plasma rico en plaquetas versus ondas de	8/10
		journals		waves in the treatment of jumper's knee in	choque focalizadas en el tratamiento de la	
				athletes	rodilla del saltador en atletas	
12	2013	SAGE	(Rompe, 2013)	Eccentric loading compared with shock	Carga excéntrica comparada con el	7/10
		journals		wave treatment for chronic insertional	tratamiento con ondas de choque para la	
					tendinopatía crónica de inserción de	

				achilles tendinopathy. A randomized,	Aquiles. Un ensayo aleatorizado y	
				controlled trial	controlado	
13	2022	PubMed	(Kuo, 2022)	Comparison of the effects of ultrasound-	Comparación de los efectos de la punción	7/10
				guided needle puncture, radial shock wave	con aguja guiada por ultrasonido, la	
				therapy, and combined treatments on	terapia con ondas de choque radiales y los	
				calcific tendinitis of the shoulder: A	tratamientos combinados sobre la	
				single-blind randomized controlled trial	tendinitis calcificada del hombro: un	
					ensayo controlado aleatorio simple ciego	
14	2022	PubMed	(Pellegrino,	Combined ultrasound guided	Inyección combinada de ácido hialurónico	8/10
			2022)	peritendinous hyaluronic acid (500-730	peritendinoso guiado por ultrasonido	
				Kda) injection with extracorporeal shock	(500-730 Kda) con terapia de ondas de	
				waves therapy vs. extracorporeal shock	choque extracorpóreas versus terapia con	
				waves therapy-only in the treatment of	ondas de choque extracorpóreas solo en el	
				shoulder pain due to rotator cuff	tratamiento del dolor de hombro debido a	
				tendinopathy. A randomized clinical trial	la tendinopatía del manguito rotador. Un	
					ensayo clínico aleatorizado	
15	2022	PubMed	(Arooj &	Effects of High-Energy Extracorporeal	Efectos de la terapia de ondas de choque	8/10
			Ashfaq, 2022)	Shockwave Therapy on Pain, Functional	extracorpóreas de alta energía sobre el	
				Disability, Quality of Life, and	dolor, la discapacidad funcional, la calidad	
				Ultrasonographic Changes in Patients	de vida y los cambios ultrasonográficos en	
				with Calcified Rotator Cuff Tendinopathy	pacientes con tendinopatía calcificada del	
					manguito rotador	
16	2021	PubMed	(Özmen, 2021)	Comparison of the clinical and	Comparación de los efectos clínicos y	9/10
				sonographic effects of ultrasound therapy,	ecográficos de la terapia de ultrasonido, la	
				extracorporeal shock wave therapy, and	terapia extracorpórea con ondas de choque	
				Kinesio taping in lateral epicondylitis		

					y la cinta de Kinesio en la epicondilitis	
					lateral	
17	2021	PubMed	(Mai & Radwa,	Focused, radial and combined shock wave	Terapia de ondas de choque focalizada,	8/10
			2021)	therapy in treatment of calcific shoulder	radial y combinada en el tratamiento de la	
				tendinopathy	tendinopatía calcificada del hombro	
18	2020	PubMed	(Louwerens et	Comparing Ultrasound-Guided Needling	Comparación de la punción guiada por	9/10
			al., 2020)	Combined With a Subacromial	ultrasonido combinada con una inyección	
				Corticosteroid Injection Versus High-	subacromial de corticosteroides versus la	
				Energy Extracorporeal Shockwave	terapia de ondas de choque extracorpóreas	
				Therapy for Calcific Tendinitis of the	de alta energía para la tendinitis	
				Rotator Cuff: A Randomized Controlled	calcificada del manguito rotador: un	
				Trial	ensayo controlado aleatorio	
19	2019	PubMed	(Polikandrioti,	Comparison of Radial Extracorporeal	Comparación de la terapia de ondas de	7/10
			2019)	Shockwave Therapy versus Ultrasound	choque extracorpóreas radiales versus la	
				Therapy in the Treatment of Rotator Cuff	terapia ecográfica en el tratamiento de la	
				Tendinopathy	tendinopatía del manguito rotador	
20	2018	PubMed	(Carlisi et al.,	Focused extracorporeal shock wave	Terapia focalizada con ondas de choque	8/10
			2018)	therapy combined with supervised	extracorpóreas combinada con	
				eccentric training for supraspinatus	entrenamiento excéntrico supervisado	
				calcific tendinopathy	para la tendinopatía calcificada	
					supraespinosa	
21	2018	PubMed	(Frassanito,	Effectiveness of Extracorporeal Shock	Efectividad de la terapia extracorpórea de	8/10
			2018)	Wave Therapy and kinesio taping in	ondas de choque y kinesio taping en la	
				calcific tendinopathy of the shoulder: a	tendinopatía calcificada del hombro: un	
				randomized controlled trial	ensayo controlado aleatorio	

22	2017	PubMed	(Kubot, 2017)	Radial Extracorporeal Shockwave	Terapia de ondas de choque	6/10
				Therapy and Ultrasound Therapy in the	extracorpóreas radiales y terapia de	
				Treatment of Tennis Elbow Syndrome	ultrasonido en el tratamiento del síndrome	
					del codo de tenista	
23	2017	PubMed	(Tsung-Hsun,	Efficacy of Radial Extracorporeal Shock	Eficacia de la terapia de ondas de choque	8/10
			2017)	Wave Therapy on Lateral Epicondylosis,	extracorpóreas radiales en la epicondilosis	
				and Changes in the Common Extensor	lateral y cambios en la rigidez del tendón	
				Tendon Stiffness with Pretherapy and	extensor común con preterapia y	
				Posttherapy in Real-Time	postterapia en sonoelastografía en tiempo	
				Sonoelastography: A Randomized	real: un estudio controlado aleatorio	
				Controlled Study		
24	2014	PubMed	(Kim, 2014)	Which method is more effective in	¿Qué método es más eficaz en el	8/10
				treatment of calcific tendinitis in the	tratamiento de la tendinitis calcificada en	
				shoulder? Prospective randomized	el hombro? Comparación aleatoria	
				comparison between ultrasound-guided	prospectiva entre la punción guiada por	
				needling and extracorporeal shock wave	ultrasonido y la terapia extracorpórea con	
				therapy	ondas de choque	
25	2014	PubMed	(Notarnicola,	Effects of extracorporeal shock wave	Efectos de la terapia extracorpórea con	8/10
			PubMed, 2014)	therapy on functional and strength	ondas de choque sobre la recuperación	
				recovery of handgrip in patients affected	funcional y de fuerza de la empuñadura en	
				by epicondylitis	pacientes afectados por epicondilitis	
26	2013	PubMed	(Loppolo, 2013)	Extracorporeal shock-wave therapy for	Terapia extracorpórea con ondas de	8/10
				supraspinatus calcifying tendinitis: a	choque para la tendinitis calcificante	
				randomized clinical trial comparing two	supraespinosa: un ensayo clínico	
				different energy levels	aleatorizado que compara dos niveles de	
					energía diferentes	

