

UNIVERSIDAD NACIONAL DE CHIMBORAZO FACULTAD CIENCIAS DE LA SALUD CARRERA LABORATORIO CLÍNICO E HISTOPATOLÓGICO

Título

Perfil de susceptibilidad antimicrobiana del género *Acinetobacter* en infecciones intrahospitalarias

Trabajo de Titulación para optar al título de Licenciado en Ciencias de la Salud en Laboratorio Clínico e Histopatológico

Autores:

Kiara Stefanía Mina Vásquez Mirka Rocio Tanguila Andy

Tutora:

Dra. María del Carmen Cordovéz Martínez

Riobamba, Ecuador 2023 DERECHOS DE AUTORÍA

Yo, Kiara Stefanía Mina Vásquez, con cédula de ciudadanía 0804594018 y Mirka Rocio

Tanguila Andy con cédula de ciudadanía 1501241309 autoras del trabajo de investigación

titulado: Perfil de susceptibilidad antimicrobiana del género Acinetobacter en

infecciones intrahospitalarias, certificamos que la producción, ideas, opiniones, criterios,

contenidos y conclusiones expuestas son de nuestra exclusiva responsabilidad.

Así mismo, cedemos a la Universidad Nacional de Chimborazo, en forma no exclusiva, los

derechos para su uso, comunicación pública, distribución, divulgación y/o reproducción

total o parcial, por medio físico o digital; en esta cesión se entiende que el cesionario no

podrá obtener beneficios económicos. La posible reclamación de terceros respecto de los

derechos de autoras de la obra referida, será de nuestra entera responsabilidad; librando a

la Universidad Nacional de Chimborazo de posibles obligaciones.

En Riobamba, a los 24 días de marzo de 2023.

Krara Mrna

Kiara Stefanía Mina Vásquez

C.I: 0804594018

Mirka Rocio Tanguila Andy

Just 1

C.I: 1501241309

DICTAMEN FAVORABLE DEL TUTOR

Quien suscribe, Dra. María del Carmen Cordovéz Martínez, catedrático designado Tutor para la evaluación del trabajo de investigación "Perfil de susceptibilidad antimicrobiana del género Acinetobacter en infecciones intrahospitalarias", certifico que recomiendo la APROBACIÓN de este con fines de titulación. Previamente se ha asesorado durante el desarrollo, revisado y evaluado el trabajo de investigación escrito y escuchada la sustentación por parte de su autor; no teniendo más nada que observar.

De conformidad a la normativa aplicable firmamos, en Riobamba a los 24 días de marzo del 2023.

Dra. María del Carmen Cordovéz Martínez

TUTORA

CERTIFICADO DE LOS MIEMBROS DEL TRIBUNAL

Quienes suscribimos, catedráticos designados Miembros del Tribunal de Grado para la evaluación del trabajo de investigación Perfil de susceptibilidad antimicrobiana del género Acinetobacter en infecciones intrahospitalarias por Kiara Stefanía Mina Vásquez, con cédula de identidad número 0804594018 y Mirka Rocio Tanguila Andy con cédula de identidad número 1501241309, bajo la tutoría de Mg. María del Carmen Cordovéz Martínez; certificamos que recomendamos la APROBACIÓN de este con fines de titulación. Previamente se ha evaluado el trabajo de investigación y escuchada la sustentación por parte de su autor; no teniendo más nada que observar.

De conformidad a la normativa aplicable firmamos, en Riobamba a los 24 días de marzo del 2023.

Mgs. Ximena Robalino Flores Presidente del Tribunal de Grado

Firma

Tomen John

Mgs. Eliana Martínez Durán Miembro del Tribunal de Grado

Firma

Mgs. Carlos Iván Peñafiel Méndez Miembro del Tribunal de Grado

Firma

CERTIFICADO ANTIPLAGIO Original

CERTIFICACIÓN

Que, Mina Vásquez Kiara Stefanía con CC: 0804594018 y Mirka Rocio Tanguila Andy con CC: 1501241309, estudiantes de la Carrera Laboratorio Clínico e Histopatológico, NO VIGENTE, Facultad de Ciencias de la Salud; ha trabajado bajo mi tutoría el trabajo de investigación titulado "Perfil de susceptibilidad antimicrobiana del género Acinetobacter en infecciones intrahospitalarias", cumple con el 5%, de acuerdo al reporte del sistema Anti plagio URKUND, porcentaje aceptado de acuerdo a la reglamentación institucional, por consiguiente autorizo continuar con el proceso.

Riobamba, 17 de marzo de 2023

Mgs. María del Carme Cordovéz Martínez
TUTOR(A) TRABAJO DE INVESTIGACIÓN

DEDICATORIA

Quiero dedicar esta tesis a Dios por ser pilar fundamental en mi vida, por hacerme la persona de bien que soy hoy en día. A mi madre Olga Vásquez quien ha sido el motor que me impulsa a jamás rendirme, a ella que con su apoyo y dedicación hacia mi persona me demuestra lo importante que es luchar por aquello que se anhela. A mi abuela Daisy Alarcón y mi tía Denny Coveña quienes me brindaron su apoyo incondicional en el transcurso de este reto. Finalmente a mis hermanos Jorge Mina y Azeneth Ávila por ser mi fuente de inspiración en cada momento.

Kiara Stefanía Mina Vásquez

El presente trabajo está dedicado principalmente a Dios, por permitirme llegar a cumplir una meta más, a mis padres, que con amor, paciencia y esfuerzo me han apoyado en cada etapa de mi vida, especialmente en aquellas circunstancias donde todo parecía imposible, a mis queridos hermanos, que han estado conmigo en todo momento, dándome palabras de aliento, y finalmente a mis amigos más cercanos, que a pesar de todo me han brindado su amistad y apoyo, todo este esfuerzo es por y para ustedes.

Mirka Rocio Tanguila Andy

AGRADECIMIENTO

Agradecer a Dios por la salud que nos otorga cada día. A mis familiares y amigos que con su constante muestra de aliento y apoyo me enseñaron que el querer es poder.

A la Universidad Nacional de Chimborazo por acogerme y permitirme cumplir con mi meta propuesta de ser una laboratorista de mi querido y apreciado país.

A la Dra. María del Carmen Cordovéz, tutora de este proyecto de investigación, por su dedicación, esfuerzo y enseñanzas impartidas.

Kiara Stefanía Mina Vásquez

Quiero expresar mi gratitud a Dios, por haberme dado salud y vida, a mis padres por su amor incondicional, por brindarme todo su apoyo, porque gracias a ellos he llegado tan lejos, a mis hermanos por estar presentes desde inicio hasta fin. Quiero agradecer a la Universidad Nacional de Chimborazo por abrirme las puertas hacia un mejor futuro como profesional de la salud, a mi tutora Dra. María del Carmen Cordovéz por su paciencia y dedicación, por inculcarnos sus conocimientos y hacer posible todo esto.

Mirka Rocio Tanguila Andy

INDICE GENERAL

CAPÍTULO I. INTRODUCCIÓN	12
CAPÍTULO II. MARCO TEÓRICO	17
Género Acinetobacter	17
Reservorio	17
Factores de virulencia	18
Factores de riesgo	18
Sitios y tipos de infección	19
Infecciones nosocomiales	19
Neumonía asociada al ventilador	20
Diagnóstico microbiológico	20
Aislamiento de Acinetobacter	21
Pruebas bioquímicas	22
Técnicas de biología molecular	23
Pruebas de susceptibilidad antimicrobiana (PSA)	24
CAPÍTULO III. METODOLOGÍA	25
Tipo de investigación	25
Técnicas y procedimientos	25
Población	25
Muestra	25
Método de estudio	26
Procesamiento Estadístico	26
Consideraciones Éticas	26
CAPÍTULO IV. RESULTADOS Y DISCUSIÓN	29
CAPÍTULO V. CONCLUSIONES	58
RIBI IOGR A FÍ A	50

INDICE DE TABLAS

Tabla	1.	Especie	s más	aisladas	de	Acinetobacter	causantes	de	infecciones
intraho	spita	alarias							30
			-		•	esistencia de para el diagnósti			
Tabla :	3 .Ti	pos de inf	ecciones	nosocom	iales	más frecuentes	ocasionadas ₁	or A	cinetobacter
y los fa	ctor	es de riesg	go asocia	idos					49

RESUMEN

El género Acinetobacter, es un patógeno causante de infecciones nosocomiales. Mediante revisión bibliográfica se realizó esta investigación, para compilar información científica sobre el perfil de susceptibilidad antimicrobiana de este microorganismo en dichas entidades. Estudio de tipo descriptivo, documental y no experimental, de corte transversal, retrospectivo. Se revisaron 57 artículos científicos y seleccionados 50 por medio de los criterios de inclusión y exclusión. La información fue buscada en bases de datos como Scielo, Redalyc, NCBI, Dialnet, Medigraphic, Elsevier, Revista latindex, Lilacs, Link Springer, Infomed, Medwave. Con el análisis y discusión de diferentes autores se logró cumplir con el objetivo propuesto, evidenciándose que las especies de Acinetobacter relacionadas a infecciones intrahospitalarias fueron A. iwoffi, A. haemolyticus, A. johnsonii y A. baumannii, siendo esta última la más aislada. Causantes de bacteriemias, neumonías, infecciones de heridas del sitio quirúrgico, tracto urinario y tejidos blandos, asociados a periodos prolongados de hospitalización, intervención quirúrgica, uso de catéteres venosos centrales, periodos largos de ventilación mecánica y el abuso/mal uso de antibioticoterapia. Siendo resistente a antibióticos como ciprofloxacina, gentamicina, amikacina y cefepime, La especie A. baumannii también lo fue para tobramicina, trimetoprim/sulfametoxazol, cefepima, ceftazidima, imipenem y ticarcilina/ clavulanato, resultando sensible a meropenem y en el caso del complejo A. baumannii- calcoaceticus también lo fue a tigeciclina y sulperazon. Las pruebas microbiológicas convencionales, el Kirby Bauer, la Concentración Inhibitoria Mínima, la Reacción en Cadena de la Polimerasa y métodos automatizados fueron los análisis diagnósticos más utilizados. Certeramente, conociendo estos aspectos, se evitan mayores complicaciones del paciente en el medio hospitalario.

Palabras clave: *Acinetobacter*, infección nosocomial, *A. iwoffi, A. baumannii*, susceptibilidad antimicrobiana

ABSTRACT

The genus Acinetobacter is a pathogen that causes nosocomial infections. This research was carried out by means of a bibliographic review in order to compile scientific information on the antimicrobial susceptibility profile of this microorganism in these entities. This was a descriptive, documentary, non-experimental, retrospective, crosssectional study. Fifty-seven scientific articles reviewed and 50 selected by inclusion and exclusion criteria. The information searched in databases such as Scielo, Redalyc, NCBI, Dialnet, Medigraphic, Elsevier, Revista latindex, Lilacs, Link Springer, Infomed, Medwave. With the analysis and discussion of different authors, the proposed objective achieved, showing that the Acinetobacter species related to intrahospital infections were A. iwoffi, A. haemolyticus, A. johnsonii and A. baumannii, the latter being the most isolated. Causing bacteremias, pneumonias, surgical site wound infections, urinary tract and soft tissues, associated with prolonged periods of hospitalization, surgical intervention, use of central venous catheters, long periods of mechanical ventilation and abuse/misuse of antibiotic therapy. Being resistant to antibiotics such as ciprofloxacin, gentamicin, amikacin and cefepime, A. baumannii species was also resistant to tobramycin, trimethoprim/sulfamethoxazole, cefepime, ceftazidime, imipenem and ticarcillin/clavulanate, being sensitive to meropenem and in the case of the A. baumanniicalcoaceticus complex also to tigecycline and sulperazon. Conventional microbiological tests, Kirby Bauer, Minimum Inhibitory Concentration, Polymerase Chain Reaction and automated methods were the most commonly used diagnostic tests. Certainly, knowing these aspects, further complications of the patient in the hospital environment can be avoided.

Key words: Acinetobacter, nosocomial infection, A. iwoffi, A. baumannii, antimicrobial susceptibility.

Reviewed by: Mgs. Maritza Chávez Aguagallo **ENGLISH PROFESSOR** c.c. 0602232324

CAPÍTULO I. INTRODUCCIÓN

En las últimas décadas la resistencia a los antimicrobianos se ha convertido en un problema mundial, con importantes implicaciones en el sistema de salud, representando una elevada tasa de mobi-mortabilidad. En la práctica clínica actual, las infecciones por microorganismos multirresistentes representan un gran reto, sobre todo en cuidados intensivos donde podría aumentar la resistencia a los antibióticos¹.

La resistencia microbiana favorece el riesgo del crecimiento y la propagación de patógenos, debido a la presión selectiva que producen los antimicrobianos que no son adecuados para terapias efectivas. Por ende, esto se relaciona con hospitalizaciones prolongadas, elevado costo en salud y mayor tasa de mortalidad². Según la Organización Mundial de la Salud (OMS) de acuerdo con el "Reporte global sobre la vigilancia de la resistencia antimicrobiana" del 2014 informa que por lo menos 129 estados de miembros se preocupan, con respecto a la magnitud del problema de salud pública³.

Esta situación comprende una gran amenaza a nivel mundial, que genera serias repercusiones en el área de la salud, sanidad y en el ambiente. Se puede producir bajo condiciones naturales o por el uso incorrecto y excesivo de antimicrobianos⁴.

Las infecciones nosocomiales se definen como aquellas enfermedades que se adquieren dentro del hospital, una de las importantes problemáticas asociadas al cuidado de la salud, las cuales pueden presentarse en cualquier área hospitalaria, tanto en cuidados ambulatorios y paliativos⁴.

Una de las bacterias de mayor relevancia clínica en los últimos años es el *Acinetobacter* sp., convertida en un problema de las infecciones nosocomiales multirresistentes. En 1977 se publicó la primera aparición del brote de *Acinetobacter* sp. seguido de varios casos en las siguientes décadas, en 2007 se mostró una desviación acerca del tema, aumentando la información cada año, hasta el 2015^{5,6}.

A nivel global *Acinetobacter* sp., es considerado por la Sociedad Americana de Enfermedades Infecciosas, como uno de los patógenos con mayor multirresistencia, causando una variedad de infecciones como: del sitio quirúrgico, bacteriemia, infección de

neumonía asociada al ventilador (NAV), quemaduras, entre otras patologías de carácter relevante⁷.

Las tasas de infecciones varían mundialmente, teniendo la incidencia más elevada en Asia con un 19,2% en las Unidades de Cuidado Intensivo (UCI), Europa del Este y Europa Occidental con 17,1% y 13,8% respectivamente. Se ha descrito un 14,8% en África y un 13,8% de América del Sur y Central. Con menos por ciento se ha descrito en Australia (5,6%) y Estados Unidos (3,7%)⁸.

En Cuba se reportan altas prevalencias de infecciones graves que han sido ocasionadas por *Acinetobacter* especialmente por el complejo ABC cuyas siglas corresponden a *Acinetobacter baumannii-calcoaceticus*. En el año 2006, en este mismo país se realizaron varios estudios para determinar la resistencia antimicrobiana de esta bacteria, de manera que se estableció como altamente resistente a los carbapenémicos, especialmente en las salas de UCI⁷.

Se ha considerado que la especie *A. baumannii* es la principal causante de infecciones asociadas a la asistencia de salud (IAAS) causando el 80% de las mismas en el mundo y provocando brotes nosocomiales entre el 2% y 10 % en Europa y los Estados Unidos. Pocos son los países de América Latina que cuentan con la prevalencia de *Acinetobacter* sp., según estudios realizados sólo algunos llegan a un 14% ⁹.

De acuerdo con la Organización Mundial de la Salud (OMS), *A. baumannii*, se incluye dentro de la lista de máxima prioridad, que necesita de nuevos tratamientos. Anualmente, en los EE. UU, causa un aproximado de 45 000 infecciones clínicas, y en el resto del mundo también se describen muchos aislamientos, por lo que provoca una tasa de mortalidad realmente elevada. Siendo así, la especie más importante clínicamente, por ser generalmente la más aislada de su género y por su relación con diferentes enfermedades en personas susceptibles que se encuentran en hospitalización ^{10,11}.

A. baumannii multirresistente fue declarado un problema grave para la salud a nivel mundial, de acuerdo con "El Centro Europeo para la Prevención y el Control de Enfermedades" (ECDC), "la Sociedad de Enfermedades Infecciosas de América" (IDSA), la OMS y el Centro para el Control y la Prevención de Enfermedades de América (CDC), y

este último lo reconoció como resistente a carbapenem de un nivel de amenaza "grave" a "urgente" en 2019¹².

En Colombia en el 2013, *Acinetobacter baumannii* se posicionaba en el noveno lugar entre los 10 microorganismos más aislados en las UCI, de acuerdo con los informes del Programa Nacional de Vigilancia del Instituto Nacional de Salud (INS)⁷. En 10 hospitales de este país se realizaron estudios en cuidados intensivos, el cual demostró que esta bacteria presenta altos porcentajes de resistencia a diferentes antibióticos, entre los cuales se encuentran los carbapenémicos. Dicha resistencia se relacionó directamente con la presencia de las enzimas carbapenemasas OXA-23 y OXA-151, cuyos genes fueron localizados en el cromosoma o en plásmidos¹³.

Se ha detectado la carbapenemasa Nueva Delhi (NDM) en América Latina y el Caribe en muchos aislamientos de *A. baumannii* (Brasil, Colombia y Honduras), *A. bereziniae* (Argentina, Brasil) y *A. pittii* (Paraguay). En la actualidad se manifiesta la presencia del gen bla NDM-1 en *A. baumannii* en Ecuador sin más información sobre el aislamiento¹⁴.