27	2013	PubMed	(Galasso, 2013)	Short-term outcomes of extracorporeal	Resultados a corto plazo de la terapia	7/10
				shock wave therapy for the treatment of	extracorpórea con ondas de choque para el	
				chronic non-calcific tendinopathy of the	tratamiento de la tendinopatía crónica no	
				supraspinatus: a double-blind,	calcificada del supraespinoso: un ensayo	
				randomized, placebo-controlled trial	controlled trial doble ciego, aleatorizado, controlado con	
					placebo	
28	2013	SAGE	(Witte et al.,	Calcific tendinitis of the rotator cuff: a	Tendinitis calcificada del manguito	8/10
		journals	2013)	randomized controlled trial of ultrasound-	rotador: un ensayo controlado aleatorio de	
				guided needling and lavage versus	punción y lavado guiados por ultrasonido	
				subacromial corticosteroids	versus corticosteroides subacromiales	
29	2013	PubMed	(Gerdesmeyer,	Extracorporeal shock wave therapy for the	Terapia extracorpórea con ondas de	6/10
			2013)	treatment of chronic calcifying tendonitis	choque para el tratamiento de la tendinitis	
				of the rotator cuff: a randomized	calcificante crónica del manguito rotador:	
				controlled trial	un ensayo controlado aleatorio	
30	2013	PubMed	(Kolk & Auw,	Radial extracorporeal shock-wave therapy	Tratamiento con ondas de choque	7/10
			2013)	in patients with chronic rotator cuff	extracorpóreas radiales en pacientes con	
				tendinitis: a prospective andomized	tendinitis crónica del manguito rotador: un	
				double-blind placebo-controlled	ensayo multicéntrico aleatorizado	
				multicentre trial	prospectivo doble ciego controlado con	
					placebo	

La tabla hace mención de los estudios utilizados para la elaboración de este proyecto, sus títulos en inglés y español y la calificación que obtuvieron según la calidad metodológica.

CAPÍTULO IV. RESULTADOS Y DISCUSIÓN

5.1 Resultados

Tabla 3: Intervención y Resultados de la aplicación de Ondas de Choque en Miembros Inferiores

	Autor	Tipo de estudio	Población	Intervención	Resultados
1	(Stania, 2022)	Ensayo controlado	39 pacientes	Los pacientes fueron asignados a tres	Los resultados demuestran que hay
		aleatorio		grupos los cuales fueron intervenidos	un cambio a nivel del dolor después
				con ondas de choque y se adiciono al	de la terapia en el grupo A
				grupo A terapia de ultrasonido y al	intervenido con ondas de choque más
				grupo B y C ultrasonido placebo. Para la	ultrasonido, es decir que la terapia
				evaluación se realizó mediciones	con ondas de choque es efectiva para
				posturográficas y evaluación subjetiva	el alivio del dolor en la tendinopatía
				de la intensidad del dolor, estas fueron	de Aquiles, adicionando una mejoría
				hechas antes del tratamiento y después	en el control postural afectado por el
				de la 6 semana de finalizada la terapia.	malestar clínico.
2	(Gatz et al.,	Ensayo controlado	66 pacientes	El estudio se ejecutó en 3 cohortes,	Dentro de los resultados se puede
	2021)	aleatorio		donde se realizó fisioterapia (ejercicios	observar una mejora significativa de
				excéntricos, isométricos y estiramientos	la puntuación Victorian Institute of
				estáticos) más Terapia Extracorpórea	Sports Assessment-Achilles (VISA-
				con Ondas de Choque (ESWT): grupo 1,	A) a lo largo del tiempo para todos
				fisioterapia más ESWT centrado en la	los grupos siendo el grupo centrado
				línea; grupo 2, fisioterapia más ESWT	en el punto, el mejor puntuado, y se
				centrado en el punto; grupo 3,	podría mencionar una mejoría en el
				fisioterapia más placebo ESWT. Se	aumento de las propiedades del
				midieron los avances en 3 tiempos antes	tendón elástico de acuerdo con la

				de la intervención en la semana 6 y después de la semana 24. La medida de resultado primaria fue la puntuación del VISA-A y la evaluación personal del paciente siento 1 completamente recuperado hasta el 4 pobre.	mejora de la puntuación. Finalmente se puede determinar que no existió un cambio importante dentro de los grupos en especial del grupo placebo que también demostró cese de malestar y mejora, determinando que
					la fisioterapia convencional también actúa favorablemente ante la recuperación de la tendinopatía.
3	(Barbachan et al., 2021)	Ensayo controlado aleatorio	119 pacientes	Se asignó a los participantes a dos grupos el primero con ejercicios excéntricos con terapia extracorpórea de ondas de choque y al segundo con ejercicios excéntricos con terapia con odas de choque simulada. Se hicieron tres sesiones cada 2 semanas y se realizaron los ejercicios durante 3 meses. Los resultados primarios se obtuvieron del cuestionario (VISA-A) a las 24 semanas.	Los dos grupos tuvieron resultados favorables durante el periodo de estudio; sin embargo, no se mostraron diferencias significativas entre el grupo intervenido con ondas de choque y no hubo complicaciones para ningún grupo, determinando que, la terapia extracorpórea con ondas de choque no potencia los efectos del fortalecimiento excéntrico en el tratamiento de la tendinopatía de inserción de Aquiles.
4	(Dedes, 2018)	Ensayo clínico	384 pacientes	La muestra se dividió en 326 pacientes intervenidos con ondas de choque y 58 pacientes intervenidos con terapia convencional, mediante un cuestionario de autoadministrado (University of	Se pudo observar que la reducción del dolor y la mejora de la funcionalidad y la calidad de vida después del tratamiento con ondas de choque incrementaron en al menos

				Peloponnese Pain, Functionality and	dos puntos en la escala Likert de
				Quality of Life Questionnaire) se evaluó	cinco puntos tanto después del
				la intensidad del dolor, la funcionalidad	tratamiento como en un seguimiento
				y la calidad de vida en una escala Likert	de 4 semanas. Determinando a esta
				de cinco puntos, antes, inmediatamente	terapia como eficaz y segura ante las
				después del tratamiento y en un	tendinopatías.
				seguimiento de 4 semanas.	
5	(Vahdatpour &	Ensayo clínico	43 pacientes	Pacientes con tendinopatía de Aquiles	Se pudo determinar que ambos
	Forouzan, 2018)	aleatorizado		crónica fueron divididos en 2 grupos en	grupos mejoraron durante el
				los cuales el 1 fue intervenido con ondas	tratamiento y el período de
				de choque y el 2 con ondas de choque	seguimiento. La puntuación media
				simulada durante cuatro sesiones una	de EVA disminuyó de 7,55 a 3 en el
				vez a la semana por 4 meses, se evaluó	grupo 1 y de 7,70 a 4,30 en el grupo
				puntuaciones de dolor al inicio y	2 de simulación. Llegando a concluir
				después de la intervención con la escala	que este tratamiento causa una
				analógica visual (EVA)	disminución del dolor.
6	(Erroi & Sigona,	Ensayo clínico	45 pacientes	Durante dos períodos consecutivos los	El análisis intergrupal mostró una
	2017)	aleatorizado		pacientes fueron tratados con 3 sesiones	mejoría significativa de las
				de ESWT. Todos los pacientes fueron	puntuaciones VISA-A, la
				evaluados a los 0, 2, 4, 6 meses de	satisfacción del paciente aumentó
				seguimiento después de la terapia. Las	progresivamente; llegando a la
				medidas de resultado fueron VISA-A y	conclusión de que la terapia ESWT
				Satisfacción del paciente.	es efectiva y segura.
7	(Lynen, 2017)	Ensayo controlado	62 pacientes	Pacientes con tendinopatía mayor a 6	Finalmente se puede describir que el
		aleatorio		semanas de padecimiento con un dolor	tratamiento con AH proporcionó una
				de 4 en la escala EVA, fueron	recuperación clínica relevante en la

				intervenidos con dos inyecciones de	tendinopatía de la porción media de
				hialuronano (AH) versus 3 aplicaciones	Aquiles, demostrando una diferencia
				de ESWT extracorpóreas a intervalos	superior en comparación con la
				semanales. Se midieron resultados con	aplicación de ESWT en el cambio
				el cuestionario (VISA-A) y escala del	porcentual del dolor. Demostrando
				dolor (EVA) después de 3 meses del	así que las inyecciones
				tratamiento.	peritendinosas de AH son más
					exitosas.
8	(Thijs, 2017)	Ensayo controlado	52 participantes	Los intervenidos fueron pacientes con	Al finalizar el estudio se observó que
		aleatorio		un diagnóstico de tendinopatía	no hubo diferencias significativas
				rotuliana, asignados a ESWT (n22) y	para las medidas de resultados.
				onda de choque simulada (n30). La	Determinando finalmente que, este
				terapia de ESWT y la simulada se aplicó	estudio no mostró ningún efecto
				en 3 sesiones a intervalos de 1 semana	adicional de 3 sesiones de ESWT en
				con un dispositivo piezoeléctrico.	participantes con tendinopatía
				Adicionando ejercicios excéntricos (3	rotuliana tratados con ejercicios
				series de 15 repeticiones dos veces al	excéntricos.
				día) durante 3 meses en casa. Para	
				evaluar resultados se utilizó VISA-A y	
				el puntaje Likert.	
9	(Ziying et al.,	Ensayo controlado	67 pacientes	Se dividió a los participantes en 2 grupos	Se pudo finalizar el estudio
	2016)	aleatorio		los cuales fueron intervenidos con la	encontrando que, se lograron
				terapia de ondas de choque ejecutada	mejoras significativas en ambos
				con el paciente en decúbito prono y se	grupos. Sin embargo, hubo una
				administró una vez a la semana, durante	mayor mejoría en la puntuación
				5 sesiones. La diferencia en los grupos	VISA-A para el grupo de no

				fue que uno presentaba deformidad de Haglund. La evaluación funcional clínica incluyó la puntuación VISA-A y la escala Likert antes y después del tratamiento.	deformidad en comparación con el grupo de deformidad. La escala Likert demostró que, hubo 34 calificados como éxito y 3 calificados como fracaso en el grupo de no deformidad, y hubo 23 calificados como éxito y 7
					calificados como fracaso en el grupo
					de deformidad.
10	(Notarnicola &	Ensayo clínico	355 pacientes	Los pacientes fueron analizados durante	La mejoría clínica se logró en el 45,9
	Maccagnano,			2 meses después de un tratamiento con	% de estos pacientes. Determinando
	2016)			ondas de choque en diferentes	que la lateralidad diferente al
				tendinopatías, con el objetivo de	miembro dominante y los
				determinar si existen factores	tratamientos repetidos con ondas de
				pronósticos que puedan influir en el	choque son factores pronósticos en
				resultado de la terapia extracorpórea con	una terapia fallida, mientras que ser
				ondas de choque para estas	masculino y un alto índice de masa
				enfermedades.	corporal son factores de éxito. No se
					encontraron diferencias en relación
					con la edad, dieta, el trabajo o la
					actividad deportiva, comorbilidades
					y otros tratamientos de fisioterapia
11	(Vetrano, 2013)	Ensayo controlado	46 atletas	Los participantes fueron aleatorizados	Al finalizar el estudio los pacientes
		aleatorio		en 2 grupos de tratamiento con 2	de ambos grupos mostraron una
				inyecciones autólogas de plasma rico en	mejoría significativa de los síntomas
				plaquetas (PRP) durante 2 semanas y 3	en todas las evaluaciones de

				sesiones de ESWT enfocadas. Los	seguimiento. Pero el grupo de PRP
				resultados se evaluaron con VISA-A y	mostro mayor puntaje, simplificando
				EVA.	que Las invecciones terapéuticas de
					PRP conducen a mejores resultados
					clínicos en comparación con ESWT
					focalizada en el tratamiento de
					tendinopatía rotuliana.
12	(Rompe, 2013)	Ensayo controlado	50 paciente	Pacientes con tendinopatía de Aquiles	Después de 4 meses de intervención
	(110111pe, 2010)	aleatorio	o o partition	crónica, se incluyeron en el estudio	la puntuación de VISA-A
		aroutorro		especificando que recibieron	incremento en ambos grupos, y la
				tratamiento, inyecciones locales de	calificación del dolor disminuyó en
				anestésicos y corticosteroides y	el grupo 1; mientras que el grupo 2
				fisioterapia sin éxito. Posterior a esto	
				<u> </u>	1 1
				Veinticinco pacientes fueron asignados	recuperados en todos los resultados.
				para recibir carga excéntrica (Grupo 1),	Es decir que el grupo que recibió
				y veinticinco pacientes fueron asignados	terapia de ondas de choque mostró
				al tratamiento con terapia repetitiva de	resultados significativamente más
				ondas de choque de baja energía (Grupo	favorables que el grupo tratado con
				2). Se hizo un seguimiento a los 4 meses	carga excéntrica.
				de tratamiento con un seguimiento de 1	
				año con el cuestionario VISA-A.	

El cuadro descrito simplifica la intervención y resultados que se obtuvieron con la aplicación del tratamiento con ondas de choque comparadas con otras intervenciones en tendinopatías de miembros inferiores, las cuales fueron, tendinopatía del tendón de Aquiles, tendinopatía Rotuliana y una fascitis plantar.