Ecuador, como todo país en Latinoamérica, es muy vulnerable ante el incremento de la resistencia a los antibióticos. Aunque es un país considerado en vías de desarrollo con ingresos económicos a niveles medio-alto. La separación entre los sistemas de salud pública o estatal y privada provoca inconvenientes y problemas para un adecuado acceso a una atención de salud de calidad. Las áreas rurales representan un tercio de la población nacional, cuentan con servicios de primer nivel sin laboratorios de microbiología lo que imposibilita el diagnóstico acertado de bacterias resistentes¹⁵.

En el año 1911 se descubrió por primera vez este microrganismo, que con anterioridad era conocido como *Micrococcus calcoaceticus*, con el pasar de los tiempos ha obtenido diferentes nombres, hasta llegar a lo que hoy en día se conoce como *Acinetobacter*. Dentro de sus hábitats en las que se reproduce están: el agua y el suelo. Ha sido aislada de los alimentos, artrópodos y del medio ambiente. En los seres humanos está presente en la piel cuando se produce una herida, en el sistema respiratorio y digestivo ¹⁶.

Esta bacteria perjudica sobre todo a pacientes inmunocomprometidos, que han sido sometidos a cirugías en gran escala o traumatismo, también afecta aquellos que presentan

enfermedades graves como por ejemplo tumores malignos, quemaduras y con largas estancias hospitalarias, etc. En medio de las infecciones más frecuente que causa se encuentran: la septicemia, sepsis de las heridas, neumonía, meningitis, endocarditis y finalmente infecciones urinarias, aunque raras¹⁷.

En la 68 Asamblea de la Organización Mundial de la Salud, mayo del 2015, se estableció adoptar el Plan de Acción Global contra la Resistencia a los Antimicrobianos (RAM) por parte de los Estados Miembros de la OMS, donde éstos se comprometieron a elaborar e implementar el Plan de Acción para la RAM. El Ecuador cuenta con este Plan de forma nacional, para la prevención y control de la resistencia antimicrobiana, incluyendo al género *Acinetobacter* el cual es muy resistente a los antibióticos y en muchos casos los médicos se quedan sin opción de tratamiento para administrar a los pacientes¹⁸.

Pacientes con infecciones bacterianas tratados en hospitales o centros de salud son una fuente potencial de cultivos bacterianos no reportados o no identificados de patógenos multirresistentes a los antibióticos, debido a la falta de información acerca del análisis de patrones de resistencia en estos microrganismos y el manejo de terapia antibiótica empírica. En Ecuador, el Instituto Nacional de Investigación en Salud Pública (INSPI) es la única entidad que ha monitoreado la resistencia bacteriana hasta el año 2017¹⁵.

La presente investigación estará enfocada en el estudio del perfil de susceptibilidad antimicrobiana del género *Acinetobacter* causante de diversas infecciones intrahospitalarias, teniendo en cuenta que este agente bacteriano se ha convertido en un problema de salud pública con una elevada tasa de mortalidad, es importante realizar una revisión bibliográfica sobre este microorganismo para conocer su comportamiento en relación con las infecciones nosocomiales, para así contribuir a un mejor manejo de esta patología y a la vez servirá como apoyo para futuras generaciones que deseen hacer uso de esta información con fines académicos.

El objetivo principal que tiene el trabajo es investigar mediante revisión documental el perfil de susceptibilidad antimicrobiana del género *Acinetobacter* en infecciones intrahospitalarias, describiéndolo en 3 acápites:

✓ Investigar en diferentes bases de datos científicas, las especies frecuentemente aisladas de *Acinetobacter* causantes de infección intrahospitalaria.

- ✓ Recopilar información, mediante revisión bibliográfica, sobre el perfil de susceptibilidad y resistencia de *Acinetobacter* como responsable de infecciones nosocomiales, así como los métodos más utilizados para el diagnóstico de éste.
- ✓ Analizar los diferentes tipos de infecciones nosocomiales más frecuentes causadas por Acinetobacter y los factores de riesgo asociados, según lo referido en la literatura consultada.

CAPÍTULO II. MARCO TEÓRICO

Género Acinetobacter

A lo largo de los años el género *Acinetobacter* ha sufrido una serie de cambios con respecto a su taxonomía. Al ser una especie que se encuentra libre en la naturaleza se han identificado más de 23 especies genómicas diferentes (Anexo 1). Forma parte de la familia *Moraxellaceae* y se ha considerado como un patógeno emergente en todos los hospitales del mundo causando mortalidad infecciosa en pacientes internados en unidad de cuidados intensivos¹⁶.

Acinetobacter es un microorganismo Gram negativo, durante la etapa de crecimiento es observado como un bacilo pero a medida que se encuentra en una fase estacionaria adopta su forma de cocobacilo, no móvil, catalasa positivo, mientras que las pruebas de indol y oxidasa son negativos. Normalmente suelen confundirle como bacteria Gram positiva por su capacidad de retener el reactivo Cristal Violeta. Cuando esta bacteria forma colonias, estás llegan a medir alrededor de 1 a 2mm y se caracterizan por formar colonias abombadas con superficies totalmente lisas¹⁶.

Este género se le considera también como bacterias heterótrofas versátiles, son microorganismos que sobreviven con facilidad a lugares extremadamente secos e inertes por un largo período de tiempo, esto les permite la facilidad de propagar en el hombre cepas microbiológicas de carácter ambiental. Esta bacteria es muy conocida por causar infecciones tales como bacteriemia y neumonías en pacientes hospitalizados ¹⁹.

Reservorio

Acinetobacter al ser una bacteria ubicua se la puede encontrar distribuida en la piel del ser humano, el agua y el suelo. Towner dio a conocer 3 poblaciones de reservorio de Acinetobacter la primera consistió en la localización de la especie A. baumannii en los equipos hospitalarios y en pacientes hospitalarios que han sido resistentes a los antibióticos administrados para contrarrestar esta bacteria; la segunda población correspondía a la flora normal de animales y humanos y la tercera población consistió en el aislamiento de antibióticos obtenidos de fuentes ambientales como suelo o agua²⁰.

Factores de virulencia

Los factores de virulencia de esta bacteria son escasos, debido a ello estas bacterias se han convertido en microorganismos muy oportunistas. En la actualidad no se ha evidenciado ninguna citotoxina que haya sido producida por este microorganismo, sin embargo se ha reconocido que la adhesión a las células epiteliales y a las mucinas inducidas por polisacáridos capsulados son posibles factores de virulencia que participan en la colonización de los tejidos en los pacientes hospitalizados²¹.

Dentro de estos factores de virulencia poco comunes se encuentran²¹:

- La viabilidad de la bacteria en medios secos de manera prolongada.
- La producción de bacteriocina.
- La presencia de cápsulas de polisacáridos.

Factores de riesgo

Dentro de las infecciones intrahospitalarias causadas por *Acinetobacter* se cuenta como factor de riesgo a aquellos internados en terapia intensiva siempre y cuando hayan sido intervenidos por someterse a procedimientos invasivos como la intubación endotraqueal. Otras de las infecciones tomadas en cuenta son aquellas que afectan a la piel, al hueso, tejidos blandos y también infecciones que afecten directamente al sistema nervioso central. En Latinoamérica se ha considerado a las infecciones nosocomiales como una de las bacteriemias más importantes causadas por *Acinetobacter* con un porcentaje del 5,3%²².

Entre otros factores de riesgo se destacan los siguientes: uso previo de antibióticos, largos periodos de hospitalización, tiempos largos de ventilación mecánica. Además de ello el no aplicar un correcto lavado de manos también sugiere la propagación de este microorganismo. Estos factores de riesgos han evidenciado que la especie *A. baumannii* puede en forma ocasional causar infecciones de piel y tejido blando²³.

Como otros factores de riesgo de *Acinetobacter* causante de infecciones intrahospitalarias se cuenta con los siguientes²¹:

- El tiempo de internado del paciente en el hospital.
- El método de cirugía que se aplica en el paciente.
- Algún tipo de infección previa.

- Colonización fecal con Acinetobacter.
- El ingreso a UCI o a la unidad de quemados.
- La asistencia mecánica respiratoria.

Sitios y tipos de infección

Infección en el tracto respiratorio: se ha considerado que el tracto respiratorio es la zona donde más se produce infección por *Acinetobacter* esto se debe a la producción de colonización orofaríngea transitoria que se da en pacientes hospitalizados. Dentro de esta categoría se destaca a la enfermedad neumonía nosocomial asociada al respirador²⁴.

Infección de la piel, tejidos blandos y óseos: el material protésico es el principal causante de que se provoquen infecciones por *Acinetobacter* en heridas quirúrgicas. Dentro de este tipo de infección se enumeran ciertas características ocasionadas por *Acinetobacter* entre ellas está la causa de celulitis, eritema, parche edematoso que luego se transforma en lesiones en la vesícula que terminan desarrollándose en ampollas hemorrágicas²⁵.

Infección de las vías urinarias: la colonización de *Acinetobacter* en las vías urinarias puede darse de manera fácil y rápida, sin embargo, la infección sigue siendo baja en cuanto a lo que corresponde de los catéteres urinarios permanentes²⁵.

Bacteriemia: Dentro de la UCI neonatal la bacteriemia por *Acinetobacte*r es muy frecuente. Normalmente se asocia a la bacteriemia nosocomial con el uso de catéteres intravenoso. Entre el 17 y el 46% de mortalidad en la UCI neonatal se encuentra asociado a bacteriemias por *Acinetobacte*r cuando esta es de origen polimicrobiana²¹.

Infecciones nosocomiales

La IN (infecciones nosocomiales) tienen su origen del vocablo griego *nosokomein* que quiere decir "nosocomio" el mismo que a su vez se desprende de las palabras griegas *nosos* que significa enfermedad y *komein* que es cuidar. Son infecciones asociadas con el ambiente hospitalario²⁶.

Se definen como infecciones nosocomiales aquellas que son obtenidas después de 48 horas de hospitalización, también cuando el paciente ha sido dado de alta, pero con la infección en período de incubación, desarrollando ésta entre 3 a 5 días posteriores, aunque en

prótesis ortopédicas se puede considerar hasta dos años como una IN. Se relacionan con mortalidad y morbilidad en pacientes críticos. Producen una estadía de largo plazo, mayor resistencia a antimicrobianos, elevados costos de salud y muertes innecesarias²⁵.

Uno de los microorganismos causantes de infecciones obtenidos en la estancia de hospitalización es *Acinetobacter*, el cual se introduce en un hospital, con frecuencia y se observan brotes en serie o superpuestos causados por diversas cepas resistentes a múltiples fármacos²⁵.

La Red Nacional de Seguridad Sanitaria (NHSN) de los Estados Unidos, en informe detallado en el 2008, dio a conocer que una de las infecciones nosocomiales más frecuentes en las unidades de cuidados intensivos son aquellas provocadas por *Acinetobacter* en proporciones que varían desde una neumonía con 8,4%, infección de las vías urinarias con 1,2%, infección en el torrente sanguíneo con 2,2% hasta una infección del sitio quirúrgico con 0,6% ²⁵.

Neumonía asociada al ventilador

En pacientes ingresados en unidad de cuidados intensivos se pueden establecer los microorganismos responsables de neumonía asociada al ventilador (NAV). En muchos estudios se ha evidenciado la incidencia de bacterias Gram negativas y anaeróbicas como productoras de este tipo de infección. Entre las primeras se destaca la presencia de *Acinetobacter spp*. La incidencia de esta bacteria en NAV implica un problema grave de salud pública en diversos hospitales, lo que hace pensar que las infecciones nosocomiales asociadas a ventilaciones mecánicas seguirán siendo una problemática a nivel mundial²⁷.

Diagnóstico microbiológico

Se sospecha la presencia del género *Acinetobacter* cuando se presentan manifestaciones clínicas de infección grave en pacientes hospitalizados, pero independientemente de esto, se toman muestras clínicas en dependencia del sitio de infección para estudio y diagnóstico microbiológico²⁸.

Muestras: Generalmente, en pacientes que presentan infecciones intrahospitalarias causada por *Acinetobacter*, se obtienen especímenes biológicos como sangre, esputo o exudado de traqueostomía, secreciones faríngeas, herida quirúrgica o lesiones de piel²⁸.

Examen microscópico: en la tinción Gram, se evidencia su morfología, son bacterias Gram negativas (Anexo 2), generalmente cocobacilos, y en ocasiones se visualizan como diplococos, con un diámetro 1,0 a 1,5 μm y longitud entre 1,5 a 2,5 μm. Se pueden distribuir en pares, en cadenas o agrupados de manera irregular. Aunque, existe una pequeña variación en la reacción de Gram, haciéndolo notable la visualización de células Gram variables^{28, 29}.

Cultivo: Las muestras descritas con anterioridad, pueden crecer en los medios de cultivo comunes, ya que *Acinetobacter* crece sin problemas²⁸. Entre estos medios se encuentran McConkey y agar-sangre con un pH de 7 a una temperatura que va desde los 37°C a los 44°C. Ciertas especies de *Acinetobacter* pueden llegar a producir hemólisis en los medios de cultivo agar sangre³⁰.

En el caso de agar sangre, las colonias que se crean en este medio presentan un color blanco grisáceo y pueden llegar a medir de dos a tres milímetros de diámetro. Pueden asilarse también en cultivos selectivos y diferenciales como EMB, y CLDE. En cuanto a lo que corresponde a las temperaturas estos pueden crecer en óptimas condiciones de 18-22°C; sin embargo, existen especies que se desarrollan mejor a una temperatura de 30°C³¹.

Muchos protocolos han optado por emplear el medio selectivo LAM cuyas siglas quieren decir Leeds Acinetobacter Medium, este medio es suplementado con 10 mg/L de vancomicina, 15 mg/L cefsulodina y 50 mg/L de cefradina para el aislamiento de *Acinetobacter* en muestras de carácter biológico²⁸.

Aislamiento de Acinetobacter

- 1. Preparar los agares a emplear según la casa comercial, como: agar sangre, agar chocolate, Columbia CNA y MacConkey. Sembrar la muestra y estriar por agotamiento diluyendo suficientemente el inóculo sobre la superficie del agar de para obtener colonias bien aisladas de la bacteria en estudio (Anexo 3) e incubando a 37 °C por 18-24 horas³².
- 2. Posteriormente a la incubación, observar las características de cada medio. Se observa colonias lactosa negativas, más pequeñas que las de enterobacterias, opacas, planas o convexas, cremosas, lisas y de bordes enteros en el MacConkey (Anexo 4). Pueden generar

beta-hemólisis en el agar sangre y agar chocolate e inhibirse en Columbia CNA. Se debe reportar los resultados³².

Pruebas bioquímicas

El género *Acinetobacter* se subdivide en especies como: *A. baumannii*, el más común, y tiene la capacidad de oxidar a la glucosa mientras que las especies como *A. iwoffii* y *A. haemolyticus* no la oxidan³³.

- Catalasa: es una enzima que permite descomponer el agua oxigenada en oxígeno y agua. Forma parte de la defensa bacteriana frente a agentes hiperoxidantes como el peróxido de hidrógeno. Consiste en colocar unas gotas de H₂O₂ en la muestra, si se observa la aparición de burbujas, se lo interpreta como positivo, caso contrario, es negativo. El género *Acinetobacter* se presenta como catalasa positiva^{34, 35}.
- Oxidasa: es una enzima denominada citocromo, que pertenece a la cadena de transporte de electrones en la ruta metabólica para la obtención de energía de algunas bacterias. Se basa en colocar sobre un papel filtro la muestra problema, y añadir gotas del reactivo oxidasa, si se observa una coloración azul-violeta, se interpreta como positivo, y si no se presenta esta coloración es una reacción negativa. El género *Acinetobacter* se presenta como oxidasa negativa ^{34, 35}.
- **TSI:** Triple Sugar Iron agar es un medio de color rojo, luego de preparado en tubos y con una inclinación de un ángulo de 45° para obtener un pico de flauta profundo, se inocula por punción una colonia de la bacteria en estudio, para observar si fermenta o no los azúcares, esperando encontrar la no fermentación de la glucosa y la lactosa (K/K) es decir no hay cambio de color del medio, por lo que se considera un bacilo no fermentador³⁶.
- **Medio SIM**: medio semisólido que sirve para observar o verificar la movilidad, la producción de indol y de sulfuro de hidrógeno por los microorganismos. La motilidad del microorganismo se verifica por la presencia de turbidez o crecimiento más allá de la línea de siembra, la cual se realiza por punción, en el caso de *Acinectobacter* se dice que es una bacteria inmóvil, indol negativo porque no reacciona con el reactivo de Ehrlich o de

Kovacs ocasionando un anillo de color rojo y tampoco produce sulfuro de hidrógeno (SH₂₎ pues el medio permanece sin cambio de color sin ponerse negro³⁷.

Técnicas de biología molecular

Existen varios métodos para la identificación de especies de *Acinetobacter* como³⁸:

- Hibridación ADN-ADN
- Análisis basado en secuencias de ADN
- Secuenciación de ARNr 16S y rpoB
- Análisis de restricción de secuencias de ADN amplificadas por PCR

Hibridación ADN-ADN: es un patrón de oro que se basa en la comparación del genoma completo de las especies para su delimitación. En 1986, Bouvet y Grimnot realizaron estudios de hibridación ADN-ADN, en el cual se referenciaron 12 especies, el género ahora consta de 26 especies nombradas y nueve especies genómicas. Cuatro especies pertenecen a *Acinetobacter*, las cuales son: *A. calcoaceticus, A. baumannii, A. pitii y A. nosocomiali*^{23, 38}.