Tabla 4: Intervención y Resultados de la aplicación de Ondas de Choque en Miembros Superiores

	Autor	Tipo de	Población	Intervención	Resultados
		estudio			
1	(Kuo, 2022)	Ensayo	62 pacientes	Los pacientes intervenidos tenían dolor	Al finalizar el estudio se puede
		controlado		unilateral en el hombro por más de 3 meses,	observar diferencias grandes en las
		aleatorio		estos fueron divididos en 3 grupos: 1 punción	puntuaciones de EVA del dolor, en
				con aguja fina guiada por ultrasonido	comparación con los grupos no hubo
				(USNP), terapia con ondas de choque	cambios relevantes. Se puede
				radiales (RSWT) y combinación de los dos	evidenciar cambios en el rol
				tratamientos. La terapia duro 3 meses,	emocional y la rotación externa
				evaluando los resultados con la Escala Visual	activa a lo largo del tiempo. Llegando
				Analógica (EVA).	a concluir que, existen mejores
					resultados en los grupos USNP y
					COMB que en el grupo RSWT.
2	(Pellegrino,	Ensayo	40 adultos	Los participantes de este estudio padecían de	Durante el estudio, e puedo observar
	2022)	controlado		tendinopatía del manguito rotador (ECA)	que ambos grupos mejoraron su nivel
		aleatorio		estos fueron asignados a dos grupos, donde el	percibido de discapacidad del brazo y
				1 recibió terapia con ácido hialurónico (AH)	para el dolor. Finalmente se pudo
				más ESWT y el grupo 2 ESWT, los cuales	determinar que, en comparación con
				fueron evaluados para el dolor auto percibido	la ESWT sola, la combinación de
				y la discapacidad, al inicio del estudio y	ESWT e inyecciones peritendinosas
				después de 30 y 60 días de la intervención.	de AH revierte la discapacidad y
					reduce el dolor de hombro más rápido
					en pacientes con ECA.
3	(Arooj &	Ensayo	42 pacientes	Los participantes padecen de tendinopatía	Al finalizar el estudio se concluye
	Ashfaq, 2022)	aleatorizado		calcificada del manguito rotador, y fueron	que la terapia ESWT de alta energía

				divididos en 2 grupos, de 21 participantes. El	ha demostrado ser efectiva y se
				grupo 1 recibió terapia de ondas de choque	recomienda para el tratamiento de la
				más la adición de fisioterapia convencional	tendinopatía calcificada del manguito
				recibiendo ocho sesiones, Y el grupo 2	rotador, mejorando el dolor, la
				únicamente con fisioterapia de rutina.	funcionalidad y la calidad de vida de
					estos participantes y disminuyendo el
					tamaño de los depósitos calcificados.
4	(Özmen, 2021)	Ensayo	40 pacientes	Un total de 40 pacientes con epicondilitis	Finalmente se puede observar que las
		controlado		lateral fueron añadidos en este estudio y	puntuaciones de la escala analógica
		aleatorio		asignados a 3 grupos de tratamiento:	visual (EVA) disminuyeron
				Ultrasonido (n13), ESWT (n14) y	significativamente en todos los
				Kinesiotape (n13). Se evaluó su dolor con	grupos, llegando a determinar que los
				EVA antes y después del tratamiento.	métodos utilizados son efectivos para
					reducir el dolor y mejorar la
					funcionalidad. Pero ninguno de estos
					métodos es superior a otros para
					reducir el dolor y mejorar la
					funcionalidad.
5	(Mai &	Ensayo	45 pacientes	Los pacientes padecían de tendinitis	En los tres grupos estudiados, se
	Radwa, 2021)	controlado		calcificada de hombro, fueron divididos en 3	observó una mejoría en el dolor de
		aleatorio		grupos los cuales recibieron cuatro sesiones	hombro, el rango de movimiento
				de ESWT con 1 semana de diferencia. Cada	activo (ROM) y la función del
				grupo adiciono un tratamiento de la siguiente	hombro mediante el cuestionario de
				forma: Grupo I: 15 pacientes recibieron	discapacidad del hombro (SDQ) a 1
				ondas de choque focalizadas. Grupo II: 15	semana después del final del
				pacientes recibieron choques de ondas de	tratamiento y después de 3 meses de

				choque radiales. Grupo III: 15 pacientes	seguimiento. Demostrando que la
				recibieron ondas de choque combinadas	ESWT es efectiva ante procesos
				focalizadas y radiales	calcificantes.
6	(Louwerens et	Ensayo	44 participantes	Para este estudio se dividió a los participantes	El estudio estaba centrado en
	al., 2020)	controlado		en grupos donde el grupo 1 recibió terapia	comparar los resultados de la
		aleatorio		con ondas de choque en 4 sesiones con	intervención para la tendinitis
				intervalos de 1 semana. El grupo 2 recibió	calcificada del manguito rotador.
				punción guiada por ultrasonido (UGN) más	Ambas técnicas tienen éxito en
				inyección de bursa subacromial guiada por	mejorar la función y el dolor, con
				ultrasonido con corticosteroides.	altas tasas de satisfacción después de
					1 año de seguimiento. Sin embargo,
					UGN es más eficaz en la eliminación
					del depósito calcificante.
7	(Polikandrioti,	Ensayo	115 pacientes	Para el estudio 56 pacientes formaron parte	La intensidad del dolor disminuyó y
	2019)	clínico		del grupo de intervención con ondas de	la funcionalidad y calidad de vida
				choque, 47 constituyeron el grupo de	mejoraron después de la terapia con
				ultrasonido terapéutico y 12 pacientes	ondas de choque También se
				conformaron el grupo control. Se usó el	observaron mejoras similares en los
				cuestionario autoadministrado "The	tres parámetros después del
				University of Peloponnese Pain,	tratamiento con ultrasonido, pero los
				Functionality and Quality of Life	resultados no fueron tan
				Questionnaire, UoP – PFQ" donde se evaluó	pronunciados como en el grupo de
				la intensidad del dolor, la funcionalidad y la	ondas de choque. Siento así esta
				calidad de vida de los miembros superiores	terapia superior a la terapia de
				en una escala Likert, pretratamiento,	ultrasonido después del tratamiento y
			ĺ	postratamiento y seguimiento de 4 semanas.	en el seguimiento de 4 semanas.

8	(Carlisi et al.,	Ensayo	22 pacientes	El grupo estudiado fue asignado para recibir	Finalmente se registra una
	2018)	clínico		una terapia basada en ESWT más la adición	disminución importante del dolor, y
				de un entrenamiento excéntrico supervisado	una función mejorada en el miembro;
				sobre los músculos abductores del hombro.	pero no obstante se observa que, en
				La evaluación se realizó después de 9	comparación con el otro grupo
				semanas transcurridas la intervención. Para	estudiado, no es necesaria adicionar
				obtener resultados precisos se evaluó el dolor	ejercicios excéntricos para mejorar el
				y la función del hombro mediante una escala	estado del hombro. Confirmando así
				de calificación numérica, se midió la fuerza	la efectividad de la terapia mediante
				mediante un dinamómetro de mano.	ondas de choque, mejorando la
					función y el dolor.
9	(Frassanito,	Ensayo	42 pacientes	En este estudio se buscó comprobar si la	Finalmente se puede determinar
	2018)	controlado		asociación de Kinesio Taping (KT) con	gracias a este estudio que el uso y
		aleatorio		ESWT es superior solo al uso de ESWT en el	adición de KT en la terapia con ondas
				tratamiento de la tendinopatía calcificante de	de choque, mejora a puntuación de
				manguito rotador y para esto los estudiados	las escalas con las que se evaluaron
				fueron sometidos a 3 sesiones de ESWT con	los resultados, es decir que el método
				KT aplicado al finalizar la sesión; y se evaluó	es efectivo, gracias a que tiene una
				con diferentes escalas para ver los resultados.	respuesta más rápida en comparación
					al uso único de ESWT.
10	(Kubot, 2017)	Ensayo	60 personas	Para el estudio se dividió aleatoriamente en 2	Como resultados se puede determinar
		clínico		grupos de 30 pacientes a los intervenidos, los	que la disminución del dolor, se
				intervenidos con ondas de choque radiales y	observó en ambos grupos, pero, la
				los tratados con terapia de ultrasonido. La	intensidad del dolor evaluada con
				terapia con ondas de choque radiales se basó	EVA en pacientes tratados con
				en 3 sesiones semanales. La terapia de	terapia con ondas de choque radiales

				ultrasonido consistió en 10 tratamientos	fue menor en comparación con los
				diarios. El estado clínico de los pacientes	tratados con terapia de ultrasonido.
				antes del tratamiento, justo después del	Concluyendo que la terapia de
				tratamiento y después de 8 semanas se evaluó	ultrasonido es menos efectiva que la
				con el cuestionario Leitinen y una escala	terapia de ondas de choque radiales.
				analógica visual (EVA).	
11	(Tsung-Hsun,	Ensayo	30 pacientes	Los pacientes intervenidos con epicondilitis	Se puede describir que el grupo
	2017)	controlado		lateral se dividieron en dos grupos	experimental presento mejores
		aleatorio		experimental y de control. Los del grupo	resultados a nivel de dolor, este tuvo
				experimental recibieron terapia con ondas de	mejor fuerza de agarre y mejor
				choque extracorpóreas radiales más	capacidad para ejecutar actividades,
				fisioterapia; y los del grupo control	determinando que la adición de
				recibieron ondas de choque simuladas más	terapia con ondas de choque y el
				fisioterapia durante 3 semanas.	cuidado e intervención
					fisioterapéutica es efectiva ante estas
					lesiones.
12	(Kim, 2014)	Ensayo	54 pacientes	Los intervenidos fueron diagnosticados con	Al final del estudio se pudo observar
		controlado		tendinitis calcificante dorsal unilateral del	una disminución en los depósitos de
		aleatorio		hombro, fueron asignados a un grupo de	calcio en el grupo ESWT, hubo mejor
				ESWT y otro grupo que recibió punción y	respuesta a nivel de la sintomatología
				una inyección de corticosteroides	clínica en los dos grupos. Pero
				subacromiales. El grupo ESWT recibió esta	finalmente el grupo de punción
				terapia 3 veces a la semana. Todos los	después de 3 años de seguimiento,
				pacientes fueron evaluados por; American	tuvo resultados mejores a
				Shoulder and Elbow Surgeons, Simple	comparación del otro grupo lo que
				Shoulder Test y escala analógica visual para	nos indica que, las dos modalidades

				las puntuaciones de dolor antes del procedimiento y a las 6 semanas, 12 semanas, 6 meses y 12 meses.	de tratamiento para la tendinitis calcificante mejoraron los resultados clínicos y eliminaron los depósitos de calcio. Pero, el tratamiento con punción guiado fue más efectivo en la restauración de la función y el alivio del dolor a corto plazo.
13	(Notarnicola, PubMed, 2014)	Ensayo clínico	26 pacientes	Para este estudio se evaluaron la correlación entre las medidas clínicas y funcionales después de la intervención con ondas de choque extracorpóreas, para epicondilitis. Se midió la mejoría progresiva gracias a los valores de la escala analógica visual y las puntuaciones del Mayo Elbow Performance Index para el miembro patológico.	La monitorización de la empuñadura no reveló cambios en los valores en ningún grupo evaluado. No hubo correlación entre el grado de función clínica y el déficit muscular durante el seguimiento. Después de la terapia ESWT, hubo disminución en la fuerza de agarre, en la extremidad dominante, relacionado con los efectos de ESWT, que reduce la espasticidad en los músculos hipertónicos dolorosos. Determinando que no es una terapia prometedora.
14	(Loppolo, 2013)	ensayo controlado aleatorio	46 pacientes	El tratamiento para pacientes con tendinitis calcificante del supraespinoso en este ensayo consistió en comparar 2 tipos de energía en ESWT y el protocolo consistió en 4 sesiones realizadas una vez a la semana. Para los	Finalmente se pudo observar una mejoría clínica determinada por las puntuaciones resultantes de las medidas utilizadas, y una disminución del dolor en el grupo que

				resultados se utilizó la Escala de Murley	utilizó una energía más alta de
				Constante (CMS) a los 3 y 6 meses; la Escala	ESWT; es decir que un nivel de
				Analógica Visual (EVA) desde el inicio hasta	energía de 0.20 mJ/mm² es más
				3 y 6 meses y radiografías.	efectivo que un nivel de energía de
					0.10 mJ/mm² en el alivio del dolor y
					la mejoría funcional.
15	(Galasso,	Ensayo	20 pacientes	Pacientes con tendinopatía supraespinosa no	En el seguimiento final se logra
	2013)	controlado		calcificante fueron asignados a un grupo de	determinar que hay una mejora en la
		aleatorio		tratamiento activo y otro simulado. Se	puntuación total de las evaluaciones.
				emplearon exámenes físicos que se repitieron	Concluyendo que los pacientes con
				seis y doce meses después de los	este síndrome obtienen beneficios del
				tratamientos.	tratamiento con ESWT de baja
					energía.
16	(Witte et al.,	Ensayo	48 pacientes	Los pacientes fueron asignados a dos grupos	Los resultaros mostraron que, en
	2013)	controlado		en los cuales el grupo 1 recibió terapia de	promedio según la evaluación
		aleatorio		punción guiada por ultrasonido más ESWT y	constante y anual hubo mejores
				el grupo 2 inyecciones de corticosteroides en	resultados en ambos grupos de
				la bolsa subacromial. Para obtener resultados	tratamiento, pero el que sobresale y
				se evaluó a los intervenidos con la escala del	se recomienda en la de punción
				dolor EVA y las estructuras mediante	guiada más el uso de pequeñas
				estudios de imagen.	sesiones semanales de ESWT, ya que
					los resultados clínicos y radiográficos
					muestran un excelente resultado en el
					grupo.
17		Г	144	I a intermentión medicá en tenenia con ECWT	T4-1- ECV/T 114
17	(Gerdesmeyer,	Ensayo	144 pacientes	La intervención radicó en terapia con ESWT	Tanto la ESWT de alta energía como