Análisis basado en secuencias de ADN: abarca la asociación de los organismos desde su semejanza de la secuencia de ADN. Existe una gran variedad de secuencias de ADN como 16S rRNA, rpoB, 16S–23S intergenic spacer (ITS), los cuales son necesarios para la clasificación e identificación del género *Acinetobacter*³⁸.

Secuenciación de ARNr 16S y rpoB: es el método más común para el reconocimiento de especies desconocidas. El gen 16S rRNA posee nueve regiones hipervariables que detallan una variedad de secuencias entre las diferentes especies bacterianas. Es recomendable para la identificación de *Acinetobacter*³⁸.

Análisis de restricción de secuencias de ADN amplificadas por PCR: su fundamento consiste en la amplificación y restricción genética, donde se utiliza una enzima de restricción para obtener secuencias del genoma. Generalmente 16S rRNA, 16S-23S ITS y recA son los genes más utilizados³⁸.

Pruebas de susceptibilidad antimicrobiana (PSA)

Según Clinical and Laboratory Standards Institute (CLSI)³⁹ las técnicas recomendadas son:

- Pruebas de difusión con disco en agar Mueller-Hinton (Kirby-Bauer).
- Pruebas de dilución y difusión para la determinación de la concentración inhibitoria mínima (CIM).

Se recomienda en este documento que para la colistina debe utilizarse la CIM como único método aprobado y que sea mediante la prueba de microdilución en caldo y no por los métodos de difusión en disco y difusión en gradiente³⁹.

Otras formas de medir la susceptibilidad son métodos automatizados como Micro Scan, Vitek®2 (bioMérieux, Marcyl'Étoile, Francia) y Phoenix [®] (Becton Dickinson Diagnostics, Sparks, MD, EE. UU). Estos tienen inconvenientes pues presentan algunas diferencias importantes con los métodos de referencia, las cuales se encuentran relacionadas a una falsa sensibilidad, por lo que no se recomiendan para determinar el fenotipo de resistencia a la colistina⁴⁰.

CAPÍTULO III. METODOLOGÍA

Tipo de investigación

El presente trabajo "Perfil de susceptibilidad antimicrobiana del género Acinetobacter en

infecciones intrahospitalarias" fue una investigación de revisión bibliográfica caracterizada

por tener un:

• Nivel: descriptivo puesto a que se presentó la información recopilada de las diferentes

bases de datos científicas analizadas.

• Diseño: documental y no experimental debido a que el trabajo se enfocó en la búsqueda,

análisis e interpretación de los datos e información obtenida a partir de la literatura

consultada.

• Secuencia temporal: el presente proyecto fue de corte transversal porque se llevó a cabo

en un período de tiempo determinado y en un bloque único de resultados.

• Cronología de los hechos: retrospectivo a partir de las publicaciones sobre el tema

estudiado en las diferentes bases de datos bibliográficos.

Técnicas y procedimientos

Técnica: Observación

Procedimiento: Se revisó todas las bases de datos bibliográficos reconocidas

internacionalmente, para la recolección y tratamiento de la información descriptivamente.

Población

La población de este estudio quedó establecida por la totalidad de 57 fuentes bibliográficas

que abordan la temática referente al tema de investigación y que se encontraran publicadas

en bases de datos bibliográficas como Scielo, Redalyc, NCBI, Dialnet, Medigraphic,

Elsevier, Revista latindex, Lilacs, Link Springer, Infomed, Medwave.

Muestra

La muestra quedó conformada por las revisiones bibliográficas de 50 artículos

relacionados al aporte del perfil de susceptibilidad antimicrobiana del género

Acinetobacter en infecciones intrahospitalarias, con una vigencia entre 5 y 10 años de ser

publicadas y disponibles en las bases de datos seleccionadas como: Scielo (15), Redalyc

(3), NCBI (2), Dialnet (4), Medigraphic (14), Elsevier (2), Revista latindex (3), Lilacs (3),

Link Springer (1), Infomed (2), Medwave (1).

25

Método de estudio

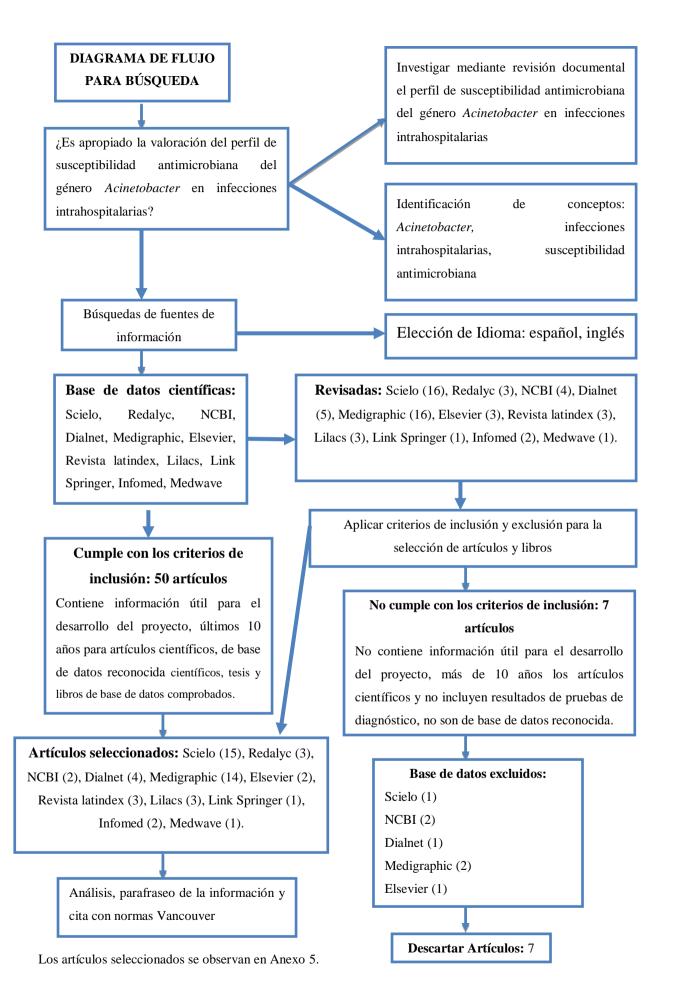
Se aplicó el método teórico porque se realizó un análisis y síntesis de los artículos científicos, así como libros, manuales, sitios web de diferentes organizaciones internacionales que estén acorde a la temática de investigación.

Procesamiento Estadístico

Se realizó mediante el análisis de contenidos e interpretación de los resultados obtenidos en las búsquedas bibliográficas con la triangulación de información.

Consideraciones Éticas

No existieron conflictos bioéticos porque la muestra no fue de origen biológico, en consecuencia, se respetaron las normas éticas de la investigación científica. Los resultados científicos fueron empleados con fines no maleficentes.


Criterios de inclusión

- Artículos que han sido publicados en los últimos 10 años.
- Artículos científicos que tengan información relevante con respecto al tema susceptibilidad antimicrobiana del género *Acinetobacter* en infecciones intrahospitalarias.
- Artículos que tengan validez científica publicada en las diferentes bases de datos reconocidas como: Scielo, Redalycs, dialnet, etc.
- Estudios publicados en los idiomas inglés y español.
- Artículos científicos que estudian las especies más aisladas de *Acinetobacter* causante de infección intrahospitalaria.

Criterios de exclusión

- Artículos científicos que no aportaron a la temática en el perfil de susceptibilidad antimicrobiana del género *Acinetobacter* en infecciones intrahospitalarias.
- Artículos a los que no se pudo tener acceso al texto completo mediante los recursos como Wikipedia, monografías, páginas web sin valor científico etc.
- Artículos duplicados, incompletos o mal documentados.
- Artículos que tienen más de 10 años de antigüedad.
- Artículos que no contengan información acerca de las especies más aisladas de *Acinetobacter*.

A continuación, se describe una estrategia de búsqueda bibliográfica la cual permitió la identificación de los documentos seleccionados, realizado en base al siguiente algoritmo:

CAPÍTULO IV. RESULTADOS Y DISCUSIÓN

En este acápite se tomó en cuenta el análisis de los resultados investigados de varios artículos científicos, los mismos que fueron clasificados de acuerdo a los criterios de inclusión, se contó con 50 artículos que tenían información relevante en base a los objetivos planteados. Para la selección de los artículos se tomaron diversas bases científicas y con una vigencia máxima de 10 años.

Según los objetivos planteados y considerando los resultados obtenidos en la revisión del tema se le dan salida a los mismos divididos en tres grupos y plasmados en tablas:

- Especies frecuentemente aisladas de *Acinetobacter* causantes de infección intrahospitalaria.
- Perfil de susceptibilidad y resistencia de *Acinetobacter* como responsable de infecciones nosocomiales, así como los métodos más utilizados para el diagnóstico de éste.
- Tipos de infecciones nosocomiales más frecuentes causadas por *Acinetobacter* y los factores de riesgo asociados.

Especies más aisladas de Acinetobacter causantes de infecciones intrahospitalarias

Los resultados de especies más aisladas de *Acinetobacter* causantes de infecciones intrahospitalarias se observan en la Tabla 1.

Tabla 1. Especies más aisladas de Acinetobacter causantes de infecciones intrahospitalarias

N°	Título	Autor y año	Tipo de estudio	Población	Resultados
1	Epidemiología de las	García H,	Estudio	113 neonatos con	De la población estudiada, 3,8 %
	infecciones nosocomiales en	Martínez A,	descriptivo	infección nosocomial	perteneció a Acinetobacter baumannii.
	una unidad de cuidados	Peregrino L, 2014	prospectivo		
	intensivos neonatales		longitudinal		
2	Caracterización de	Rodríguez A,	Estudio	264 aislamientos	Se identificaron 5 especies del género
	Acinetobacter sp. procedentes	Castro N, Harvey	descriptivo,		Acinetobacter: A. baumannii 95,3 %, A.
	de Infecciones Asociadas a la	O, Machado Y,	experimental de		haemolyticus 2,2 %, A. lwoffi 1,1 %, A.
	Asistencia Sanitaria	2022	corte transversal		Junnii1,1 % y A. johnsonii 0,3 %.
3	Microorganismos aislados en	Monté L,	Estudio	Pacientes ingresados	Durante el período estudiado, de un total
	pacientes ingresados. Hospital	Martínez R, 2017	descriptivo de	durante el período de	de 137 de aislamientos, 19 correspondió
	"Salvador Allende", La		corte transversal	febrero a junio de	a Acinetobacter sp.
	Habana. Febrero a junio de			2015	
	2015				
4	Sensibilidad antimicrobiana	Díaz J, Rojas J,	Estudio	61 cepas bacterianas	De las cepas bacterianas aisladas, 13,1
	del microbiota Ambiental de	Ibarra J, Tárraga	transversal		% correspondió a <i>Acinetobacter</i> sp.
	las Unidades de Cuidados	D, 2017			
	Intensivos de un Hospital				

	Peruano				
5	Prevalencia y perfil de	Silva V,	Estudio	73 pacientes de los	En los pacientes con úlceras infectadas
	susceptibilidad antimicrobiana	Marcoleta A,	descriptivo	cuales 46 aparecieron	se aislaron 68 cepas bacterianas, de las
	en bacterias aisladas de úlceras	Silva V, Flores A,	prospectivo,	úlceras infectadas	cuales correspondía a Acinetobacter
	crónicas infectadas en adultos	et al. 2018	longitudinal y		iwofii 4% y Acinetobacter baumannii
			analítico		3%.
6	Sepsis neonatal tardía	Samudio G,	Estudio	70 recién nacidos los	De los 88 episodios se aislaron 69
	nosocomial en una unidad de	Monzón R, Ortiz	observacional,	que aparecieron 88	microorganismos en distintos tipos de
	terapia intensiva: agentes	L, Godoy G, 2018	retrospectivo, de	episodios de infección	muestras, de la cual el 70 %
	etiológicos y localización más		prevalencia	nosocomial	correspondió a <i>Acinetobacter</i>
	frecuente				baumannii.
7	Prevalencia de la infección	Lopes P, Oliviera	Estudio	Todos los cultivos	De los microorganismos aislados en los
	relacionada con la asistencia a	A, Álvares R,	descriptivo,	realizados a pacientes	cultivos, el 29 % correspondió a
	la salud en pacientes	Souza V, et al.	retrospectivo, de	internados en la UCI	Acinetobacter sp. siendo el patógeno
	hospitalizados en unidad de	2018	enfoque	de adultos, en el	más prevalente.
	cuidados intensivos		cuantitativo	período de octubre de	
				2014 a abril de 2015.	
8	Sensibilidad antimicrobiana de	Monté L,	Estudio	Pacientes ingresados	Durante el período estudiado, dio un
	aislamientos en pacientes	Martínez R, 2017	descriptivo de	en el Hospital	total de 262 de pacientes, un 7%
	ingresados en el hospital		corte transversal	"Salvador Allende"	perteneció a Acinetobacter baumannii y

	"Salvador Allende" entre			durante el período de	1% a Acinetobacter iwoffi.
	agosto y diciembre de 2015			agosto a diciembre de	
				2015.	
9	Infecciones por los géneros	Santisteban L,	Estudio	52 aislamientos	Se identificaron cuatro especies del
	Klebsiella y Acinetobacter en	Carmona C, Pérez	descriptivo,	clínicos (102 de	género Acinetobacter:
	hospitales pediátricos cubanos	Y, et al. 2014	longitudinal	Klebsiella sp. y 50 de	90% Acinetobacter baumannii
	y resistencia antibiótica			Acinetobacter sp)	4% Acinetobacter iwoff
					4% A. haemolyticus
					2% A. johnsonii
10	Los microorganismos	Arias R, Rosado	Análisis de todos	Se estudiaron 48 377	Acinetobacter sp. es más frecuente en
	causantes de infecciones	U, Vargas A, et al.	los cultivos	resultados de cultivos	las unidades médicas de alta
	nosocomiales en el Instituto	2016	positivos de las	nosocomiales; de estos	especialidad (UMAE) que en los
	Mexicano del Seguro Social		infecciones	13 207 (27.3 %)	hospitales de segundo nivel.
			nosocomiales	correspondieron a	
				UMAE y 35 170 (72.6	
				%) a unidades médicas	
				de segundo nivel.	

En la tabla 1 se presentan 10 artículos relacionados con los aislamientos de las especies del género *Acinetobacter*, la cual, con mayor frecuencia presenta infecciones relacionadas con la atención sanitaria, el ingreso hospitalario y mortalidad de muchas personas.

El género *Acinetobacter*, es un patógeno infeccioso muy influyente, causante de infecciones nosocomiales, que ponen en riesgo a pacientes hospitalizados ¹⁶, con frecuencia es estudiado por muchos autores como Monté et al. ⁴¹ y Lopes et al. ⁴² quienes encontraron en sus aislamientos *Acinetobacter* sp y otros tipos de bacterias, siendo éste, el más frecuente. Mientras que, Díaz y colaboradores ⁴³, encontraron en un 13,1% de este microrganismo en las Unidades de Cuidados Intensivos.

Otros estudios como el de Santisteban y colaboradores⁴⁴, realizaron varios aislamientos, donde se encontraron 5 especies del género *Acinetobacter*, en el cual se encontraba predominante, *A. baumannii* en un 90%, seguido de 4% *A. iwoffi*, 4% *A. haemolyticus* y 2% *A. johnsonii*, datos que al ser comparados con el estudio de Rodríguez et al.⁸ obtuvieron en mayor porcentaje 95,3 % *A. baumannii* y en menor porcentaje: *A. haemolyticus* 2,2 %, *A. iwoffi* 1,1 %, *A. junnii1,1* % y *A. johnsonii* 0,3 %.

Arias y colaboradores⁴⁵ mencionan que, en los cultivos nosocomiales realizados, *Acinetobacter* sp. es más frecuente en las unidades médicas de alta especialidad (UMAE) que en los hospitales de segundo nivel.

Silva y cols. 46 aislaron dos especies del género en estudio, en pacientes que presentaban úlceras infectadas, de las cuales correspondía a *A. iwofii* 4% y *A. baumannii* 3%. De igual manera Mónte y cols. 47 durante el período de estudio, encontraron las mismas especies en los pacientes ingresados, de los cuales un 7% perteneció a *A. baumannii* y 1% *A. iwoffi*.

Concluyendo que García et al.⁴⁸ encontraron en neonatos con infección nosocomial a *A. baumannii* 3,8%, al igual que Samudio et al.⁴⁹ que también encontraron la misma especie en un 70% en recién nacidos, en diversos tipos de muestras, siendo así, ésta la especie más frecuente de infecciones intrahospitalarias.

Perfil de susceptibilidad y resistencia de *Acinetobacter* como responsable de infecciones nosocomiales, así como los métodos más utilizados para el diagnóstico.

Los resultados de perfil de susceptibilidad y resistencia de *Acinetobacter* en infecciones nosocomiales y los métodos más utilizados para el diagnóstico se observan en la Tabla 2.