				placebo (tratamiento simulado). Los 2 grupos	mejoría significativa, en
				ESWT recibieron dosis iguales de energía	comparación con el tratamiento
				acumulada. Los pacientes en los 3 grupos	simulado. Es decir que tanto la
				recibieron 2 sesiones de tratamiento con	ESWT de alta energía como la de
				aproximadamente 2 semanas de diferencia,	baja energía parecieron proporcionar
				continuas de fisioterapia.	un efecto beneficioso sobre la
					función del hombro, así como sobre
					el dolor y la disminución del tamaño
					de las calcificaciones, en
					comparación con placebo.
18	(Kolk & Auw,	Ensayo	82 pacientes	Para la ejecución de este estudio se planteó	Como resultados se manifiesta que la
	2013)	controlado		como objetivo el determinar el efecto que	rESWT en dosis bajas no reduce el
		aleatorio		tiene la terapia radian extracorpórea con	dolor ni mejora la función en
				ondas de choque (rESWT), en pacientes con	pacientes con tendinitis crónica del
				tendinitis crónica del manguito rotador. Estos	manguito rotador en comparación
				fueron asignados al azar a un grupo de	con el tratamiento con placebo. Pero
				tratamiento que recibió dosis bajas de	un tratamiento con la dosis adecuada
				rESWT (tres sesiones en un intervalo de 10 a	puede ayudar a la recuperación de
				14 días, 2000 pulsos, 0,11 mJ/mm, 8 Hz) y al	esta población.
				grupo placebo, con un seguimiento de seis	
				meses.	

El cuadro descrito resume la intervención y resultados que se obtuvieron con la aplicación del tratamiento con ondas de choque comparadas con otras intervenciones en tendinopatías de miembros superiores, las cuales fueron, tendinopatía del manguito rotador, epicondilitis unilateral y tendinitis calcificante de hombro.

5.2 Discusión

Actualmente la terapia con ondas de choque es popular gracias a los beneficios obtenidos ante lesiones como tendinopatías. Gracias a sus efectos de analgesia, revascularización, aceleración del metabolismo, reabsorción de depósitos de calcio y disminuir la tensión muscular, se ha convertido en una alternativa terapéutica conservadora, logrando así descartar la intervención quirúrgica para el tratamiento de estas lesiones.

Según (Dedes, 2018) las ondas de choque interpuestas en casos ortopédicos, se utilizan para inducir la neovascularización en la unión del tendón- hueso y la liberación de factores de crecimiento que conducen a un mejor suministro sanguíneo y aumento de la proliferación celular que aportan a la regeneración tisular de tendones y huesos para la reparación de los tejidos. Gracias a sus propiedades terapéuticas se utiliza en la recuperación de lesiones ortopédicas como: la fascitis plantar, la tendinopatía del hombro, la tendinopatía del codo, la tendinopatía rotuliana y la tendinopatía de Aquiles, osteocondritis y tendinitis calcificada del hombro. (Vahdatpour & Forouzan, 2018) dicen que la tendinopatía de Aquiles es considerada una de las tendinopatías más comunes en atletas y personas sedentaria, aunque también puede ocurrir por un trauma y el uso excesivo o microtrauma acumulativo y repetitivo en el tendón. Y actualmente el uso de ESWT (terapia por ondas de choque) ha ganado popularidad como una modalidad de tratamiento alternativo para diferentes patologías musculoesqueléticas.

La fisioterapia es un tratamiento primordial para la recuperación de cualquier lesión musculoesquelética, pero esta combinada con otras opciones como la terapia con ondas de choque promete tener mejores resultados de recuperación.

Para el tratamiento en la tendinopatía de Aquiles menciona (Gatz et al., 2021) que la adición de la terapia con ondas de choque a la práctica de fisioterapia convencional basada en ejercicios excéntricos e isométricos y estiramientos estáticos. Determina que, existe una recuperación considerable, pero hay que considerar que la fisioterapia convencional tiene resultados similares en los grupos y en el que se adicionó ESWT no hay cambios significativos o importantes, quitándole así la credibilidad al tratamiento, llegando a concluir que su uso no es necesario o que existen alternativas más eficientes para el tratamiento de esta lesión. Pero por otro lado (Stania, 2022), describió en su estudio que la terapia con ondas de choque es efectiva para aliviar el dolor desencadenado por la tendinopatía de Aquiles y que también muestra resultados a nivel postural logrando que los pacientes mejoren el control de su postura.

Para el tratamiento de la tendinopatía rotuliana (Thijs, 2017) plantea que no encontró efectos benéficos en el tratamiento de carga excéntrica combinado con ESWT durante un seguimiento de 24 semanas; pero sugiere que los resultados deben ser analizados con cautela debido a que durante el seguimiento se perdieron a pacientes, por lo que no pudo llegar a determinar con seguridad los resultados de esta intervención. Otro estudio realizado por (Vetrano, 2013) concuerda con el autor mencionado anteriormente, pero en comparación con el uso de inyecciones de plasma rico en plaquetas y terapia con ondas de choque, llegando a la conclusión de que el uso de las inyecciones conduce a mejores resultados ante los pacientes con tendinopatía rotuliana.

El autor, (Notarnicola & Maccagnano, 2016) mencionan que existen diversos factores pronósticos claves para los resultados donde la lateralidad diferente al miembro dominante y los tratamientos repetidos con ondas de choque son pronósticos para una terapia fallida; mientras que ser masculino y contar con un índice de masa corporal alto son factores de éxito.

Las tendinopatías en miembro superior son frecuentes debido a las acciones que son ejecutadas por estas; (Kuo, 2022) menciona que la tendinopatía calcificada del hombro es una enfermedad común que como resultado muestra la restricción del movimiento y dolor. Aquí el uso de ondas de choque resulta ser una intervención muy eficiente mostrando según la Escala Visual Analógica (EVA) que hay una reducción significativa del dolor, lo que modifica el estilo de vida del paciente, permitiendo ejercer sus actividades sin complicaciones; (Arooj & Ashfaq, 2022), concuerda con el autor y menciona que la intervención con ondas de choque de alta energía es capaz de reducir el dolor, mejorar la funcionalidad y la calidad de vida de estos pacientes gracias a la disminución de los depósitos de calcio acumulados sobre la zona afectada.

Según (Özmen, 2021) la epicondilitis es una de las lesiones por uso excesivo más frecuentes que tiene como característica el dolor y sensibilidad alrededor del epicóndilo lateral del humero; el tratamiento conservador suele ser benéfico para estos pacientes, pero la terapia extracorpórea con ondas de choque es una modalidad no invasiva que tiene excelentes resultados; según el autor que no hay diferencia de resultados entre los tratamientos conservadores y el de ESWT, pero recomienda su uso por su capacidad de reducir el dolor y mejorar la funcionalidad del miembro afectado. Por otro lado, (Tzirogiannis, 2020) en su estudio menciona que cree ciegamente en el uso de ESWT ya que muestra excelentes resultados ante las manifestaciones clínicas de la patología, recomendando su uso para pacientes con epicondilitis.

Ante la reducción del dolor del hombro causado por una tendinopatía calcificada del supraespinoso (Carlisi et al., 2018) dice que la terapia con ondas de choque es eficaz para reducir la manifestación dolorosa de esta estructura y mejorar su función, determinando que este tratamiento es suficiente para esta tendinopatía, y que la adición de ejercicios excéntricos supervisados no aporta gran cambio ante esta. Mientras que el autor (Loppolo, 2013) apoya esta teoría y recalca que el uso de ESWT en un nivel de energía bajo es suficiente para aliviar el malestar y mejorar la función del miembro.

Los autores (Gerdesmeyer, 2013) (Kolk & Auw, 2013), en su estudio sobre el uso de la terapia con ondas de choque en la tendinopatía del manguito rotador, concluyeron que, el uso de este en baja energía no conduce a una recuperación evidente; pero mencionan que el uso de la terapia en alta energía si es efectiva ya que gracias a esta se pudo observar una mejora en la función del hombro, en la disminución del dolor y en la reducción del tamaño de las calcificaciones, siendo una técnica efectiva.

CAPÍTULO V. CONCLUSIONES Y PROPUESTA

6.1 Conclusiones

La terapia con ondas de choque ha sido inducida como un tratamiento para las enfermedades musculoesqueléticas desde fechas ambiguas, actualmente es considerada una terapia no invasiva que pretende aliviar el dolor y mejorar la función de los miembros que se encuentren alterados por lesiones tendinosas.

Mediante la revisión bibliográfica se pudo analizar los efectos del tratamiento con ondas de choque que incluyen la estimulación del proceso de recuperación en tendones dañados, aumentan la revascularización y el reclutamiento de células madre; además esta terapia es eficaz gracias a la hiperestimulación analgésica generando alivio del dolor. Llegando a concluir que la terapia es prometedora ante algunas patologías tendinosas como las que presentan depósitos de calcio, donde este tratamiento resultó ser muy eficiente, disminuyendo estas calcificaciones, reduciendo la sintomatología clínica y ayudando con la ejecución normal de las funciones de los miembros.

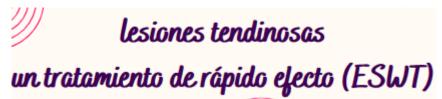
Mediante el análisis realizado en los diferentes protocolos de intervención se pudo observar que existen diversos factores que contribuyen con el éxito de la intervención como el peso y el sexo del afectado; otro de los factores fue la intervención mediante ondas de choque de alta y baja energía; donde la de alta energía era más prometedora gracias a sus efectos de revascularización y regeneración de los tejidos. En miembros inferiores se podía observar que estos factores de revascularización se efectuaban, pero no llegaban a ser prometedores para la regeneración de los tejidos en algunos casos como la tendinopatía rotuliana donde los investigadores proponían que existen mejores intervenciones que esta; pero no obstante en las tendinopatías de Aquiles, este tratamiento mostraba resultados no solo clínicos, sino que también posturales.

Finalmente, el uso de ondas de choque extracorpóreas es un tratamiento no invasivo, que muestra resultados verídicos desde la primera aplicación, los pacientes que fueron intervenidos con esta terapia, se muestran satisfechos y mencionan que tuvieron una reducción del dolor con la primera intervención y que mejora la ejecución de las funciones que normalmente se ejecutan, siento una técnica efectiva para las lesiones tendinosas a largo plazo.

6.2 Propuesta

Las lesiones tendinosas representan un problema personal y laboral que condiciona a los afectados a vivir con limitaciones que afectan su desempeño en cualquier actividad; por lo tanto, docentes y estudiantes deben incluir temas sobre lesiones tendinosas y opciones de tratamiento con resultados rápidos y eficaces mediante talleres de capacitación para aprender a actuar ante una afección tendinosa.

Carrera: Fisioterapia


Asignatura: Fisioterapia Clínica

Ciclo: 6° semestre

Nombre del taller: Taller teórico- práctico de Terapia con ondas de choque ante lesiones

tendinosas.

Logotipo del Taller:

Objetivo: Compartir información sobre la terapia con ondas de choque mediante un taller teórico- práctico que eduque a los estudiantes sobre los beneficios de este tratamiento.

Población beneficiaria: Estudiantes de la carrera de Fisioterapia

Estrategias:

- Invitar a profesionales especializados en fisioterapia ortopédica y traumatológica.
- Citar a los estudiantes de Fisioterapia de 6° semestre.
- Coordinar con las autoridades y docentes de la carrea

Temáticas para desarrollar:

	Bienvenida
	Cambios morfo-fisiológicos del sistema musculoesquelético
	Lesiones tendinosas
IODNADA 1	Técnicas diagnósticas para lesiones tendinosas
JORNADA 1	Tratamiento para las lesiones tendinosas
	Terapia de ondas de choque
	Historia
	 Conceptos y método de aplicación
	Uso de la terapia con ondas de choque
IODNADA 2	 Dosificación
JORNADA 2	Indicaciones y contraindicaciones
	Práctica de los estudiantes

BIBLIOGRAFÍA

- Abellán, F. (mayo de 2016). Terminología y Clasificación de las lesiones tendinosas. Traumatología del Deporte UCAM MURCIA, 1-3. Obtenido de https://www.sciencedirect.com/science/article/pii/S0716864012703127
- Arooj, F., & Ashfaq, A. (4 de marzo de 2022). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/35281612/
- Barbachan et al. (21 de Julio de 2021). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/34029235/
- Baumfeld, T. (2 de Febrero de 2019). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/30712379/
- Carlisi et al. (8 de noviembre de 2018). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/27824237/
- Castillo, E. (enero de 2019). Revista NPunto Volumen II. Obtenido de https://www.npunto.es/revista/10/diagnostico-y-tratamiento-de-las-lesiones-tendinosas
- Dedes, V. (Junio de 2018). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/30061805/
- Erroi, D., & Sigona, M. (10 de mayo de 2017). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/28717617/
- FACTS. (01 de 07 de 2007). Agencia Europea pala la Seguridad y la Salud en el Trabajo. Obtenido de https://osha.europa.eu/es/publications/factsheet-71-introduction-work-related-musculoskeletal-disorders#:~:text=Los%20trastornos%20musculoesquel%C3%A9ticos%20%28TME %29%20son%20el%20problema%20de,el%2022%20%25%20se%20queja%20de%20 dolores%20musculares.
- Frassanito, P. (junio de 2018). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/29185674/
- Furia et al. (septiembre de 2017). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/27893487/
- Galasso, O. (6 de Junio de 2013). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/22672772/
- Gatz et al. (13 de Febrero de 2021). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/33586526/
- Gerdesmeyer, L. (19 de noviembre de 2013). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/14625334/
- Kim, Y. (septiembre de 2014). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/25219475/