Tabla 2. Perfil de susceptibilidad y resistencia de Acinetobacter en infecciones nosocomiales y los métodos más utilizados para el diagnóstico

N°	Título	Autor y año	Tipo de estudio	Población	Resultados
1	Patrones de resistencia a	Chávez M,	Estudio	52 aislamientos de	Acinetobacter baumannii demostró
	antibióticos de Acinetobacter	Gómez R,	descriptivo,	cultivos de las	resistencia para:
	baumannii en un hospital de	Cabrera C,	prospectivo de	diferentes muestras:	•100% amikacina, gentamicina,
	Colombia	Esparza M.	corte transversal	sangre, heridas	tobramicina, rimetoprim/sulfametoxazol,
		2015		quirúrgicas, secreción	cefepima, ceftazidima, imipenem y
				nasal, orina, secreción	ticarcilina/ clavulanato.
				uretral y puntas de	• 98,1% para ciprofloxacina
				catéter	•90,4% a levofloxacina
					•94,2% a ampicilina/sulbactam
					•96,2% a meropenem
					Diagnóstico: métodos convencionales
					microbiológicos y Kirby Bauer para la
					susceptibilidad antimicrobiana
2	Tendencias de resistencia	Rincón H,	Estudio	2100 cultivos de	A. baumannii demostró gran
	antimicrobiana en patógenos	Navarro K.	retrospectivo	diferentes catéteres	resistencia para los antibióticos como:
	aislados de infecciones	2016			amikacina, cefepime, ceftazidima y el
	nosocomiales				ciprofloxacino.

3	Caracterización de <i>Acinetobacter</i> sp. resistente a múltiples fármacos cepas aisladas de unidades de cuidados intensivos en Cali-Colombia	Gómez R, Castillo A, Chávez M. 2017	Estudio descriptivo	52 cepas de Acinetobacter sp. de muestras clínicas como sangre, hisopados nasales, tracto urinario, catéteres, etc.	investigación fueron multirresistentes a: trimetoprima/ sulfametoxazol, gentamicina, amikacina, tobramicina, ácido clavulánico, cefepima, ceftazidima e imipenem con excepciones del tigeciclina y sulperazon que fueron sensibles. Método de diagnóstico: para el cultivo se utilizó los métodos tradicionales microbiológicos, se utilizó el método de difusión en disco en agar Mueller-Hinton
					restricción del ADN como prueba molecular.

4	Infección del sitio quirúrgico	Goncalves B,	Estudio	484 mujeres	Todos los aislamientos de Acinetobacter
	después de una cesárea por	Murici D,	retrospectivo	embarazadas	resultaron resistentes a: ciprofloxacina y
	especies de Acinetobacter: un	Perini I,		sometidas a cesárea	gentamicina, algunos aislamientos fueron
	informe de un entorno	Correa Y, et			no sensibles a imipenem y/o meropenem
	hiperendémico en la región	al. 2021			los cuales se sometieron a estudios para
	amazónica brasileña				determinar la presencia de β-lactamasa
					clase D hidrolizante de carbapenem. A.
					baumannii fue resistente a
					carbapenemicos, A. baumannii
					nosocomialis solo un aislamiento fue
					resistente a carbapenemicos pero sin
					embargo fue sensible a aminoglucósidos,
					tigeciclina, ciprofloxacina y colistina y A.
					colistiniresistens fue resistente a colistina.
					Método de diagnóstico: pruebas de
					susceptibilidad antimicrobiana mediante
					el sistema Vitek-2.
5	Perfil de sensibilidad y resistencia	Parra D, Rada	Estudio	167 cultivos positivos	Resistencia de Acinetobacter para
	antimicrobiana de Acinetobacter	J. 2016	observacional no	de Acinetobacter sp.	amikacina (73%), ceftazidime (87%),
	sp. en el hospital municipal		experimental,		ciprofloxacina 80%, gentamicina (79%),
	Boliviano Holandés		descriptivo,		imipenem (38%)

			retrospectivo, de		Sensible a: amikacina (25%),
			corte transversal.		ceftazidime (4%), ciprofloxacina (19%),
					gentamicina (21%), imipenem (81%)
					Método de diagnóstico: se aplicaron
					métodos microbiológicos convencionales.
					El antibiograma realizado fue por el
					método de difusión por discos (Kirby-
					Bauer).
6	Análisis genómico del resistoma	Reguero M,	Estudio de tipo	1 aislamiento de	A. baumannii ABIBUN 107m resultó ser
	de la cepa de Acinetobacter	Mantilla J,	descriptivo	hemocultivo	resistente a antibióticos β-lactámicos
	baumannii ABIBUN 107m multi-	Valenzuela E,	observacional de		como: ampicilina, meropenem
	resistente y persistente en	Falquet L, et	corte transversal		cefotaxima, imipenem y a los
	hospitales colombianos	al. 2014			aminoglicósidos como gentamicina y
					amikacina, fluoroquinolonas
					(ciprofloxacina), lipopéptidos (colistina) y
					tetraciclina.
					Método de diagnóstico: para la
					determinación del perfil de
					susceptibilidad utilizaron el método de
					difusión en disco y la determinación de la
					concentración mínima inhibitoria (CMI)

7	Identificación y genotipificación	Rojas R,	Estudio	14 aislados	Se emplearon 13 antibióticos
	de aislamientos de Acinetobacter	Falco A,	descriptivo	bacterianos	pertenecientes a 4 grupos diferentes como
	baumannii provenientes de	Aranaga C,		provenientes de	son beta-lactámicos, aminoglucósidos,
	pacientes con infecciones	Alonso		muestras de	fluoroquinolonas y glicilciclinas de los
	nosocomiales y dispositivos tipo	G.2020		pacientes portadores	cuales Acinetobacter baumannii resultó
	catéter en Venezuela			de catéteres	ser resistente para ceftazidima, cefepima,
					imipenem, tigeciclina y amikacina.
					Método de diagnóstico: métodos
					convencionales microbiológicos para
					identificación y para susceptibilidad
					sistema automatizado Vitek® y PCR
					como método molecular.
8	Evaluación de la variabilidad en la	Tejero R,	Estudio	38 cepas	Acinetobacter baumannii sensible para
	sensibilidad de Acinetobacter	Causse M,	descriptivo	multirresistentes de	imipenem, meropenem, y multirresistente
	baumannii a tigeciclina en un	Moreno M,		A. baumanni	para cezftazidima, amikacina,
	mismo medio de cultivo con dos	Solis F, et al.			ciprofloxacino
	métodos de difusión cuantitativos	2012			Diagnóstico: la susceptibilidad se realizó
	comerciales diferentes				mediante método semiautomatizado
					Wider I® y por difusión en disco.
9	Identificación fenotípica de cepas	Nodarse R,	Estudio	60 cepas identificadas	Acinetobacter fue resistente a 12
	de Acinetobacter circulante	Fuerte M.	observacional	como Acinetobacter	antibióticos por CIM.

		2015.	analítico	sp.	Método de diagnóstico: prueba de
					susceptibilidad por difusión en disco.
10	Caracterización fenotípica de	Prado A,	Estudio	28 muestras	Mayor resistencia al cefepime mientras
	aislamientos de Acinetobacter	Arias N,	descriptivo de		que sólo el 14,3% fue sensible para
	baumannii en una institución de	Chávez M,	corte transversal		ceftazidime.
	salud de alta complejidad en Cali	Cabrera C, et			Método de diagnóstico: prueba de
		al. 2014			susceptibilidad se realizó por sistema
					automatizado Vitek ®
11	Infección por Acinetobacter sp en	Rodríguez M.	Estudio	66 cepas	Acinetobacter spp. presentó
	hospital universitario clínico	2014	observacional	de Acinetobacter sp.	susceptibilidad a los β-lactámicos,
	quirúrgico comandante Faustino		descriptivo	aislados en pacientes	meropenem e imipenem.
	Pérez Hernández de Matanza.		transversal	hospitalizados	Resistencia a aztreonam y la ticarcilina.
	2011-2012				Método de diagnóstico: método de
					difusión en disco Kirby-Bauer y CIM por
					método E-test.
12	Detección de carbapenemasas tipo	Cuaical N,	Estudio	60 aislamientos A.	El 5% sensible para los carbapenémicos,
	OXA en aislados de Acinetobacter	Delgado Y,	descriptivo	baumannii de	95% resultaron resistentes para imipenem
	baumannii de diferentes centros	Anzola Y,		diferentes hospitales	y 100% resistentes a: gentamicina,
	hospitalarios de Caracas,	Marcano D, et		de Caracas	ciprofloxacina, amikacina y cefepime.
	Venezuela	al. 2012			Método de diagnóstico: se utilizaron
					pruebas microbiológicas convencionales

					y para la susceptibilidad el método de	
					Kirby-Bauer.	
13	Caracterización clínica y	Barletta R,	Estudio	174 pacientes	A. baumannii resultó resistente en 109 de	
	microbiológica de pacientes con	Pérez L,	observacional,	diagnosticados con	los aislamientos para:	
	neumonía asociada a la	Barletta J,	descriptivo,	neumonía asociada a	Ampicilina-Sulbactam, Ceftriaxona,	
	ventilación mecánica, Cienfuegos	González M,	transversal	la ventilación	Ceftazidima, Amikacina, Ciprofloxacina,	
	2015-2017.	et al. 2019		mecánica	Gentamicina, Cefoxitin, Imipenem,	
					Meropenem.	
					Método de diagnóstico: pruebas	
					microbiológicas convencionales y para la	
					susceptibilidad el método de Kirby-	
					Bauer.	
14	Resistencia antimicrobiana en	Rivero R,	Estudio	618 gérmenes	Acinetobacter fue aislado con 39,6% en	
	Unidades de Cuidados Intensivos	Rivero J,	observacional	aislados en las UCI	secreciones respiratorias y con	
		Fernández M,	descriptivo de		resistencia para ampicilina, cefazolina,	
		Martínez A, et	corte transversal		cefuroxima y ceftazidima.	
		al. 2019			Método de diagnóstico: pruebas	
					microbiológicas convencionales y para la	
					susceptibilidad el método de Kirby-	
					Bauer.	
15	Frecuencia de aislamiento y	Rodríguez C,	Estudio	Aislamiento de	A. baumannii resistente a los	

				Т.	T .
	resistencia a los antimicrobianos	Nastro M,	prospectivo	Acinetobacter sp. en	carbapenems y un 96% de los
	de Acinetobacter sp. recuperadas	Dabos L, Vay		el hospital "José de	aislamientos resultaron ser sensible a la
	de pacientes atendidos en un	C, 2014		San Martín",	amikacina como único antibiótico
	hospital universitario de la Ciudad			Universidad de	sensible.
	Autónoma de Buenos Aires,			Buenos Aires, entre	Método de Diagnóstico: para identificar
	Argentina			marzo de 2013 y	las especies de los distintos aislamientos
				junio de 2014.	se utilizó como técnica la espectrometría
					de masa como métodos moleculares, para
					la susceptibilidad antimicrobiana se
					utilizó el equipo VITEK-2.
16	Acinetobacter baumanni y	Ramírez M,	Estudio	50 cepas de	A. baumanni resultó ser resistente:
	resistencia a los antimicrobianos	Moreno F,	prospectivo,	Acinetobacter	• 100% a cefazolina, ceftriaxona,
	en un hospital de segundo nivel de	Aranza J,	observacional,	baumanni	ceftazidime, ampicilina, aztreonam,
	la ciudad de México	Varela M, et	transversa	procedentes de	ciprofloxacino, levofloxacino y
		al. 2013		diferentes muestras	nitrufurantoína.
				clínicas	20% a carbapenémicos e imipenem
					22% para meropenem.
					Resultó sensible a tigeciclina.
					Método de Diagnóstico: identificación
					de las cepas mediante equipo
					automatizado VITEK 2 compact, la

					sensibilidad fue realizada mediante
					equipo automatizado con las tarjetas AST
					N82.
17	Bacteremia por Acinetobacter	Castillo Y,	Estudio	112 aislamientos	Más del 50% de los aislamientos de
	baumannii productor de	Nieto C,	descriptivo	provenientes de	Acinetobacter resultaron ser resistentes a:
	oxacilinasa en hospitales de Lima,	Astocondor L,		hemocultivos	ciprofloxacina, ceftriaxona, cefepime,
	Perú	Jacobs J, et al.		confirmados de	amikacina, gentamicina meropenem e
		2019		Acinetobacter	imipenem.
					Método de Diagnóstico: empleo de la
					CIM (concentración inhibitoria mínima)
					para evaluar la susceptibilidad
					antimicrobiana
18	Acinetobacter baumannii	Vanegas J,	Estudio	32 pacientes	El 80% de los aislamientos resultaron
	resistente a carbapenémicos	Higuita L,	descriptivo de	ingresados	resistente a: ampicilina-sulbactam,
	causantes de osteomielitis e	Vargas C,	corte transversal		piperacilina-tazobactam, ceftazidima,
	infecciones de la piel y los tejidos	Cienfuegos A,			cefotaxime, cefepime, imipenem,
	blandos en hospitales de Medellín,	et al. 2015			meropenem, gentamicina, amikacina,
	Colombia				ciprofloxacina.
					Método de Diagnóstico: test
					tridimensional y la técnica de reacción en
					cadena de la polimerasa. Para la

						susceptibilidad se empleó un sistema automatizado VITEK-2.
19	Efecto de las sustancias biocidas	Aguiar A	λ,	Estudio	30 aislamientos del	Se detectó elevada multirresistencia a los
	sobre aislamientos clínicos de	Martínez M	1,	observacional	CABC (complejo	antimicrobiannos: Ceftazidima,
	Acinetobacter	Rojas	I,	descriptivo y	Acinetobacter	Ceftriaxona, Cefotaxima, Meropenem,
	baumannii/calcoaceticus	Tsoraeva A, e	et	retrospectivo	baumannii-	Imipenem, Gentamicina, Amikacina,
		al. 2017			calcoaceticus	Sulfametoxazol/Trimetropim, Tigeciclina
						Método de Diagnóstico: utilizados
						métodos tradicionales microbiológicos y
						para la susceptibilidad se aplicó el método
						Bauer Kirby y E-test.
20	Neumonía asociada a ventilación	Rojo A	Α,	Estudio	Pacientes con NAV	Se determinó elevada multirresistencia a
	mecánica por Acinetobacter	Rivera C	Z.	observacional,	por AbMDR en	todos los grupos de antimicrobianos
	baumannii MDR en una unidad de	2014		descriptivo,	Terapia Intensiva de	activos frente a Acinetobacter baumannii:
	terapia intensiva de tercer nivel			transversal,	Neumología	β-lactámicos, aminoglucósidos,
				retrospectivo		inhibidores de la vía del folato y
						quinolonas.
						Método de diagnóstico: suscetibilidad
						por sistema Micro Scan Walk Away 96.
21	Aislamientos de Acinetobacter en	López M	1,	Estudio	231 aislamientos de	En UCI Polivalentes mostró resistencia de
	pacientes ingresados en Unidades	Zerquera .	J,	descriptivo	Acinetobacter	un 80% para ceftriaxona y ceftazidima.

	de Cuidados Intensivos	Iglesias	M,			En los Cuidados Intensivos Quirúrgicos
		Rodríguez	Y.			70% de resistencia a meropenem y
		2018				ceftriaxona.
						UCI Clínicos 85 % de resistencia a todos
						los antibióticos.
						El 10,4% de los aislamientos fue sensible
						a ampicillin con sulbactam.
						Método de diagnóstico: utilización de
						métodos convencionales microbiológicos.
						Para la prueba de susceptibilidad
						antimicrobiana se utilizó el método de
						difusión por discos Bauer Kirby.
22	Resistencia a aminoglucósidos por	Martínez	P,	Estudio	17 aislamientos de <i>A</i> .	Los 17 aislamientos resultaron ser
	los genes aph(3')-VIa y aac(3')-II	Máttar	S.	descriptivo	baumannii	resistentes a amikacina.
	en Acinetobacter baumannii	2012				Método de diagnóstico: se realizó
	aislados en Montería, Colombia					mediante la concentración mínima
						inhibitoria (CIM).
23	Determinación del gen que	Salazar	E,	Estudio	21 aislamientos de	Todos los aislamientos mostraron
	codifica la enzima APH-(3')-VIa	Nieves	B,	descriptivo	Acinetobacter	resistencia a estreptomicina; el 95,6%
	en aislamientos de Acinetobacter	Guzman	M,		13TU:RUH 1139	fueron resistentes para amikacina y
	13TU:RUH1139 de origen	Albarado L,	, et			gentamicina

	hospitalario	al. 2013			Método de diagnóstico: utilizados
					métodos microbiológicos convencionales.
					La susceptibilidad antimicrobiana se
					determinó mediante el método de difusión
					por discos Bauer Kirby.
24	Patrón de resistencia	Senthamarai	Estudio	1516 muestras	Se encontró que todos los aislamientos
	de Acinetobacter sp. aislado de	S, Sivasankari	descriptivo		eran resistentes:
	varias muestras clínicas en y	S, Anita C,			Ampicilina (100%)
	alrededor de Kanchipuram	Venugopal V			Cotrimoxazol cefuraxima y
		et al. 2012			ceftazidima (76%)
					• Doxiciclina (64%)
					Ciprofloxacina y gentamicina (58%)
					Netilmicina (57%)
					Amikacina (50%)
					Tetraciclina (46%)
					Método de diagnóstico: método de
					difusión por discos Bauer Kirby.

En la tabla 2 se puede observar el perfil de susceptibilidad y resistencia de *Acinetobacter* en infecciones nosocomiales y los métodos de diagnóstico. Este género ha demostrado ser bastante resistente frente a varios antibióticos muy conocidos. Goncalves et al.⁵⁰ y Parra et al.²², dan a conocer en su estudio que *Acinetobacter* tiene mucha resistencia a ciprofloxacina y gentamicina, estos resultados concuerdan con los de Castillo y colaboradores⁵¹. Cuaical y cols.⁵², demostraron que además de ser resistente a ciprofloxacina y gentamicina también presentaba gran resistencia para amikacina y cefepime.