- Kolk, A., & Auw, K. (noviembre de 2013). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/24151273/
- Kubot, A. (31 de octubre de 2017). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/29154232/
- Kuo, Y.-C. (2022). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/35068440/
- Loppolo, F. (noviembre de 2013). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/22745199/
- Louwerens et al. (julio de 2020). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/32114063/
- Lynen, N. (14 de septiembre de 2017). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/27639439/
- Mai, A., & Radwa, M. (6 de noviembre de 2021). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/33283581/
- Martínez, M. (03 de 2016). SciELO. Obtenido de http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-02642016000100002
- Morral , A. (12 de 09 de 2018). Topdoctors españa. Obtenido de https://www.topdoctors.es/articulos-medicos/ondas-de-choque-como-funcionan-y-cuando-deben-aplicarse
- Notarnicola, A. (11 de octubre de 2014). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/25308950/
- Notarnicola, A., & Maccagnano, G. (16 de abril de 2016). Springer. Obtenido de https://link.springer.com/article/10.1007/s12306-015-0375-y
- OMS. (8 de febrero de 2021). OMS. Obtenido de https://www.who.int/es/news-room/fact-sheets/detail/musculoskeletal-conditions
- Özmen, T. (26 de febrero de 2021). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/32682361/
- Pellegrino, R. (10 de junio de 2022). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/35686864/
- Polikandrioti, M. (2019). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/32337881/
- Radice, F. (mayo de 2012). ELSEVIER. Obtenido de https://www.elsevier.es/es-revista-revista-medica-clinica-las-condes-202-articulo-lesiones-tendinosas-medicina-del-deporte-S0716864012703127
- Ramirez, R., Meneses, J., & Floréz, M. (2013). Una propuesta metodológica para la conducción de revisiones sistemáticas de la literatura en la investigación biomédica. CES, 65.

- Rodarte, L., & Araujo, R. (Noviembre Diciembre de 2016). ELSEVIER. Obtenido de https://www.elsevier.es/es-revista-enfermeria-clinica-35-articulo-calidad-vida-profesional-trastornos-musculoesqueleticos-S1130862116301176
- Rompe, J. (Junio de 2013). SAGE journals. Obtenido de https://journals.lww.com/jbjsjournal/Abstract/2008/01000/Eccentric_Loading_Compa red_with_Shock_Wave.8.aspx
- Stania, M. (30 de Noviembre de 2022). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/36469960/
- Teng , H. (septiembre de 2019). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/31021822/
- Thijs, K. (marzo de 2017). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/27347857/
- Torres, A. (21 de abril de 2023). KenHub. Obtenido de https://www.kenhub.com/es/library/anatomia-es/tendon-es
- Tsung-Hsun, Y. (febrero de 2017). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/27323324/
- Tutté, M. (28 de 04 de 2016). Indesamedical. Obtenido de http://indesamedical.com/wp-content/uploads/Estudio-Ondas-de-Choque-Dra-Laura-Tutte.pdf
- Tzirogiannis, K. (abril de 2020). Springer. Obtenido de https://link.springer.com/article/10.1007/s10396-019-01002-9
- Vahdatpour, B., & Forouzan, H. (26 de Abril de 2018). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/29887905/
- Vetrano, M. (13 de febrero de 2013). SAGE journals. Obtenido de https://journals.sagepub.com/doi/10.1177/0363546513475345?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
- Wavreille, G., & Fontaine, C. (2009). ScienceDirect. Obtenido de https://www.sciencedirect.com/science/article/abs/pii/S1286935X09709098
- Witte et al. (21 de mayo de 2013). SAGE journals. Obtenido de https://pubmed.ncbi.nlm.nih.gov/23696211/
- Xiangzheng, S., & Zhongli, L. (octubre de 2018). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/28597729/
- Ziying et al. (30 de noviembre de 2016). PubMed. Obtenido de https://pubmed.ncbi.nlm.nih.gov/28042570/

ANEXOS

Anexo 1

Tabla 5: Efectos biológicos de las ondas de choque

Cambios de permeabilidad en la membrana celular
Estimulación de la mitocondria. Liberación ATP
Producción de óxido nítrico (ON)
Producción de factores de crecimiento (VEGF, BMP)
Movilización y migración de células madre
Angio y vasculogénesis
Reducción de fibras no mielinizadas

Referencia: (Garcia, 2017)

Anexo 2

Tabla 6: Dosificación de la terapia de choque

Patología	Intensidad	Frecuencia
Epicondilitis	0.12 mJ/mm^2	1000 a 2500 disparos
Tendinitis del manguito rotador	0.3 a 0.4 mJ/mm ²	2000 a 3000 disparos
Fascitis plantar	0.06 mJ/mm^2	1000 a 2000 disparos
Pseudoartrosis	0.6 mJ/mm^2	3000 disparos
Retardos de consolidación	0.6 mJ/mm^2	3000 disparos

Referencia: (Martínez, 2016)

Anexo 3

Tabla 7: Escala Manual de PEDro

	Escala "Physiotherapy Evidence Database" (PEDro)		
	CRITERIOS	SI	NO
1.	Criterios de elegibilidad fueron específicos (no se cuenta para el total)	1	0
2.	Sujetos fueron ubicados aleatoriamente en grupos	1	0
3.	La asignación a los grupos fue encubierta	1	0
4.	Los grupos tuvieron una línea de base similar en el indicador de pronóstico más importante	1	0
5.	Hubo cegamiento para todos los grupos	1	0
6.	Hubo cegamiento para todos los terapeutas que administraron la intervención	1	0
7.	Hubo cegamiento de todos los sensores que midieron al menos un resultado clase	1	0
8.	Las mediciones de la menos un resultado clave fueron obtenidas en más del 85 & de los sujetos inicialmente ubicados en los grupos	1	0
9.	Todos los sujetos medidos en los resultados recibieron el tratamiento o condición de control tal como se les asigno, o si no fue este el caso, los datos de al menos uno de los resultados clave fueron analizados con intención de tratar	1	0
10.	Los resultados de comparaciones estadísticas entre grupos fueron reportados en al menos un resultado clave	1	0
11.	El estadístico provee puntos y mediciones de variabilidad para al menos un resultado clave	1	0

Fuente: Escala "Physiotherapy Evidence Database (PEDro)" para analizar calidad metodológica de los estudios clínicos. Escala PEDro (Monsalve et al., 2002).