También Senthamarai y cols.⁵³, obtuvieron resistencias para cotrimoxazol, cefuraxima, ceftazidima, doxiciclina, ciprofloxacina y gentamicina, seguidas de netilmicina, amikacina y tetraciclina. López et al.¹⁷ y Rivero y cols.⁵⁴, estudiaron esta bacteria en 3 salas de UCI, evidenciándose también que las cepas procesadas eran resistentes a ceftriaxona, ceftazidima, ampicilina, cefazolina y cefuroxima.

Por otro lado Chávez y cols.⁵⁵, estudiaron la resistencia de *A. baumannii* en el cual demostraron ser susceptible a los antibióticos amikacina, gentamicina, tobramicina, trimetoprim/sulfametoxazol, cefepima, ceftazidima, imipenem y ticarcilina/ clavulanato. Estos estudios que al ser comparados con los de Vanegas et al.⁵⁶, concuerdan en su totalidad. En el estudio de Rincón y colS.⁵⁷, *A. baumannii* resultó resistente a amikacina, cefepime, la ceftazidima y el ciprofloxacino.

Gómez et al.⁵⁸, en su investigación resaltaron la sensibilidad del complejo de *Acinetobacter baumannii- calcoaceticus* a tigeciclina y sulperazon, teniendo similares resultados para el primer antibiótico Ramírez y cols.⁵⁹. Sin embargo, Prado y colaboradores⁶⁰, evidencian una notable sensibilidad para ceftazidime y a su vez Rodríguez et al.⁶¹, a la amikacina. Mientras que para imipenem y meropenem encontraron susceptibilidad otros autores como Rodríguez⁶² y Tejero et al.⁶³.

Tanto Rincón y cols.⁵⁷, Parra y cols.²², Rojas et al.⁶⁴, Aguiar y cols.⁶⁵ y Salazar et al.⁶⁶ utilizaron métodos convencionales para el aislamiento de las cepas, estos incluían medios de cultivos diferenciales y selectivos como MacConkey y generales como agar sangre y caldo triptona soya con glicerol.

En cuanto a la identificación de la especie Rojas et al.⁶⁴, utilizaron pruebas bioquímicas como la oxidasa, catalasa, kligler, SIM (motilidad, indol y sulfuro de hidrógeno) y moleculares como el PCR. Nodarse y colaboradores⁶⁷ usaron el Kligler y la oxidasa. Mientras López et al.¹⁷, incluyeron además del kligler la urea y el citrato.

Algunos autores como Parra y cols.²², Cuaical et al.⁵², Rivero y cols.⁵⁴, Aguiar y cols.⁶⁵ y Senthamarai et al.⁵³ llevaron a la práctica el método de difusión en disco Kirby-Bauer para determinar la susceptibilidad antimicrobiana frente a antibióticos como ciprofloxacina, gentamicina, ceftazidima.

Otros como Reguero et al.⁶⁸, Rodríguez⁶², Castillo y cols.⁵¹ y Martínez y colaboradores⁶⁹ aplicaron la determinación de concentración mínima inhibitoria (CIM) para la susceptibilidad. A su vez Barletta y cols.⁷⁰, utilizaron el Kirby-Bauer por difusión para la determinación antimicrobiana. Mientras que Rojo y colaboradores⁷¹, utilizaron sistema automatizado Micro Scan Walk Away 96.

Goncalves et al.⁵⁰, Ramírez y cols.⁵⁹, Prado y colaboradores⁶⁰, Rojas y cols.⁶⁴ en sus estudios para conocer la susceptibilidad antimicrobiana empleó el sistema automatizado Vitek-2. Mientras que Tejero et al.⁶³ utilizó equipo semiautomatizado el Wider I®.

Tipos de infecciones nosocomiales más frecuentes causadas por *Acinetobacter* y factores de riesgo asociados.

Se puede observar en la tabla 3 los diferentes tipos de infecciones nosocomiales más frecuentes causadas por *Acinetobacter* y los factores de riesgo asociados a ella.

Tabla 3. Tipos de infecciones nosocomiales más frecuentes ocasionadas por Acinetobacter y los factores de riesgo asociados

N°	Título	Autor y año	Tipo de estudio	Población	Resultados
1	Caracterización de un brote de	Arroyave Y,	Estudio observacional	37 pacientes con	Infección: infección de
	infección o colonización por	Agudelo H y	y descriptivo	diagnóstico de	herida quirúrgica abdominal.
	Acinetobacter baumannii, en el	Rojas A, 2014.		infección o	Factores de riesgo:
	Hospital Universitario San José,			colonización por A.	• hospitalización en la
	E.S.E., Popayán, Colombia			baumannii	unidad de cuidados
					intensivos
					• estancia prolongada en
					hospitales
					• procedimientos invasivos,
					desnutrición
					• infección previa por otro
					microorganismo.
2	Características clínico	García A, Carnot	Estudio ambispectivo	29 pacientes	Infección: neutropenia febril
	microbiológicas de la infección por	J, Hart M,	y descriptivo		y sepsis respiratoria.
	Acinetobacter baumannii en	Hernández C, et			Factores de riesgo: el
	pacientes con afecciones	al. 2018			principal factor fue la
	hematológicas				colocación de catéter centro-
					venoso.

3	Factores de riesgo para la	Ruvinsky S,	Estudio retrospectivo	Se incluyeron	Infección: bacteriemia
	adquisición y características	Fiorili G, Pérez		pacientes de un mes a	Factores de riesgo:
	microbiológicas de las bacteriemias	M, Motto E, et		16 años con al menos	• uso de catéter venoso
	por Acinetobacter baumannii multi-	al. 2015.		48h de internación en	central-CVC
	resistente en pediatría. Estudio de			UCI	catéter vesical
	casos y controles				asistencia respiratoria
					mecánica
					• mayor tiempo de
					internación en UCI.
4	Descripción clínica de una serie de	Guerrero F,	Estudio observacional	Pacientes con sepsis	Infección: bacteriemia
	casos de bacteriemia por	Salazar S,	y retrospectivo	mayores de 18 años	Factores de riesgo:
	Acinetobacter baumannii en el área	Falconí G, 2015.		internados en el	 hospitalización
	de cuidados intensivos del Hospital			hospital	prolongada
	Carlos Andrade Marín, Quito-				• el empleo previo de
	Ecuador				antimicrobianos
					• el uso de múltiples
					dispositivos invasivos.
5	Neumonía asociada a ventilación	Rojo A, Rivera	Estudio observacional,	pacientes con NAV por	Infección: neumonía
	mecánica por Acinetobacter	C, 2014	descriptivo,	AbMDR en Terapia	asociada ventilación

	terapia intensiva de tercer nivel		retrospectivo		baumannii
					Factor de riesgo: tiempo de
					ventilación mecánica
					invasiva.
6	Brote de infección nosocomial de	Ramírez M,	Estudio retrospectivo,	Pacientes que	Infección nosocomial de vías
	vías respiratorias bajas por	Aranza J, Varela	descriptivo y	ingresaron al servicio	respiratorias bajas por A.
	Acinetobacter baumannii en un	M, García A, et	observacional	de medicina interna	baumannii.
	servicio de Medicina Interna de un	al. 2013		con aislamiento de	Factor de riesgo:
	hospital general de la Ciudad de			Acinetobacter	procedimientos de apoyo
	México			baumannii	respiratorio como ventilación
					mecánica
7	Factores pronósticos de mortalidad	Hernández O,	Estudio observacional,	130 pacientes	Infección: bacteriemia
	en pacientes con bacteriemia	Rodríguez E,	analítico y transversa		Factores de riesgo:
	ingresados en la Unidad de Cuidados	Ávila J, Vitón A,			• colocación de catéter
	Intensivos	et al. 2021			venoso central.
					 nutrición parenteral
					• choque séptico
8	Acinetobacter baumannii, un	Martínez E,	Estudio prospectivo,	Pacientes de 16 años o	Infección: choque séptico
	patógeno emergente: estudio	Sánchez L,	observacional y	mayores, cualquier	Factores de riesgo: dentro de
	prospectivo en una unidad de terapia	Rodríguez G,	longitudinal de	género.	los principales factores de

	intensiva respiratoria	2016	cohorte.		riesgo se cuentan
					diabetes mellitus
					hipertensión arterial
					• uso de ventilación
					mecánica invasiva.
9	Factores de riesgo asociados a	Copana R,	Estudio observacional,	257 niños internados	Infección traqueal y cutánea.
	infecciones por Acinetobacter	Guzmán G, 2016	longitudinal	en la UTIP del	Factores de riesgo:
	baumannii en una unidad de			Hospital del Niño	 procedimientos invasivos
	cuidados intensivos pediátricos			Manuel Ascencio	• estancia prolongada en
				Villarroel.	UTIP
					• uso irracional de
					antibióticos
					ventilación mecánica.
10	Infección nosocomial por	Arista N,	Estudio observacional,	80 pacientes	Infecciones: infección
	Acinetobacter y su efecto en un	Lozano J, García	transversal, analítico,		pulmonar, en tejidos blandos
	hospital de segundo nivel	V, Narváez J, et			y urinaria.
		al. 2019			Factores de riesgo: estancia
					hospitalaria
11	Algoritmo para el diagnóstico y	Roig A, Iglesias	Estudio	128 pacientes	Infección: neumonía a
	tratamiento de la neumonía asociada	N, Moyano I,	preexperimental		asociada a la ventilación

	a la ventilación mecánica artificial	2017.			mecánica.
					Factores de riesgo:
					uso previo de antibióticos
					• edad mayor de 60 años.
					• uso de antiácidos
12	Caracterización de pacientes con	Gómez L, Pérez	Estudio retrospectivo	39 pacientes	Infección: neumonía por
	neumonía por Acinetobacter	L, Pujol Y, Piña			Acinetobacter
	baumannii asociada a la ventilación	C, 2016.			Factores de riesgo:
	mecánica en las Unidades de				• estadía progresiva en la
	Cuidados Progresivos				unidad de cuidados
					intensivos (UCI)
					• uso previo de
					antimicrobianos.
13	Factores de riesgo para infección o	Saavedra C,	Estudio prospectivo	165 personas	Infección: en herida
	colonización por Acinetobacter	Arias G,			quirúrgica, bacteriemia
	baumannii resistente a pacientes	Gualtero S, Leal			Factores de riesgo:
	carbapenémicos en adultos	A, et al. 2016.			 posible infección cruzada
	hospitalizados en unidades de				• uso peligroso de
	cuidado intensivo, Bogotá, Colombia				carbapenémicos
					• catéter venoso central y

					hospitalización previa.
14	Acinetobacter baumannii resistente a	Barboza L,	Estudio retrospectivo,	18 pacientes	Infección: osteomielitis
	carbapenémicos causante de	Fernández H,	descriptivo,		ocasionadas por A. baumannii
	osteomielitis aguda en pacientes	Chacín L,	observacional,		Factores de riesgo:
	críticos	Briceño P, et al.	transversal		antecedentes de
		2017.			hospitalización y uso previo
					de antibióticos,
					específicamente de
					carbapenémicos.
15	Factores de riesgo y mortalidad por	Carnesoltas L,	Estudio observacional	442 pacientes	Infección: neumonía
	neumonía intrahospitalaria en la	Serra M,	de tipo descriptivo, de		nosocomial, infección
	Unidad de Terapia Intensiva de Ictus	O'farrill R, 2013	corte longitudinal y		urinaria por sondeo.
			prospectivo		Factores de riesgo:
					intubación endotraqueal
					ventilación mecánica
					• encamamiento
					prolongado
					• uso de sonda
					nasogástrica.
16	Factores de riesgo asociados a	Basílico H,	Estudio retrospectivo	29 casos de	Infección: bacteriemia

	bacteriemias en niños quemados	García S, Pintos		bacteriemias	Factor de riesgo: presencia
	internados en una unidad de cuidados	L, 2021			de acceso venoso central
	intensivos pediátricos especializada:				
	estudio de casos y controles				
17	Aislamientos de Acinetobacter sp.	Aguilera Y, Díaz	Estudio descriptivo,	280 cepas de	Infección:
	En infecciones asociadas a la	Y, Guerra M,	observacional de corte	Acinetobacter sp.	• heridas quirúrgicas 13,9%
	asistencia sanitaria	Sánchez M,	transversal		• tracto urinario 10%
		Martínez M,			• peritonitis 6,1%
		2019			• infección de piel y tejidos
					blandos 2,5%
					• meningitis 0,7%
					Factor de riesgo:
					ventilación mecánica
					• estancia hospitalaria
					prolongada
					empleo de onda vesical

En la tabla 3 se presentan los diferentes tipos de infecciones nosocomiales causadas por *Acinetobacter* y los factores de riesgo que conllevan a que se produzcan este tipo de infecciones que a su vez se han convertido en una problemática de salud a nivel mundial.

Ruvinsky et al.⁷², en su publicación en la que incluyó pacientes menores de edad, destaca como infección nosocomial a la bacteriemia, al igual que Basílico y cols.⁷³, en sus investigaciones en pacientes quemados de UCIP. Igual resultado obtuvo Hernández et al.⁷⁴, pero en paciente de cualquier edad. Los autores mencionados refieren como factores de riesgo el uso de catéter venoso central y el tiempo de internación en UCI.

Por otro lado, tanto Rojo y colaboradores⁷¹, Roig et al.⁷⁵ y Gómez y cols.²⁷, destacan que la infección más frecuente causada por *Acinetobacter* es la Neumonía asociada a ventilación mecánica. El primer autor mencionado reconoce como factores de riesgo el tiempo prolongado de ventilación mecánica invasiva mientras que los otros dos consideran el uso previo de antibióticos.

Mientras Arroyave et al.⁷⁶ y Saavedra y cols.⁷⁷, consideran que la infección de herida quirúrgica es la que se destaca, ambas publicaciones dan como factor de riesgo algún tipo de infección ocasionada previamente por otros microorganismos y la hospitalización prolongada, el primer autor le suma además la desnutrición y el choque séptico.

Las IN como la infección pulmonar, de tejidos blandos, del tracto urinario estuvieron asociadas a factores de riesgo como la estancia hospitalaria según Arista y cols.²⁵. Carnesoltas et al.⁷⁸, menciona que las más frecuentes fueron neumonía nosocomial debido a intubación endotraqueal, ventilación mecánica y el uso de sonda nasogástrica, mientras que la infección urinaria por sondeo vesical.

La infección causada por sepsis fue documentada en las investigaciones de García et al.⁷⁹, Guerrero y cols.⁸⁰ y Martínez y colaboradores⁸¹, con la diferencia de que en el primer estudio se determinó sepsis respiratoria, en el segundo sepsis severa y en el tercero choque séptico. Como factor de riesgo encontrado para que se produzca ésta fue el uso de procedimientos invasivos como el catéter venosos central y la ventilación mecánica.

Ramírez y cols.⁸² mencionan en su estudio que la infección nosocomial fue de vías respiratorias bajas por *A. baumannii*, debido a factores como procedimientos de apoyo

respiratorio como la ventilación mecánica. A su vez Copana et al.⁸³, en su estudio realizado a pacientes pediátricos, obtuvo que la infección por este patógeno fue la traqueal, seguida de la infección rectal y la infección cutánea causada por procedimientos invasivos, estancia prolongada en UTIP, uso irracional de antibióticos y ventilación mecánica.

Aguilera et al.⁶, mencionan en su artículo que las infecciones nosocomiales más frecuentes por *A. baumannii* son las de heridas quirúrgicas, tracto urinario, peritonitis, de piel y tejidos blandos y meningitis en menor por ciento.

Una infección poco común fue la osteomielitis ocasionadas por *A. baumannii*, reflejada en el estudio de Barboza et al.⁸⁴, donde da a conocer que esta infección ocurrió por diversos factores de riesgo como antecedentes de hospitalización y uso previo de antibióticos, específicamente de carbapenémicos.

CAPÍTULO V. CONCLUSIONES

De acuerdo a lo objetivos planteados en la investigación y a los artículos revisados se concluye lo siguiente:

- Las especies de *Acinetobacter* relacionadas a infecciones intrahospitalarias fueron *A. iwoffi*, *A. haemolyticus*, *A. johnsonii* y *A. baumannii*, siendo la última la más aislada y frecuente en estudios realizados.
- En lo que respecta a la susceptibilidad y resistencia del género Acinetobacter cabe destacar que es muy resistente antibióticos como ciprofloxacina, gentamicina, amikacina y cefepime, pero la especie más aislada con frecuencia *A. baumannii* fue resistente a tobramicina, trimetoprim/sulfametoxazol, cefepima, ceftazidima, imipenem y ticarcilina/ clavulanato, sin embargo, se resaltó la sensibilidad de éste al imipenem y meropenem. Mientras que para el complejo *A. baumannii- calcoaceticus* fue sensible a tigeciclina y sulperazon.
- En cuanto a métodos de diagnósticos utilizados para el género *Acinetobacter* se destacaron cultivos con medios diferenciales y selectivos como el agar MacConke y generales como agar sangre y caldo triptona soya con glicerol. Mientras que para la identificación de especies se utilizaron pruebas bioquímicas como la oxidasa, catalasa, kligler, SIM, urea y citrato y como pruebas moleculares la reacción en cadena de la polimerasa.
- Para la susceptibilidad antimicrobiana los métodos más utilizados fueron el de difusión en disco Kirby Bauer, CIM (concentración mínima inhibitoria) y el empleo de sistemas automatizados como el Vitek-2, Micro Scan Walk Away 96, Sensititre Diagnostic Systems y semiautomatizados Wider I®
- Las infecciones más recurrentes causadas por *Acinetobacter*, según la bibliografía consultada, se encuentran las bacteriemias, heridas en el sitio quirúrgico, neumonías, infecciones urinarias, sepsis e infecciones de tejidos blandos y dentro de los factores de riesgo más frecuentes identificados se mencionan: el tiempo de hospitalización, duración de la intervención quirúrgica, uso de catéteres venosos centrales, periodos largos de ventilación mecánica y el abuso/mal uso previo de antibióticos.

BIBLIOGRAFÍA

- Borja J, Espinoza C, Mejía C, Ortega J, Morales G, Basantes L, et al. Microorganismos multirresistentes en la unidad de cuidados intensivos del Hospital General del Norte Los Ceibos, Ecuador. AVFT. [Internet]. 2021 [consultado 2022 Jun 24]; 40(5): 517-519. Disponible en: https://www.revistaavft.com/images/revistas/2021/avft-5-2021/11-microorganismos-multirresistentes.pdf
- Vanegas J, Roncancio G, Jiménez J. *Acinetobacter baumannii*: importancia clínica, mecanismos de resistencia y diagnóstico. CES Medicina [Internet]. 2014 [consultado 2022 Jun 24]; 28(2): 233–46. Disponible en: https://www.redalyc.org/pdf/2611/261132654008.pdf
- 3. Yagui M. Resistencia antimicrobiana: nuevo enfoque y oportunidad. Revista Peruana de Medicina Experimental y Salud Pública [Internet]. 2018 [consultado 2022 Jun 29]; 35(1):7–8. Disponible en: https://www.scielosp.org/article/rpmesp/2018.v35n1/7-8/
- 4. Pírez C, Peluffo G, Giachetto G, Menchaca A, Pérez W, Machado K, et al. Prevención de infecciones intrahospitalarias. Agentes de infecciones respiratorias. Archivos de Pediatría del Uruguay [Internet]. 2020 [consultado 2022 Jun 29]; 91:57–9. Disponible en: http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S1688-12492020000700057&lng=es&nrm=iso&tlng=es
- 5. Aguilera Y, Díaz Y, Guerra M, Sánchez M, Martínez M. Aislamientos de Acinetobacter spp. en infecciones asociadas a la asistencia sanitaria. Revista Cubana de Medicina Militar [Internet]. 2019 [consultado 2022 Jun 29]. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0138-65572019000300002
- Jiménez A, Villegas M, Osorio J, Arias J, et.al. Manual de prevención y control de bacterias multirresistentes. Colombia; Distribuna; 2019. Disponible en: https://acin.org/images/guias/Manual_Prevencion_bacterias_MDR_ACIN_2019.pdf#p
 age=66
- 7. Rodríguez A, Castro A, Harvey O, Machado Y. Aislamiento *de Acinetobacter spp*. procedentes de infecciones asociadas a la asistencia sanitaria. La Habana-Cuba. Rev Exp Med. [Internet]. 2022 [Consultado 2022 Sep 05]; 8(1). Disponible en: http://rem.hrlamb.gob.pe/index.php/REM/article/view/599/340

- 8. Shahid, F., Zaheer, T., Ashraf, ST y col. [Internet]. 2021 [consultado 2022 August 23]; Diseños de vacunas quiméricas contra *Acinetobacter baumannii* utilizando enfoques pangenómicos y de vacunología inversa. Informe científico 11, 13213 (2021). Disponible en: https://doi.org/10.1038/s41598-021-92501-8
- Sotomayor N. Caracterización de la resistencia a los carbapenémicos de *Acinetobacter* spp. a partir de aislados clínicos y ambientales de la ciudad de Quito, Ecuador, 2016. [Internet]. 2016. [Consultado 2022 Sep 05]. Disponible en: http://repositorio.puce.edu.ec/bitstream/handle/22000/12632/Sotomayor_Nicole.pdf?se quence=1&isAllowed=y
- 10. Talyansky Y, Nielsen TB, Yan J, Carlino-Macdonald U, Di Venanzio G, Chakravorty S, et al. [Internet]. 2021 [consultado 2022 Ago 23]; La estructura de carbohidratos de la cápsula determina la virulencia en *Acinetobacter baumannii*. Patog 17(2) de PLoS: e1009291. Disponible en: https://doi.org/10.1371/journal.ppat.1009291
- 11. Baquero P, Cabarcas W, Carillo P, Gaviria E, Giralda B, Barrios F. Infección urinaria por *Acinetobacter baumannii* adquirida en la comunidad: caso clínico de una paciente embarazada. Ginecol Obstet Mex [Internet]. 2018 [consultado 2022 Jun 24]; 86(10): 682-686. Disponible en: http://www.scielo.org.mx/pdf/gom/v86n10/0300-9041-gom-86-10-682.pdf
- 12. Hing Jian Mea, Phelim Voon Chen Yong, Eng Hwa Wong, An overview of *Acinetobacter baumannii* pathogenesis: Motility, adherence and biofilm formation, Microbiological Research, Volume 247, 2021, 126722, ISSN 0944-5013, Disponible en: https://www.sciencedirect.com/science/article/pii/S0944501321000288
- 13. Villacís J, Bovera M, Romero D, Cornejo F, Albán V, Trueba G, et al. Carbapenemasa NDM-1 en *Acinetobacter baumannii* secuencia tipo 32 en Ecuador. New Microbes and New Infections [Internet]. 2019 [Consultado 2022 Jun 24]; 29. Disponible en: https://www.sciencedirect.com/science/article/pii/S2052297519300228
- 14. Ross J, Larco D, Colon O, Coalson J, Gaus D, Taylor K, Lee S. Vista de Evolución de la Resistencia a los antibióticos en una zona rural de Ecuador. Práctica Familiar Rural [Internet]. 20220 [consultado 2022 Jun 29]. Disponible en: https://practicafamiliarrural.org/index.php/pfr/article/view/144/177
- 15. Encalada R, Arteaga S. Vigilancia epidemiológica de *Acinetobacter baumannii* multirresistente a nivel hospitalario. Revista de Investigación en Salud [Internet]. 2021 [consultado 2022 Jun 24]; 4(12):500–20. Disponible en:

http://repositorio.cidecuador.org/jspui/bitstream/123456789/1668/1/Articulo_5_Vive_N12V4.pdf

- 16. Rada J. Acinetobacter un patógeno real. Rev Soc Bol Ped. [Internet]. 2016 [consultado 2022 Jun 11]; 55(1). Disponible en: http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1024-06752016000100006
- 17. López M, Zerquera J, Iglesias M, Rodríguez Y. Aislamientos de *Acinetobacter* en pacientes ingresados en unidades de cuidado intensivos. Medisur [Internet]. 2018 [Consultado 2022 jun 25]; 16(3):399-409. Disponible en: https://www.medigraphic.com/pdfs/medisur/msu-2018/msu183h.pdf
- 18. Ministerio de salud pública. Instituto nacional de investigación en salud pública reporte de datos de resistencia a los antimicrobianos en ecuador 2014-2018 [Internet]. Ecuador. 2018 [Consultado 2022 Jun 26]. Disponible en: https://www.salud.gob.ec/wp-content/uploads/2019/08/gaceta_ram2018.pdf
- Guerrero C, Guillén A, Díaz A, Rojas R, et al. Resistencia antibiótica de *Acinetobacter* sp. Aislados de fuentes clínicas. Cátedra Villareal. [Internet]. 2019 [Consultado 2022 Sep 04]; 7(1): 50-59. Disponible en: https://revistas.unfv.edu.pe/RCV/article/view/331/296
- 20. Álvarez L. Caracterización de nuevos factores de virulencia del patógeno nosocomial Acinetobacter baumanni. [Internet]. 2018 [Consultado 2022 Sep 04]. Disponible en: https://ruc.udc.es/dspace/bitstream/handle/2183/20573/AlvarezFraga Laura TD 2018. pdf
- 21. Acosta S. *Acinetobacter*. Codeinep. [Internet]. 2017 [Consultado 2022 Sep 04]. Disponible en: https://codeinep.org/wp-content/uploads/2017/02/Acinetobacter.pdf
- 22. Parra D, Rada J. Perfil de sensibilidad y resistencia antimicrobiana de *Acinetobacter spp*. en el Hospital Municipal Boliviano Holandés. Rev Soc Bol Ped. [Internet]. 2016 [Consultado 2022 Jun 26]; 55(1): 3-10. Disponible en: http://www.scielo.org.bo/scielo.php?script=sci arttext&pid=S1024-06752016000100002
- 23. Rodríguez R, Bustillo D, Caicedo D, Cadena D, et al. Acinetobacter baumannii: patógeno multirresistente emergente. Medicas UIS. [Internet]. 2016 [Consultado 2022 Jun 26]; 29(2): 113-135. Disponible en:

- http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-03192016000200011
- 24. Teme C, Franco O, Weber E, Gurrieri A, et al. *Acinetobacter* en una sala de cuidados intensivos Pediátricos. Nuestra experiencia. Pediatr (Asunción). [Internet]. 2012 [Consultado 2022 Jun 26]; 37(1): 30-35. Disponible en: http://scielo.iics.una.py/pdf/ped/v37n1/v37n1a04.pdf
- 25. Arista N, Lozano J, García V, Narváez J, Garro A, Zamora L, et al. Infección nosocomial por *Acinetobacter* y su efecto en un hospital de segundo nivel. Med Int Méx [Internet]. 2019 [consultado 2022 Jun 24]; 35(4): 477-484. Disponible en: https://www.medigraphic.com/pdfs/medintmex/mim-2019/mim194b.pdf
- 26. Pérez L, Fernández A, Olivera Y, Puig Y, et al. Infecciones nosocomiales y resistencia antimicrobiana. Rev Cub Med Int Emer. [Internet]. 2019 [Consultado 2022 Sep 07]; 18(1): 1-17. Disponible en: http://www.revmie.sld.cu/index.php/mie/article/view/475/pdf_113
- 27. Gómez L, Peréz L, Pujol Y, Piña C, et al. Caracterización de pacientes con neumonía por *Acinetobacter baumannii* asociada a la ventilación mecánica en las unidades de cuidados progresivos. Medisur. [Internet]. 2016 [Consultado 2022 Jun 26]; 14(4): 389-403. Disponible en: https://www.medigraphic.com/pdfs/medisur/msu-2016/msu164g.pdf
- 28. Cano M, Domínguez A, Ezpeleta C, Martínez L, et al. Cultivos de vigilancia epidemiológica de bacterias resistentes a los antimicrobianos de interés nososcomial. Seimc. [Internet]. 2007 [consultado 2022 Ago 26]. Disponible en: https://seimc.org/contenidos/documentoscientificos/procedimientosmicrobiologia/seimc-procedimientomicrobiologia26.pdf
- 29. Flores E, Bermúdez M, Salazar Elsa, Albarado L. Características morfo-tintoriales en el ciclo celular de *Acinetobacter baumannii* por los métodos de Gram y 4', 6-diamidino-2'-fenilindol, dihidrocloruro. [Internet]. 2017 [consultado 2022 Ago 27]; 29(1): 628-640. Disponible en: https://core.ac.uk/download/pdf/235924883.pdf
- 30. Ronquillo S. Prevalencia de infecciones por *Acinetobacter baumannii* multirresistente en pacientes hospitalizados en el Hospital General Enrique Garcés período enero 2013 a enero 2015. [Internet]. 2016 [consultado 2022 Sep 07]: 1-67. Disponible en: http://www.dspace.uce.edu.ec/bitstream/25000/7887/1/T-UCE-0006-045.pdf
- 31. Lopardo H, Gobet L, Viegas J, Moviglia A, et al. Introducción a la microbiología clínica. [Internet]. Buenos Aires: Edulp; 2016 [Consultado 2022 Jun 30]. Disponible

en:

- http://sedici.unlp.edu.ar/bitstream/handle/10915/52389/Documento_completo.pdf?sequ ence=1&isAllowed=y
- 32. Koneman, E. W. Introducción a la microbiología Parte I. En: Elmer W. Koniman, editor. Koniman Diagnóstico Microbiológico: texto y atlas a color. 6ª ed. Maryland, EE. UU: Editorial Médica panamericana; 2012. p. 1-64
- 33. Murray P, Rosenthal K, Pfaller M. Microbiología médica. 9na.ed. Elsevier Health Sciences, España; 2021
- 34. López J, Cárdenas M, Urbano A. Manual de laboratorio de microbiología para el diagnóstico de infecciones respiratorias. OmniaScience. 2012
- 35. Vesga O, Vélez L, Leiderman E, Restrepo Á. Enfermedades infecciosas de Homo sapiens. 1era. ed. CIB. 2015
- 36. T.S.I. Agar. Laboratorios Britania s, a. Argentina. [Internet]. [consultado 2022 Oct 18]. Disponible

 en: https://www.britanialab.com/back/public/upload/productos/upl_6070971eb11bd.pdf
- 37. SIM Medio. Laboratorios Britania s, a. Argentina. [Internet]. [consultado 2022 Oct 18].

 Disponible

 en:

 https://www.britanialab.com/back/public/upload/productos/upl_6070922459b84.pdf
- 38. Vijayakumar S, Biswas I, Veeraraghavan B. Identificación precisa de *Acinetobacter* spp. clínicamente importantes: una actualización. Futuro Ciencia. [Internet]. 2019. [consultado 2022 Ago 30]; 5(6): 2056-5623. Disponible en: https://www.future-science.com/doi/full/10.2144/fsoa-2018-0127
- 39. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 32nd ed. CLSI supplement M100 (ISBN 978-1-68440-134-5 [Print]; ISBN 978-1-68440-135-2 [Electronic]). Clinical and Laboratory Standards Institute, USA, 2022.
- 40. Jiménez Pearson MA, Galas M, Corso A, Hormazabal J, Duarte C, Salgado N. Consenso latinoamericano para definir, categorizar y notificar patológicos multirresistentes, con resistencia extendida o panresistentes. Rev Panamá Salud Pública 2019;43: e65. doi: 10.26633/RPSP.2019.65 Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6705331/
- 41. Monté L, Martínez R. Microorganismos aislados en pacientes ingresados. Hospital "Salvador Allende", La Habana. Febrero a junio de 2015. Rev haban cienc méd [Internet]. 2017 Ago [Consultado 2022 Sep 13]; 16(4): 552-563. Disponible en:

- http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519X2017000400007&lng=es
- 42. Lopes P, Oliveira A, Álvares R, Souza V, et al. Prevalencia de la infección relacionada con la asistencia a la salud en pacientes hospitalizados en unidad de cuidados intensivos. Enferm. glob. [Internet]. 2018 [Consultado 2022 Sep 13]; 17(52): 278-315. Disponible en: https://scielo.isciii.es/scielo.php?script=sci arttext&pid=S1695-61412018000400278
- 43. Díaz J, Rojas J, Ibarra J, Tárraga D. Sensibilidad antimicrobiana de la microbiota ambiental de las unidades de cuidados intensivos de un hospital peruano. Rev. perú. med. exp. salud publica [Internet]. 2017 Ene [citado 13 Sep 2022]; 34(1): 93-97. Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342017000100013
- 44. Santisteban Y, Carmona Y, Pérez Y, et al. Infecciones por los géneros *Klebsiella* y *Acinetobacter* en hospitales pediátricos cubanos y resistencia antibiótica. Rev cubana Med Trop [Internet]. 2014 [Consultado 2022 Sep 13]; 66(3): 400-414. Disponible en: http://scielo.sld.cu/scielo.php?script=sci-arttext&pid=S0375-07602014000300008
- 45. Arias R, Rosado U, Vargas A, et al. Los microorganismos causantes de infecciones nosocomiales en el Instituto Mexicano del Seguro Social. Rev Med Inst Mex Seguro Soc. [Internet]. 2016 [Consultado 2022 Sep 13]; 2016;54(1):20-24. Disponible en: https://www.medigraphic.com/pdfs/imss/im-2016/im161d.pdf
- 46. Silva V, Marcoleta A, Silva V, Flores A, et al. Prevalencia y perfil de susceptibilidad antimicrobiana en bacterias aisladas de úlceras crónicas infectadas en adultos. Rev. chil. infectol. [Internet]. 2018 [consultado 2022 Sep 13]; 35(2): 155-162. Disponible en:

 https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-10182018000200155
- 47. Monté L, Martínez R. Sensibilidad antimicrobiana de aislamientos en pacientes ingresados en el hospital "Salvador Allende" entre agosto y diciembre de 2015. Revista Cubana de Higiene y Epidemiología [Internet]. 2017 [consultado 2022 Sep 13]; 55 (2). Disponible en: http://www.revepidemiologia.sld.cu/index.php/hie/article/view/167
- 48. García H, Martínez A, Bejarano L. Epidemiologia de las infecciones nosocomiales en una unidad de cuidados intensivos neonatales. Rev Med Inst Mex Seguro Soc [Internet] 2014 [citado 2022 Sep 13], 53: 530 537. Disponible en: https://www.medigraphic.com/pdfs/imss/im-2014/ims142f.pdf

- 49. Samudio G, Monzón R, Ortiz L, Godoy G. Sepsis neonatal tardía nosocomial en una unidad de terapia intensiva: agentes etiológicos y localización más frecuente. Rev. chil. infectol. [Internet]. 2018 [citado 2022 Sep 13]; 35(5): 547-552. Disponible en: <a href="https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-10182018000500547#:~:text=La%20sepsis%20neonatal%20nosocomial%20(SNN,ventilador%20mec%C3%A1nico%20y%20v%C3%ADa%20urinaria
- 50. Goncalves B, Murici D, Perini I, Correa Y, et al. Infección del sitio quirúrgico después de una cesárea por especies de *Acinetobacter*: un informe de un entorno hiperendémico en la región amazónica brasileña. PubMed Central. [Internet]. 2021. [Consultado 2022 sep 09]; 9(4): 743. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8067217/
- 51. Castillo Y, Nieto C, Astocondor L, Jacobs J, et al. Bacteremia por *Acinetobacter baumannii* productor de oxacilinasa en hospitales de Lima, Perú. Rev Peru Med Exp. [Internet]. 2019 [Consultado 2022 sep 10]; 36(2):364-366. Disponible en: https://www.scielosp.org/article/rpmesp/2019.v36n2/364-366/
- 52. Cuaical N, Delgado Y, Anzola Y, Marcano D, et al. Detección de carbapenemasas tipo OXA en aislados de *Acinetobacter baumannii* de diferentes centros hospitalarios de Caracas, Venezuela. Rev Soc Ven Micro. [Internet]. 2012 [Consultado 2022 sep 10]; 32(2):95-100. Disponible en: http://ve.scielo.org/scielo.php?script=sci arttext&pid=S1315-25562012000200004&lang=es
- 53. Senthamarai S, Sivasankari S, Anita C, Venugopal V et al. Patrón de resistencia de *Acinetobacter* spp. aislado de varias muestras clínicas en y alrededor de Kanchipuram. BCM infectious diseases. [Internet]. 2012 [Consultado 2022 sep 11]; 12(1):57. Disponible en: https://link.springer.com/article/10.1186/1471-2334-12-S1-P57
- 54. Rivero R, Rivero J, Fernández M, Martínez A, et al. Resistencia antimicrobiana en Unidades de Cuidados Intensivos. Ecimed. [Internet]. 2019 [Consultado 2022 sep 10]; 58(274):119-125. Disponible en: https://www.medigraphic.com/pdfs/abril/abr-2019/abr19274f.pdf
- 55. Chávez M, Gómez R, Cabrera C, Esparza M. Patrones de resistencia a antibióticos de *Acinetobacter baumannii* en un hospital de Colombia. An Fac. med. [Internet]. 2015. [Consultado 2022 sep 09]; 76(1):21-26. Disponible en:

- http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1025-55832015000200004
- 56. Vanegas J, Higuita L, Vargas C, Cienfuegos A, et al. *Acinetobacter baumannii* resistente a carbapenémicos causantes de osteomelitis e infecciones de la piel y los tejidos blandos en hospitales de Medellín, Colombia. Biomédica. [Internet]. 2015 [Consultado 2022 sep 10]; 35(4):522-530. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/2572
- 57. Rincón H, Navarro K. Tendencias de resistencia antimicrobiana en patógenos aislados de infecciones nosocomiales. Rev Med In Me. [Internet]. 2016. [Consultado 2022 sep 09]; 54(1): 32-41. Disponible en: https://www.redalyc.org/journal/4577/457745148006/html/
- 58. Gómez R, Castillo A, Chávez M. Caracterización de *Acinetobacter spp* resistente a múltiples fármacos cepas aisladas de unidades de cuidados intensivos en Cali-Colombia. CM. [Internet]. 2017. [Consultado 2022 sep 09]; 48(4): 183-190. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5896725/pdf/1657-9534-cm-48-04-00183.pdf
- 59. Ramírez M, Moreno F, Aranza J, Varela M, et al. *Acinetobacter Baumanni* y resistencia a los antimicrobianos en un hospital de segundo nivel de la ciudad de México. Rev En Inf Ped. [Internet]. 2013 [Consultado 2022 sep 10]; 26(104):300-306. Disponible en: https://www.medigraphic.com/pdfs/revenfinfped/eip-2013/eip132f.pdf
- 60. Prado A, Arias N, Chávez M, Cabrera C, et al. Caracterización fenotípica de aislamientos de *Acinetobacter baumannii* en una institución de salud de alta complejidad en Cali. Biomédica. [Internet]. 2014 [Consultado 2022 sep 09]; 34(1):101-107.

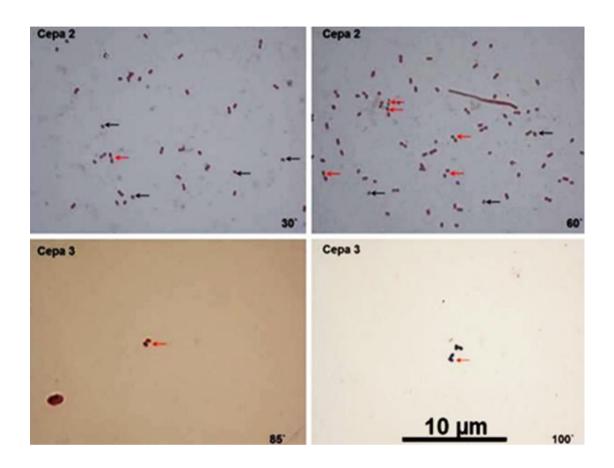
 Disponible en:

 http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-41572014000500012&lang=es
- 61. Rodríguez C, Nastro M, Dabos L, Vay C. Frecuencia de aislamiento y resistencia a los antimicrobianos de *Acinetobacter spp*. recuperadas de pacientes atendidos en un hospital universitario de la Ciudad Autónoma de Buenos Aires, Argentina. Rev Argent Microbio. [Internet]. 2014 [Consultado 2022 sep 10]; 46(4):320-324. Disponible en: https://www.elsevier.es/es-revista-revista-argentina-microbiologia-372-pdf-s0325754114700902
- 62. Rodríguez M. Infección por *Acinetobacter spp* en hospital universitario clínico quirúrgico comandante Faustino Pérez Hernández de Matanza. 2011-2012. Rev Med

- Elec. [Internet]. 2014 [Consultado 2022 sep 10]; 36(1):3-14. Disponible en: https://www.medigraphic.com/pdfs/revmedele/me-2014/me141b.pdf
- 63. Tejero R, Causse M, Moreno M, Solis F, et al. Evaluación de la variabilidad en la sensibilidad de *Acinetobacter baumannii* a tigeciclina en un mismo medio de cultivo con dos métodos de difusión cuantitativos comerciales diferentes. Fun Dial. [Internet]. 2012 [Consultado 2022 sep 09]; 25(3):189-193. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=6306761
- 64. Rojas R, Falco A, Aranaga C, Alonso G. Identificación y genotipificación de aislamientos de *Acinetobacter baumannii* provenientes de pacientes con infecciones nosocomiales y dispositivos tipo catéter en Venezuela. Fun Dial. [Internet]. 2020 [Consultado 2022 sep 09]; 35-62. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=7646666
- 65. Aguiar A, Martínez M, Rojas I, Tsoraeva A, et al. Efecto de las sustancias biocidas sobre aislamientos clínicos de *Acinetobacter baumannii/calcoaceticus*. Rev Cubana Hig Epidemiol. [Internet]. 2017 [Consultado 2022 sep 11]; 55(1):12-23. Disponible en: https://www.medigraphic.com/pdfs/revcubhigepi/chi-2017/chi171b.pdf
- 66. Salazar E, Nieves B, Guzman M, Albarado L, et al. Determinación del gen que codifica la enzima APH-(3´)-VIa en aislamientos de *Acinetobacter* 13TU:RUH1139 de origen hospitalario. Rev Soc Ven Micro. [Internet]. 2013 [Consultado 2022 sep 11]; 33(1):6-12. Disponible en: https://www.redalyc.org/articulo.oa?id=199428471003
- 67. Nodarse R, Fuerte M. Identificación fenotípica de cepas de *Acinetobacter* circulante. Rev Cub Med Mil. [Internet]. 2015 [Consultado 2022 sep 09]; 44(1):33-40. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0138-65572015000100005&lang=es
- 68. Reguero M, Mantilla J, Valenzuela E, Falquet L, et al. Análisis genómico del resistoma de la cepa de *Acinetobacter baumannii* ABIBUN 107m multi-resistente y persistente en hospitales colombianos. Fun Dial. [Internet]. 2014 [Consultado 2022 sep 09]; 16(2): 104-113. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=4997038
- 69. Martínez P, Máttar S. Resistencia a aminoglucósidos por los genes aph(3')-VIa y aac(3')-II en *Acinetobacter baumannii* aislados en Montería, Colombia. Saud uninorte. [Internet]. 2012 [Consultado 2022 sep 11]; 28(2):209-217. Disponible en: https://www.redalyc.org/articulo.oa?id=81724957003
- 70. Barletta R, Pérez L, Barletta J, González M, et al. Caracterización clínica y microbiológica de pacientes con neumonía asociada a la ventilación mecánica,

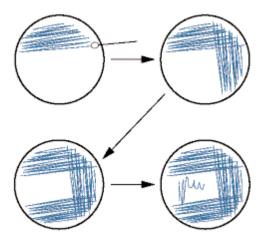
- Cienfuegos 2015-2017. Medisur. [Internet]. 2019 [Consultado 2022 sep 10]; 17(4):514-524. Disponible en: https://www.medigraphic.com/pdfs/medisur/msu-2019/msu194i.pdf
- 71. Rojo A, Rivera C. Neumonía asociada a ventilación mecánica por *Acinetobacter baumannii* MDR en una unidad de terapia intensiva de tercer nivel. Acta Médica. [Internet]. 2014 [Consultado 2022 sep 11]; 12(2):57-64. Disponible en: https://www.medigraphic.com/pdfs/actmed/am-2014/am142a.pdf
- 72. Ruvinsky S, Fiorili G, Pérez M, Motto E, et al. Factores de riesgo para la adquisición y características microbiológicas de las bacteriemias por *Acinetobacter baumannii* multiresistente en pediatría. Estudio de casos y controles. Rev Chi Infecto. [Internet]. 2015 [Consultado 2022 sep 12]; 32(1):19-24. Disponible en: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-10182015000200003&lng=es&nrm=iso&tlng=es
- 73. Basílico H, García S, Pintos L. Factores de riesgo asociado a bacteriemias en niños quemados internados en una unidad de cuidados intensivos pediátricos especializada: estudio de casos y controles. Arch Argent Pediatr. [Internet]. 2021 [Consultado 2022 sep 13]; 119(5): 325-330. Disponible en: https://pesquisa.bvsalud.org/portal/resource/es/biblio-1292087
- 74. Hernández O, Rodríguez E, Ávila J, Vitón A, et al. Factores pronósticos de mortalidad en pacientes con bacteriemia ingresados en la Unidad de Cuidados Intensivos. Rev Ciencias Médicas. [Internet]. 2021 [Consultado 2022 sep 12]; 25(1):1-10. Disponible en: https://www.medigraphic.com/pdfs/pinar/rcm-2021/rcm211f.pdf
- 75. Roig A, Iglesias N, Moyano I. Algoritmo para el diagnóstico y tratamiento de la neumonía asociada a la ventilación mecánica artificial. Mediciego. [Internet]. 2017 [Consultado 2022 sep 13]; 23(3):4-11. Disponible en: https://www.medigraphic.com/pdfs/mediciego/mdc-2017/mdc173b.pdf
- 76. Arroyave Y, Agudelo H y Rojas A. Caracterización de un brote de infección o colonización por Acinetobacter baumannii, en el Hospital Universitario San José, E.S.E., Popayán, Colombia. Rev Colomb Cir. [Internet]. 2014 [Consultado 2022 sep 12]; 29(1):42-49. Disponible en: http://www.scielo.org.co/pdf/rcci/v29n1/v29n1a7.pdf
- 77. Saavedra C, Arias G, Gualtero S, Lealb A, et al. Factores de riesgo para infección o colonización por *Acinetobacter baumannii* resistente a pacientes carbapenémicos en adultos hospitalizados en unidades de cuidado intensivo, Bogotá, Colombia. Aso

- Colom Inf. [Internet]. 2016 [Consultado 2022 sep 13]; 20(4):238-249. Disponible en: https://www.sciencedirect.com/science/article/pii/S0123939216000084
- 78. Carnesoltas L, Serra M, O'farrill R. Factores de riesgo y mortalidad por neumonía intrahospitalaria en la Unidad de Terapia Intensiva de Ictus. Medwave. [Internet]. 2013 [Consultado 2022 sep 13]; 13(2):1-9. Disponible en: https://www.medwave.cl/investigacion/estudios/5637.html
- 79. García A, Carnot J, Hart M, Hernandez C, et al. Características clínico microbiológicas de la infección por *Acinetobacter baumannii* en pacientes con afecciones hematológicas. Rev Cuba Med. [Internet]. 2018 [Consultado 2022 sep 12]; 57(3). Disponible en: https://pesquisa.bvsalud.org/portal/resource/es/biblio-1003935
- 80. Guerrero F, Salazar S, Falconí G. Descripción clínica de una serie de casos de bacteriemia por *Acinetobacter baumannii* en el área de cuidados intensivos del Hospital Carlos Andrade Marín, Quito-Ecuador. Rev Méd Vozandes. [Internet]. 2015 [Consultado 2022 sep 12]; 26(1):19-24. Disponible en: https://docs.bvsalud.org/biblioref/2019/06/999797/ao_02.pdf
- 81. Martínez E, Sánchez L, Rodríguez G. *Acinetobacter baumannii*, un patógeno emergente: estudio prospectivo en una unidad de terapia intensiva respiratoria. Rev Asoc Mex Med Crit. [Internet]. 2016 [Consultado 2022 sep 12]; 30(3):187-191. Disponible en: https://www.medigraphic.com/pdfs/medcri/ti-2016/ti163i.pdf
- 82. Ramírez M, Aranza J, Varela M, García A, et al. Brote de infección nosocomial de vías respiratorias bajas por *Acinetobacter baumannii* en un servicio de Medicina Interna de un hospital general de la Ciudad de México. Med Int Mex. [Internet]. 2013 [Consultado 2022 sep 12]; 29(3):250-256. Disponible en: https://www.medigraphic.com/pdfs/medintmex/mim-2013/mim133e.pdf
- 83. Copana R, Guzmán G. Factores de riesgo asociados a infecciones por Acinetobacter baumannii en una unidad de cuidados intensivos pediátricos. Gad Med Bol. [Internet]. 2016 [Consultado 2022 sep 12]; 39(1):6-9. Disponible en: https://dialnet.unirioja.es/servlet/articulo?codigo=6506948
- 84. Barboza L, Fernández H, Chacín L, Briceño P, et al. *Acinetobacter baumannii* resistente a carbapenémicos causante de osteomielitis aguda en pacientes críticos. Redieluz. [Internet]. 2017 [Consultado 2022 sep 13]; 7(1):33-39. Disponible en: https://produccioncientificaluz.org/index.php/redieluz/article/view/23729/24071


ANEXOS

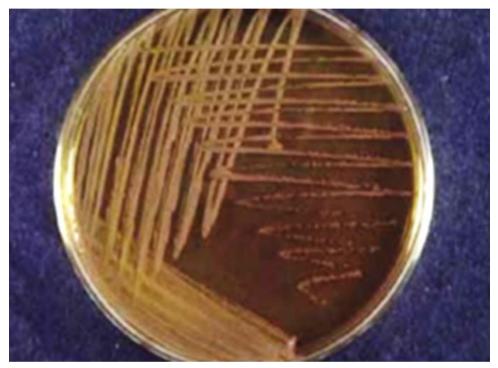
Anexo 1. Nomenclatura de las especies, hábitat o fuente típica en la que se encuentra

Nombre de la especie	hábitat o fuente típica		
baumannii (especies genómicas 2)	Humanos		
baylyi	Agua y suelo		
beijerinckii	Humanos y suelo		
bereziniae	Humanos y suelo		
bouvetti	Alcantarillado		
calcoaceticus (especies genómicas 1)	Suelo y agua		
gemeeri	Alcantarillado		
grimontii	Alcantarillado		
guillouiae	Humanos, agua y suelo		
gyllenbergii	Humanos		
haemolyticus (especies genómicas 4)	Humanos		
johnsonii (especies genómicas 7)	Humanos, agua y suelo Humanos		
junii (especies genómicas 5)			
iwoffii (especies genómicas 8/9)	Humanos		
nosocomialis	Humanos		
parvus	Humanos y animales		
pittii	Humanos		
radioresistens (especies genómicas 12)	Humanos y suelo		
schindleri	Humanos		
soli	Suelo		
tandonii	Alcantarillado y suelo		
tjernbergiae	Alcantarillado		
towneri	Alcantarillado		
ursingii	Humanos		
venetiaus	Agua		


Fuente: Visca P, Seifert H, Towner K. *Acinetobacter* infection-an emerging trhreat to human healt IUBMB Kufe. 2011; 63: 1048-54

Anexo 2. Fotomicrografías de extendidos de tiempos del ciclo celular de las cepas 2 y 3 de *Acinetobacter baumannii*. Las flechas rojas indican células cocobacilares divididas y las negras células ovales. Gram. 1000X.

Fuente: Flores E, Bermúdez M, Salazar Elsa, Albarado L. Características morfo-tintoriales en el ciclo celular de *Acinetobacter baumannii* por los métodos de Gram y 4', 6-diamidino-2'-fenilindol, dihidrocloruro. 29(1): 628-640. Disponible en: https://core.ac.uk/download/pdf/235924883.pdf


Anexo 3. Técnica de siembra por agotamiento.

Fuente: Koneman, E. W. Introducción a la microbiología Parte I. En: Elmer W. Koniman, editor. Koniman Diagnóstico Microbiológico: texto y atlas a color. 6^a ed. Maryland, EE.UU: Editorial Médica panamericana; 2012. p. 1-64

 $\underline{https://books.google.com.ec/books?id=jyVQueKro88C\&printsec=frontcover\&source=gbs_vpt_reviews\#v=onepage\&q\&f=false}$

Anexo 4. Colonias de Acinetobacter en medio MacConkey

Fuente: Cruz A, Cruz C. Bacteriología diagnóstica esencial. 1ra. ed. Guadalajara; 2016

Anexo 5. Artículos seleccionados según el algoritmo

N°	Año	Base de	Autor	Título en inglés	Título en español
		datos			
1	2012	Dialnet	Tejero R, Causse M,	Evaluation of the variability in the	Evaluación de la variabilidad en la
			Moreno M, Solis F, et	susceptibility of Acinetobacter	sensibilidad de Acinetobacter baumannii a
			al.	baumannii to tigecycline in the	tigeciclina en un mismo medio de cultivo con
				same medium with two methods	dos métodos de difusión cuantitativos
				of quantitative diffusion different	comerciales diferentes.
				commercial.	
2	2012	Scielo	Cuaical N, Delgado Y,	Detection of OXA type	Detección de carbapenemasas tipo OXA en
			Anzola Y, Marcano D,	carbapenemases in Acinetobacter	aislados de <i>Acinetobacter baumannii</i> de
			et al.	baumannii from different hospital	diferentes centros hospitalarios de Caracas,
				centers in Caracas, Venezuela.	Venezuela.
3	2012	Redalyc	Martínez P, Máttar S.	Aminoglycoside resistance by	Resistencia a aminoglucósidos por los genes
				aph(3')-VIa and aac(3')-II genes	aph(3')-VIa y aac(3')-II en Acinetobacter
				in Acinetobacter baumannii	baumannii aislados en Montería, Colombia.
				isolated in Montería, Colombia	
4	2012	Link Springer	Senthamarai S,	Resistance pattern of	Patrón de resistencia
			Sivasankari S, Anita C,	Acinetobacter spp. isolated from	de Acinetobacter spp. aislado de varias
			Venugopal V et al.	various clinical samples in and	muestras clínicas en y alrededor de
				around Kanchipuram.	Kanchipuram.

5	2013	Medigraphic	Ramírez M, Moreno F,	Acinetobacter Baumanni and	Acinetobacter Baumanni y resistencia a los
			Aranza J, Varela M, et	antimicrobial resistance in a	antimicrobianos en un hospital de segundo
			al.	second level hospital in Mexico	nivel de la ciudad de México.
				city	
6	2013	Redalyc	Salazar E, Nieves B,	Determination of the gene which	Determinación del gen que codifica la enzima
			Guzman M, Albarado	codifies the APH-(3')-VIa	APH-(3´)-VIa en aislamientos de
			L, et al.	enzyme in Acinetobacter	Acinetobacter 13TU:RUH1139 de origen
				13TU:RUH1139 isolates of	hospitalario.
				nosocomial origin	
7	2013	Medigraphic	Ramírez M, Aranza J,	Outbreak of nosocomial infection	Brote de infección nosocomial de vías
			Varela M, García A, et	of the lower respiratory tract due	respiratorias bajas por Acinetobacter
			al.	to Acinetobacter baumannii in an	baumannii en un servicio de Medicina Interna
				internal medicine service from a	de un hospital general de la Ciudad de
				general hospital in Mexico city.	México.
8	2013	Medwave	Carnesoltas L, Serra M,	Risk factors and mortality from	Factores de riesgo y mortalidad por neumonía
			O'farrill R.	hospital acquired pneumonia in	intrahospitalaria en la Unidad de Terapia
				the stroke intensive care unit.	Intensiva de Ictus.
9	2014	Medigraphic	García H, Martínez A,	Epidemiology of nosocomial	Epidemiologia de las infecciones
			Bejarano L.	infections in a neonatal intensive	nosocomiales en una unidad de cuidados
				care unit.	intensivos neonatales.

10	2014	Scielo	Santisteban Y,	Infections caused by Klebsiella y	Infecciones por los géneros Klebsiella y
			Carmona Y, Pérez Y, et	Acinetobacter genuses in Cuban	Acinetobacter en hospitales pediátricos
			al.	pediatric hospitals and	cubanos y resistencia antibiótica.
				antimicrobial resistance.	
11	2014	Dialnet	Reguero M, Mantilla J,	Genomic analysis of the resistoma	Análisis genómico del resistoma de la cepa de
			Valenzuela E, Falquet	of the strain of Acinetobacter	Acinetobacter baumannii ABIBUN 107m
			L, et al.	baumannii ABIBUN 107m multi-	multi-resistente y persistente en hospitales
				resistant and persistent in	colombianos.
				Colombian hospitals.	
12	2014	Scielo	Prado A, Arias N,	Phenotypic characterization of	Caracterización fenotípica de aislamientos de
			Chávez M, Cabrera C,	Acinetobacter baumannii isolates	Acinetobacter baumannii en una institución
			et al.	in a high-complexity healthcare	de salud de alta complejidad en Cali.
				institution in the city of Cali.	
13	2014	Medigraphic	Rodríguez M.	Infection by Acinetobacter spp. in	Infección por Acinetobacter spp en hospital
				the University Hospital	universitario clínico quirúrgico comandante
				"Comandante Faustino Pérez	Faustino Pérez Hernández de Matanza. 2011-
				Hernández" of Matanzas. 2011-	2012.
				2012.	
14	2014	Elsevier	Rodríguez C, Nastro M,	Frequency and antimicrobial	Frecuencia de aislamiento y resistencia a los
			Dabos L, Vay C.	resistance of Acinetobacter	antimicrobianos de Acinetobacter spp.
				species in a university hospital of	recuperadas de pacientes atendidos en un

				Buenos Aires City.	hospital universitario de la Ciudad Autónoma
					de Buenos Aires, Argentina.
15	2014	Medigraphic	Rojo A, Rivera C.	Pneumonia associated with	Neumonía asociada a ventilación mecánica
				mechanical ventilation due to	por Acinetobacter baumannii MDR en una
				Acinetobacter baumannii MDR in	unidad de terapia intensiva de tercer nivel.
				a third level intensive care unit	
16	2014	Scielo	Arroyave Y, Agudelo H	Charaterization of an outbreak of	Caracterización de un brote de infección o
			y Rojas A	infection or colonization by	colonización por Acinetobacter baumannii, en
				Acinetobacter baumannii, at	el Hospital Universitario San José, E.S.E.,
				Hospital Universitario San José,	Popayán, Colombia.
				E.S.E., Popayán, Colombia.	
17	2015	Scielo	Chávez M, Gómez R,	Patterns of Acinetobacter	Patrones de resistencia a antibióticos de
			Cabrera C, Esparza M.	baumannii resistance to	Acinetobacter baumannii en un hospital de
				antibiotics in a Colombian	Colombia.
				hospital	
18	2015	Scielo	Nodarse R, Fuerte M.	Phenotypic identification of	Identificación fenotípica de cepas de
				Acinetobacter circulating strains	Acinetobacter circulante.
19	2015	Revista	Vanegas J, Higuita L,	Carbapenem-resistant	Acinetobacter baumannii resistente a
		Latindex	Vargas C, Cienfuegos	Acinetobacter baumannii causing	carbapenémicos causantes de osteomelitis e
			A, et al.	osteomyelitis and infections of	infecciones de la piel y los tejidos blandos en
				skin and soft tissues in hospitals	hospitales de Medellín, Colombia.

				of Medellín, Colombia.	
20	2015	Scielo	Ruvinsky S, Fiorili G,	Microbiological features and risk	Factores de riesgo para la adquisición y
			Pérez M, Motto E, et al.	factors for acquiring multidrug-	características microbiológicas de las
				resistant Acinetobacter	bacteriemias por Acinetobacter
				baumannii bacteremia in pediatric	baumannii multi-resistente en pediatría.
				patients. Case-control study	Estudio de casos y controles.
21	2015	Lilacs	Guerrero F, Salazar S,	Clinical description of a series of	Descripción clínica de una serie de casos de
			Falconí G.	cases of Acinetobacter baumannii	bacteriemia por Acinetobacter baumannii en
				bacteremia in Intensive Care Unit	el área de cuidados intensivos del Hospital
				of Carlos Andrade Marín	Carlos Andrade Marín, Quito-Ecuador.
				Hospital; Quito-Ecuador.	
22	2016	Medigraphic	Arias R, Rosado U,	The microorganisms that cause	Los microorganismos causantes de
			Vargas A, et al.	nosocomial infections in the	infecciones nosocomiales en el Instituto
				Mexican Institute of Social	Mexicano del Seguro Social
				Security	
23	2016	Redalyc	Rincón H, Navarro K.	Antimicrobial resistance trends in	Tendencias de resistencia antimicrobiana en
				pathogen isolated from	patógenos aislados de infecciones
				nosocomial infections	nosocomiales.
24	2016	Scielo	Parra D, Rada J.	Sensitivity profile and	Perfil de sensibilidad y resistencia
				antimicrobial resistance of	antimicrobiana de Acinetobacter spp. en el

				Acinetobacter spp. in the Bolivian	Hospital Municipal Boliviano Holandés.
				Dutch Municipal Hospital	
25	2016	Medigraphic	Martínez E, Sánchez L,	Acinetobacter baumannii, an	Acinetobacter baumannii, un patógeno
			Rodríguez G.	emerging pathogen: a prospective	emergente: estudio prospectivo en una unidad
				study in a respiratory intensive	de terapia intensiva respiratoria.
				care unit	
26	2016	Dialnet	Copana R, Guzmán G.	Risk factors associated to	Factores de riesgo asociados a infecciones por
				Acinetobacter baumannii in a	Acinetobacter baumannii en una unidad de
				PICU	cuidados intensivos pediátricos.
27	2016	Medigraphic	Gómez L, Peréz L,	Characterization of Patients with	Caracterización de pacientes con neumonía
			Pujol Y, Piña C, et al.	Acinetobacter baumannii	por Acinetobacter baumannii asociada a la
				Ventilator-associated Pneumonia	ventilación mecánica en las unidades de
				in Progressive Care Units	cuidados progresivos.
28	2016	Elsevier	Saavedra C, Arias G,	Risk factors for colonisation or	Factores de riesgo para infección o
			Gualtero S, Lealb A, et	infection by Acinetobacter	colonización por Acinetobacter baumannii
			al.	baumannii resistant to	resistente a pacientes carbapenémicos en
				carbapenems in adult patients	adultos hospitalizados en unidades de cuidado
				hospitalised in Intensive Care	intensivo, Bogotá, Colombia.
				Units in Bogota, Colombia.	
29	2017	Scielo	Monté L, Martínez R.	Isolated microorganisms in	Microorganismos aislados en pacientes
				admitted patients. "Salvador	ingresados. Hospital "Salvador Allende", La

				Allende" Hospital, Havana.	Habana. Febrero a junio de 2015.
				February - June 2015	
30	2017	Scielo	Díaz J, Rojas J, Ibarra J,	Antimicrobial sensitivity of the	Sensibilidad antimicrobiana de la microbiota
			Tárraga D.	environmental microbiota in the	ambiental de las unidades de cuidados
				intensive care units of a peruvian	intensivos de un hospital peruano.
				hospital.	
31	2017	Infomed	Monté L, Martínez R.	Antimicrobial sensitivity of	Sensibilidad antimicrobiana de aislamientos
				isolates in patients admitted to the	en pacientes ingresados en el hospital
				"Salvador Allende" hospital	"Salvador Allende" entre agosto y diciembre
				between august and december	de 2015.
				2015.	
32	2017	NCBI	Gómez R, Castillo A,	Characterization of multidrug-	Caracterización de Acinetobacter spp
			Chávez M.	resistant Acinetobacter ssp. strains	resistente a múltiples fármacos cepas aisladas
				isolated from medical intensive	de unidades de cuidados intensivos en Cali-
				care units in Cali – Colombia.	Colombia.
33	2017	Medigraphic	Aguiar A, Martínez M,	Effect of biocides on	Efecto de las sustancias biocidas sobre
			Rojas I, Tsoraeva A, et	Acinetobacter	aislamientos clínicos de Acinetobacter
			al.	baumannii/calcoaceticus clinical	baumannii/calcoaceticus.
				isolates	
34	2017	Medigraphic	Roig A, Iglesias N,	Algorithm for the diagnosis and	Algoritmo para el diagnóstico y tratamiento
			Moyano I.	treatment of pneumonia	de la neumonía asociada a la ventilación

				associated with artificial	mecánica artificial.
				mechanical ventilation.	
35	2017	Revista	Barboza L, Fernández	Carbapenem-resistant	Acinetobacter baumannii resistente a
		Latindex	H, Chacín L, Briceño P,	Acinetobacter baumannii causing	carbapenémicos causante de osteomielitis
			et al.	osteomyelitis in critical patients.	aguda en pacientes críticos.
36	2018	Scielo	Silva V, Marcoleta A,	Prevalence and susceptibility	Prevalencia y perfil de susceptibilidad
			Silva V, Flores A, et al.	pattern of bacteria isolated from	antimicrobiana en bacterias aisladas de
				infected chronic wounds in adult	úlceras crónicas infectadas en adultos.
				patients.	
37	2018	Scielo	Samudio G, Monzón R,	Late onset neonatal sepsis in an	Sepsis neonatal tardía nosocomial en una
			Ortiz L, Godoy G.	intensive care neonatal unit:	unidad de terapia intensiva: agentes
				etiological agents and most	etiológicos y localización más frecuente.
				frequent location.	
38	2018	Scielo	Lopes P, Oliveira A,	Prevalence of health assistance	Prevalencia de la infección relacionada con la
			Álvares R, Souza V, et	infection in patients hospitalized	asistencia a la salud en pacientes
			al.	in intensive therapy unit.	hospitalizados en unidad de cuidados
					intensivos.
39	2018	Medigraphic	López M, Zerquera J,	Isolation of Acinetobacter in	Aislamientos de Acinetobacter en pacientes
			Iglesias M, Rodríguez	patients admitted to Intensive	ingresados en unidades de cuidado intensivos.
			Y	Care Units.	

40	2018	Lilacs	García A, Carnot J,	Clinical microbiological	Características clínico microbiológicas de la
			Hart M, Hernandez C,	characteristics of Acinetobacter	infección por Acinetobacter baumannii en
			et al.	baumannii infection in patients	pacientes con afecciones hematológicas.
				with hematological disorders	
41	2019	Scielo	Aguilera Y, Díaz Y,	Isolation of Acinetobacter spp. in	Aislamientos de Acinetobacter spp. en
			Guerra M, Sánchez M,	infections associated with health	infecciones asociadas a la asistencia sanitaria.
			Martínez M.	care	
42	2019	Medigraphic	Barletta R, Pérez L,	Clinical and microbiological	Caracterización clínica y microbiológica de
			Barletta J, González M,	characterization of patients with	pacientes con neumonía asociada a la
			et al.	pneumonia associated with	ventilación mecánica, Cienfuegos 2015-2017.
				mechanical ventilation,	
				Cienfuegos 2015-2017.	
43	2019	Medigraphic	Rivero R, Rivero J,	Antimicrobial resistance in	Resistencia antimicrobiana en Unidades de
			Fernández M, Martínez	intensive care units.	Cuidados Intensivos.
			A, et al.		
44	2019	Scielo	Castillo Y, Nieto C,	Bacteremia caused by oxacillinase-	Bacteriemia por Acinetobacter baumannii
			Astocondor L, Jacobs J,	producing Acinetobacter	productor de oxacilinasa en hospitales de
			et al.	baumannii in hospitals in Lima,	Lima, Perú.
				Perú.	
45	2019	Medigraphic	Arista N, Lozano J,	Nosocomial infection due to	Infección nosocomial por Acinetobacter y su
			García V, Narváez J,	Acinetobacter and its effect on a	efecto en un hospital de segundo nivel.

			Garro A, Zamora L, et	second level hospital.	
			al.		
46	2020	Dialnet	Rojas R, Falco A,	Identification and genotyping of	Identificación y genotipificación de
			Aranaga C, Alonso G.	Acinetobacter baumannii isolates	aislamientos de Acinetobacter baumannii
				from patients with nosocomial	provenientes de pacientes con infecciones
				infections and catheter-types	nosocomiales y dispositivos tipo catéter en
				devices in Venezuela.	Venezuela.
47	2021	NCBI	Goncalves B, Murici D,	Surgical site infection following	Infección del sitio quirúrgico después de una
			Perini I, Correa Y, et al.	caesarean section by	cesárea por especies de Acinetobacter: un
				Acinetobacter species: a report	informe de un entorno hiperendémico en la
				from a hyperendemic setting in	región amazónica brasileña.
				the Brazilian Amazon region.	
48	2021	Medigraphic	Hernández O,	Prognostic factors of mortality in	Factores pronósticos de mortalidad en
			Rodríguez E, Ávila J,	patients with bacteremia admitted	pacientes con bacteriemia ingresados en la
			Vitón A, et al.	to the Intensive Care Unit.	Unidad de Cuidados Intensivos.
49	2021	Lilacs	Basílico H, García S,	Risk factors associated with	Factores de riesgo asociado a bacteriemias en
			Pintos L.	bacteremia in burn children	niños quemados internados en una unidad de
				admitted to a specialized pediatric	cuidados intensivos pediátricos especializada:
				intensive care unit: A case-control	estudio de casos y controles.
				study.	

50	2022	Revista	Rodríguez A, Castro A,	Solation of Acinetobacter spp. Aislamiento de Acinetobacter spp.
		latindex	Harvey O, Machado Y.	from Associated Infections procedentes de infecciones asociadas a la
				to the Sanitary Assistance. asistencia sanitaria. La Habana-Cuba.
				Havana - CUBA